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ABSTRACT

A general discussion of the dissociation of diatomic molecules and
molecular ions by electric fields is presented. These calculations pertain
primarily to the ground electronic states of the molecular systems. The H;
ion is treated in considerable detail; the required fields for the dissociation
range from 105 v/cm for the uppermost vibrational state to 2X 108 v/cm for
the ground state. The many-electron homonuclear ions are treated in successive
charge states. The HD', HT', HD, LiH', and LiH'" heteronuclear fons are
considered. The dissociation of homonuclear ions and heteronuclear ions
exhibit distinctly different features. The #D"* and HT' ions are more susceptible
to dissociation than is Hz"k’. The extent to which the diesociation by an electro-~
static field and by the Lorentz force, ev x B, are equivalent is considered.
The rates of {induced dipole transitions to lower vibrational states can be made
negligibly small compared with the dissociation rates. The application of this

work to particle accelerators and to the injection problem for fusion devices

is discussed.
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DISSCCIATION OF MOLECULAR IONS
BY ELECTRIC AND MAGNETIC FIELDS

John R. Hiaskes?

”

Lawrence Radiation Laboratory
University of California
Berkeley, California

November 15, 1960

I. INTRODUCTION

If an atomic or molecular system is placed in a steady electric
field, the Coulomb binding forces are supplemented by an additional force
which tends to separate the charges. One would expect that a sufficiently
intense external electric field would lead to a dissociation of the system,
Oppenheimer calculated this effect for a hydrogen atom in its ground state and
found that the instability of the atorn was inappreciable for field intensities
much less than 108 volts per centimeter (v/cm). 1 Thesge calculations have
been extended to various excited statea of the hydrogen atom by Lanczos. 2

In this paper we consider the electric dissociation of the general
diatormic molecule or molecular ion in its ground electronic state. The
dissociation of a molecular system exhibits distinctive features compared with
the atomic case. The nature of this difference for the two cases is a consequence
of the fact that the only mode of dissociation available to the atom leads to a
transition of the electron into a free state. For the molecule, however, there

are an infinite number of possible final states leading to dissociation,

*Submitted as the second part of a thesis in the partial fulfillment of the
requirements for the degree of Doctor of Philosophy at the University of

California, Berkeley, California.

*Present address: Lawrence Radiation Laboratory, Livermore, California
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corresponding to the succeasive bonding and antibonding electronic states of
the systermn. One might expect then that an ion for which the uppermost
vibrational states of a particular electronic state are occupied would provide
an example of a system that would dissociate at a reasonable rate in the presence
of an appreciably smaller field than is required for atomic dissociation. This
mode of dissociation, in which the molecular system divides into two atomic
aystems--a form of predissociation--appears to be the principal mode of
dissociation for most molecular ions. Detection of the electric dissociation
of the successive vibrational states would provide a means for studying directly
the vibrational levels of molecular ions.ﬁ’ABide from its general physical
interest, such a mechanism may have application in the particle accelerator
field and to the injection problem for fusion experiments. Interest in this work
originated with some remarks by members of the Princeton accelerator group
who recognized that the acceleration of H ions in circular accelerators is
limited to modest energies, since the H ion is quite susceptible to dissociation
into an H atom and a free electron through the action of the Lorentz force,

ev X B. 3 4 This "Lorentz dissociation" of H™ may have been observed by

6 1t was recognized that such a mechaniam

Lofgren in the 184-inch cyclotron.
for changing the charge state of an atomic system might find application as

an injection mechanism for fusion devices that have large magnetic fields.

Such change-of-charge-state mechanisms employing atomic and molecular
systems as a means for trapping energetic particles inside a magnetic field
region had previously been proposed utilizing conventional {onization processes.
It is conventional in many cyclotron establishments to accelex;ate H; ions as

a source of protons. As cyclotron energies are increased it is of intereat to

inquire into the stability of successive vibrational states. The results of this

paper should be useful as a basis for estimating these successive stabilities.

7,8



A

4

«5. UCRL-9182(Rev)
These considerations prompted a study of the dissociation of the

9 In a first

simplest molecular structure, the hydrogen molecular ion.
approximation to the dissociation by a magnetic field, the problem was replaced
by the simpler one of the dissociation by a purely electrostatic field in the

belief that the solution of this latter problem would exhibit the basic features

of the dissociation by the Lorentz force. 10 Here we extend this earlier paper

to calculate the electric fields necessary to dissociate the successive vibrational
levels of H;. The extension of this problem to the many-electron system and
to heteronuclear molecules has been facilitated by the recent work of Dalgarno
and McCarroll, ! and that of Cohen, Judd, and Riddell. !2

In Section II the equations for a general many-electron diatomic
molecule moving in the presence of electrostatic field are developed. Included
in Section Il is a discussion of the electromagnetic transitions between the
vibrational states of the general diatomic molecule.

In the third section the general equations of the previous section are
applied to several particular molecular ions. The H?f system is treated in
conaiderable detail, followed by a general discussion of the many-el;ctron
homonuclear system in successive charge states. The treatment on heteronuclear
molecules is applied to the HD+. HD, LiH+. and LiH*? systems. Finally, an
elementary classical analogy to molecular predissociation is derived for
comparison with thé quantum-mechanical results.

In Section IV the motion of an Hz+ ion in a uniform magnetic field is
considered. In this section it is shown that for a rapidly moving ion, provided one
ignores the Zeeman terma, which are generally negligibly small compared with

the sep.arations of the vibrational levels, the problem of the dissociation by a

magnetic field reduces to the problem of dissociation by an electroastatic field.
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II. THE GENERAL EQUATIONS

A. Separation of the Motions

In this section we discuss the Hamiltonian for a general many-
electron diatomic molecule moving in an electrostatic field. The development
given here follows closely that of Dalgarno and McCarroll, and of Cohen,

Judd, and Riddell. Insofar aas is convenient, iwe adopt the notation of the latter.

Consider an n-electron diatomic molecule with nuclei of masses M
and My and charges ea and eb in the presence of an electrostatic field. Let
;a' ?b’ and ?ei represent the coordinates of the two nuclei and the ith electron,
respectively, all measured with respect to the laboratory system. Take the

direction of the z axis along the electric field. The Schroedinger equation

for this system is written

2 2 2 n 2
f 1 1 1 <
'TVZ*m‘vb“*aevei}*
a b i=1 |
(11. 1a)
{' §
4 f.:v1+v2?\p=z¢; -+ 3 v=Ew
where
n | E n
v aﬂ::e2 - :Z-: | aez 4 bez E+%% ; e2
17 ,~» ~ persy - - 4-:_- -
r -7 =1 Ura' ei! Ty -7 il ] i=1 J ‘rei'rej‘
(11. 1b)
and
i = )
V?_=-e€tasa+bzb- 12::1 zei}' (11. lc)

The center-of-mass motion can be separated from the equation for
the internal motions by introducing n+2 new variables--a center-of-mass
coordinate, ;c’ a relative nuclear coordinate, ;n' and n additional coordinates,
;i' measuring the distance of the ith electron from the center of mass of the

two nuclei. The transformation is written:
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n. _

rcg“'a\ran+"’brlzo*p L Fei
izl
- - -
P Ta " Ty (I1. 2)
- - -
Ty ®Tei" faTa - fl!)rb'
where
M
a

When this transformation is introduced into Eq. (II. 1), the

Schroedinger equation in these new coordinates becomes

w2 N vk , M, + M, vz ) \ 2 5 i
z [M_ M, +nm ‘¢ ﬁanb n ma+ﬁb & j?-l i )
M_+M, +m n 2
a b < v }
* L Y (L. 3a)
+ V1+VZ Y= Ey,
with
2 2 2
vlsa-l:e - i ae 4 be* +%§ & *e* .
EN =l (¥, -f,T | IF+f7 | =1 $4i EFRE N
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In Ref. 13 it is shown that

P ggaMb-bMa
V2=~etfia+b-né c ™ ® :L Ma+Mb Ay
(I1. 3c)
f’ 3 n
+Qé;1+(a+b-n)m | Z 2
| M3+Mb+nmJ & i

The center-of-mass motion can now be separated from the equation
for the internal motion by writing
Y(r c! rnO ri) = ’N(l‘c)\P(rn. ri)
and
E=zE_+ W,
c

The equation for the center-of-mass becomes

2 g-l 2 )
b*-nm? V -eg{awkban]z}ucEﬂ.
J C 1 C\ <

N

}‘% ;LMaJrM

This equation describes the motion of 2 particle of mass Ma + Mb + nm

and charge e{(a + b - n) moving in an electrostatic field.

The equation for the internal motions is written

2 2 n e n 2
£ (1 v, 1 S AY] 1 = }
- ! + o L v + - V P
TOM T M YM, 7o i 3 My Tt
, aM, -bM : -n 1
+{Vy-el m*Em—& 2, tel 1+ gii?,i fi?n L "i}“"w“"'
| a b a b i )
(11. 4)
with
M = MaMb
n Ma+ b
and
m(Ma‘*Mb)
m = -

e Ma+Mb+m
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In the interest of separating the relative nuclear motion from the
electronic motions, we proceed by assuming a solution of the form
4 - ~ A\ - - -
Yr . Ty = éﬁ Ve o T X plr )
) . , -
Inserting this expansion into Eq. (II. 4), multiplying by Wy o and integrating

over all electronic coordinates, we have

2 2 - 2 aM, - bM i
H v abe £< b a) !
- X4 + - - S T z_+ B . (r)-wix, +86
2SR TS N 2 T My n Aal T T AT K
s Z X fq} ] {_ ﬁz & 2 _ i‘ % ae + 2
K /" Zm. ey i - - =~
K J e i=1 i=1 Llrl-fzrnl 'ri+flrn‘ i

2 : 3 3
Jg L 2 - Ex(rn)? bdr e d’r,  (IL5)

where
1. * 2 3 3.7 e o 3 3_ |
Gm”m—;g;; Xg ¥ V; e i v 2 L 4,V XV dydTrpeed "n|
1 < [, * 3‘3 a v 3 3
+ « L0X Iy b . v d°r,--+-d"r_.
MM, & Xk, 4 40 1Y %4 n

The electronic functions, Yo are defined by setting the bracketed

quantity in the integrand of Eq. (II. 5) to zero. The remaining terms serve to
define the nuclear motion. In a first approximation to the nuclear motion it

it customary to get the 0 \K gseries to zero. The various vibrational states
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belonging to a particular electronic state, E,, are then determined by the

equation

2 _2 roo2 aM, - bM ] ,
(1. 6)
For homonuclear molecules, the 8 K series is a simple correction to the
nuclear potential, the leading term in this searies céntributing a quantity of

12 For the heteronuclear cne-electron problem in lowest order,

order m/ M .
there is a degeneracy at large r _ for the two distinguishable cases in which
the electron is associated with either mass a or mass b. It has been shown
that in this latter case, in addition to providing a correction to the potential,
the leading terms in GXK also provide a means for removing the degeneracy

that exists at large r . The motion is now determined by a set of coupled

equations, and the notion of a potential is no longer appropriate. 12 In this

discussion we shall usually neglect the effects of these higher-order corrections,

since the primary effect of the electric field is alrecady pronounced in lowest
order; the use of a potential in describing the effects of the electric field for
both the homonuclear and heteronuclear cases is then valid.

B. Vibrational Transitions

1. VSpontaneoua Emission

Here we are concerned with vibrational transitions between the
various vibrational states belonging to the ground electronic state of the
mdlecule. The lifetimes éf these states can play an essential part in the
interpretation of various experiments involving molecular procesees. There
have been conflicting statements in the literature regarding these vibrational
transitions, particularly with respect to quadrupole transitions in homonuclear

molecules.
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In Ref. 13 the apontaneous-transition rate for dipole transitions is

shown to be 3
4 Vv ‘aM, - bM

YTa® 3 'E; w \M> l b 1Flxy) ‘
In the case of homonuclear molecules, the dipole transition rate is identically
zero. As an example of these transition rates for heteronuclear méleculea.
consider the HD ion for which we have ww = 0.22 ev and ?nz Zao. The
lifetime of this first excited state is approximately 200 microseconds (usec).
For the uppermost states, the lifetimes will be about two orders of magnitude
longer than for this lowest transition. Since the time of flight of an ion in an
electrostatic accelerator ia some tens of microseconds, we conclude that for
the purposes of many experiments these states are sufficiently long-lived to
be considered stable.

For homonuclear molecules, the quadrupole transition rate is given

by |
3 2
: 2 Vv 2 l
.4 e k, a - > -
Vig =3 & - (7) % (e 1T F x|
[2 2 )*
These quadrupole lifetimes are approximately a factor of i\; :—) longer
r
o

than are the dipole lifetirmnes.

2. Induced Transitions

The presence of the electric field has the effect of inducing
vibrational transitions. One is generally concerned with the rate of these
induced transitions compared with the dissociation rate. In Ref. 13, it is

shown that the induced transition rate is given approximately by

ve?‘ 2

I/TI -T l(q’zxk 1' cos 8 iq‘IXJ)

The transition rate given in Ref. 9 is in error. The selection rules for these

transitions have been discussed previously by Condon. 14
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This transition rate exhibits a simple power dependence on the
electric field value. The dissociation rate, on the other hand, is exponentially
dependent on the field value. For any particular level, therefore, it is
possible to choose a field value for which the over-all transition rate will

aexceed the dissociation rate, and vice versa.

III. APPLICATIONS

A. Homonuclear Molecules

Having derived the general equations in the preceding section, we
shall now apply these results to several particular molecular ions. In any
discussion of the theory of diatomic molecules, the symmetry features of
homonuclear molecules lead to a clear distinction between the propertiés
of homonuclear and heteronuclear molecules. This distinction becomes even
more evident in a treatment of the dissociation by electric fields. Accordingly,
we shall divide the problem at this point and consider first the dissociation of
homonuclear molecules.

For homonuclear molecules we havé a=band M, =M the coefficient
of a in Eq. (Il. 5) vanishes and there is8 no explicit -depenaence on £ appearing
in the equation for the nuclear motion. We 8hall see, however, that an implicit
dependence on £ is contained in the electronic eigenvalue, E)\(rn),

(1) Dissociation of HZ+

The simplest molecule and the one for which an exact treatment of
dissociation can be given is the hydrogen molecular ion. We begin the diacuuion

by considering the electronic equation for this one-electron system:

(}r 'ﬁz vZ 1r 32 ez IS 1
[ RZRE I P M = -€C 2 b = Eplr, W (1L 1)
N 17172 ITo¥2%n

where & =[1+ (m/2M + m)]e.
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The potential function seen by the electron is illustrated in Fig. 1
for the case in which the two nuclei are orianted along the field direction and
for some particular internuclear .separation. It is clear from the figure
that the electron may leak out toward the left, away from the region of the
two protons. This would correspond to a complete dissociation of the system,
i. e., dissociation into a free electron and two free protons. Although this
represents a possible mode of dissociation, it is not the primary mode.
Rather, the primary effect of the term ¢ £a 1 is to perturb the electronic
eigenvalues. This perturbation in turn leads to a disruption of the nuclear
motion.

The Eq. (IIL 1) for &= 0 is separable in confocal elliptic coordinates

§ n ¢. These coordinates are defined by

‘- Irel-rai+ ]rel-rbl i lrl-zrn(+ lr1+2-rn( - ra+rb
FREEIN B r

and

n e Fer = Tpl tirey =Tl 17yt grpl =07y -yl 7y -7,
i b d -l 4
iy =7yl Ir, 1 r,

where r, and r, measure the distances of the slectron from proton a and
proton b, respectively. These scalar functions are not to be confused with
the vector functions defined previously in connection with Eq. (II. 1).

If x", y'", and z' are the coordinates oriented with respect to the
internuclear axis and with origin at the midpoint of a and b, these coordinates

are related to the §, n, ¢ coordinates by

r .
2 g2 V20022 con s,

x" =
: r
y" = 7!3 (52 - 1)1/2 (1 -nz)l/z sin ¢,
and
2" = (r /2)&n. (T11. 3)
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The volume element i3
3

4
ar = g (&% - n%) ag an a4,
and the range of the variables is given by 1 £§ <=, -1 <<, and
0<L¢ < 2m
On introduction of these coordinates into Eq. (IIl. 1), there result
three separated equatione~-one trivial, the other two requiring numerical

15, 16, 17 1poge integrations have also

integration for their general solution.
been garried out by Bates, L.edsham, and Stewart for several electronic states;
the results are tabulated over a range 0 < rn/ao £ 10, 18

Another set of functions has been given by Cohen, Judd, and

12

Riddell, °~ using a variational calculation in confocal elliptic coordinates.

Their variational functions are of the form

qlr )nr
¥, = A cosh ———y———— exp {-[pl(rn)g rn]/z}

and
qir Inr

¥, = Ay (€) sinh =2 exp {-[p,lr )6r ]/2 ). (II1. 2)
Here the variational parameters p(rn) and q(rn) are tabulated for the interval
0« rn/a o < 20. The coefficients Al and A2 are determined by the normalization
conditions

2 3

(A, /4) r,  [E;Cy-EByC,l =1
and ‘

(na,%/4)r 2 (E, B, -E, B, ] =1

2 n 270 072 '

The quantities E, B, and C are defined in the Appendix. In the limit of large
internuclear separation, we have p=q = 1, and Al = AZ = (Z/w)l/z.

Consider now the effect of the term ¢ £ z, on the unpertﬁrbed
electronic states. For large internuclear separations, the bonding and anti-
bonding states “‘1 and tpz are degenerate; a perturbation treatment of the

term E;Ezl. though adequate for small internuclear separations, loses its
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validity for large internuclear separations. This degeneracy of \;:l and ¢Z for
large internuclear separation suggests that ina first approximation we consider
diagc‘malizing the Hamiltonian (III. 1) byt retaining only the submatrix formed

from these two electronic states. The matrix to be diagonalized is then

{/Hxl Hiz\\

’1\ } . (ILL 4)
/

\H,, H,,.

For the evaluation of H,, we must first transform the term ¢ & z,
into the x", y", and z' systern oriented with respect to the internuclear axis.
Introducing Eulerian angles \ and p, we have
{fzx = dgix'i sin \ + y'} sinp.;:os A+ 2] cos pcos k} .
The functions (lIl. 2) are independent of $, and upon examining the transformation
(I11. 3) we see that the terms in x'' and y'" vanish under the ¢ integration. Noting
that cos p cos \ = cos On. where Gn is the angle between the internuclear axis

and the electric-field direction, the relevant perturbation is then

cé z, = EC z'i .
In the evaluation of le using the functions given in Eq. (IIl. 2), the relevant

perturbation expressed in confocal elliptic coordinates is written

r
56‘31 =C‘€—;—— cos 6 n, &.l.

The matrix elements are given by

H“ = I-:‘.l ' (111. 5a)
HZZ = EZ ’ (111. 5b)

and
H -H 'gCC cos 8§ AlAzrn [E D 'EIDSJ' (111. 5¢)

12
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The additional terms that appear in the H“ and sz matrix elements,
[

1
" 2 4
B-EEcos Gn A1 .rn lE31C1 - E“C3J

and
v ¢ 2_ 4] }
-gufcos On A, r - EL,F) -E,Fa0

i
L J

respectively, are each identically zero. In the limit as T, © we have
, 1 o
le -y ek r cos Bn.
With these matrix elements, diagonalization of Eq. (III. 4) yields two new

electronic states, 4:8 and \p“. whose eigenvalues are, respectively,

Eg.“= ——— + 3 (E,-E;) l-¢j4sz/(.Ez-El) . (111. 6a)
For large values of L these reduce to
{5 r_lcos 8|
E =E. - n n
g 1 2
and | ¢
sC r_jcos 8 |
. n n
}E‘.u = EZ + 5 (I11. 6b)

Equations (III. 6) inéiicate that the electronic eigenvalue, whic'h in the unperturbed
case was independent of the orientation of the internuclear axis, now has vav value
 that is dependent on the nuclear orientation and in addition is a function of the
electric-field value. We have seen in Eq. (II. 5) how the electronic eigenvalue
appears as part of the potential function for the nuclear xﬁotion. The nuclear
potential which was spherically symmetric in the unperturbed case becomes
axially symmetric in the perturbed case, with the axis of symmetry oriented
along the field direction. The nuclear potential for the lowest electronic state
now acquires a double-ended spout, the two spouts oriented along the field
direction. The effe;t of the perturbation goes to zero in a direction

at right angles to the electric field in this approximation.
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The potential function for the upper electronic state also acquires a double-
ended spout, but for this state the two spouts are oriented at right angles to
the electric-field direction.

In Fig. 2 is shown the unperturbed nuclear potential for the two
lowest electronic states. Figure 3 indicates the distortion of the nuclear
potentials in the presence of the electric field; the potentials are drawn along
the electric-field direction. The symmetry of the potential about the origin
follows a3 a necessary consequence of the invariance of the Hamiltonian (1I. 4)
for a homonuclear molecule under inversion of the nuclear coordinates.

Frorm this figure it is clear that as the electric field increases, the nuclear
potential deforms until the uppermost vibrational state becomes unstable.

The ion will then dissociate into a free proton and a hydrogen atom according

4

to hz

- H + p. This mode of dissociation is a special form of predissociation.
At first glance the symmetric potential of Fig. 3 might conflict with

one's intuitive feeling that the potential of either electronic state should fall

off approximately monotonically from left to right. This point can be clarified

by examining the new electronic wave functions appropriate to the diagonalized

Hamiltonian. For the perturbed electronic states, one finds

¢=€(E -8,)%+H 2-1/2 "((E-E)\p + H q:\i
g g2 12 et T T 12 zf
L 4
and .
" { > 2E-x/z . N
| ‘*"u"i‘Eg'Ez) +H, ; ,-le¢1+(Eg-EZ)¢Z}

(111. 7a)
Consider the limit as r, becomes large and the nuclear axis is
aligned along ;he electric field, corresponding to proton a lying in the direction
of the electric field with respect to protoh b. We have
-Ty
and )

(III. 7b)
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Equations (ILl. 7b) is to be interpreted as meaning that in this limit
of large internuclear separation the ground electronic state is one in which
the electron is associated with proton b and proton a is free, and the
excited electronic state is one in which the electron is associated with proton
a and proton b is free. For the lower electronic state this corresponds to
moving the positively charged proton a in the positive field direction, hence
lowering the potential. For the excited electronic state, the positively charged
proton b is moved against the field direction, thus raising the potential.

Upon rotating the internuclear axis 180° with regpect to the electric field a
similar argument shows that the electron becomes associated with proton a
and proton b is free. The variation of the potential illustrated in Fig. 3

is then understood.

The higher-order effects which were neglected in diagonalizing the
submatrix (IIl. 3) can be estimated by using perturbation theory and taking as
the basis functions the two solutions of Eq. (IIl. 7a) together with all the un-
perturbed higher-state functions. In the limit as T, goes to zero, the molecular

ion degenerates into a He' ion in its 15 state. The Stark shift for this state is

. _ 9 32
AE = - £x a “C°%
In the limit of large internuclear separation, the electronic state is that of

a hydrogen atom in a 1S state. The Stark shift for this astate is

AE = - % a°3¢"'. (ILL. 6¢)

4

For the range of electric-field values of interest for dissociating the upper
vibrational states, these higher-order corrections are negligible. For
dissoci#ting the lowest vibrational states these corrections, though not
negligible, are not too significant. Their effect on the transition rate is
comparable to ignoring them completely and increasing the electric field

value gome 5 to 10%.
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The potential function for the nuclear motions has been determined,
and we can now consider in detail the nuclear dissociation. The equation for

the nuclear motion is given by

{ w2 v 2 2 1
i- Wn n + ?:1 * Eg(rn' en’ £ ) - le} le = 0. (I11. 8a)

The subscript v is introduced to distinguish the various vibrational states
belonging to the lowest electronic state. In the limit of large internuclear

separation, the asymptotic form of this equation is

:/ 2 3
oy YE, () -3 .5 r |cosB | -W, VX, =0. (IIL 8b)
'1"2M_. n 1 W m 3o Thicosby v “lv T T W

In the asymptotic region, the El(rn) is constant and can be absorbed in the Wi
It is clear from Fig. 3 that if the maxima of the potential lie above
an eigenvalue the proton may leak away from the region of the hydrogen atom.
This effect of barrier penetration is not negligible. To treat the nuclear
dissociation taking into account these effects of barrier penetration, we use
Oppenheimer's formula for the transition rate. 1 The method consists of
solving for the motion of the ion in the asymptotic region given by Eq. (III. 8b)
and neglecting the binding effects of the molecular forces at small internuclear
separation. The transition is then imagined to proceed from the bound discrete
vibrafional state of the ion to the unbound free-state solution, the perturbation

inducing the transition being a function of £, Specifically, the matrix element

for the transition is written

(X5 | AVIX )
her
w e , 1/2

1 1) 2 2|

X ) i8 bound vibrational state, and Xplsa solution of Eq. (III. 8b). For
these calculations, it was found that the primary contributions to the matrix
element come in the range where

~ 1o
AV = ~2-<‘”(_Czn
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The solutions of Eq. (IIl. 8b) in cylindrical coordinatea Pnt Zn Py

for the classical and nonclassical regione and normalized to a continuous

spectra are, respectively,
— M '
Xac ® 2%/ J3 - (3a) /6 13 8,"1/3“” 3 4730 } In N2y 0y
im¢. .,
Xe- o
and
2/3 Ma — . .1/6.2/3 1/3., (@),
Xanc = - 2 —— Nw (3a) 7Ty i)

- im¢hf
x3 (\fiz p,) e = .

Here we have
e M &

o=
H

: 2
V= g (3 tez)

\z)sl-!-)\z,

and

ZMn
The Bessel functions are as defined by Jahnke and Emde. 19

Using these wave functions and the exact bound-state wave function, 20, 21

the electric fields necessary for dissociating the ion in 1 sec and in 10"8 sec

have been calculated for the nonrotating molecule, that is

J=m=0.
The results of these calculations are summarized in Fig. 4, which is a plot
of binding energies, expressed in Rydberg units, of the bound vibrational
states againet the electric field value. The intersection of the horizontal
lines with the sloping lines marked 1 sec and 10'8 gec determines the electric-

field values necessary to dissociate the ion in these times. Included on these
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graphs is a curve marked "classical", which would give the field necessary
for dissociation in the absence of barrier penetration. For this case, the
jon would dissociate in a time comparable to its classical vibration period,

~-14

i.e., 10 sec.

The additional term appearing in Eq. (II1. 8a) for the perturbed ion,
E, - El 2 1/2

gives rise to a firet-order perturbation that has the effect of lowering the

Lo,

unperturbed vibrational atates. If we use the curve labeled ''classical' to
determine the electric-field value, the first-order perturbation of the various
vibrational states has been calculated and plotted in Fig. 5. These perturbed
eigenvalues have been used in the calculations summarized in Fig. 4.

The calculations of the vibrational eigenvalues of the unperturbed
molecular ion are uncertain by perhaps as much as 5 mv. The range of this
uncertainty for the two upper states is indicated in Fig. 4 by plotting two
horizontal lines for each of these upper states.

The transition rate given above is based on the final-state eigen-
functions, which ignore the bonding molecular potential. This rate is such
as to lead to an overestimate of the field required to digsociate the ionin a
particular time. An underestimate of the required field can be made by
assuming the perturbed potential is spherically symmetric and using the one-

dimensional WKB barrier-penetration formula, /
r 1/2
2 { L

14 ~F | r |
N(T) = 107% e (2M, Wy - Vin) 5 ar_,
rl i . S

where
2
4 e
V(l"n) = -;-; + Eg(rn, [

The calculations for dissociation in 10~ gec using this formula
are indicated in Fig. 4 by the dashed curve. The discrepancy between these

two calculations together with the uncertainty in the unperturbed eigenvalues
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provides a basis for estimating the over-all errors in these calculations.

‘The calculations summarized in Fig. 4 refer to the transition
rates of non-rotating (J = 0) molecular ions. In the more general case the
effects of rotation must be considered. As an illustration of the significance
of these rotational effects let.us compare the fields required for dissociation
in 10'B secs. for an ion in the v = 15 vibrational state and for the rotational
states J = 4, m = 0, 4, with the fields required for dissociating an ion in
the same vibrational state but in a J = 0 rotational state. For m = 0 the
electric field necessary for dissociation is approximately thirty perc?nt less
for J = 4 than for J = 0. For J = 4, m = 4, the required i . - dissociation
field is approximately forty percent larger than J = 0. We conclude that the
presence of rotation’has the effect of lowering the threshold fields necessary

for dissociating a particular vibrational level.

(2) Dissociation of Many Electron Systems

| Turning our attention to the many electron problem;,we find
relatively little quantitative information in the literature on potential functions
for many-electron molecular ions. Only for the I-iezJr ion and the Li; ion
has there been any attempt to calculate the ground-state-potential functiona,
and here the emphasis has been primarily on determining equilibrium inter-

22,23 Accordingly, our treatment

nuclear ae};arations and potential minima.
of these many-electron ions cannot be as precise as for the one-electron
systems, and quantitative estimates of the fields necessary for dissociation
will have to be made largely on the basis of extrapolating the properties of
the corresponding neutral molecules.

The many-electron probdem is treated by using the molecular-
orbital approximation. In this approximation the many-electron moleculér
system is conetructed by filling the successive two-centered orbitals of the

hydrogen molecular ion. In its most primitive form, the interaction between

the electrons is ignored, and the molecule is constructed by using the
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unperturbed ground-state and excited-etate orbitals. For this work we shall
require only that the orbitals possess the proper symmetry features and have
the correct asymptotic form. The wave function for the entire system ia to
be expressed in determinantal form.

For the evaluation of the matrix elecments, we have recourse to
eténdard theorems on matrix elements between determinantal wave functions. 24
The general form of the perturbation with which we shall be concerned occurs

in the electronic Eq. (Il 5) and has the form

r
z, = ~~ CO8 Bn

e

fon
1]
P

Let y; represent a determinantal function describing the ith electronic

state and 8 a particular spin orbital in q;i. We have then

Wy IRI ) = 0

if ¢, and {, differ by more than one set of quantum numbers, and
b i

4
!

(by IR14) =+ | ak*u) R ()a,(1) a’ Ty, (111. 9a)

where the values of 8, and a 2 differ by no more than their spin functions or

their orbital qunatum numbere. For diagonal elements we have

2
Mj [R] LPJ-) =

-
-~

’!/ s MR M mas. (I1L. 9b)

We shall also use the first of Hund's rules to determine the lowest state of
several possible spin states. According to this rule, we choose the maximum
value of spin consistent with the Pauli principle. These theorems and rules
are adequate for a general discussion of the many-electron problem.

(a) The HZ molecule. For the ground state the lowest orbital is occupied

1 +
by two electrons with spins opposged to give a Z state. The wave function

g8

for this ground state is given by

vg = Ayy1) all) 4, (2) pe2).
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Here ¢ is an antigymmetrizing operator, the a's and §'s are the conventional
spin functions, and the L',:l function is of the form given in Eq. (IIL 2).
Asymptotically this electronic state goes into HZ - H+ H.
For the first excited state, which asymptotically is degenerate
with the ground state, the ground-state orbital 4, and the first excited
orbital ¢2 are each occupied. Hund's rule calls for a gpin-one state. The

3_+
wave function for this z antibonding state is given by

i
i (1) afl) §,(2) a(2).

Following the procedure for H2+. we again diagonalize the appropriate 2 by 2

submatrix. The matrix elements are now

Tr
= fF_n : =
}111 = ("Pg ‘et"'z cos gn (ﬂl gl + ﬂzgz) I‘bg) A El =0+ El = El'

r
Hy, = (b, lef - cos 8, {n; §; +n, §,) 14 )+ E, =0+ E, = E,,

K

and
Hyp = = wu el 1:21}' cos an {‘11 gl 1 %2i M’g) = 0.

For homonuclear molecules the diagonal terms will always be unperturbed,
since the perturbation is an odd function. The H 12 term vanishes both because
of the orthogonality of the spin functions and the cancellation of the orbital
integrals. This re sul_t could have been obtained immediately by noting that
xpz and qzl differ by two sets of quantum numbers and invoking the first of
Eq. (III. 9a) . The ground state and first excited state of H, are therefore
unperturbed in this approximation. The asymptotic potential in the presence
of the field is illustrated in Fig. 2; predissociation of the H, molecule will
therefore not occur. For the Hz molecule, the rﬁode of dissociation is one
in which an electron is stripped off, as is suggested in Fig. l.

The above argument for H% is readily generalized to any neutral

homonuclear molecule that has a : ground state, corresponding to a
g
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molecule with closed shell orbitals. The firat excited state will be occupied by
one electron, which according to Hund's rule will couple its spin with the last
alectron in the unfilled orbital to give a spin-one state. Using the firet part of
Eq. (I11. 9a) we have our resgult. For those molecules that do not have a -
ground state, similar arguments together with successive Hund's rules ¢

lead to the same conclusion.

(b) Dissociation of singly ionized molecules. In the limit of large internuclear

separation, the ground electronic state of a general singly ionized molecule A;
goes over into a state consisting of a neutral atom and a singly ionized atom,
according to AZ"L - A + A", The molecular fon will have an odd number of
electrons, with the last electron unpaired in its respective orbital. The firat
excited state will consist of a state in which the unpaired electron occupies the
next higher orbital. However, since it remains unpaired.‘ Hund's rule is
inapplicable, and our result ie given by the second part of Eq. (III. 9a). This
matrix element is always nonzero since ak(l) and a l(” will have different
spatial symmetries. The result is analogous to the Hz* case illustrated

in Fig. 3, with the agymptotic potential varying as

- é@{:frn |cos Gnt

(c) Dissociation of doubly ionized molecules. The ground electronic state of

the doubly ionized molecule dissociates according to AZ‘M - At 1 AY. For
these molecular ions the argument is similar to that for the neutral molecules.
The first excited state contains an electron in the next higher orbital which
couples its spin with the remaining unpaired electron such that the first theorem
of Eq. (IIl. 9a) applies. The asymptotic potential is unperturbed as in Fig. 2.
We conclude this section with the general observation that, for a
homonuclear molecule with an even charge state, predissociation will not occur,
and the ground electronic state is as illustrated in Fig. 2. In the case of an
odd charge state, predissociation will occur, and the electronic states are as

illustrated in Fig. 3, with the potential falling off asymptotically as -}zeg rntcos Bn .
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B. Heteronuclear Molecules

For heéeronuclear molecular ions the invariance of the Hamiltonian
(I1. 4) under inversion of the nuclear coordinates is no longer a restraint on the
problem. As a consequence the dissociation of heteronuclear molecules exhibits
essentially distinct features compared with the homonuclear case. The nuclear
potential is now affected both by the implicit dependence on 5 contained in the
electronic eigenvalue and the explicit term - eCm[ (aMb- bMa)/(Ma+ Mb)]zn
contained in the nuclear Eq. (II. 5).

(1) Dissociation of HD'

We begin the discussion by considering the one-electron H€p! system.
In the general discussion of the heteronuclear problem, we shall take M ato be
the mass of the lighter nucleus and M, to be the mass of the heavier nucleus.
Before considering the analytic form of the electronic wave functions, we note
that the origin of the electronic coordinate system has been taken at the center
of maes of the two nuclef, whereas the origin of the confocal elliptic coordinate
system is taken at the center of the two nuclei. For the heteronuclear case,
the Eulerian transformation \, p must be followed by a translation along the
internuclear axis.

The Eulerian transformation A\, p of the perturbation gg 2y into the
x', y', z' system oriented along the internuclear axis is given by

&€ z) =¢{ [x') sin A + y*| sin p cos X + z') cos p cos N'].
If Zq is the position of the center of mass with respect to the origin of the
x", y", 2' system, we have z, = (rn/?.) [(Mv - Mb)/(Ma-‘r My)]. The perturbation
in the x", y', z' frame is then
z, = el [x'] ein N + y'| #in p cos N+ (2" - 2) cos X cos pu].

The terms in x'* and y" will vé.nish under the ¢ integration as before. Our
relevant perturbation terx;xz expressed in the n, §, $ coordinates is now written

as

]

t
i
!

] IM_ -M
3 1 j X /; a b
elay= g elr, coso, M TS R Y

4 a

S e

i
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In the limit of large internuclear separation, the ground electronic

state of the unperturbed HD" ion goes over into a state in which the electron is
associated with the deuteron, and the first excited state goes over into a state

in which the electron is associated with the proton. The appropriate wave

functions are given, respectively, bylz
: Q,n -Pg/2 Qmn -P§/2°
_ 1 1 2 2 j
¢b~ b écosh- —— e - sinh: ~-~— e [
) (I11. 10a)
- Q,n -Pj&/2 Q,n . -P,§/2
q,a z A cosh —5— e b 8inh: —5- e .
In the limit as r_ goes to ©, we have A, = A = L » and
n b a
N
-r
1 b
g - — e »
RN
and
p e
Y > —— e . (I11. 10b)
N

Although these two states are not degenerate, in the limit of large internuclear
separation, these eigenvalues E‘.l and EZ are sufficiently close to suggest that
in a first approximation we proceed as with H2+ and diagonalize the submatrix
analogous to matrix (IIl. 4). The matrix elements are now:

M_-M, | \

" r
n a b :
Hy = (\“‘b (g~ con 8, n ) - M_TH, } “‘b/’*‘ E)
3 .
r j r 1M =M
- n 2 0 Pa b
= £Lo5" cos 0 %o T {Ds Ej12-P1 B3, T M_TM b)} b Ey
p r l M -Mb \
Ha2 (“’al&‘ T 88, Im & I m A E,
r J 2 rn3 i’ -‘ M, =M
=03 cos 6, (%2 7 (P1Faiz 7 Ps Fuie) t iMTEL) R
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r M, - By 1o
Hj,=Hy = 52—2- cos en"; uh &1 - “m“ lq;b ] = 0. (I11. 11a)
L 4 £ !

In the limit of large o H“ and HZZ reduce to
. 1,¢%n
Hyy =+ - «3-66-2- cos 6n+ E,
and
H »+2c6 B cos +E (IIL 11b)
22 37T n 2° *
If we combine Eq. (IIl. 11b) with the term -e £ [ (aM, - bM a)/(Ma +Mp)] 2
which occurs explicitly in the nuclear Eq. (II. 5), the asymptotic potentials for
the nuclear motion are given by
E =-Z'e€r cos 8+ E
b 3 n n 1’
and
=+ 1L
Ea =+l r COS Gn + EZ'
These potentials are illustrated in Fig. 6. It is clear that, in the ‘'classical"
limit, the HD+ ion is more susceptible to dissociation than is HZ*. One can
readily show that, for the ur' ion, the coefficients in the asymptotic nuclear

potential are - 3/4 and + 1/4, respectively.

(2) Dissociation of HD -

The electronic wave function for the ground state of this two-electron

system is taken to be

by = €y, (1) a(l) ¢ (2) B(2).

The pertinent matrix element is written

; Tn. Mg -My \
Hyp = i“’g[ff-r cos %‘%“1*’@2"2'2213:?103;5 ¢g'/§+ Ey-
' ‘ {

According to Eq. (IIL. 9b), this reduces to

3

i r
Ya| (Yol <08 0, ) gxl )

1 r
Hyy = (“‘asicf‘zri cos 6, §) n;

+ %—{5 r cosf +E;.
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If we use the results obtained for HD', the first two terms cancel. Combining

H,, with the explicit term - %— el 2.n appearing in the nuclear equation we have

11
Hyy = By
The nuclear potential is as illustrated in Fig. 2.

(3) Dissociation of L1H+

The ground state of the LiH molecule has a large equilibrium separation
and a relatively shallow potential minimum. No data exist on the properties of
Lig' ions, but we can suspect that these ions aleo will be loosely bound structures
and hence relatively susceptible to dissociation.

The correlation diagram given by Herzberg indicates that the ground

25

state of LiH' consists of two occupied ""b orbitals and one tpa orbital. In

the limit of large L Lint - 1i' + B Our ground-state wave function is
by = A1) a(1) 4, (2) BI2) 4, (3) a(3).

The matrix elernent becomes

r

5 7
Hy, = B—@t r cos 6 +E.
Combined with the term - é-e Zn in the nuclear equation, the asymptotic nuclear

potential becomes

= 1 _F
Eg— 5 eCrncos o+ E,.

(4) Dissociation of I_,iHM

It is not known whether this ion possesses a stable ground state;
however a comparison of the asymptotic potential of this case with that of
LiH' illustrates the sensitive dependence of the p:"oblem on the charge states
ojf the ion and its dissociation products. The Lig*t dissociates according to

LT - it + H'. The wave function is now

by = (1) a(1) 4, (2) B2,



-30- UCRL-9182(Rev)

and the matrix element is

ﬁ c 30
éf——z- cose 52(¢b|§lql]¢b)+7j+ El‘

In the limit of large r. we have
Combining Hl 1 with - 1/2 ee Z.n term in the nuclear equation, we have for
' the asymptotic potential
3 Al
EB = - Ked r, cos Gn + E.
The LiH'! ion is appreciably more susceptible to dissociation than is Li H'.
A comparison of the potentials for these two cases ias indicated schematically

in Fig. 7 in which the asymptotic potentials are drawn for the same electric

field value.

C. Classical Treatment of Digsociation

We conclude Section III with an elementary discussion of the classical
dissociation of two charged bodies. Let eA and eB be the charges of two
dissociation fragments of masses MA and MB' respectively. Let f(rA - rB) be
a function describing the equivalent of the molecular binding forces and
van der Waals forces. In the limit of large Tp-Tp choose f to be zero.

The forces on the bodies A and B are

MA rA=£(rA-rB)+eA€
and

M =-£(rA-rE)+egé.

B'B
Multiplying the firat equation by MB and the second by M A and subtracting

the second from the first we obtain the equation for the relative motion:

My Mg AM-BM, |
SR Ta =iyt el r—r
AtMp Myt Mp




-31- UCRL-9182(Rev)
In the limit of large T the relative potential is given by
{AMp - BM,
V(rn)=—ec‘rM ¥ r.

AtV |
This relative potential is in agreement with the asymptotic potentiais

found in the previous sections. It is quite interesting that the correct classical
asymptotic potential is obtained in the quantum-mechanical problem through
contributions from both the electronic equation and the nuclear equation. The

parameter (AMB - BMA)/(MA + M) provides a useful criterion for estimating

B)
the stability of various ions.

IV. DISSOCIATION BY A MAGNETIC FIELD

In this section we shall consider the equations of motion of an Hg

ion moving in a uniform magnetic field. Our purpose is to examine to what
extent the dissociation of the ion by the Lorentz force is equivalent to digsociation
by an electrostatic field.

Let H be the intensity of the magnetic field which is taken in the 2

direction. The vector potential for this field is A = A, = (H/2)p ¢, where

$
p = (x2 + yz) 1/2. The Hamiltonian for the system is given by

1 - e » .2 1 - e » .2 1 - e » .2 ¥:]
T Pa-cA) + T Pp-gAY t Fm Pt AN+ V) v= -Wi g

From transformation II. 2 we have

v

a

-t

=p +-o.f-o'
8VC n avl

T o=pT 4+ .
Insaerting these expressions in the above and writing H, for the Hamiltonian

when A= 0, we have
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‘H eh (& . T + A - S+ 20 A e? (A + A% e A?'}npnww
Iy - e Y2 Va b V! ! e 7e Mc? b z 2 j .

Neglocting terms of order m/M compared with unity, Eq. II. 2 yields

- ) - m -~
r r

a~3TTat T Ty

Inserting these in the above, using A_ = -(H/2)y and Ay = (H/2)x, we can write
for the various terms in the Hamiltonian:

‘ - > - eHH ) )
1= - o K, Vot &y ) = 5t {‘ch'; 'xcw’}

C

P, B ey )y o ek o) B
R R A PR A RN TR AR SRR

m 9 )

NS Sl PR B T

_eh f > _ eHh (m & ) b
n= e Ko Ve ® 2me kR '8"9 "N oae Mt e By, Ve b))
9 ] m ® 9
vy ER) oM e By Ve s*;c’I-

Combining these expressions and neglecting terms of order m/M compared

with unity, we have

i
eHh 1 8 8 1 {4
T+IU=ower 2 85, 65, ™1 55, "N rfc’j

, eHn o 2_,
z“rnl * ¥y, " Ye %]
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Considering the AZ terms, we note that we have r, <<r_ and r; << T

If we write Pa ™ Pcr Pp ¥ Per and Pe = Por the Az terms reduce to

2 2 2..2

e 2 2 e 2 e H 2
——— (A + AL )4+ w— A "= - P. .
ZMcz a ch':2 e 8mc” ¢

The second term in I + II is the Zeeman term in the nuclear coordinates
and is equal to %{-& t{(J (J+l))l/ Z. where J is the rotational quantum number.
The fourth term is the Zeeman term in the electronic coordinates. These
Zeeman terms are usually small compared with the separation of the vibrational
levels, and for the purposes of this problem can be neglected. For the fifth
term, we use #/im (Vl) = Vi where vy is the expectation value of the internal
electron velocity. This term can be combined with the first term and is
negligibly small when the center-of-mass velocity is large compared with vy

The third tarm is the term of interest. If we write ?\/ZiM(Vc) = (v )
and take the center-of-mass motion to be a classical circular trajectory,
this terrﬁ becomes

1 eHv |
23'3'3{ Z'(xl's%-°71‘gi)”*fg&(xlﬂinw-ylcosa),
c

¢
where w = eH/2Mc.
Conegider next a traneformation into a rotating coordinate system:

x'1 =x; cos «t +y, sin ut

y'l =Y ‘coq wt - x, sin ot

z'y =2y

and

1
x ﬂxncoswt-fynsinmt

%.
=
8

yncoeut-ynsinut

g' =2z .
n n

The third term becomes - eH/2c Ve y'l. The electronic and nuclear

equations are now written, respectively:
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2 2 N

eH 3 -
| 1 —-, I IT +1 ‘+2—C‘:— ch'l; q‘K-o
\'x "2' n 1 z n 7

Cwliy
+ Egelr ) w”xxzo.

If we set C = ch/c. these equations have the same form as those considered

in part 1 of Section III.

V. CONCLUSIONS

The primary mode of electric dissociation of molecular ions is
pr;dissociatiom Neutral molecules and homonuclear molecular ions with an
even charge state dissociate via electron stripping. The asymptotié nuclear
potential for homonuclear ions with an odd charge state varies as - 1/2 e£ lznl.
For heteronuclear molecular ions the asymptotic dependence of the nuclear
potential and hence the susceptibility to electric dissociation is a function of
the masses and charge states of the dissociation products.

The transition rate for dissociation is a sensitive function of the initial
vibrational state of the ion. The necessary fields for d'issociating the H; fon
range from 105 v/cm for the uppermost vibrational state to 2 X 108 v/em for
the ground state. Thé HD" and HT" ione are more susceptible to dissociation
than is H,".

The acceleration of H2+ ions in cyclofrons and other circular
accelerators can be extended into the Bev range. Since the lower vibrational
states of the HZ+ ion are generally more densely populated than the upper states,
no significant beam losses from predissociation will occur in conventional
circular accelerators at energies below one Bev.

In the application of this work to the injection problem for controlled-

fusion experiments, effective electric fields of the order of 106 v/cm can be
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considered. For those molecular ions in which predissociation is the primary
diakaociation mode, several °,f. the uppermost vibrational states are susceptible
to disaociatién for fields within this range. For an electric field of 106 v/cm
the reéuired time for inducing transitions between the upper vibrational states
ie of order 10"3 sec; these induced transitiona will not interfere with the more
rapid predissociation. The recent experiment of Anderson et al. has shown
that monf of the vibrational states of the HZ+ ion remain populated when such
ions are accelerated in Van de Graé.ff machines. 26 The practical utilization
of the injection method considered here will require further demonstration that

the uppermost vibrational states can be populated.
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APPENDIX
Various integrals encountered in Section IIl are defined here. These
integrals are readily evaluated with standard integral tables.

w0 o0 1
Epn ® j g e ® d¢ ; Emlz = f £ e dg§;
1 1

+1 +1

Bm = J-l nm sinh 923 cosh -2-9 dn; Cm = y nm cosh %’1 dn;
+1 an an +1 o Qn

D = n  sinh —— cosh -3 dn; sz 1 8inh > dn
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Figure Captions

Fig. 1. The electronic potential for a diatomic molecule in the presence of
an electric field and for some particular internuclear separation. This
potential is exact for a one-electron system and is schematically correct
for the many-electron case,

Fxg 2. The nuclear potential for a diatomic molecular system in the absence
of an electric field. Usually this potential is drawn in a spherical-
coordinate system, but for the purposes of this paper a cylindrical-
coordinate gystem is more appropriate. The vibrational states are
indicated schematically by the light horizontal lines; for the HZ+ ion
there are actually .19 bound vibrational states. In the presence of an
electric field this potential remains unperturbed in lowest order for
heteronuclear molecules and homonuclear systems in even charge states.

Fig. 3. The nuclear potential for a homonuclear ion in an odd charge state
in the presence of an electric fisld. The vibrational states are indicated
schematically by the light horizontal lines. The asymptotic potential
for the lower electronic state falls off as - %65 lznl.

Fig. 4. Binding energy measured from fhe unperturbed disaociétion limit
versus electric field for the various vibrational states of the H2+ ion
and for J=0. The intersection of the horizontal lines with the curve
marked ''classical' determines the electric field necessary to dissociate
the ion in 10 gec. The diagonal lines marked 108 gec. and 1 sec.
determine the fields necessary for dissociation in these times, respectively.
The two horizontal lines for v = 18 and v = 17 indicate the range of
uncertainty in these calculations. The results of the WKB calculations

are also indicated.
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Fig. 5. First-order perturbation versus electric field for the various
vibrational states of the Hz+ ion. The perturbation for each vibrational
level has been calculated using for the electric field the value given
by the curve labeled ''classical' in Fig. 4.

Fig. 6. The n\;clear potential for HD' in the presence of an electric field.
The asymptotic potential for the lower electronic state varies as
2l

Fig. 7. A comparison of the asymptotic nuclear potentials for the LiH' and
Lid'" ions. The asymptotic potential for the singly ionized ion varies
as, + écf z_, and for the doubly lonized ion as - %é.f z . This diagram
is meant to be indicative only, it is not known whether the doubly ionized

ion has a stable ground atate.
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