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ABSTRACT OF THE THESIS

Operating System Scheduling for Emerging Hardware Accelerators

by

Abhishek Vijeev

Master of Science in Computer Science

University of California San Diego, 2023

Professor Amy Ousterhout, Chair

Hardware accelerators are becoming increasingly important in (1) meeting application

performance demands and (2) mitigating datacenter software overheads. However, offloading

computation to accelerators incurs fundamental overheads, which must be accounted for when

measuring their benefits. In this thesis, we study the characteristics of a modern compression

accelerator and show that only certain offload granularities yield performance gains. Further, we

show that compressing large buffers (≥ 8KB) with an off-chip accelerator yields latencies within

25% of the offload latency for an integrated compression accelerator that resides on the same

chip as a SmartNIC’s ARM cores, indicating the viability of off-chip acceleration. We use these

insights to design and implement a microsecond-scale operating system scheduler that selectively
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offloads the parts of an application that benefit from hardware acceleration. Moreover, we design

scheduling policies that decide whether hardware offload should be performed synchronously

or asynchronously, depending on workload characteristics. Preliminary evaluation on synthetic

applications closely modeled after real datacenter workloads shows that our system achieves up

to 28% lower median latency and up to 3.8x higher overall throughput than a software-based

approach by efficiently offloading compression to hardware accelerators.
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Introduction

With the end of Moore’s Law and Dennard Scaling [35], computer architects have em-

braced the need for specialized hardware accelerators to keep up with the rapidly increasing

performance demands of application software, while improving energy efficiency. For instance,

GPUs [20] have traditionally been used to accelerate highly parallel workloads including com-

puter graphics and simulations. More recently, domain-specific accelerators such as TPUs for

machine learning [43], virtualization hardware [4] and SmartNICs for networking [36] have

improved application performance by over an order of magnitude, resulting in a renewed interest

in hardware specialization.

Moreover, the past decade has witnessed a surge in warehouse-scale computing, as used

by large internet companies for two key purposes: (1) to host the infrastructure that powers

today’s cloud and (2) to run client-facing production workloads. Warehouse-scale applications,

which were traditionally implemented as monolithic software, are increasingly designed as

microservices [1, 7, 26, 27] that require end hosts to perform a wide range of operations,

such as decompression, deserialization and decryption, before being able to execute their core

functionality. These operations, commonly referred to as the “datacenter tax”, account for a

massive 30% of all fleet-wide CPU cycles [46]. Fortunately, studies have shown that these

overheads arise from a set of highly mature software modules, which are highly amenable to

hardware acceleration. As a result, emerging hardware supports accelerators for commonly used

operations such as compression, hashing and cryptography [18, 21], with accelerators for Remote

Procedure Calls (RPCs) [41, 51, 61], serialization/deserialization [48] and memory allocation

[47] around the corner.
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Given the increasing prevalence of domain-specific accelerators, is it beneficial to offload

all relevant computation to hardware? Offloading computation to hardware accelerators incurs

overheads, which include (1) setting up the accelerator (by the host CPU) before an operation can

be issued and (2) the latency of actually executing the operation on the accelerator, both of which

depend on a number of factors [28]. In this thesis, we study the overheads of accelerator setup,

as well as how two factors, namely (a) offload data size and (b) accelerator location, contribute

to offload latency. To this extent, we first study the relationship between input buffer sizes and

offload overheads for a compression accelerator found on Nvidia Bluefield 2 SmartNICs [21],

and compare the results obtained with the cost of performing compression on host x86 cores

using a state-of-the-art software compression library [16].

Moreover, recent trends towards integrated accelerators [19, 38, 41, 48] that are tightly

coupled with CPU cores eliminate the overheads of traversing the PCIe bus. To better understand

how on-chip (integrated) accelerators influence application performance, we also measure the

overheads of offloading compression directly from the Bluefield’s ARM cores to its on-chip

accelerators.

Our experiments reveal that hardware offload to an on-chip compression accelerator from

the Bluefield’s ARM cores yields lower latencies than software compression for all kinds of input

data and buffer sizes studied. In contrast, compressing small buffers (< 256 bytes) in software

with x86 cores achieves lower latencies than hardware offload over PCIe. While PCIe overheads

dominate at small offload granularities, we observe that these overheads are amortized by the high

offload latency for large buffers, making off-chip acceleration an attractive alternative to running

applications completely on a SmartNIC’s wimpy cores, which have access to limited memory. In

addition, the accelerator’s setup time for both on-chip and off-chip offload remains lower than all

other measured values. Consequently, applications whose requests aren’t latency-critical can

achieve higher throughput by always offloading computation to the accelerator.

Using these insights, we design and implement a microsecond-scale operating system

scheduler that uses information about (1) request characteristics to determine when computation

2



must be offloaded to hardware and (2) an application’s performance goals to decide whether

hardware offload should be performed synchronously or asynchronously. Our scheduler achieves

low latency offload with the help of kernel bypass libraries [13] that provide direct access

to hardware accelerators. Moreover, our implementation leverages user-level threading for

nanosecond-scale context switches between application threads, minimizing the impact of

context-switching latency on the throughput of asynchronous offload.

Evaluation on synthetic applications whose compression request distributions mirror

real datacenter workloads [67] reveals that efficiently offloading computation to hardware

accelerators achieves 3.8x higher throughput and 23% lower median latency when compared

to performing compression in software. To also understand performance on real applications,

we measure throughput and per-request service latencies for a synthetic web-service application

that compresses large segments of data before returning them to clients - our system achieves

2.14x higher throughput and 28% lower median latency in comparison to software compression.

Interestingly, though our custom scheduling policies exploit the observation that small buffers do

not benefit from hardware offload, the workloads we evaluate seldom compress small buffers, as

a result of which, policies that always offload compression to an accelerator perform similarly

in comparison to dynamic policies that adaptively choose between software compression and

hardware offload.

The rest of this thesis is organized as follows. Chapter 1 provides the necessary back-

ground on datacenter software overheads, hardware accelerators and hardware offload latency.

Chapter 2 studies the performance of a compression accelerator found on Nvidia Bluefield

SmartNICs. Chapter 3 outlines our system’s design goals, describes how our proposed design

achieves these goals and also provides details about our implementation. Chapter 4 evaluates the

performance of applications that use our system to meet their performance goals and also studies

the impact of parameters on the latency and throughput of asynchronous offload. Chapter 5

discusses related work in this area and puts this thesis in context. Chapter 6 highlights extensions

to our system that we’re currently working on. Chapter 7 concludes this thesis.
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Chapter 1

Background

1.1 Datacenter Tax

Web search, social networks, media streaming and retail form a major fraction of today’s

datacenter applications. While such applications were traditionally implemented and deployed

as monolithic software, they are increasingly being deployed as microservices [1, 7, 26, 27],

wherein a complex application is decomposed into smaller distributed applications, each of which

is tasked with fulfilling a specific subset of the application’s overall functionality. The move to a

microservice-based architecture has been influenced by a number of factors, including the ability

to quickly innovate and scale compute resources [71]. However, decomposing applications into

distributed microservices engenders the need for message-based communication over the network,

which is most commonly achieved with Remote Procedure Calls (RPCs) [6, 8]. Consequently,

each microservice must perform a range of different operations, including decompression,

deserialization and decryption, before being able to execute its core functionality. Each of

these operations must be performed for every request processed by a microservice, leading to

fundamental performance/operational overheads, dubbed the “datacenter tax” [46], that account

for approximately 30% of all fleet-wide CPU cycles. As successive generations of server

hardware yield diminishing performance returns, minor improvements in CPU efficiency can

save millions of dollars [48, 70], due to which, achieving high CPU efficiency is paramount. A

trivial solution to improve CPU efficiency would be to reduce the datacenter tax by reverting
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to a monolithic architecture. While recent results have shown that such a move could improve

scalability and lower costs for specific applications [2], in general, the microservice architecture

remains popular today because its benefits outweigh its shortcomings. As a result, a widespread

shift to monolithic applications is unlikely in the near future. However, is it possible to reduce

the overheads of microservice-based communication?

Comprehensive studies by datacenter operators [46, 67] have shown that the datacenter

tax is comprised of a set of procedures that are commonly used across many applications,

which includes RPCs, serialization/deserialization, compression/decompression, cryptography

(encryption, decryption, hashing) and memory management (memory allocations/deallocations,

copies and moves). For instance, compression and memory management operations account

for 6% and 10% of all Google’s fleet-wide CPU cycles, respectively [46]. Similar observations

were made at Facebook’s datacenters [67], where caching services spend as much as 6% of

their execution time performing data encryption. Fortunately, the interfaces exposed by these

operations have, over time, evolved into highly stable and mature components. As a result, their

functions are prime candidates for hardware acceleration.

Another consequence of decomposing applications into distributed microservices is that

processing a single client request entails serially invoking multiple microservices, each of which

must meet stringent latency requirements, or, risk adversely impacting user experience [33]. The

research literature is rich with proposals to curb microservice tail latency, including work that

(a) focuses on optimizing operating system threading designs [68], (b) uses machine learning

techniques to efficiently manage resources while preserving SLOs [63, 73], (c) proposes the use

of optimized serverless runtimes for microsecond-scale tasks [42] and (d) builds new hardware

to mitigate the effects of queuing delays [58] and to exploit SIMT execution patterns commonly

found in microservices [49]. Therefore, this thesis does not tackle the problem of minimizing tail

latency. Instead, we explore how hardware accelerators can be best used to improve application

throughput.
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1.2 Accelerators

Having understood the potential of accelerators in mitigating performance overheads,

we now look at accelerators which (1) are available in commodity hardware and (2) have been

recently proposed in the research literature.

Accelerators can be broadly classified as follows:

1. ISA Extensions - As has often been the case, commonly used functions are implemented in

hardware and made available to programmers as extensions to the processor’s Instruction

Set Architecture (ISA). While ISA extensions are not typically classified as “accelerators”,

they do provide domain-specific hardware acceleration. For instance, Intel’s AVX [11],

AMX [10] and AES-NI [9] augment the x86 ISA with instructions to perform vector

operations, matrix multiplication and symmetric encryption respectively. More recently,

Karandikar et al. [48] use per-core accelerators to extend the RISC-V ISA with instructions

that speed up protobuf [25] serialization and deserialization.

2. On-chip accelerators - These accelerators reside on the CPU die and are typically shared

between physical cores. Integrated GPUs [3], data streaming accelerators [12], load

balancers [14], in-memory analytics accelerators [15] and accelerators for operations such

as compression, encryption and memory copies found on modern chipsets [18, 19], are

examples of on-chip accelerators. Accelerators found on modern SoC SmartNICs [21]

are also on-chip accelerators that reside on the same die as the NIC’s general purpose

cores. Recent research has also explored the possibility of using on-chip NIC-integrated

accelerators [41, 61, 51] to mitigate the performance overheads of Remote Procedure Calls

(RPCs).

3. Off-chip accelerators - These are typically accessed using PCIe and are shared among

NUMA nodes. Examples include discrete GPUs [20], TPUs [43], and SmartNICs [21].

6



1.3 Offload Latency

Offloading computation to hardware accelerators incurs a fundamental latency, which

depends on a number of factors. Throughout this thesis, we refer to an operation’s “offload

latency” as the wall-clock time taken by an accelerator to execute the operation, including

time needed to set up the operation. Offload latency determines whether applications that use

accelerators achieve lower latencies i.e. if offload latency outweighs the latency of software

computation, applications see no benefits. As a result, understanding the factors [28] that

influence offload latency is critical to unlocking accelerator performance:

1. Size of Offloaded Data - Offload latency depends on the size of data offloaded i.e. its gran-

ularity. For small granularities, the overhead of offloading computation could potentially

outweigh the benefits of acceleration, yielding no latency improvements. However, for

larger granularities, the overhead is amortized, yielding overall speedups.

2. Accelerator Location - As discussed in Section 1.3, accelerators either reside on-chip or

off-chip. Offloading computation to an on-chip accelerator incurs the lowest overheads

because the accelerator resides on the same CPU die, eliminating overheads that result from

traversing an off-chip interconnect. However, since on-chip accelerators are baked into

CPU hardware, their capacity/count cannot be scaled up. In contrast, off-chip accelerators

are typically accessed via PCIe and have microsecond-scale offload latencies. The number

of off-chip accelerators can be scaled up to match the number of available PCIe slots,

making it easier to alleviate performance bottlenecks arising from accelerator overload.

3. Accelerator API - The accelerator’s API determines how application software interacts

with it. For example, developers may choose a framework that provides a higher level

of abstraction such as DOCA [23], or a lower level interface like DPDK [13]. While

higher-level APIs may ease software development, we expect them to trade performance

for ease-of-use.

7



4. Computation Complexity - Kernels offloaded to accelerators can have different complex-

ities ranging from sub-linear to super-linear. We expect complex algorithms to have a

higher execution cost than simpler ones.

In this thesis, we study the effect of (1) offload size and (2) accelerator location on offload

latency; we defer investigating the accelerator’s API and kernel complexity to future work. In

the next section, we implement benchmarks to measure the offload latency of a compression

accelerator available on Nvidia Bluefield SmartNICs [21].

8



Chapter 2

Performance of a Compression Accelera-
tor

Despite the plethora of accelerators available today, it’s unclear how they can be best

used to improve application performance. Towards this end, accelerometer [67] develops an

analytical framework to estimate accelerator speedup by using a variety of parameters, including

setup time, offload size and queuing delays, whose values are assigned based on accelerator

hardware specifications. However, the authors note that certain parameter assignments may not

be completely accurate. For instance, their experiments assume that offloading all encryption

operations to an accelerator yields speedups, while observing the possibility that only certain

granularities benefit from hardware offload. Is it really beneficial to offload all computation to

hardware, or, do only requests with certain characteristics benefit from hardware offload? We

attempt to answer this question by characterizing the performance of a compression accelerator

found on Nvidia Bluefield SmartNICs.

Experimental Setup

We perform our experiments on CloudLab’s r7525 instances, equipped with Nvidia

Bluefield 2 SmartNICs that support hardware accelerators for a variety of operations including

compression, encryption and hashing. We develop a simple benchmark which varies the size

of data offloaded and measures the corresponding offload latencies for Bluefield’s compression

accelerator, which supports the Deflate compression algorithm [5]. The latency of compression

9



Figure 2.1. Experimental Setup

Input Type Description
HTML HTML source code for a webpage on the internet

Numeric NYC Yellow Taxi Trip Data [24]
Random Numbers Randomly generated integers between 0 and 255

English Text Multiple paragraphs of real English text
Repeated Character A string consisting of a single character repeated multiple times

Table 2.1. Input Types

algorithms varies widely depending on the type of data being compressed. To better understand

the relationship between input data and compression latency, we study a variety of possible input

data, as described in Table 2.1. Two of these input datasets, namely “Random Numbers” and

“Repeated Character” are not realistic; however, we include them to provide upper and lower

bounds, respectively, on compression latency.

We perform experiments to measure the offload latency for both on-chip (offload from

Bluefield’s ARM cores) and off-chip (offload from host’s x86 cores) accelerator configurations,

which are measured by configuring the Bluefield to use “ECPF” (Embedded CPU Function) and
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Figure 2.2. Median Compression Latency from NIC Cores

“Separated-Host” modes [22] respectively. Figure 2.1 illustrates our setup.

We present our findings using two graphs each for both on-chip and off-chip offload. The

first of these graphs contains a detailed breakdown of software compression latencies for each

kind of input data evaluated, whereas the second graph shows the median offload latency, flanked

by shaded regions whose extremities correspond to the minimum and maximum values across

different inputs. Our observations are as follows:

1. Compression latency with the ISA-L software library varies significantly depending on the

input data, as shown in Fig. 2.2 and Fig. 2.4. However, this is not the case for the hardware

accelerator - compression latency remains relatively unaffected by the input data.

2. On-Chip Offload - The results in Fig. 2.2 and Fig. 2.3 show that software compression

latency always exceeds the accelerator computation latency, irrespective of the nature

of input data; this is because the Bluefield’s wimpy ARM cores aren’t well suited to

perform computationally intensive tasks such as compression. Therefore, offloading

compression operations to an on-chip integrated accelerator yields lower latencies than

software compression for all inputs and request sizes.
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Figure 2.3. Median Compression Latency from NIC Cores

3. Off-Chip Offload - The results in Fig. 2.4 and Fig. 2.5 show that the median software

compression latency for small buffers (≤ 256 bytes) is lower than the median accelerator

computation latency, as indicated by the gray region in Fig. 2.5. Therefore, compressing

small buffers in software using beefy x86 cores typically yields lower latencies as compared

to hardware offload. However, for large buffers (> 256 bytes), hardware offload yields

lower latencies, as indicated by the graph’s white region.

4. The accelerator’s setup time for on-chip offload lies in the range 1 µs - 11 µs and for

off-chip offload, between 360 ns and 2.8 µs. For both on-chip and off-chip offload, the

setup time remains lower than all other measured values. This implies that applications

whose requests aren’t latency-critical can optimize for throughput by always offloading

computation to the accelerator (discussed further in Chapter 3.2).

Discussion

Comparing the median “Accelerator Computation” latencies (purple lines) in Figures 2.3

and 2.5, we see that for all input buffer sizes, the difference between on-chip and off-chip offload

latencies is only a couple of microseconds. This difference can be attributed to PCIe’s round-
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Figure 2.4. Median Compression Latency from Host Cores

Figure 2.5. Median Compression Latency from Host Cores
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trip time, which contributes to a significant fraction of the overall offload latency for smaller

buffers. While applications that are completely offloaded to a SmartNIC’s general purpose ARM

cores [50, 54, 65] could benefit from access to on-chip accelerators, we expect this approach

to be infeasible for applications with massive memory footprints i.e. the order of a hundred

gigabytes [31]. As a result, we only consider off-chip acceleration in the rest of this thesis. For

buffers larger than 8 KB, PCIe’s costs are amortized by high offload latencies, indicating the

viability of off-chip compression acceleration. Further, we find that small buffers achieve low

compression latencies with highly optimized software libraries, whereas large buffers require

hardware acceleration. Could we exploit these insights for better performance? We address this

question in the next section.
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Chapter 3

Design and Implementation

In this section, we discuss the design and implementation of our proposed system, which

must make two key scheduling decisions: (a) when computation must be offloaded to hardware,

and (b) whether offload must be performed asynchronously or synchronously. We first present

the design goals we would like to achieve, followed by an overview of the system’s design and

conclude with details about our implementation.

3.1 Design Goals

1. Minimize Runtime Overheads - Offloading computation to hardware must be done as

efficiently as possible, eliminating all intermediate overheads that could adversely affect

offload latency.

2. Transparent Execution - Application software must be able to issue acceleration requests

using standard programming interfaces. Moreover, our system must be able to automat-

ically decide whether an operation should be offloaded or not, using information about

the accelerator’s current load as well as the application’s characteristics e.g. whether it is

latency-critical.

In subsequent sections, we present the aspects of our system’s design and implementation

that help us achieve the aforementioned goals.
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Figure 3.1. System Design for Hardware Accelerator Offload

3.2 Design Overview

Figure 3.1 presents the key components of our system, which shares architectural similar-

ities with Caladan [37] and is designed to run in a standard Linux environment. Each application

managed by our system runs as a normal Linux process, linked with a runtime that provides

useful abstractions such as threads, mutexes, condition variables, network sockets and accel-

eration libraries. When an application begins execution, it initializes its runtime with a set of

parameters that indicate its performance requirements, such as required number of CPU cores,

latency-criticality, the need for garbage collection, etc. The runtime spawns a new kernel thread

for each CPU core the application is allocated, and balances load across kernel threads using

work stealing, which has shown to yield excellent results for micro-second workloads [57, 62].

Application logic runs in lightweight user-level threads, which are scheduled on kernel

threads (each of which has its own local runqueue) by the runtime scheduler. Switching to a

different thread of execution while awaiting completion of a high-latency operation (such as
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accelerator I/O) yields throughput benefits if the overhead of thread context switches is much

smaller than the operation’s execution latency. From Chapter 2, we know that the Bluefield’s

compression offload latency is on the order of a few microseconds. To improve the throughput

of a multithreaded application that uses the Bluefield’s compression accelerator, our system

must support a thread context switch latency that is at least an order of magnitude faster i.e.

nanosecond-scale context switching latency. Our choice of user-level threads was motivated by

the need for fast context switches, which Caladan’s user-thread library achieves in approximately

50 ns (one-way). Stackless coroutines, a viable alternative to user-level threads, could further

reduce context switching overheads to just 12 clock cycles [72] - we leave exploring this

option to future work. In line with design goal 1 , runtimes have direct access to accelerators

through kernel bypass libraries, thereby eliminating the overheads of traversing the Linux kernel.

Handling accelerator I/O in user-space also gives runtimes more insight into accelerator resource

usage, enabling the implementation of intelligent scheduling policies.

Runtime Scheduler

The runtime scheduler is responsible for (1) multiplexing an application’s user-threads

onto its kernel threads, (2) deciding whether an operation must be offloaded to hardware or not,

and (3) deciding whether hardware offload must be performed synchronously or asynchronously.

To meet these goals, the scheduler must be able to (a) quickly switch between user-threads and

(b) use information about an application’s performance requirements, as well as an accelerator’s

current load while making scheduling decisions. Our scheduler is designed to use the insights

obtained in Chapter 2 to offload computation to hardware accelerators as efficiently as possible.

We leave the implementation of policies/mechanisms that make scheduling decisions based on

accelerator load to future work.

Mechanism - Our runtime exposes a simple synchronous API to applications, and dy-

namically chooses the best scheduling policy under the hood. In keeping with design goal

2 , application developers don’t have to work with convoluted asynchronous programming
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models, or worry about the minutiae of scheduling optimizations. For asynchronously offloaded

requests, the scheduler submits an operation to the accelerator and parks the issuing user-thread

so that other user-threads may continue execution in the interim time period. Upon completing a

request, the accelerator enqueues its results onto a software queue; the scheduler periodically

polls the software queue for completion updates and wakes up user-threads as their requests get

completed.

Policy - We consider two classes of applications - (a) latency-critical (LC) and (b) batch.

Our policy caters to the application’s performance requirements, and chooses how to best service

a compression request based on the following heuristics (summarized in Table 3.1):

1. Latency-Critical Apps - Requests must be processed as quickly as possible. From Chapter

2, we know that for small buffers, the accelerator’s compression latency exceeds software

compression latency; hence, we achieve low latency by always compressing small buffers

in software. In contrast, the software compression latency for large buffers outweighs the

accelerator’s compression latency, due to which, our system offloads all large compression

requests to the accelerator. However, should operations be offloaded synchronously or

asynchronously? We choose synchronous offload (where the issuing user-level thread spin

polls the accelerator for completion) to minimize latency.

2. Batch Applications - Requests aren’t latency-critical and we therefore optimize for through-

put. For all buffer sizes considered, the following statements hold true: (a) the accelerator’s

setup latency is smaller than the software compression latency, and (b) the accelerator’s

computation latency is much larger than its setup latency. As a result, we maximize

throughput by asynchronously offloading all compression requests to the accelerator.

The desire to support both synchronous and asynchronous offload within the same

application gives rise to an interesting problem. Consider a scenario where user-threads u1 and

u2 issue compression requests r1 and r2 respectively. r1 is a large request that isn’t latency-critical
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Small Buffers Large Buffers
Latency-Critical Software Sync Offload

Batch Async Offload Async Offload

Table 3.1. Runtime Scheduling Policy for Compression Requests

and is therefore asynchronously offloaded. However, r2 is a large latency-critical request that

must be synchronously offloaded. Suppose r1 is submitted to the accelerator first. Since r1 is

offloaded asynchronously, the scheduler will issue r1 to the accelerator and subsequently park

u1 so that u2 may execute. Now, since r2 is latency-critical, u2 issues r2 to the accelerator and

spin-polls its software queue, awaiting completion. However, it is possible that r1 completes

before r2, causing u2 to incorrectly dequeue r1’s completed operation from the software queue.

To prevent this problem, our system does not allow individual application threads to be configured

with different performance requirements. Instead, the entire application must either be “Batch”

or “Latency-Critical”, such that all requests requiring hardware acceleration are either offloaded

synchronously (for latency-critical) or asynchronously (for batch).

3.3 Implementation

Our implementation is built on the open-source release of Caladan [37], which was a

good starting point due to its support for user-level threads and kernel-bypass I/O. Similar to

Caladan, we augment our runtime with DPDK’s poll mode drivers for fast, direct access to

accelerators from user-space (design goal 1 above). It is worth noting that integrating DPDK

with our runtime allows client applications direct access to DPDK APIs, which could be used to

circumvent the runtime’s APIs. However, such use will only lead to performance degradation,

and is therefore strongly discouraged.

Our runtime implements a compression library that exposes a familiar, synchronous API

to developers. The library intelligently decides whether to offload computation to hardware,

or, to perform it in software, based on each request’s unique characteristics. This library is
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implemented in around 1500 lines of C code (including comments) and currently includes

support for (1) Nvidia Bluefield hardware acceleration and (2) software compression with ISA-L

[16].

For efficient asynchronous offload, the runtime scheduler must be able to quickly check

whether any pending operations have completed. Unfortunately, DPDK’s API currently does not

support checking for completions without removing completed operations from the accelerator’s

software queue i.e. to retrieve the number of completed operations, an application must use

the function rte compressdev dequeue burst(), which returns the number of completed

operations, but also removes them from the device’s queue. To circumvent this problem, we add

around 30 lines of C code to DPDK’s MLX5 driver, which checks a device queue’s completion

status in O(1) time, without dequeuing completed operations. Our patch simply inspects the

queue’s producer and consumer indices and returns the arithmetic difference between them i.e. if

the producer’s index is ahead of the consumer’s index, operations are available for processing.

The limitations of our current implementation are as follows. First, we only support

offloading computation from host cores over PCIe because Caladan cannot run on ARM proces-

sors - context switches between user-threads rely on architecture-specific assembly code, which

is currently implemented only for the x86 ISA. We leave the implementation of ARM context

switches i.e. support for on-chip offload from Bluefield ARM cores, to future work. Second,

though applications may use multiple user-threads, runtimes are limited to a single processor

core. The use of multiple cores per runtime can be achieved by allocating separate accelerator

queues to each runtime - we are currently working towards implementing this feature.
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Chapter 4

Evaluation

In evaluating our system, we wish to answer the following questions:

1. How do the different compression modes and compression policies compare against each

other with respect to latency per operation and overall application throughput?

2. How do our system parameters, namely polling interval dequeue batch size, affect the

performance of asynchronous offload?

4.1 Experimental Setup

We perform our experiments on CloudLab’s r7525 instances. Each server is a dual-socket

NUMA machine with two 32-core AMD 7542 processors (with Simultaneous Multithreading)

clocked at 2.9GHz, 512GB ECC DDR4 DRAM clocked at 3200MHz, a Dual-port Mellanox

ConnectX-5 25 Gbps NIC and a Dual-port Mellanox BlueField2 100 Gbps SmartNIC. The

Bluefield contains 16GB DDR4 DRAM and 8 ARM A72 cores which share access to on-chip

hardware accelerators for a variety of operations including compression, encryption and hashing.

Our experiments use closed loop load generators, wherein a new request is not generated until a

pending request has completed execution. Moreover, all experiments are run with application

runtimes that have been allocated a single CPU core.

We model the behaviour of datacenter applications that frequently compress data by

developing a benchmark to generate compression buffers whose sizes follow the distribution of
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Compression Mode/Policy Description

Software
All compression requests are handled synchronously
in software using the ISA-L [16] compression library

Sync

All compression requests are synchronously
offloaded to the Bluefield’s compression accelerator.

Each request’s user-thread busy polls the
accelerator for completion, minimizing delay

Custom (LC)

For latency critical applications, buffers smaller
than (or equal to) 256 bytes are compressed

synchronously in software using the ISA-L [16]
compression library. However, buffers larger than

256 bytes are synchronously offloaded to the
Bluefield’s compression accelerator

Async
All compression requests are asynchronously

offloaded to the Bluefield’s compression accelerator

Custom (Batch)

For batch applications, all compression requests
are offloaded asynchronously to the Bluefield’s

compression accelerator because the accelerator’s
setup latency is much smaller than the software

compression latency

Table 4.1. Compression Modes and Policies

request sizes in Facebook’s production workloads [67]. Our benchmark spawns 100 user-threads,

each of which submits 100 compression requests (for a total of 10,000 requests) modeled after

the specific application’s buffer size distribution. We study the distributions of two such applica-

tions, “Cache-1”, a distributed-memory object caching service, and “Feed-1”, a microservice in

Facebook’s News Feed service that calculates the relevance of news stories for each user. The

CDFs of compression buffer sizes for these two applications are shown in Fig. 4.1.

4.2 Compression Modes

We evaluate five different compression modes, whose details are summarized in Table

4.1. The remainder of this section compares the various compression modes studied thus far and

evaluates their effect on application throughput and latency.
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Figure 4.1. Accelerometer Request Size Distributions

4.2.1 Datacenter Workloads

In this section, we evaluate our system’s performance on the Cache-1 and Feed-1 work-

loads described above. To account for the various types of data that input buffers could possibly

contain, we run experiments with both HTML and numeric data. In evaluating performance, we

consider two metrics: (a) per-request latencies and (b) overall application throughput. Since both

types of input data produced similar results, we only include graphs for HTML data.

We first examine the distribution of per-request latencies for Cache-1, shown in Fig. 4.2.

For every compression mode, more than 85% of all requests complete under 10 µs. In particular,

“Sync” and “Custom (LC)” achieve the best latency distributions because the user thread issuing

the request busy polls the accelerator for completion, whereas “Async” and “Custom (BE)”

achieve the worst distributions because user-threads issuing requests are suspended until the

scheduler is subsequently invoked. Though “Custom (LC)” compresses small buffers in software

to further minimize latency, the effect of this optimization isn’t pronounced because the fraction

of Cache-1’s requests that use small-sized buffers is low.

Next, we look at the latency distribution for Feed-1, shown in Fig. 4.3. We observe that
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Figure 4.2. Cache-1 Latency CDF (HTML Data)

Feed-1 achieves a worse distribution than Cache-1 i.e. only 70% of its requests complete under

10 µs because Feed-1 uses larger buffer sizes, whose requests take longer to execute. However,

similar to Cache-1, “Sync” and “Custom (LC)” achieve the best latency distributions, whereas

“Async” and “Custom (BE)” achieve the worst distributions. Once again, the optimization

employed by “Custom (LC)” is not visible because Feed-1’s request size distribution doesn’t

contain small buffers.

Finally, the results for throughput are shown in Fig. 4.4. For both workloads, compression

in software has the lowest throughput (143.7K req/s for Cache-1 and 68.6K req/s for Feed-1).

Synchronous compression with “Sync” and “Custom (LC)” improves upon this, achieving 1.12-

1.6x higher throughput because both workloads contain a significant fraction of large buffers,

which benefit from hardware offload. Finally, asynchronous compression with “Async” and

“Custom (BE)” achieves the highest throughput, 3.4-3.8x higher than software compression,

because other user threads are allowed to make progress while some of them wait for completion.

Interestingly, with asynchronous offload, Cache-1 achieves a 2x higher throughput as compared

to Feed-1 because Feed-1 uses larger buffer sizes, whose requests take longer to complete.
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Figure 4.3. Feed-1 Latency CDF (HTML Data)

Figure 4.4. Throughput (HTML Data)
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Compression Mode Throughput (req/s) Median Latency (µs) 90th Perc. Latency (µs)
Software (ISA-L) 28.1 K 38.4 42.4

Synchronous Offload 39.3 K 27.6 30.3
Custom (LC) 39.3 K 27.6 30.2

Asynchronous Offload 60.2 K 36.1 39.4
Custom (BE) 60.3 K 36.0 39.9

Table 4.2. Performance of a Synthetic Web Server

4.2.2 Synthetic Web Server

To understand how our system performs on real applications, we evaluate the per-request

latencies (median and 90th percentile) and overall throughput of a synthetic web service, whose

implementation was borrowed from the open-source release of AIFM [64], that encrypts and

compresses 8KB objects before returning them to clients. The web service spawns multiple

threads, each of which submits compression requests. Once a thread submits a request, it waits

for the request to complete before submitting a new request. Therefore, it uses a closed loop

load generator as well. The results are shown in Table 4.2. Compression in software yields

the highest median latency and lowest throughput. Synchronous compression with “Sync” and

“Custom (LC)” achieves the lowest latency, which is 28% lower than software compression, and a

throughput improvement of 1.4x. Finally, asynchronous compression with “Async” and “Custom

(BE)” achieves the highest throughput, which is 2.14x higher than software compression. Our

custom policies that adaptively choose between software compression and hardware offload

perform similar to policies that always offload compression to the accelerator because the web

service only compresses large objects (8KB).

4.3 Polling Interval

Asynchronous offload relies on the runtime scheduler being able to periodically poll

accelerator queues for completion events. The frequency at which the scheduler checks for

completion events has a significant influence on per-request latency as well as overall application
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Figure 4.5. Polling Interval Latency CDF (HTML Data)

throughput. With more frequent polling, we ensure that requests aren’t kept waiting for extended

periods of time - therefore, we expect better latency distributions, at the expense of reduced

throughput. With a lower polling frequency, requests could potentially be suspended for longer

periods of time, resulting in high per-request latencies. However, polling less frequently allows

application threads to get more work done, resulting in better application throughput. In this

section, we quantify the effect of the scheduler’s polling interval on per-request latencies, as

well as application throughput. We configure the scheduler’s polling interval statically. However,

the actual polling interval achieved in practice may deviate from the statically assigned value.

As a result, our graphs illustrate results for the “target polling interval”, which represents the

statically assigned value. Moreover, we only run experiments for Cache-1 because its buffer size

distribution includes small buffers and is therefore more interesting than Feed-1. Finally, we

note that the number of operations dequeued from the accelerator’s queue during each polling

iteration affects latency and throughput. As a result, we fix the dequeue batch size to 16 (based

on experiments in the next subsection) so that we don’t process more than 16 requests per polling

iteration. Fig. 4.5 shows how polling interval affects per-request latency and Fig. 4.6 shows how

it affects overall application throughput.
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Figure 4.6. Polling Interval Throughput (HTML Data)

The graphs indicate that using an extremely low polling interval (0.05 µs) achieves the

best latency distribution, however, suffers from severe throughput degradation. At the other

end of the spectrum, the highest throughput is achieved with a large polling interval (10 µs),

at the expense of a poor latency distribution. As a result, latency-critical applications should

use a shorter polling interval, while expecting lower throughput. A reasonable middle-ground

is a polling interval of 1 µs, which achieves a good balance between per-request latency and

application throughput.

4.4 Dequeue Batch Size

As alluded to in the previous subsection, another factor that determines the latency

and throughput of asynchronous offload is dequeue batch size i.e. the maximum number of

operations processed each time the scheduler polls the accelerator’s queue. With large dequeue

batch sizes, we expect per-request latencies to suffer because the scheduler could, in theory, be

busy processing completion events for a large number of operations before returning control to

application threads. To investigate the effect of dequeue batch size on latency and throughput,

we fix the scheduler’s polling interval to 1 µs, which achieves a good balance between latency
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Figure 4.7. Dequeue Batch Size Latency CDF (HTML Data)

and throughput.

Per-request latency distributions are shown in Fig. 4.7. From the figure, it is clear that

the dequeue batch size must be at least 2 operations to achieve low latency; with small dequeue

batch sizes, the number of threads awoken per polling iteration of the runtime scheduler is very

small, as a result of which, the system is more efficient when it can amortize the overheads of

polling by polling multiple completions at once. Secondly, all dequeue batch sizes greater than or

equal to two achieve similar latency distributions because on average, the number of completed

operations available for processing during each poll interval is between two and four. As a result,

larger batch sizes do not influence per-request latency. Another consequence of this phenomenon

is that dequeue batch size does not affect application throughput.
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Chapter 5

Related Work

5.1 Accelerators

Comprehensive studies [46, 67] have shown that datacenter applications rely on a set

of common procedures that are highly amenable to hardware acceleration. While accelerators

for operations such as compression and encryption are available in commodity hardware today

[21], recent work proposes custom hardware to alleviate other components of the datacenter tax.

Cerebros [61] proposes offloading the entire RPC layer to an on-chip, shared NIC-integrated

accelerator that uses affinity-based request steering to improve performance. nanoPU [41] takes

the idea of NIC-CPU co-design to its extreme by delivering RPC requests directly to CPU

registers. In contrast to shared accelerators, Karandikar et al. [48] propose the design of a private

per-core accelerator for serialization/deserialization operations (performed by protocol buffers

[25]) to better support applications that don’t use RPCs, e.g., storage. In this thesis, we take a

step towards understanding the performance characteristics of such emerging accelerators and

explore the role that operating system scheduling plays in optimizing their usage.

GPUs have traditionally been used to accelerate highly parallel applications such as

computer graphics and scientific workloads. More recently, GPUs and custom ASICs [43] have

become increasingly important in providing the raw computational power needed to train deep

neural networks [66]. Orthogonal work [38, 39] uses GPUs to preserve the flexibility/affordability

of software routers by exploiting the inherent parallelism found in router applications for higher
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packet processing throughput. We do not consider GPUs in this thesis because commonly used

GPU kernels for deep learning and cryptography have millisecond-scale offload latencies [53],

which aren’t well-suited for microsecond scale tasks.

Finally, introducing hardware accelerators in production is a non-trivial task, involving

design, testing and planning to match expected load. Analytical modeling techniques play an

important role in projecting accelerator speedup before expending resources for real hardware.

LogCA [28] builds on prior research to develop a simple model based on a few parameters for

accelerators. However, LogCA assumes that all hardware offload is synchronous. Accelerometer

[67] overcomes this limitation to realistically model microservice speedup by capturing the

concurrency that results from asynchronous offload. Similarly, we use asynchronous offload to

improve the throughput of batch applications and evaluate our system using Accelerometer’s

request size distributions.

5.2 Dataplane Operating Systems

Faster networks and storage devices have shifted performance bottlenecks to systems

software. Many systems circumvent this problem by separating the OS’ dataplane from its

control plane [32, 60], an idea that dates back to the Exokernel [34]. These systems typically

achieve better performance by eliminating the overheads associated with traversing the OS kernel

and processing interrupts. Snap [56] puts these ideas into practice, while retaining Linux as its

control plane. In a similar vein, we use DPDK [13] to side step the Linux kernel and directly

access accelerators from user-space. More recently, Demikernel [72] proposes using library OSes

to abstract away the heterogenerity of dataplane systems by exposing a uniform, general-purpose

application programming interface.
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5.3 Operating System Scheduling

Scheduling mechanisms found in commodity OSes incur overheads on the order of

milliseconds [52], and are hence unable to meet the microsecond-scale latency requirements

of datacenter applications [30]. Recent research has explored the design of OS schedulers for

requests that demand microsecond latencies. ZygOS [62] deviates from traditional data-plane

OSes by using work stealing to avoid head-of-line blocking, paving the way for microsecond

scale computing on multi-core servers. Shinjuku [44] uses fast preemption as a mechanism to

develop efficient policies for workloads with highly dispersed request times. Demikernel [72]

uses coroutines to achieve fast context switches. In contrast, we achieve low-latency context

switches with the help of a cooperative user-level threading runtime based on Caladan [37], which

multiplexes application user-threads on top of kernel threads. Context switches between OS

kernel threads incurs a high latency that results from the need to switch between user and kernel

execution modes; therefore, we rely exclusively on user-level threading for low latency. Ghost

[40] eschews user-threads in favour of kernel threads because user-threading runtimes do not have

control over when a kernel thread is scheduled, or, which CPU it runs on. Scheduler activations

[29] circumvents this problem by notifying application runtimes about kernel scheduling events,

allowing them to react optimally. However, our system differs from Scheduler Activations in

that we do not allow user-threads to perform blocking I/O operations - instead, they are expected

to use the runtime’s APIs.

Commodity OS kernels use generic scheduling policies that cater to a wide range of

workloads, resulting in sub-optimal performance for important applications [55]. OS kernel

schedulers also make it difficult to quickly implement and test new scheduling policies across a

large fleet of machines. As a result, recent research has proposed delegating scheduling policies

to user-space processes. Syrup [45] allows the specification of scheduling policies for a wide

range of system resources on a per-application basis. Ghost [40] uses user-space “agents” to

instruct the kernel on how to schedule kernel threads on CPU cores.
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In addition to high performance, CPU efficiency is of utmost importance in the datacenter

[48, 70]. Shenango [59] uses thread and packet queueing delays as signals of impending

SLO violations and uses fast core reallocations to avoid the overheads of dedicating CPU

cores to application runtimes. Caladan [37] boosts CPU efficiency by quickly reacting to

signals of interference between co-located tasks, thereby eliminating the need for static resource

partitioning. McClure et al. [57] explore efficient load balancing and core reallocation policies

that strike the best balance between CPU efficiency and tail latency.

5.4 SmartNIC Offload

The emergence of SmartNICs as additional sources of compute has exposed opportunities

to improve host CPU utilization. SmartNICs can be built from a wide range of technologies,

including ASICs, FGPAs and SoCs, each with its own tradeoffs. ASICs have functionality

baked into hardware, offering the best performance at the cost of poor programmability. On

the other hand, FPGAs improve programmability while providing performance close to ASICs.

Finally, SoC SmartNICs offer the best programmability, albeit with poorer performance resulting

from the use of general purpose cores. AccelNet [36] eschews multicore SoC SmartNICs due

to their poor scalability and instead uses FPGAs for high-performance offload of end host

network functions. In contrast, iPipe [54] shows that distributed applications with complex data

structures cannot be efficiently offloaded to FPGA SmartNICs, and instead, use an actor-based

framework to dynamically offload them to SoC SmartNICs. FlexTOE [65] eliminates host TCP

data-path processing by offloading it to SmartNICs, while enabling on-the-fly customization

at high speeds with fine-grained data parallelism. LineFS [50] uses similar ideas to offload the

processing-intensive parts of a distributed file system. On the other hand, Lynx [69] offloads

both the network control and data planes to SmartNICs, enabling direct communication between

accelerators. Similar to the above research, we selectively offload parts of an application

(that require acceleration) to multicore SoC SmartNICs. However, we only make use of the

33



SmartNIC’s accelerators, and do not use its general purpose programmable cores.
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Chapter 6

Remaining Research Challenges

Multicore Scalability

In our current implementation, each runtime is configured to use a single CPU core.

As a result, our benchmarks are not able to saturate the accelerator. We are working towards

implementing support for multiple CPU cores per runtime, which would help us better understand

accelerator scalability. If adding multicore support to runtimes results in accelerator saturation,

the runtime scheduler’s policies must be adapted to factor in accelerator load while making

scheduling decisions.

Stackless Coroutines

Our runtime scheduler relies on the efficiency of user-threads to achieve a low context

switching latency of 50ns. However, as noted in Chapter 3.2, context switches between stackless

coroutines can be achieved in just 12 clock cycles [72]. We therefore plan to explore the use of

stackless coroutines as an alternative to user-threads.

Factors Affecting Offload Latency

This thesis only studies how offload data size and accelerator location influence offload

latency. We are investigating how other factors such as the accelerator’s API and the offloaded

kernel’s computational complexity affect offload latency.
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Accelerators

We exclusively study the performance of a compression accelerator found on Bluefield

SmartNICs. We are working towards understanding the performance of a wider range of

accelerators [12, 14, 15, 17, 18, 21].
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Chapter 7

Conclusion

As hardware accelerators become more prominent in mitigating performance bottlenecks,

deeply understanding their behaviour is crucial to unlocking their potential. In this thesis, we have

evaluated the characteristics of a compression accelerator found on recent hardware and shown

that for the workloads evaluated, always offloading compression to hardware yields the best

results. More importantly, the choice between synchronous and asynchronous offload plays an

key role in determining an application’s throughput and per-request latency. Synchronous offload

achieves the lowest latency, whereas, asynchronous offload achieves the highest throughput.

Therefore, OS schedulers that understand the nature of workloads being accelerated, as well as

characteristics of the accelerators being used, are well-poised to tackle the challenges faced by

systems infrastructure in a post-Moore era.
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[33] Jeffrey Dean and Luiz André Barroso. The Tail at Scale. Communications of the ACM,
56(2):74–80, 2013.

[34] Dawson R Engler, M Frans Kaashoek, and James O’Toole Jr. Exokernel: An Operating
System Architecture for Application-Level Resource Management. In ACM Symposium on
Operating Systems Principles (SOSP), page 17, 1995.

[35] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankaralingam, and Doug
Burger. Dark Silicon and the End of Multicore Scaling. In ACM/IEEE International
Symposium on Computer Architecture (ISCA), pages 365–376, 2011.

[36] Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou, Alireza Dabagh,
Mike Andrewartha, Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric Chung, Har-
ish Kumar Chandrappa, Somesh Chaturmohta, Matt Humphrey, Jack Lavier, Norman Lam,
Fengfen Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Popuri, Shachar Raindel, Tejas Sapre,
Mark Shaw, Gabriel Silva, Madhan Sivakumar, Nisheeth Srivastava, Anshuman Verma,
Qasim Zuhair, Deepak Bansal, Doug Burger, Kushagra Vaid, David A. Maltz, and Albert
Greenberg. Azure Accelerated Networking: SmartNICs in the Public Cloud. In USENIX
Symposium on Networked Systems Design and Implementation (NSDI), pages 51–66, 2018.

[37] Joshua Fried, Zhenyuan Ruan, Amy Ousterhout, and Adam Belay. Caladan: Mitigating
interference at microsecond timescales. In USENIX Symposium on Operating Systems
Design and Implementation (OSDI), pages 281–297, 2020.

[38] Younghwan Go, Muhammad Asim Jamshed, YoungGyoun Moon, Changho Hwang, and
KyoungSoo Park. APUNet: Revitalizing GPU as Packet Processing Accelerator. In
USENIX Symposium on Networked Systems Design and Implementation (NSDI), volume 17,
pages 83–96, 2017.

[39] Sangjin Han, Keon Jang, KyoungSoo Park, and Sue Moon. PacketShader: A GPU-
accelerated Software Router. In ACM Special Interest Group on Data Communication on
the Applications, Technologies, Architectures, and Protocols for Computer Communication
(SIGCOMM), pages 195–206, 2010.

[40] Jack Tigar Humphries, Neel Natu, Ashwin Chaugule, Ofir Weisse, Barret Rhoden, Josh
Don, Luigi Rizzo, Oleg Rombakh, Paul Turner, and Christos Kozyrakis. ghost: Fast &
Flexible User-Space Delegation of Linux Scheduling. In ACM Symposium on Operating
Systems Principles (SOSP), pages 588–604, 2021.

[41] Stephen Ibanez, Alex Mallery, Serhat Arslan, Theo Jepsen, Muhammad Shahbaz,
Changhoon Kim, and Nick McKeown. The nanoPU: A Nanosecond Network Stack

40



for Datacenters. In USENIX Symposium on Operating Systems Design and Implementation
(OSDI), pages 239–256, 2021.

[42] Zhipeng Jia and Emmett Witchel. Nightcore: Efficient and Scalable Serverless Computing
for Latency-Sensitive, Interactive Microservices. In ACM International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS),
pages 152–166, 2021.

[43] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder
Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle, Pierre-luc Cantin,
Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben
Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati, William Gulland, Robert Hagmann,
C. Richard Ho, Doug Hogberg, John Hu, Robert Hundt, Dan Hurt, Julian Ibarz, Aaron
Jaffey, Alek Jaworski, Alexander Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch,
Naveen Kumar, Steve Lacy, James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan
Liu, Kyle Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire Mahony,
Kieran Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie,
Mark Omernick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross, Amir
Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snelham, Jed Souter,
Dan Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo Tian, Horia Toma,
Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang, Eric Wilcox, and Doe Hyun
Yoon. In-Datacenter Performance Analysis of a Tensor Processing Unit. In ACM/IEEE
International Symposium on Computer Architecture (ISCA), pages 1–12, 2017.

[44] Kostis Kaffes, Timothy Chong, Jack Tigar Humphries, Adam Belay, David Mazières, and
Christos Kozyrakis. Shinjuku: Preemptive scheduling for µsecond-scale tail latency. In
USENIX Symposium on Networked Systems Design and Implementation (NSDI), pages
345–360, 2019.

[45] Kostis Kaffes, Jack Tigar Humphries, David Mazières, and Christos Kozyrakis. Syrup:
User-Defined Scheduling Across the Stack. In ACM Symposium on Operating Systems
Principles (SOSP), pages 605–620, 2021.

[46] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy Ranganathan, Tipp
Moseley, Gu-Yeon Wei, and David Brooks. Profiling a warehouse-scale computer. In
ACM/IEEE International Symposium on Computer Architecture (ISCA), pages 158–169,
2015.

[47] Svilen Kanev, Sam Likun Xi, Gu-Yeon Wei, and David Brooks. Mallacc: Accelerating
Memory Allocation. In ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), pages 33–45, 2017.

[48] Sagar Karandikar, Chris Leary, Chris Kennelly, Jerry Zhao, Dinesh Parimi, Borivoje
Nikolic, Krste Asanovic, and Parthasarathy Ranganathan. A Hardware Accelerator for
Protocol Buffers. In IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 462–478, 2021.

41



[49] Mahmoud Khairy, Ahmad Alawneh, Aaron Barnes, and Timothy G Rogers. SIMR: Single
Instruction Multiple Request Processing for Energy-Efficient Data Center Microservices.
In IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 441–463,
2022.

[50] Jongyul Kim, Insu Jang, Waleed Reda, Jaeseong Im, Marco Canini, Dejan Kostić, Youngjin
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