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How Does Spatial Study Design Influence Density
Estimates from Spatial Capture-Recapture Models?
Rahel Sollmann1*, Beth Gardner1, Jerrold L. Belant2

1 Department of Environmental Resources – Fisheries and Wildlife Program, North Carolina State University, Raleigh, North Carolina, United States of America, 2 Carnivore

Ecology Laboratory, Forest and Wildlife Research Center, Mississippi State University, Mississippi State, Mississippi, United States of America

Abstract

When estimating population density from data collected on non-invasive detector arrays, recently developed spatial
capture-recapture (SCR) models present an advance over non-spatial models by accounting for individual movement. While
these models should be more robust to changes in trapping designs, they have not been well tested. Here we investigate
how the spatial arrangement and size of the trapping array influence parameter estimates for SCR models. We analysed
black bear data collected with 123 hair snares with an SCR model accounting for differences in detection and movement
between sexes and across the trapping occasions. To see how the size of the trap array and trap dispersion influence
parameter estimates, we repeated analysis for data from subsets of traps: 50% chosen at random, 50% in the centre of the
array and 20% in the South of the array. Additionally, we simulated and analysed data under a suite of trap designs and
home range sizes. In the black bear study, we found that results were similar across trap arrays, except when only 20% of
the array was used. Black bear density was approximately 10 individuals per 100 km2. Our simulation study showed that SCR
models performed well as long as the extent of the trap array was similar to or larger than the extent of individual
movement during the study period, and movement was at least half the distance between traps. SCR models performed
well across a range of spatial trap setups and animal movements. Contrary to non-spatial capture-recapture models, they do
not require the trapping grid to cover an area several times the average home range of the studied species. This renders
SCR models more appropriate for the study of wide-ranging mammals and more flexible to design studies targeting
multiple species.
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Introduction

Knowledge of abundance and density of animal populations is

fundamental to their conservation and consequently, methods of

how to estimate these parameters have received much attention in

the field of applied statistics [1–3]. A central issue in estimating

abundance and density is that individuals cannot be observed

perfectly. Capture-recapture models that use individual-level

detection/non-detection data and account for imperfect individual

detection [4–6] are one of the most popular approaches towards

dealing with this problem.

Non-invasive detector arrays are becoming increasingly popular

to obtain individual level detection data, particularly for cryptic

and rare species. When individuals can be distinguished based on

natural physical characteristics such as spot or stripe patterns, or

based on artificial tags, camera traps are an ideal tool to obtain

large amounts of individual-level data over large areas relatively

quickly and with relatively low effort (e.g.,[7]). For species that

cannot be identified individually based on visual cues, non-invasive

genetic sampling in the form of hair snares or scat collection

surveys can yield suitable data for capture-recapture modelling [8–

11].

The spatial organization of traps – no matter what type – and

the characteristics of the species of interest influence the data we

collect. Study design has to consider both the total size of the trap

array and the spacing of traps relative to individual movement.

Regular (i.e. non-spatial) capture-recapture models estimate

abundance, which then has to be translated into a density

estimate. To do so, researchers traditionally make use of individual

capture locations to estimate potential movement off the trapping

grid, and apply this movement estimate as a buffer surrounding

the trap array (e.g., [12,13]). Abundance is assumed to refer to the

resulting ‘effective sampled area’. Only a trapping grid that is large

relative to individual movement can capture the full extent of such

movements, and researchers have suggested that the grid size

should be at least four times that of individual home ranges to

avoid positive bias in estimates of density [14]. This recommen-

dation originated in small mammal trapping, and it should be

relatively easy to follow when dealing with species covering home

ranges ,1ha. However, translated to large mammal research, this

can entail having to cover several thousands of square kilometres.

Trap spacing on the other hand determines the resolution of the

information on individual movement [12,13]. If trap spacing is too

wide, there is little to no information on animal movement because

most animals will only be captured at one trap [15]. Finally,

regular capture-recapture models are based on the assumption

that all individuals in the sampled area have a probability .0 of

being detected, which means that trap spacing has to be narrow

PLoS ONE | www.plosone.org 1 April 2012 | Volume 7 | Issue 4 | e34575



enough so that the array has no ‘holes’ that could contain an

individual’s entire home range [7]. This puts an upper limit to

possible trap spacing.

All these assumptions and considerations related to regular CR

models guide current recommendations for the spatial design of

the trapping array in capture-recapture studies. However, more

recently spatial capture-recapture (SCR) models, which explicitly

describe a model of individual movement and distribution in space

relative to the trap array [16,17], have become increasingly

popular to estimate population density. SCR models were initially

claimed to perform well under arbitrary sampling plot sizes [17],

but a recent re-evaluation suggested that small sampling plots or

arrays relative to individual movement may limit the performance

of SCR models [18]. So far, SCR models have not been examined

thoroughly for their robustness to spatial trapping design

questions.

Here we investigate how the spatial arrangement of the trapping

grid influences parameter estimates for SCR models. We

manipulate an empirical set of black bear (Ursus americanus) hair

snare data to see how the size of the trap array and trap dispersion

influence parameter estimates for a single species. To generalize

our conclusions, we also present a simulation study examining the

influence of animal movement relative to the trap array size and

spacing.

Methods

The model
For analysis, we adopted the spatial capture-recapture model

described by [17] and [19]. We assume that each individual i has

an activity centre si, characterized by a pair of coordinates. All s
are located within the state-space S, an area encompassing the

trapping grid, which needs to be defined as part of the model. In

practice, S has to be chosen large enough so as to include all

individuals that could have been exposed to the trapping grid.

Beyond that threshold, N increases as S increases creating constant

density despite a change in S [3,19], contrary to non-spatial

capture-recapture approaches to estimating density, where N is

estimated independently from the sample area and thus density

changes as a function of the buffer used to estimate the effective

sample area.

We further assume that the observed encounter history for

individual i at trap j during sample occasion k, yijk, are mutually

independent outcomes of a Bernoulli random variable

yijk*Bernoulli(lijk)

where variation in lijk is modeled such that

cloglog(lijk)~lkzlsex i½ �{(1=ssex i½ �)
2 � d2

ij

dij is the distance between the activity centre for individual i, si,

and the location of trap j. ssex (units of the trapping grid, here km)

controls the shape of the decreasing function of detection as dij

increases (i.e., the probability of being detected in a trap decreases

as the distance from the activity centre to the trap location

increases). This declining function is an approximate half-normal

distribution, and assuming a bivariate normal movement model

(i.e., a circular home range with movements concentrated around

the centre), we can translate s to an estimate of the radius of the

home range occupied during the study period [20]. We expect that

movement is different between the sexes and thus allow males and

females to have separate s.

This form, the complementary log-log relationship, is the result

of reducing a Poisson encounter model, which would be used in

the case when an individual can be captured multiple times in

multiple traps during one sampling occasion. Here, lsex is the –

sex-specific – baseline trap encounter rate and lk is the occasion

specific encounter rate, which is the encounter rate if an activity

centre is located precisely at a trap, i.e., when dij = 0.

To estimate N, the population size in S, we used a Bayesian

analysis by data augmentation of the model [21]. In data

augmentation, we let M be a number that is larger than the

largest possible population size (i.e., the number of activity centres,

N) in S, and n be the number of detected individuals. We assume a

prior distribution for N that is uniform over the interval (0, M) and

augment the observed data set with M – n individuals who were

never detected and thus have encounter histories that are all zero.

This reformulation of the model based on data augmentation is a

zero-inflated binomial mixture and the number of activity centres

N in S is then estimated as a fraction of M. The motivation for data

augmentation is to fix the size of the data set at M, instead of using

the unknown N, which is computationally advantageous when

implementing the model in a Bayesian framework using Markov

chain Monte Carlo (MCMC) sampling [21]. M is adequately large

when estimates of N are not limited by, M.

Data: Black bears from Pictured Rocks National Lakeshore
Black bears were studied in the Pictured Rocks National

Lakeshore, Michigan, using 123 hair snares distributed over an

area of 440 km2 along the shore of Lake Superior (Figure 1) in

May–July 2005. Hair snares were established and checked four

times at 14-day intervals following [22]. Hair samples were

genetically analysed using 6 microsatellite loci to determine

individuals [23]; sex was determined using size polymorphism in

the amelogenin gene [24]. The resulting data were used to

construct encounter histories for each individual at each trap for

each occasion, thus creating an M by J by K array. To carry out

the data augmentation, 450 – n all-zero encounter histories were

added to the encounter array. Setting M = 450 ensured that

estimates of N were not limited by M. As described above, we

formulated the model such that the baseline trap encounter l rate

was sex-specific and for both sexes changed in parallel over time

(i.e., while l changed over time, the difference in l between males

and females stayed constant). This was motivated by the lower

average number of detections for male bears and the overall

decreasing number of detections over time in the raw data. We

further allowed the movement parameter s to be sex-specific, as

male black bears are known to move over larger areas than

females (e.g., [19,25]). We defined the state-space S as the

outermost coordinates of the trapping array plus a 15-km buffer

(preliminary analyses showed that a further increase in buffer

width did not lead to changes in density, and we thus concluded

that 15 km was appropriate). The resulting rectangle included

parts of Lake Superior (Figure 1). To account for the fact that

black bears do not live in the lake we constrained individual

activity centres to the terrestrial portion of S, thus resulting in a

state space of size 2525 km2. To estimate density, we divided the

estimate of N by the area of S, to get the number of individuals per

100 km2. Considering that most studies are limited by the number

of available traps, we wanted to understand whether the spatial

arrangement of traps influences model parameter estimates. To

address the impact of a smaller trap array on the parameter

estimates, we first calculated the geographic centre of the trapping

array and retained only those 50% of the traps closest to the grid

Spatial Capture-Recapture Models
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centre. To examine the impacts of a trap array that is small

relative to individual movement, we then removed 80% of all

traps, retaining only the southern 20% of the trap array. Finally, to

represent a setup where traps are spaced wider to achieve larger

area coverage, which should result in a larger number of

individuals exposed to trapping, we randomly removed 50% of

the traps and performed model analysis only with data from the

remaining traps (Figure 1). For all scenarios we retained the S we

defined for the full data set, so that all estimates of N refer to the

same area. If SCR models are not sensitive to trap spacing and the

size of the sampled area, we expect estimates of movement,

detection and density to remain similar across scenarios. Slight

fluctuations in parameter estimates can be expected since the

scenarios involve different subsets of the black bear population.

However, we did not expect true bear density to vary among the

different scenarios since habitat conditions were relatively uniform

across the trap array. We used parameter estimates from the full

data set as reference for comparisons among scenarios.

Model implementation
We implemented the analysis using the program WinBUGS

[26] accessed through the software R [27] with the package

R2WinBUGS [28]. WinBUGS uses Gibbs sampling, a Markov

chain Monte Carlo (MCMC) method simulating samples from the

joint posterior distribution of the unknown quantities in a

statistical model [29]. MCMC chains are started at arbitrary

parameter values and since successive iterations depend on the

outcome of the previous iteration, the start value will be reflected

in a number of initial iterations that should be discarded (the burn-

in). All models were run for 10000 iterations, with a burn in of

5000, with three chains and a thinning rate of 3. We checked for

chain convergence using the Gelman-Rubin statistic [30], R-hat,

which compares between and within chain variation. R-hat values

below 1.1 indicate convergence [31]. Values for all estimated

parameters for the empirical and the simulated data were below

1.1.

Results

With exception of the 20% area scenario, results were similar

across the different trap arrays. In general, relative to the full

dataset, the reduced datasets did not perform as well. Particularly,

the movement parameter s was underestimated for males, and so

was the difference in detection between males and females.

Density estimates were included in the 95% BCI of the full dataset.

Only for the 20% area scenario, difference in detection between

Figure 1. Location of the study area. Location of the study area in Pictured Rocks National Lakeshore, Michigan (rectangle in inset map), and
state-space with trap array layouts for the full (A) and three reduced sets of black bear hair snare data; B) 50% of all traps chosen at random; C) 50% of
traps in the centre of the grid; and D) 20% of traps in the South of the grid.
doi:10.1371/journal.pone.0034575.g001
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genders was overestimated and differences in parameter estimates

translated into a significantly lower density estimate.

Full data set
The full data set consisted of 393 captures of 38 females and

45 males. On average, females were captured more often than

males (5.50 and 4.09 times, respectively). Female baseline trap

encounter rate l decreased over time from 0.47 60.06 SE in the

first occasion to 0.16 (60.03 SE) in the last occasion; males had

lower lk, reflected by a negative coefficient for being a male (b
(male)) in the log-linear predictor of lk (Table 1). With 2.94 km (6

0.14 SE), s for females was less than half of s for males (7.45 km 6

0.50 SE). The sex ratio was slightly skewed towards males, but

with a 95 % Bayesian Credible Interval (95BCI) including 0.5 it

did not diverge significantly from a 1:1 ratio. Density was

estimated at 10.56 individuals 100 km22 6 1.08 SE.

Grid area – 50% of all traps
After removing the outermost 50 % of all traps, the data set

consisted of 208 captures of 21 females and 25 males. On average,

females were captured 4.86 times, and males 4.24 times.

Overall, the baseline detection was smaller when compared with

the full data set, and there was less difference between males and

females (Table 1). The time trend in lk remained similar, although

there was a slight increase from occasion 1 to 2 before lk decreased

(Table 1). With 3.32 km (6 0.28 SE) s for females remained

similar. s for males was significantly lower than in the full data set

(5.35 km 6 0.51 SE). Sex ratio did not diverge from 1:1. The

density estimate was slightly higher than in the full data set, with

12.65 individuals 100 km22 (6 1.84 SE).

Grid area – 20% of all traps
Retaining only 20 % of all traps, the data set consisted of 103

detections of 12 males and 13 females. Females were captured on

average 5.31 times and males 2.83 times.

lk almost doubled for females compared to the full data set and

the difference between males and females increased. Also, the

decrease in lk over time was weaker (Table 1). With 9.88 km (6

3.57 SE), s for males was significantly larger than in the full data

set and had large confidence limits (Table 2), while s remained

similar for females (2.69 km 6 0.39 SE). Density was 6.75

individuals 100 km22 (6 1.61 SE) – significantly lower than in the

full data set. The sex ratio shifted more towards females, but was

not significantly different from 1:1.

Trap spacing – 50% of all traps
After randomly removing 50% of the traps, the data set

consisted of 201 captures of 31 females and 35 males. The average

number of captures remained higher for females than males (3.42

and 2.71, respectively). We found effectively no differences in

parameter estimates between this and the full data set (Table 1 and

2).

Simulation study
Design. To further investigate how trap spacing and array

size relative to animal movement influences SCR parameter

estimates, we simulated detection histories on an 868 trap array

with regular trap spacing of 2 units. Since in reality traps are rarely

set in a perfect grid, we randomly placed traps within the grid cell

and the locations were newly drawn for each simulated dataset.

We used the same model as described in the model section but

without the time and sex-specific covariates. The complementary

log-log form of the model is thus

cloglog(lij)~l0{(1=s)2 � d2
ij

We chose four values for s so that we had a scenario where the

trap array was smaller than a single individual’s home range

(s = 5 units), a scenario where spaces between traps were large

enough to contain entire home ranges (s = 0.5 units), and two

intermediate scenarios where sigma was smaller (s = 1 unit) and

larger (s = 2.5 units) than the trap spacing, respectively. We

defined the state space as the trapping array plus a buffer of 3

times s around it. Since density and home range size are often

negatively correlated (e.g., [32,33]), we chose an N of 100 for all

four scenarios of s. In combination with the varying state space

this led to a decrease in density with increasing s. For all scenarios

we used a baseline trap encounter rate l0 of 0.5 and simulated trap

encounters over 4 occasions to produce 100 data sets. Each model

was run for 8000 iterations, with three chains, a burn-in of 5000

and a thinning rate of 2. We checked for chain convergence in

each simulation using the Gelman-Rubin statistic [30]. For each

data set we calculated the mean, standard error (SE) and mode of

the posterior, as well as the relative bias (RB) and the relative root

mean squared error (rrmse) of the mean, and determined whether

the 95BCI included the true parameter value (BCI coverage). We

report results as the average over all simulations.

Results. All model parameters were identifiable and

estimated with relatively low bias (,10%) and high to moderate

precision (rrmse,25%) for all scenarios of s, except s = 0.5 units

(Table 3). Data for the latter case mostly differed from the other

scenarios in that fewer animals were captured and very few of the

captured animals were recorded at more than 1 trap (see

Appendix S1 for summary statistics of the simulated data sets).

For s = 0.5, abundance (N) was not identifiable in 88 % of the

simulations, and when identifiable, was underestimated by

approximately 50%. Thus, we omitted parameter estimates for

s = 0.5 scenarios from the results but note that this was an

important scenario in that a trap spacing that is considerably too

large may be problematic.

Estimates of N and s were least biased under the s = 2.5

scenario, while estimates of l0 were least biased under the s = 5

scenario. Precision for estimates of N was highest under the s = 2.5

scenario, while l0 and s were more precise at s = 5. All estimates

had the highest relative bias and the lowest precision under the

s = 1 scenario.

Discussion

When designing a capture-recapture study for a single species,

trap spacing and the size of the array can (and should) be tailored

to the spatial behaviour of that species to ensure adequate data

collection. However, some trapping devices like camera traps may

collect data on more than one species and researchers may want to

analyse these data, too. Independent of the trapping device used,

study design will in most cases face a limit in terms of the number

of traps available or logistically manageable. In regular CR models

density estimates can be heavily influenced by trap spacing [15,34]

and the size of the trap array relative to animal movement [14].

Our evaluation of spatial capture-recapture (SCR) models,

especially within the simulation study, showed that this relatively

new class of models performs well across a wide range of spatial

setups and animal movements.

Array size relative to animal movement
For the black bear study, removal of 50% of the traps, either

random or area-based, did not greatly influence model results. The

Spatial Capture-Recapture Models
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observed smaller differences in parameter estimates (s for males,

and lk) may be due to individual differences in detection and

movement that manifest themselves when only a smaller portion of

the overall population is sampled. For both 50% scenarios, the

number of individuals sampled was lower than in the full data set,

but the effect was stronger when reducing the sampled area. Also,

by reducing the number of traps we effectively reduced the size of

the overall data set estimates were based on (both in terms of

individuals captured and recaptures). This was reflected in overall

higher SE and wider confidence intervals. In spite of these

differences, density estimates for black bears – the main objective

of applying SCR models – remained largely constant.

Specifically, our results showed that when using SCR models,

there is little need to sample areas several times an individual

home range in order to obtain realistic movement estimates, as is

required for non-spatial models [14]. Reducing the area of the trap

array by 50% created a grid polygon of 144 km2, which was

smaller than an estimated male black bear home range and only

50% larger than a female black bear home range – approximately

260 km2 and 100 km2 during the study, respectively, when

converting estimates of s to home range size. Black bear home

range size varies substantially throughout North America. The

largest ranges of 227 km2 and 606 km2 for females and males,

respectively, have been reported from the northern Lower

Peninsula in Michigan [35], while the smallest estimate comes

from Washington (3.4 km2 for a female monitored over 60 days;

[36]). Thus our model based estimates of home range size for the

study duration fall within the general size range observed for the

species.

It is worthy to note that in the present case the trap array

resembled a narrow rectangle or ellipse, with a much larger

extension in one dimension than the other (53 km as compared to

9 km at the widest point, respectively). As a consequence, even in

the reduced area scenarios, the largest extent of the trap array was

still larger than individual bear movement, which probably

contributed to movement parameters being estimable. Although

we did not explore the effect of the shape of the trap array in the

present study, this may be an interesting focus for future work.

Results from our simulation study corroborate the observation

that SCR models perform well even when using a trapping array

smaller than an average home range: at s = 5 units, the home

range of an individual was approximately 235 units2, while our

Table 1. Estimates of baseline trap encounter rates lk (SE) for black bears sampled with hair snares.

Occasion 1 Occasion 2 Occasion 3 Occasion 4 b (male)

Full data set 0.47 (0.06) 0.41 (0.06) 0.22 (0.04) 0.16 (0.03) 21.46 (0.17)

Grid area –50 %* 0.37 (0.07) 0.39 (0.08) 0.18 (0.04) 0.07 (0.02) 20.61 (0.25)

Grid area –20 %** 0.87 (0.28) 0.98 (0.29) 0.55 (0.18) 0.53 (0.19) 22.23 (0.39)

Trap spacing*** 0.44 (0.10) 0.42 (0.09) 0.22 (0.06) 0.15 (0.04) 21.26 (0.26)

Estimates of baseline trap encounter rates lk (SE) for black bears sampled with hair snares over four 14-day occasions in Pictured Rocks National Lakeshore, Michigan,
estimated with spatial capture-recapture models for the full data set and three reduced data sets. Values correspond to female lk, b(male) is the effect of being a male
on lk on the log-scale.
*Reduced trap array area – 50% innermost traps used.
**Reduced trap array area – 20% southernmost traps used.
***Increased trap spacing by random removal of 50% of the traps.
doi:10.1371/journal.pone.0034575.t001

Table 2. Posterior summaries of SCR model parameters for black bears.

Data set Parameter Mean (SE) Mode 2.5% 97.5%

Full data set D [ind./100 km2] 10.56 (1.08) 10.45 8.59 12.79

s (males) [km] 7.45 (0.50) 7.32 6.58 8.50

s (females) [km] 2.94 (0.14) 2.94 2.67 3.23

Grid area – 50%* D [ind./100 km2] 12.65 (1.84) 12.21 9.31 16.71

s (males) [km] 5.35 (0.51) 5.25 4.47 6.47

s (females) [km] 3.32 (0.28) 3.26 2.84 3.91

Grid area – 20%** D [ind./100 km2] 6.75 (1.61) 5.95 4.00 10.22

s (males) [km] 9.88 (3.57) 7.57 5.12 18.45

s (females) [km] 2.69 (0.39) 2.66 2.12 3.40

Trap spacing *** D [ind./100 km2] 10.25 (1.18) 10.29 8.08 12.63

s (males) [km] 6.26 (0.62) 6.07 5.19 7.58

s (females) [km] 3.28 (0.26) 3.26 2.82 3.82

Posterior summaries of SCR model parameters for black bears sampled with hair snares over four 14-day occasions in Pictured Rocks National Lakeshore, Michigan, for
the full data set and three reduced data sets. D = density, s = movement parameter.
*Reduced trap array area – 50% innermost traps used.
**Reduced trap array area – 20% southernmost traps used.
***Increased trap spacing by random removal of 50% of the traps.
doi:10.1371/journal.pone.0034575.t002
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trapping grid only covered 196 units2. Still, the model performed

well (Table 3, s = 5).

The ability of SCR models to estimate movement even for

relatively small trapping grids lies within the model itself: s is

estimated as a specified function of the ancillary spatial

information collected in the survey and the capture frequencies

at those locations. This function is able to make a prediction across

distances and when there are latent distances (i.e., a distance larger

than the extent of the trap array) the model makes a prediction of

the detection at such a distance. As long as there are enough data

across at least some range of distances, the model does quite well at

making predictions at unobserved distances. Non-spatial CR

models do not fit a function to the distances and thus are

susceptible to underestimating movement when the trap array is

not large enough. However, if the trap array is so small that

individuals are captured with equal probability at all observed

distances, then the SCR models may overestimate movement

significantly. Preliminary simulation results indicate that for

s#20 units parameter estimates remained largely unbiased. More

research is needed regarding model performance under such

extreme cases, but this again suggests that while the extent of the

trap array should resemble the extent of individual movement, it

does not need to be several times larger.

An important consideration in our simulation study was that all

but the s = 0.5 units scenarios provided large amounts of data,

including 20+ individuals being captured on the trapping grid.

When dealing with real-life animals that are often territorial and

may have lower trap encounter rates, a very small grid compared

to an individual’s home range may result in the capture of few to

no individuals. In that case, the sparse data will limit the ability of

the model to estimate parameters [18], which is true of most

models.

This is also suggested by the black bear study. Although black

bears are not strictly territorial in the traditional sense, they do

space themselves across a landscape and may have core home

range areas that show little overlap with other individuals (e.g.,

[37,38]). As a result, removing 80% of the traps and thereby

reducing the area of the trap array to 64 km2 – well below the

average black bear home range – had a great effect on sample size

(only 25 of the original 83 individuals sampled) and thus parameter

estimates. Particularly, male black bear movement was overesti-

mated and imprecise (Table 2). The combination of the low

baseline trap encounter rate of males and the considerable

reduction in sample size led to a low level of information on male

movement: five of the 12 males were captured at one trap only.

Although they moved over smaller areas, owing to their higher

trap encounter rate females were, on average, captured at more

traps (3.4 traps per individual compared to 2.6 for males) so that

their movement estimate remained relatively accurate. Overesti-

mated male movements and female trap encounter rates resulted

in an underestimate of density of almost 40%. This effect is

contrary to what we would expect to see in non-spatial CR models,

where too small an area leads to underestimated movement and

overestimated density [14,15,34].

In spite of these limitations, our results show that particularly for

large mammal research SCR models have much more realistic

requirements in terms of area coverage than non-spatial CR

models, under which density estimates can be largely inflated with

small trapping grids relative to individual movement [34]. How

large the spatial survey effort needs to be does not only depend on

the extent of movement of the target species, but also on the

temporal effort, density and detection probability [18]–in

summary, the amount of data that can be collected with any

given trap array.

Trap spacing relative to animal movement
Overall, results from the reduced area model differed more

from the full data set than results from the increased trap spacing

model. This suggests that if logistics permit, results may benefit

from spacing traps a little wider to sample a larger area – thereby

exposing more individuals to sampling. It is important to note that

randomly removing 50% of the traps only slightly increased the

average distance between neighbouring traps, from approximately

1 to 1.2 km. Considering the movement range of black bears, with

s of 3–9 km (depending on the data set and sex), this change in

trap spacing is negligible. Even further removal of traps would not

have increased trap spacing enough to be relevant relative to black

bear movement. Our simulation study allowed us to examine the

effects of large trap spacing relative to animal home range size.

SCR models performed well as long as s was at least K the

average distance between traps. At this trap spacing to movement

ratio, most individuals are captured at one trap only (see

Appendix S1). This scenario represents a problem in non-spatial

CR models when estimates of the effective sampled area are based

on individual movements between traps (for example, half the

mean maximum distance moved between traps by individuals

captured at more than one trap – [13]), as estimates of average

Table 3. Summary statistics for spatial capture-recapture parameters across 100 simulations for four simulation scenarios.

Scenario Parameter Mean rrmse Mode 2.5% 97.5% RB BCI

s = 1 N 108.50 0.17 104.10 78.98 143.41 0.09 96

l0 0.52 0.25 0.48 0.30 0.75 0.04 94

s 1.008 0.09 0.99 0.86 1.20 0.01 94

s = 2.5 N 100.27 0.11 98.46 82.09 121.88 ,0.01 97

l0 0.51 0.12 0.50 0.41 0.62 0.01 92

s 2.50 0.05 2.49 2.27 2.69 ,0.01 92

s = 5 N 102.86 0.14 100.76 77.40 130.02 0.03 88

l0 0.51 0.08 0.50 0.44 0.58 0.01 93

s 5.02 0.04 5.00 4.69 5.43 0.01 97

Mean, relative root mean squared error (rrmse) of the mean, mode, 2.5% and 97.5% quantiles, relative bias of mean (RB) and 95BCI coverage (BCI) for spatial capture-
recapture parameters across 100 simulations for four simulation scenarios, define by the input value of movement parameter s. N = number of individuals in the state
space; l0 = baseline trap encounter rate.
doi:10.1371/journal.pone.0034575.t003
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movement tend to increase with the number of recaptures [39,40].

Yet, with SCR models, parameter estimates exhibited low bias and

remained relatively precise (see simulation results for s = 1 in

Table 3). In the simulation, only when s = 0.5 so that the home

range size is very small relative to the trap spacing and hardly any

individuals were captured at more than one trap, SCR models

were unable to estimate N. A potential way to address this issue

could be a nested trapping grid with narrower trap spacing for

some subset of the traps. Further research is needed to see how

effective this would be within the context of other constraints such

as total number of traps available, logistics, and heterogeneity in

habitat.

Conclusion
While there are limits to the flexibility in spatial trap array

design for SCR modelling, the method proved much more robust

to changes in trap array size and spacing relative to animal

movement than non-spatial CR models. Trapping grids with an

extent of approximately a home range diameter can – in theory –

adequately estimated density and home range size. The ability to

give reliable estimates of individual movement and density will

depend on the amount of data collected (both in terms of

individuals and spatially spread-out recaptures), and for highly

territorial or hard-to-trap species, larger grids may be necessary to

collect sufficient data. Thus, while a trap array designed for one

species will not necessarily yield suitable data for other species, the

flexibility of SCR models regarding spatial study design makes

finding a compromise in study design for several species easier.

With their ability to extract information about animal

movement and density even from smaller trap arrays, SCR

models are better suited for the study of wide ranging mammals,

where placing traps throughout areas of several times the average

home range is usually not feasible. However, our results should not

encourage researchers to design non-invasive trap arrays based on

minimum area and spacing requirements. Study design should still

strive to expose as many individuals as possible to sampling and

obtain adequate data on individual movement. Large amounts of

data can also improve precision of parameter estimates – the

density estimate for the full black bear data set has narrower

confidence intervals than estimates from the reduced data sets.

This is particularly important when a study is concerned with

monitoring population changes. Also, only with sufficiently large

data sets potentially important covariates (such as gender or time

effects in the black bear example) can be included into SCR

models to obtain density estimates that reflect the actual state of

the studied population.

Supporting Information

Appendix S1 Summary statistics of 100 simulated data
sets for four simulation scenarios, defined by the input
value of movement parameter s. Individual detection

histories were simulated on an 868 trap array with regular trap

spacing of 2 units under the spatial capture-recapture model

described in the Simulation Study section.
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