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Abstract

Myocardial interstitial fibrosis is associated with cardiovascular disease and adverse prognosis. 

To investigate the biological pathways that underlie fibrosis in the human heart, we developed a 

machine learning model to measure native myocardial T1 time, a marker of myocardial fibrosis, 

in 41,505 UK Biobank participants who underwent cardiac magnetic resonance imaging. Greater 

T1 time was associated with diabetes mellitus, renal disease, aortic stenosis, cardiomyopathy, heart 
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failure, atrial fibrillation, conduction disease and rheumatoid arthritis. Genome-wide association 

analysis identified 11 independent loci associated with T1 time. The identified loci implicated 

genes involved in glucose transport (SLC2A12), iron homeostasis (HFE, TMPRSS6), tissue repair 

(ADAMTSL1, VEGFC), oxidative stress (SOD2), cardiac hypertrophy (MYH7B) and calcium 

signaling (CAMK2D). Using a TGFβ1-mediated cardiac fibroblast activation assay, we found 

that 9 out of the 11 loci comprised genes that exhibited temporal changes in expression and/or 

open chromatin conformation supporting their biological relevance to myofibroblast cell state 

acquisition. By harnessing machine learning to perform large-scale quantification of myocardial 

interstitial fibrosis using cardiac imaging, we validate associations between cardiac fibrosis and 

disease, and identify novel biologically relevant pathways underlying fibrosis.

The cardiac extracellular matrix (ECM) is a dynamic compartment that plays key structural 

and regulatory roles in establishing myocardial tissue architecture and function. Pathologic 

perturbations to homeostatic turnover of ECM components leads to the progressive 

development of interstitial fibrosis1, which is the histological hallmark of several cardiac 

diseases2–8. A myriad of hemodynamic, metabolic and inflammatory stressors contribute to 

the accelerated development of interstitial fibrosis and associated cardiovascular diseases9. 

There is a critical need to understand the cellular and molecular mechanisms that contribute 

to pathological cardiac fibrosis in humans, given that their identification would enable 

the development of targeted anti-fibrotic therapies applicable across a wide-range of 

cardiovascular diseases. However, progress has been hindered by challenges in reliable 

non-invasive measurement of interstitial fibrosis at scale in the human heart, and by the 

lack of adequately powered validation studies of findings from animal or in vitro tissue 

culture models. The advent of machine learning tools capable of generating imaging-based 

phenotypes at scale and large biorepositories containing deep phenotyping and genomic data 

offers a unique opportunity to overcome these challenges.

Native myocardial T1 time measured using cardiac magnetic resonance imaging (cMRI) 

is a histopathologically validated metric for quantifying interstitial fibrosis in the human 

heart10,11. The UK Biobank (UKB) is a large-scale prospective cohort with rich cMRI12, 

genomic, and clinical outcomes data13. We sought to use machine learning to quantify 

fibrosis in over 40,000 study participants who underwent cMRI T1 mapping, assess 

associations between fibrosis and clinical outcomes, and identify pathways responsible for 

cardiac fibrosis in humans using genetic association analyses.

RESULTS

Machine learning enables T1 time measurement at scale

We acquired mid-ventricular short-axis cMRI T1 maps for 42,654 participants in the 

UKB (Fig. 1). In accordance with contemporary guidelines for assessment of cardiac T1 

mapping14–16, we developed a machine learning model to auto-segment myocardial regions 

of interest within the interventricular septum (IVS) and quantify T1 time (Online Methods). 

T1 times measured using our machine learning model were highly correlated with manually-

derived T1 times in an independent validation set (n = 100; Pearson correlation coefficient 

r = 0.97, 95% CI 0.95–0.98) (Supplementary Fig. 1). Following T1 map image quality 
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control, we retained measured T1 time at the IVS for 41,505 participants who constituted 

our study sample (Supplementary Fig. 2 and Online Methods).

The mean age of participants was 64.0 ± 7.7 years and 48.1% were men. Mean native 

myocardial T1 time of the study sample was 918.1 ± 41.5 ms (Table 1). Our results were 

consistent with known sex-specific patterns of higher T1 time in women compared to 

men (Supplementary Fig. 3)17,18. Increasing age was associated with decreased T1 time 

in females (ΔT1(ms) /10 years = −4.15 ± 0.64, P = 1.9 × 10−36) and increased T1 time in 

males (ΔT1 (ms) /10 years = 2.52 ± 0.34, P = 2.3 × 10−13) after adjusting for comorbidities 

and medications (Supplementary Fig. 4a). Sub-setting to “healthy” participants free of 

cardiovascular or metabolic diseases at time of MRI did not alter the sex-specific age-related 

trends in T1 time (Supplementary Fig. 4b).

Age, sex and body mass index (BMI) contributed to the majority of variation in T1 time in 

the study sample (Supplementary Table 1). In the sections below, we present findings from 

multivariable analyses adjusted for demographics, comorbidities and medications relevant to 

myocardial fibrosis. Additionally, we also provide in the supplementary tables results from 

models adjusted only for age, sex and BMI for comparison.

T1 time is associated with other cMRI-derived measures

We examined the association of myocardial interstitial fibrosis with cMRI derived-measures 

of left ventricular and atrial structure and function. Prior to performing association testing, 

we rank-based inverse normal transformed T1 times. As such, changes in T1 time reported 

approximate multiples of one standard deviation (SD) of T1 time. In multivariable analysis, 

lower LV ejection fraction, higher LV mass, and larger LV end systolic volume were 

associated with increased T1 time. In the left atrium, lower ejection fraction and larger end 

systolic volume were associated with increased T1 time (Supplementary Table 2). Two-sided 

P-values < 7.1 × 10−3 were considered statistically significant.

T1 time is associated with prevalent diseases

We then investigated whether T1 time is associated with a priori selected cardiovascular, 

metabolic, and systemic inflammatory diseases relevant to myocardial fibrosis by comparing 

T1 times from participants with prevalent disease to “healthy” participants free of 

cardiovascular or metabolic disorders at time of cMRI (Online Methods, Fig. 2 and 

Supplementary Fig. 5). Two-sided P-values < 3.1 × 10−3 were considered statistically 

significant.

Among cardiovascular diseases, higher T1 time was associated with hypertrophic 

cardiomyopathy (ΔT1(SD) = 0.74 ± 0.17; P = 1.3 × 10−5), dilated cardiomyopathy (ΔT1(SD) 

= 0.47 ± 0.12; P = 1.3 × 10−4), heart failure (ΔT1(SD) = 0.41 ± 0.06; P = 1.1 × 10−10), atrial 

fibrillation (ΔT1(SD) = 0.21 ± 0.03 ; P = 7.1 × 10−12), atrioventricular node/distal conduction 

disease (ΔT1(SD) = 0.37 ± 0.06; P = 3.7 × 10−11), and aortic stenosis (ΔT1(SD) = 0.35 ± 

0.10; P = 7.6 × 10−4). Coronary artery disease (ΔT1(SD) = 0.06 ± 0.03; P = 2.1 × 10−2) and 

myocardial infarction (ΔT1(SD) = 0.10 ± 0.04; P = 1.8 × 10−2) were associated with a trend 

towards higher T1 time that did not reach the threshold for statistical significance.
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T1 time was not associated with hypertension (ΔT1(SD) = 0.02 ± 0.01; P = 0.18), 

which is consistent with prior studies that showed a limited ability of T1 mapping to 

differentiate between individuals with hypertension and controls except among individuals 

with concomitant left ventricular hypertrophy (LVH) (Fig. 2 and Supplementary Fig. 5)19. 

Accordingly, we stratified participants with hypertension based on presence of concomitant 

LVH. We found that hypertension was associated with higher T1 times only among 

participants with concomitant LVH (ΔT1(SD) = 0.15 ± 0.03; P = 4.0 × 10−8) but not among 

those without LVH (ΔT1(SD) = 4.0 × 10−3 ± 0.01; P = 0.75) (Supplementary Fig. 6).

Metabolic disorders, including diabetes mellitus type 1 (ΔT1(SD) = 0.40 ± 0.07; P = 4.0 × 

10−8), diabetes mellitus type 2 (ΔT1(SD) = 0.27 ± 0.03; P = 7.7 × 10−20), hyperlipidemia 

(ΔT1(SD) = 0.18 ± 0.05; P = 6.4 × 10−5), and chronic kidney disease (ΔT1(SD) = 0.20 ± 0.05; 

P = 8.6 × 10−5) were associated with higher T1 time (Fig. 2 and Supplementary Fig. 5). 

Of the systemic inflammatory diseases examined, rheumatoid arthritis was associated with 

increased T1 time (ΔT1(SD) = 0.13 ± 0.04; P = 6.1 × 10−4) (Fig. 2 and Supplementary Fig. 

5).

We performed a sensitivity analysis comparing disease cases to non-cases (i.e. “healthy” 

controls and non-cases with other cardiovascular and metabolic diseases) further adjusting 

for comorbidities and medications and found overall similar findings (Supplementary Table 

3 and Supplementary Fig. 7). Stratification by sex yielded consistent disease associations 

with T1 time among males and females (Supplementary Fig. 8).

We additionally examined the association of serum biomarkers and electrocardiogram 

(ECG) intervals relevant to the examined prevalent diseases with T1 time. Concordant 

with the association of diabetes mellitus with increased T1 time, individuals with HgbA1c 

levels in the prediabetes (ΔT1(SD) = 0.06 ± 0.02; P = 4.6 × 10−4) and diabetes (ΔT1(SD) 

= 0.27 ± 0.04; P = 5.0 × 10−13) ranges20 had higher T1 time as compared to those with 

normal HgbA1c levels. Increase in T1 time associated with impaired renal function only 

became apparent with moderate to severe reductions in estimated glomerular filtration rate21 

(<45 ml.min−1/1.73 m2; (ΔT1(SD) = 0.22 ± 0.07; P = 2.6 × 10−3). Among the examined 

ECG intervals, prolonged QRS interval (>120 ms) was associated with increased T1 time 

(ΔT1(SD) = 0.28 ± 0.03; P = 8.9 × 10−19) (Supplementary Table 4 and Supplementary Fig. 

9). A two-sided P-value threshold of < 4.6 × 10−3 was used for the biomarker and ECG 

interval analysis.

T1 time is associated with incident cardiovascular disease

We compared incidence of cardiovascular disease among individuals in the top 20th 

percentile of T1 time distribution to that in the bottom 80th percentile over a median follow-

up of 2.54 years, interquartile range 1.63–3.88 years. We analyzed individual diseases and 

defined two composite endpoints including major arrhythmia (comprising incident sustained 

ventricular arrhythmia, cardiac arrest or implantable cardioverter defibrillator implantation), 

and major adverse cardiovascular events (comprising incident myocardial infarction, heart 

failure, all-cause mortality, atrial fibrillation or major arrhythmia). Participants in the top 

20th percentile of T1 time had a higher risk of incident heart failure (HR 1.66, 99% CI 

1.04–2.67; P = 5.4 × 10−3), atrial fibrillation (HR 1.62, 99% CI 1.18–2.23; P = 9.5 × 10−5), 
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and atrioventricular node/distal conduction disease (HR 1.93, 99% CI 1.32–2.83; P = 8.8 × 

10−6) compared to those in the lower 80th percentile. Additionally, incident major adverse 

cardiovascular events (HR 1.74, 99% CI 1.38–2.20; P = 1.23 × 10−9) were more frequent 

among participants in the top 20th percentile of T1 time compared to those in the lower 

80th percentile (Fig. 3, Supplementary Table 5 and Supplementary Fig. 10). There was a 

trend towards a higher incidence of the composite major arrhythmia endpoint (HR 1.75, 

99% CI 0.87–3.55; P = 4.0 × 10−2) in the top 20th percentile of T1 time that did not reach 

the threshold for statistical significance (Supplementary Table 5 and Supplementary Fig. 

10). Two-sided P-values < 0.01 were considered statistically significant. A sex-stratified 

sensitivity analysis showed consistent findings for both males and females (Supplementary 

Fig. 11).

Lifestyle factors are associated with T1 time

We investigated the impact of lifestyle factors on myocardial interstitial fibrosis stratified 

by sex and adjusted for diseases associated with T1 time. In both males and females, 

light-to-moderate alcohol use (ΔT1(SD) = −0.21 ± 0.04; Pmales = 1.0 × 10−9 ; ΔT1(SD) = 

−0.15 ± 0.03; Pfemales = 6.9 × 10−8) and heavy alcohol use (ΔT1(SD) = −0.22 ± 0.04; 

Pmales = 1.7 × 10−10 ; ΔT1(SD) = −0.24 ± 0.03; Pfemales = 5.4 × 10−18) were associated 

with lower T1 time as compared to non-drinkers. Current cigarette smoking across both 

sexes (ΔT1(SD) = 0.26 ± 0.03; Pmales = 1.3 × 10−14 ; ΔT1(SD) = 0.24 ± 0.04; Pfemales = 

7.5 × 10−11) was associated with increased T1 time compared to non-smokers. We found 

a salutary effect of adequate self-reported physical activity defined as meeting guideline 

recommendations of ≥ 150 minutes of moderate or ≥ 75 minutes of vigorous activity per 

week or the equivalent combination on myocardial interstitial fibrosis22. Physical activity 

meeting guideline recommendations was associated with decreased T1 time in both males 

and females (ΔT1(SD) = −0.07 ± 0.02; Pmales = 1.6 × 10−6 ; ΔT1(SD) = −0.08 ± 0.02; Pfemales 

= 3.1 × 10−8). Among participants with BMI < 30 kg/m2, increasing BMI was associated 

with lower T1 time in both males and females (ΔT1(SD) /kg/m2 = −0.08 ± 0.01; Pmales = 

1.4 × 10−162; ΔT1(SD) /kg/m2 = −0.06 ± 0.01; Pfemales = 1.0 × 10−162). The trend reversed 

among obese male participants with BMI > 30 kg/m2. Increasing BMI was associated with 

increased myocardial fibrosis and T1 time (ΔT1(SD) /kg/m2 = 0.03 ± 0.01; Pmales = 2.4 × 

10−7) in obese males but was not associated with T1 time in obese females (ΔT1(SD) /kg/m2 

= 4.0 × 10−3 ± 4.6 × 10−3 ; Pfemales = 0.35) (Supplementary Table 6 and Supplementary 

Fig. 12). Two-sided P-values < 1.3 × 10−2 within each stratum were considered statistically 

significant.

Causal effect of diabetes mellitus type 1 on cardiac fibrosis

We explored the causal contribution of cardiovascular risk factors and diseases to 

myocardial fibrosis using two-sample Mendelian randomization (MR). The inverse variance 

weighted (IVW) method constituted our primary analysis. We used the MR-Egger method 

as a sensitivity analysis to account for potential horizontal pleiotropy23. We found consistent 

evidence from both the IVW and MR-Egger method supporting a potential causal effect of 

diabetes mellitus type 1 (ΔT1IVW (SD) /log odds of genetic predisposition to DM1 = 0.007 ± 0.002; 

P = 1.0 × 10−3; ΔT1MR-Egger (SD) /log odds of genetic predisposition to DM1 = 0.01 ± 0.003; P = 

1.0 × 10−3) on myocardial interstitial fibrosis. This was also supported by inspecting the 
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scatter plot of the association of individual genetic variants comprising the diabetes mellitus 

type 1 genetic instrument with both T1 time and diabetes mellitus type 1 (Supplementary 

Fig. 13). A causal effect of diastolic blood pressure on myocardial T1 time was suggested 

by the inverse variance weighted method, but this association was not supported by the 

MR-Egger method or the scatter plot of variant effect sizes. We did not find evidence for a 

causal effect of BMI, systolic blood pressure, chronic kidney disease, estimated glomerular 

filtration rate, diabetes mellitus type 2, coronary artery disease, atrial fibrillation or serum 

lipoproteins on myocardial fibrosis (Supplementary Table 7). Two-sided P-values < 3.9 × 

10−3 were considered statistically significant.

Genetic association analysis highlights loci relevant to fibrosis

Next, we sought to determine the genetic basis of interstitial fibrosis by performing genetic 

association analysis of T1 time. The single nucleotide polymorphism (SNP) heritability (h2
g) 

of T1 time was 0.13, which is lower than that of other cMRI phenotypes in the UKB such 

as LV mass (0.26), LV end diastolic volume (0.40), and LV end systolic volume (0.31)24. 

Interestingly, in contrast to the strong association of measured T1 time with other cMRI 

measures of left ventricular and atrial structure and function, we observed limited genetic 

correlation of T1 time with these cMRI measures, suggesting that while shared exposures 

drive the association between these MRI measures and T1 time, distinct biologic pathways 

contribute to development of myocardial interstitial fibrosis (Supplementary Fig. 14).

We performed a genome-wide association study (GWAS) and discovered 11 genome-wide 

significant loci (Fig. 4a and Supplementary Table 8). There was no evidence of inflation in 

our GWAS results (λGC = 1.053, LD score regression intercept = 1.0002) (Supplementary 

Fig. 15). Regional association plots for genome-wide significant SNPs are shown in 

Supplementary Figure 16.

A regulatory region variant in a promoter-flanking region upstream of the solute carrier 

SLC2A12 gene was the most significant lead SNP (rs2627230_T; P = 8.1 × 10−14) and 

associated with increased T1 time. SLC2A12 encodes solute facilitated glucose transporter 

member 12 (GLUT12), a basal and insulin-independent glucose transporter in the heart25 

with previously reported associations with idiopathic dilated cardiomyopathy in humans26, 

as well as insulin resistance27 and kidney disease28 in animal models. Lead SNPs near 

SOD2 (rs9457699_G; P = 2.0 × 10−11) and VEGFC (rs365843_T; P = 3.2 × 10−9), two 

genes with established roles in cardiac hypertrophy and fibrosis in animal models29,30, were 

associated with decreased T1 times. Another lead SNP associated with T1 time is an intronic 

variant in ADAMTSL1 (rs1576900_A; P = 3.6 × 10−11), a gene encoding an ADAMTS-like 

protein which is thought to modulate the function of ADAMTS metalloproteinases with 

integral roles in ECM turnover31,32. Additionally, rs6120777_A, an intronic variant in 

MYH7B, was among the lead genome-wide significant variants (P = 9.2 × 10−11). MYH7B 
has been associated with familial hypertrophic cardiomyopathy33, but no associations 

between rs6120777_A and hypertrophic cardiomyopathy have been yet reported. Notably, 

the association of rs6120777_A with T1 time persisted even after exclusion of hypertrophic 

cardiomyopathy cases in a sensitivity analysis (Supplementary Table 9).
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Interestingly, we also identified rs115740542_C (P = 2.7 × 10−10), a variant near the HFE 
gene in perfect linkage disequilibrium (LD) with rs1800562_A, which leads to the missense 

change p.Cys282Tyr and is the most common cause of hereditary hemochromatosis, an iron 

overload disorder associated with cardiomyopathy34. Additionally, rs855791_A, a missense 

variant in TMPRSS6 with previously reported associations with iron homeostasis35, was 

associated with T1 time (P = 5.7 × 10−10).

We identified a variant in CAMK2D (rs55754224_T; P = 1.4 × 10−9) that has been 

previously associated with atrial fibrillation36. The remaining genome-wide significant 

variants were located near genes associated with cardiac arrhythmias37–39, cardiac 

remodeling40 and myocyte cytoskeletal proteins41, including PPP2R3A, PIM1 and KANK1, 

respectively.

In conditional analysis, no additional independent genome-wide significant SNPs were 

identified. We performed a sensitivity analysis after excluding participants with diseases 

known to be associated with focal replacement fibrosis (myocardial infarction, heart failure, 

and dilated/hypertrophic cardiomyopathy) and identified 10 genome-wide significant loci, 

9 of which overlapped with the main GWAS loci. The subthreshold variant rs2271426_T, 

an intronic variant in PIK3C2B, reached genome-wide significance (P = 4.1 × 10−8) in the 

GWAS sensitivity analysis (Supplementary Figs. 17 and 18 and Supplementary Table 9).

Excluding participants with prevalent hereditary hemochromatosis (n = 62) did not alter 

the association with T1 time of the two loci, H2BC4/HFE and TMPRSS6, associated 

with iron homeostasis (Supplementary Figs. 19 and 20 and Supplementary Table 10). 

We then performed a sex-stratified GWAS and identified no novel or sex-specific loci 

(Supplementary Figs. 21 and 22 and Supplementary Table 11).

ADAMTSL1 and SLC2A12 expression is associated with fibrosis

Of the 11 lead SNPs identified in the GWAS of T1 time, 8 (or their proxies, r2 > 0.8) were 

expression quantitative trait loci (eQTL) in the LV or right atrial appendage (Supplementary 

Table 12). Notably, rs1576900_A, the lead GWAS intronic variant in ADAMTSL1, was 

also the top eQTL variant for ADAMTSL1 in both the LV and right atrial appendage 

and associated with decreased ADAMTSL1 expression and lower T1 time (Supplementary 

Figs. 23 and 24). In addition, rs2627230_T, the lead GWAS variant in a regulatory region 

upstream of SLC2A12, was the top eQTL variant for SLC2A12 in the LV and associated 

with decreased SLC2A12 expression and higher T1 time (Supplementary Fig. 23).

In transcriptome-wide association analysis, increased expression of ADAMTSL1 in left 

ventricular tissue (P = 5.3 × 10−9) and right atrial appendage (P = 1.3 × 10−7) was associated 

with increase in myocardial interstitial fibrosis as measured by T1 time. On the other hand, 

increased expression of SLC2A12 in the LV (P = 1.9 × 10−10) was associated with decrease 

in myocardial interstitial fibrosis (Fig. 4b and Supplementary Tables 13 and 14).

Multi-omic assessment of T1 time-associated loci

To further evaluate T1 time genome-wide significant loci, we implemented a cellular 

assay for fibroblast activation whereby primary human cardiac fibroblasts are stimulated 
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with TGFβ1 (Fig. 5a). We profiled the transcriptional and epigenomic characteristics of 

these TGFβ1 stimulated fibroblasts temporally using RNA-seq and ATAC-seq. Principal 

component analysis of the transcriptomic data revealed that the TGFβ1 stimulated cardiac 

fibroblasts followed a distinct trajectory (Fig. 5b). Differential expression analysis (false 

discovery rate (FDR) < 0.01 and |log2 fold change| > 1) comparing unstimulated controls 

to cells treated with TGFβ1 for 72 hours (Supplementary Table 15) uncovered several 

regulators of cardiac fibrosis, including MEOX1 (Fig. 5c)42. To interrogate our GWAS loci, 

we examined genes nearest to the lead SNPs within a locus in addition to non-overlapping 

genes within these loci that were identified in our eQTL lookup. Notably, MYH7B, 

TMPRSS6, NCK1-AS1, U91328.19 and PNLDC1 are not expressed in cardiac fibroblasts 

and could not be assessed. Of the 14 genes expressed in cardiac fibroblasts, 5 genes within 5 

distinct loci showed evidence of differential gene expression with TGFβ1 treatment at FDR 

< 0.01 (Fig. 5d).

Next, we interrogated the open chromatin landscapes in cardiac myofibroblasts. Consistent 

with the efficacy of our assay, we observed differential chromatin accessibility at canonical 

downstream TGFβ targets, including IGFBP3 (Fig. 5e). Overall, the epigenetic and 

transcriptional trajectories were similar (Fig. 5f). Differential chromatin accessibility 

analysis (FDR < 1 × 10−10, Supplementary Table 16) across stimulated fibroblasts 

uncovered 15,428 peaks that separated into 6 clusters (Fig. 5g). Among these peaks, we 

identified an enrichment for SMAD and TEAD binding sites, which have recently been 

implicated as regulators of fibroblast-to-myofibroblast cell state transitions, via de novo 
motif enrichment analysis (Fig. 5g)43. Of the 19 prioritized genes, 7 genes within 7 distinct 

loci had annotated differentially accessible peaks with TGFβ1 treatment (FDR < 1 × 10−10, 

|log2 fold change| > 1) (Fig. 5h). Intersecting our gene set with the differentially expressed 

genes and ATAC peaks, we identified three overlapping genes including VEGFC, KANK1 
and PIM1 (Fig. 5h). Consistent with a decrease in mRNA expression, we observed a 

decrease in promoter accessibility in KANK1, in addition to additional changes in chromatin 

accessibility (Fig. 5i).

Using our prioritized gene set, 9 of the 11 genome-wide significant loci comprised genes 

that showed evidence of differential transcriptional or epigenetic signatures with TGFβ1 

stimulation. Expanding our gene set to include all genes within 250 kb from lead variants 

in our loci (ngenes = 139), we identified additional 7, 13 and 2 genes that with TGFβ1 

treatment were differentially expressed only, had annotated differentially accessible peaks 

only or both, respectively (Supplementary Fig. 25). Using the expanded gene set, all 11 loci 

included genes that showed responsiveness to TGFβ1 treatment.

DISCUSSION

We developed an automated machine-learning model to measure myocardial interstitial 

fibrosis in over 40,000 participants in the UKB. We identified associations between 

myocardial fibrosis and diabetes mellitus, renal disease, aortic stenosis, cardiomyopathy, 

atrial fibrillation, conduction disease, and rheumatoid arthritis. MR analysis provided 

evidence for a causal effect of diabetes mellitus type 1 on myocardial interstitial fibrosis. 

Furthermore, greater myocardial fibrosis at the time of cMRI was associated with incident 
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cardiovascular disease over a median follow-up of 2.5 years. In the first large-scale 

GWAS of T1 time in the human heart, we identified 11 independent loci implicating 

genes involved in biological pathways relevant to fibrosis, including glucose transport 

(SLC2A12), iron homeostasis (HFE, TMPRSS6), tissue repair (ADAMTSL1, VEGFC), 

oxidative stress (SOD2), cardiac hypertrophy (MYH7B), and calcium signaling (CAMK2D). 

Using a cellular assay for TGFβ1-mediated cardiac fibroblast activation, we demonstrate 

that the GWAS loci are enriched for genes that exhibit transcriptional and epigenetic 

changes following treatment with TGFβ1, further supporting their functional relevance to 

myocardial fibrosis. Overall, the heritability of myocardial interstitial fibrosis as measured 

by native myocardial T1 time was relatively low, emphasizing the important contribution of 

non-genetic environmental and lifestyle factors to cardiac fibrosis.

Our findings have several major implications. First, our results highlight the role of 

glucose homeostasis and diabetes in myocardial fibrosis and pinpoint potential additional 

pathways for further interrogation. Our strongest GWAS variant fell within a regulatory 

region upstream of SLC2A12, which encodes an insulin-independent glucose transporter 

(GLUT12) highly expressed in the heart25. Additionally, in MR analysis, we found evidence 

supporting a potential causal association between diabetes mellitus types 1 and increased 

myocardial T1 time. GLUT12 knock-out in zebrafish leads to development of heart failure 

and a diabetic phenotype27, consistent with our TWAS results, suggesting that decreased 

expression of SLC2A12 in cardiac tissue was associated with increased interstitial fibrosis.

Second, pathways involved in tissue repair were associated with myocardial fibrosis. 

Increased human cardiac expression of ADAMTSL1, which encodes an ADAMTS-like 

protein that lacks catalytic activity and is thought to modulate the function of ADAMTS 

metalloproteinases with integral roles in ECM turnover31,32, was associated with higher 

myocardial interstitial fibrosis in this study. The exact effect of ADAMTSL-1 on 

ADAMTS metalloproteinases remains unknown; however, homology between mammalian 

ADAMTSL-1 and invertebrate papilin, a known inhibitor of ADAMTS-2, has been 

reported44,45. Studies in mice with cardiac-specific overexpression of Adamts2 have shown 

an abrogated pressure overload-induced hypertrophic response46. Thus, potential inhibition 

of ADAMTS-2 activity may explain the increased myocardial fibrosis associated with 

increased expression of ADAMTSL1 in the human myocardium. VEGFC- and VEGFD-

mediated lymphangiogenesis has been associated with cardiac repair, and knock-out 

zebrafish models go on to develop severe cardiac hypertrophy and myocardial interstitial 

fibrosis30. In this study, the lead SNP rs365843_T tagging VEGFC was associated with 

increased expression of VEGFC in human right atrial appendage tissue and with lower T1 

time reflecting decreased myocardial interstitial fibrosis. In line with the above findings, 

TGFβ1 treatment of human cardiac fibroblasts was associated with decreased expression of 

VEGFC in our cellular assay. Thus, our current findings extend those from animal models 

and suggest a role for reparative pathways involving ADAMTS and VEGFC in reducing 

myocardial fibrosis in the human heart.

Third, our results shed light on the role of myocardial oxidative stress in the development 

of myocardial interstitial fibrosis. Lead SNP rs9457699_G is an eQTL for SOD2 in the 

human LV and was associated with increased expression of SOD2 and lower T1 time. 
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This is congruent with findings from Sod2 knockout mice, which exhibit increased levels 

of oxygen reactive species with associated myocardial fibrosis and development of dilated 

cardiomyopathy29.

Fourth, several established pathways involved in myocardial fibrosis were implicated in 

our results. We provide further evidence for the role of CAMK2D in pathologic cardiac 

remodeling and fibrosis47,48 via association of rs55754224_T, an intronic variant in 

CAMK2D, with increased myocardial T1 time. rs55754224_T has been previously reported 

to be associated with increased risk of atrial fibrillation36, an atrial arrhythmia in which 

atrial remodeling and myocardial fibrosis are central pathologic features7. PIM1 has been 

shown to play a role in antagonizing cell senescence49 and reducing myocardial infarct 

size50 and was implicated in our results.

Fifth, we identified two genes, HFE and TMPRSS6, associated with iron homeostasis in 

our GWAS even following exclusion of participants with prevalent hemochromatosis. Iron 

deposition in the heart alters myocardial tissue magnetic properties and is associated with 

lower T1 time and with development of iron overload cardiomyopathy51.

Sixth, we found an association between modifiable lifestyle behaviors and burden of 

myocardial interstitial fibrosis. Our findings emphasize the importance of abstaining from 

cigarette smoking and regular physical activity for cardiovascular health. Extremes of weight 

gain or loss were associated with greater myocardial fibrosis, particularly in males. The 

J-shaped association between BMI and cardiovascular outcomes has been increasingly 

recognized in epidemiologic studies52. Alcohol use was associated with decreased T1 time 

in both males and females which has been reported in prior studies53. Prolonged heavy 

alcohol consumption (>50 drinks per week for > 10 years) is known to be associated with 

alcohol-induced cardiomyopathy54; however, this population is not well-represented in the 

UKB.

Our study has several limitations. First, contrast agents were not used in the UKB cMRI 

protocol, which prohibited the assessment of late gadolinium enhancement and extracellular 

volume fraction. Second, the T1 maps in the UKB are obtained at a single mid-ventricular 

short-axis slice, and we cannot be certain that a single slice is representative of myocardial 

fibrosis throughout the LV. Third, the presence of tissue edema and paramagnetic ions may 

alter T1 time independent of interstitial fibrosis. Fourth, UKB participants are predominantly 

of European ancestry, and findings from our genetic analysis may not apply to other 

ancestries. As new multi-ancestry biorepositories with deep phenotyping emerge, further 

validation of our study findings in an independent multi-ancestry sample will be possible. 

Fifth, longer follow-up and continued imaging of UKB participants will allow for better 

powered analyses examining the prognostic role of myocardial interstitial fibrosis for 

cardiovascular disease in the future. Notably, our findings of increased risk of incident 

major arrhythmia associated with increased interstitial fibrosis should be interpreted with 

caution given the relatively limited number of events (n = 75) examined. Sixth, phenotypic 

characterization of the UKB was performed using disease/procedure codes and self-report 

using surveys, which may be subject to misclassification bias. Seventh, our cellular assay for 

cardiac fibrosis was based on TGFβ1 stimulation of cardiac fibroblasts; however, multiple 
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other cell types and non-TGFβ1 dependent pro-fibrotic pathways contribute to myocardial 

interstitial fibrosis, which could not be assessed by this assay.

In conclusion, machine learning enables quantification of myocardial interstitial fibrosis at 

scale. Our study yields insights into novel biological pathways underlying cardiac fibrosis 

and prioritizes several pathways relevant to myocardial fibrosis for further investigation.

ONLINE METHODS

In the sections below, we provide a detailed description of the methods used in this 

manuscript. Briefly, we trained a machine learning model to segment cardiac T1 maps 

from the UKB and measure native myocardial T1 time at the IVS. We examined the 

associations between T1 time and cardiometabolic risk factors, cardiovascular diseases, 

serum biomarkers, ECG intervals and lifestyle factors. We performed a two-sample 

MR analysis to examine the causal effect of cardiovascular risk factors and disease 

on myocardial interstitial fibrosis. We then performed genome- and transcriptome-wide 

association analyses of native myocardial T1 time. Lastly, we explored the relevance of 

the identified T1 time-associated loci to myocardial fibrosis by profiling the transcriptional 

and open chromatin characteristics of genes within these loci using a cellular assay for 

TGFβ1-mediated cardiac fibroblast activation.

Study design and sample

The UKB is a prospective cohort of 502,629 individuals from the UK enrolled between 

2006–2010 with deep phenotyping, imaging and multiple genomic data types. The cohort 

design has been previously described13,55. Briefly, around 9.2 million individuals 40–69 

years old living in England, Scotland, and Wales were invited to participate in the study, and 

5.4% agreed to participate. Extensive questionnaire data, physical measures, and biological 

samples were collected at baseline, with ongoing data collection in large subsets of the 

cohort, including repeated assessments and multimodal imaging. Starting in 2014, 42,654 

participants have returned for the first multi-modal imaging visit, including cMRI with 

T1 mapping, allowing for the assessment of myocardial interstitial fibrosis12. All study 

participants are followed longitudinally for health-related outcomes through linkage to 

national health-related datasets.

Use of UKB data was performed under application number 7089 and was approved by 

the local Massachusetts General Hospital institutional review board. All participants signed 

informed consent prior to participation in the UKB.

cMRI T1 mapping protocol and image quality control

A standardized non-contrast enhanced cMRI protocol using a clinical wide bore 1.5 Tesla 

scanner (MAGNETOM Aera, Syngo Platform VD13A, Siemens Healthcare, Erlangen, 

Germany) is performed on all cMRI substudy participants. The scanner is equipped with 

48 receiver channels, a 45 mT/m and 200 T/m/s gradient system, an 18-channel anterior 

body surface coil used in combination with 12 elements of an integrated 32 element spine 

coil and ECG gating for cardiac synchronization. The imaging protocol includes: 3 long-axis 

cines, 1 short-axis cine, phase contrast sequence at the left ventricular outflow tract, 3 
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segment short-axis tagging and midventricular short-axis T1 mapping. Native T1 mapping 

within a single breath hold was performed using the Shortened Modified Look-Locker 

Inversion recovery (ShMOLLI, WIP780B) technique. The following imaging parameters for 

T1 mapping were implemented: field of view 360 × 236 mm, voxel size 0.9 × 0.9 × 8.0, flip 

angle 35 degrees and TR/TE 2.6/1.07 ms12. T1 maps were generated online and stored in the 

UKB imaging database.

To date, the UKB MRI core lab has only released raw T1 maps to UKB researchers. As 

such, we developed our own automated pipeline to measure native myocardial T1 time from 

raw T1 maps (Fig. 1). First, we set up an automatic procedure to identify raw T1 map series 

among the several files provided by the UKB under the category “Experimental shMOLLI 

sequence images” (UKB Field ID 20214). Preliminary explorations indicated that the T1 

map series names contained the “t1map” keyword and explicitly mentioned the MRI “sax 

(short-axis)” view. Therefore, we discarded all series with names not containing either of the 

two keywords. Then, we set up a standardized quality control process using a custom online 

tool to streamline the review of the 42,654 selected T1 maps by four experienced MRI 

reviewers (V.N., M.D.R.K., P.D.A., and J.W.C.; Supplementary Fig. 26). Native myocardial 

T1 time was measured at the interventricular septum (IVS)14. All images were reviewed 

and assessed for overall image quality as well as artifacts involving myocardial segments 

(IVS and LV free wall). A cardiologist (V.N.) reviewed all images that were flagged by 

any of the four reviewers and made a final ascertainment on image quality and extent of 

artifact involving myocardial segments. Off-axis images and those with severe distortion 

of overall image pixel intensity were excluded (Supplementary Fig. 27). Artifact within a 

myocardial segment was deemed major if it affected at least one-third of the segment of 

interest (Supplementary Fig. 27). T1 maps with major artifacts involving the IVS (n = 1,149) 

were excluded from the final T1 time study sample (Supplementary Fig. 2). T1 maps with 

major artifacts restricted to the LV free wall were included and contributed to the final 

T1 time study sample (Supplementary Fig. 27). Artifacts were 3-fold higher within the 

LV free wall segment as compared to the IVS. Current consensus guidelines recommend 

using the IVS to avoid susceptibility artifacts from lung, liver or veins and for accurate and 

reproducible measurement of native myocardial T1 time14–16.

Semantic segmentation and T1 time measurement

Six hundred (500 training, 100 validation) T1 maps were randomly selected and used to 

develop our machine learning model (Supplementary Fig. 2). To train a machine learning 

model to segment the IVS, two cardiologists (V.N. and J.W.C.) labeled all cardiac structures 

within the short-axis T1 maps (350 V.N.; 250 J.W.C.). Fifty T1 maps were labeled by 

both readers to allow for assessment of inter-reader reliability. Cardiac structures that 

were labeled included: IVS, LV free wall, papillary muscles/trabeculae, LV blood pool, 

RV free wall and RV blood pool. Additionally, a region of interest encompassing the 

mid-myocardium within the IVS and excluding the blood pool on either side was delimited 

(Supplementary Fig. 28). Pixel intensity values were transformed to T1 times using the 

accompanying T1 map legend. Native myocardial T1 time was measured as the median T1 

time for all pixels within the corresponding IVS region of interest.
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The manual tracing procedure, called semantic segmentation, displayed high inter-reader 

concordance at the IVS between the cardiologist-labeled segmentations, as measured in 

50 overlapping cMRI acquisitions (Sørensen-Dice coefficients: 0.84, 95% CI 0.76–0.92). 

Additionally, IVS-derived T1 times were highly correlated between the two readers (Pearson 

correlation coefficient r = 0.95, 95% CI 0.92–0.97) (Supplementary Fig. 29).

We then trained a machine learning model to identify the IVS using the cardiologist-

segmented data as truth labels. The machine learning model had high accuracy for 

segmenting the IVS when tested in the validation set (Sørensen-Dice coefficients: 0.82, 95% 

CI 0.70–0.94). Model predictions were then post-processed. First, we subtracted the blood 

pool, papillary muscles/trabeculae, LV and RV free walls, and any non-cardiac structures 

and retained the auto-segmented IVS. Second, to minimize the potential of contamination 

by residual blood pool, trabeculae or non-cardiac structures, we applied a sequence of 

morphological operations (i.e., skeletonization followed by dilation with a 3-pixel kernel) to 

the IVS segment and generated representative mid-myocardial regions of interest within the 

IVS. In the validation set, automatically generated T1 times were highly correlated with T1 

times derived from manually traced regions of interest (Pearson correlation coefficient r = 

0.97, 95% CI 0.95–0.98) (Supplementary Fig. 1).

Next, the machine learning model was used to segment the IVS in the remaining 42,054 

cMRIs not used for model training or validation, followed by automated selection of regions 

of interest and measurement of T1 time. To maximize the quality of the generated T1 times, 

we manually reviewed all 42,654 T1 maps to exclude low-quality acquisitions and major 

artifacts affecting the IVS (see above section: cMRI T1 mapping protocol and image quality 

control). Following quality control, we retained measured T1 time at the IVS for 41,505 

participants who constituted our study sample (Supplementary Fig. 1). Mean T1 time of the 

study sample was 918.1 ± 41.5 ms (Table 1). These values are consistent with previously 

reported T1 times in a smaller study from the UKB56 including 11,882 cMRIs.

Machine learning model development

For segmenting cardiac structures in cMRI T1 maps, we employed the DenseNet-121 

architecture57 as the base encoder model in a U-Net model58 that was pre-trained on 

ImageNet59. DenseNets are constructed with two principal building blocks: (1) dense 

blocks comprising of batch normalization, the non-linear ReLU activation function, and 

3×3 convolutions of increasing number of channels that are propagated from previous layers 

to enable efficient gradient flow; and (2) transition blocks that compress the number of 

channels by half using channel-wise convolutions (1 × 1), and perform a spatial reduction 

by a factor of 2 by using an average pooling layer of stride 2 and pool size 2. The U-Net 

architecture contains long-range skip connections that allow for pixel-accurate segmentation 

by sharing feature information along a contracting-expansive path. This is achieved by 

concatenating features at each downsampling in the encoder with the corresponding 

features at each upsampling step. These ‘skip connections’ preserve contextual and spatial 

information.

The inputs for this model were the cMRI T1 maps with size 288 × 384 × 3. The models were 

trained with the Adam optimizer60 with a learning rate set to a cosine decay policy decaying 
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from 0.0001 to 0 over 100 epochs, weight decay of 0.0001, categorical cross-entropy as 

the loss function, and a batch size of 16. No additional hyperparameter search or ablation 

studies were performed.

For all training data, the following augmentations (random permutations of the training 

images) were applied: random shifts in the XY-plane by up to ± 16 pixels and rotations by 

up to ± 5 degrees around its center axis.

Phenotype derivation and association with T1 time

Prevalent cardiometabolic, cardiovascular and systemic inflammatory diseases at time 

of first visit for cMRI as well as incident cardiovascular events were ascertained 

using International Classification of Diseases, 9th and 10th editions, codes and OPCS 

Classification of Interventions and Procedures version 4 codes as well as self-report 

using surveys (Supplementary Table 17). Derived myocardial T1 times were rank-based 

inverse normal transformed and thus, reported changes in T1 times are dimensionless 

and reflect approximately multiples of 1 SD of the underlying quantitative trait. Multiple 

linear regression was used to assess the association of a priori selected prevalent 

cardiometabolic, systemic inflammatory and cardiovascular diseases relevant to myocardial 

fibrosis at time of MRI with T1 time by comparing disease cases to “healthy” controls 

free of cardiovascular and metabolic disorders. Healthy participants were selected to 

be free of prevalent dilated cardiomyopathy, hypertrophic cardiomyopathy, heart failure, 

atrial fibrillation, atrioventricular node/distal conduction disease, hypertension, diabetes 

mellitus, aortic stenosis, chronic kidney disease, hemochromatosis, and rheumatoid arthritis. 

Multivariable models were adjusted for age at MRI visit, sex, BMI, MRI scanner, beta 

blocker use, angiotensin-converting enzyme inhibitor/angiotensin receptor blocker use, statin 

use and mineralocorticoid receptor antagonist use. We observed a J-shaped relationship 

between BMI and T1 time with higher BMI being associated with lower T1 time until 

the obesity threshold (BMI > 30) was exceeded, at which time BMI was associated with 

increased T1 time. As such, we modeled BMI as a linear spline with a knot at 30 kg/m2. 

We performed three sensitivity analyses. First, we performed an analysis comparing cases to 

non-cases and further adjusting for comorbidities including myocardial infarction, diabetes 

mellitus type1, diabetes mellitus type 2 and chronic kidney disease. Second, we performed 

a sex-stratified analysis to examine trends of association across males and females. Third, to 

examine the impact of the presence of left ventricular hypertrophy (LVH) on the association 

of hypertension with T1 time, we performed a stratified analysis by LVH status. LVH was 

defined as left ventricular mass indexed to body surface area > 72 g/m2 in males and > 55 

g/m2 in females using recently defined reference values in the UKB61. A P-value threshold 

of < 3.1 × 10−3 (0.05/16) was used to determine statistically significant associations after 

adjusting for multiple testing.

We leveraged biomarker and ECG data in the UKB to examine the association of T1 

time with serum biomarkers and ECG intervals associated with the examined prevalent 

diseases. Examined serum biomarkers were measured at time of enrollment in the UKB and 

included hemoglobin A1c, lipoproteins, C-reactive protein (CRP), creatinine, cystatin c and 

insulin-like growth factor 1 (IGF-1). Of 41,505 participants with T1 time measured, 33,241 
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had serum biomarker data available. The examined ECG intervals included automated 

measurements of the QRS interval, P-wave duration and PR interval (GE Marquette 12SL 

ECG analysis program) from supine resting 12-lead ECGs performed at time of MRI. We 

excluded ECGs from participants with a diagnosis of Wolff-Parkinson-White syndrome, 

a paced rhythm, atrial fibrillation or atrial flutter at time of ECG, 2nd or 3rd degree AV 

block, digoxin use or class I or III antiarrhythmic drug use. Of 41,505 participants with T1 

time measured, 28,602 had ECG data that met our inclusion criteria. Estimated glomerular 

filtration was calculated using the CKD-Epi equation incorporating both serum creatinine 

and cystatin c62. We categorized biomarkers based on clinically established thresholds 

where possible20,21,63,64. CRP and IGF-1 were categorized into top decile vs. lower 90th 

percentile. Multiple linear regression was used to assess the association of biomarkers and 

ECG intervals with T1 time further adjusting for age at MRI, sex, BMI, MRI scanner, 

myocardial infarction, beta blocker use, angiotensin converting enzyme inhibitor/angiotensin 

receptor blocker use, statin use and mineralocorticoid receptor antagonist use. Two-sided 

P-values < 4.6 × 10−3 (0.05/11) were considered statistically significant.

A time-to-event analysis was performed to assess the association of T1 time with incident 

cardiovascular events. Follow-up time was defined as time from MRI visit to first occurrence 

of the outcome of interest, death or last follow-up (April 30th, 2020). For each incident 

disease analysis, study participants with prevalent disease at time of MRI were excluded 

as they were not at risk for the outcome of interest. We then stratified the cohort into the 

upper 20th and lower 80th percentile of T1 time. Using a multivariable Cox proportional 

hazards model adjusted for age at MRI, sex, BMI, MRI scanner, myocardial infarction, 

diabetes mellitus type 1, diabetes mellitus type 2, chronic kidney disease, beta blocker 

use, angiotensin converting enzyme inhibitor/angiotensin receptor blocker use, statin use, 

and mineralocorticoid receptor antagonist use, we examined the association of T1 time 

with incident cardiovascular events. Adjusted Kaplan-Meier curves were constructed to 

compare incidence rate of cardiovascular events between the two groups. The validity of 

the proportional hazards assumption was verified by examining the Schoenfeld residuals. 

Two-sided P-values < 0.01 (0.05/5) were considered statistically significant. All statistical 

tests were performed using R version 4.0.2 (R Foundation for Statistical Computing, Vienna, 

Austria) (R, Core Team 2020).

Association analysis of lifestyle factors with T1 time

Lifestyle factors including alcohol use, cigarette smoking, physical activity and obesity were 

examined for association with T1 time. Alcohol use data was based on self-report in the 

UKB. All participants completed a touchscreen questionnaire at their initial assessment 

containing a series of questions pertaining to alcohol use. Participants reporting weekly 

drinking were shown a chart with common alcoholic beverages and corresponding units 

of alcohol and asked to report the average number of drinks consumed per week 

by category. Participants reporting drinking one to three times a month or on special 

occasions were asked to report the average number of drinks consumed per month. We 

aggregated this data and converted the number of drinks to grams of alcohol based on 

units defined by the National Health Service (https://www.nhs.uk/live-well/alcohol-advice/

calculating-alcohol-units/) (e.g., 1 standard glass of wine = 2.1 units = 16.8 grams of 
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alcohol). Participants who responded with “prefer not to answer,” “I do not know,” or 

with incomplete responses were excluded. According to the National Institute on Alcohol 

Abuse and Alcoholism, light-to-moderate alcohol use, termed “drinking in moderation”, 

was defined as ≤ 98 grams/week for women and ≤ 196 grams/week for men, with 1 

standard US drink containing 14 grams of alcohol. Heavy alcohol use was defined as > 98 

grams/week for women and > 196 grams/week for men (https://www.niaaa.nih.gov/alcohol-

health/overview-alcohol-consumption/moderate-binge-drinking). Cigarette smoking status 

was categorized into non-smokers, prior smokers and current smokers. Physical activity 

was assessed using self-reported activity questionnaires. Adequate physical activity was 

defined as self-reported activity that met standard American Heart Association guidelines22 

(≥ 150 minutes of moderate or ≥7 5 minutes of vigorous intensity activity, or equivalent 

combination per week). Finally, for BMI and given the observed J-shaped relationship 

with T1 time, we report the association of BMI with T1 time separately for those with 

BMI < 30 and ≥ 30 kg/m2. We examined the association of lifestyle factors with T1 time 

stratified by sex and adjusted for age at MRI, myocardial infarction, diabetes mellitus 

type 1, diabetes mellitus type 2, heart failure, atrial fibrillation, chronic kidney disease, 

angiotensin converting enzyme inhibitor use, angiotensin receptor blocker use, beta blocker 

use, mineralocorticoid receptor antagonist use and statin use. We additionally adjusted for 

BMI modeled as a linear spline with knot at 30 kg/m2 when BMI was not the examined 

outcome. Within each sex stratum, two-sided P-values < 1.3 × 10−2 (0.05/4) were considered 

statistically significant.

Genomic data, imputation, sample and variant quality control

In total, 488,377 UKB participants were genotyped using either one of two overlapping 

arrays, the UK BiLEVE Axiom Array or the UKB Axiom Array. Prior to imputation, a 

number of quality control filters were applied to the genotype data. Variants with > 5% 

missing rate, minor allele frequency < 0.0001 and that violated Hardy-Weinberg Equilibrium 

(P-value < 1 × 10−12) were excluded. Additionally, samples that were identified as outliers 

for genotype missingness rate (> 5%) and heterozygosity were also excluded. These filters 

resulted in a genotype dataset that included 670,730 autosomal variants in 487,442 samples. 

Imputation into the Haplotype Reference Consortium (HRC) and UK10K+ 1000G phase 

3 reference panels was carried out using IMPUTE4. The imputation process resulted in a 

dataset with 93,095,623 autosomal SNPs and short indels in 487,442 individuals13.

Of 42,654 study participants who underwent cMRI with T1 mapping, 41,635 had imputed 

genetic data available. Sample and variant quality control filters were applied prior to 

conducting genetic association analyses. Samples with sex chromosome aneuploidy and 

those with discordant genetically inferred and self-reported sex were excluded. One of each 

pair of third-degree relatives or closer was excluded. Variants with imputation quality score 

(INFO) < 0.3 and those with minor allele frequency < 0.01 were excluded. Following quality 

control, our dataset included 40,399 individuals with 9,853,972 SNPs and short indels. 

Among the 40,399 study participants with adequate quality genetic data, 39,339 had T1 

time data that passed quality control available and constituted the study sample for the 

genome-wide association analysis (Supplementary Fig. 2).
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Two-sample MR analysis methods

We performed a two-sample MR analysis to examine the causal effect of cardiovascular risk 

factors and disease on myocardial interstitial fibrosis as measured using T1 time. Exposures 

examined included BMI, systolic blood pressure, diastolic blood pressure, chronic kidney 

disease, estimated glomerular filtration rate, diabetes mellitus type 1, diabetes mellitus 

type 2, atrial fibrillation, coronary artery disease, low density lipoprotein, high density 

lipoprotein, total cholesterol and triglycerides. We searched the public domain for summary 

statistics of the examined exposures in large study samples of predominantly European 

ancestry and prioritized the inclusion of study samples that did not overlap with our 

UKB study sample where possible. If ancestry-specific results were reported, we used 

the European ancestry results. Details of included summary statistics are summarized in 

Supplementary Table 18.

We derived genetic instruments for each cardiovascular risk factor or disease using the 

publicly available summary statistics after removing strand-ambiguous variants. We first 

subset to genome-wide significant variants (P < 5 × 10−8) and pruned the variants (LD 

threshold of r2 < 0.01 within a 1,000-kb window) using 1000G multi-ancestry or European 

phase 3 LD data, based on ancestral composition of available summary statistics, to identify 

a subset of independent variants associated with each cardiovascular risk factor or disease. 

Next, we harmonized the external summary statistics with our T1 time summary statistics 

by transforming all genomic coordinates to Genome Reference Consortium Human build 

37, harmonizing strand orientation and aligning effect alleles and effect estimates. We 

excluded from the genetic instrument variants with minor allele frequency < 1% in our 

study sample or with poor imputation quality (INFO score < 0.3) (Supplementary Table 

18). We performed two-sample MR using the IVW method in the Mendelian Randomization 

package in R65. We additionally used the MR-Egger method as a sensitivity analysis. The 

MR-Egger directional pleiotropy test assesses for the presence of horizontal pleiotropy, 

and the MR-Egger regression test yields pleiotropy-robust causal estimates23. Two-sided 

P-values < 3.85 × 10−3 (0.05/13) were considered statistically significant after accounting 

for multiple testing. Finally, scatter plots of the association of the individual genetic variants 

included in each genetic instrument with both T1 time and the exposure under investigation 

were examined to assess for plausible causal associations.

Genome-wide common variant association analysis methods

We performed a common variant genome-wide association analysis of T1 time using 

a fixed effect linear regression model in PLINK 2.066. The models were adjusted for 

age at MRI, sex, MRI scanner, genotyping array, and first ten principal components of 

genetic ancestry. Rank-based inverse normal transformation was applied to the measured 

myocardial T1 times. As such, effect size estimates in the GWAS are dimensionless and 

reflect approximately multiples of 1 SD of the underlying quantitative trait. A two-sided 

P-value < 5 × 10−8 was used to define genome-wide significant common variants, and 5 

× 10−8 < P-value < 1 × 10−6 denoted suggestive loci. Distinct genomic loci were defined 

by starting with the SNP with the lowest P-value, excluding other SNPs within 500 kb, 

and iterating until no SNPs remained. The independently significant SNPs with the lowest 

P-value at each genomic locus are termed lead SNPs. We then performed a conditional 
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analysis adjusting for the imputed allele dosage of each lead SNP to examine for additional 

independent genome-wide significant SNPs within a locus. We performed three sensitivity 

analyses. First, we repeated the above GWAS of T1 time after exclusion of individuals 

with prevalent diseases at time of MRI known to be associated with focal replacement 

fibrosis including heart failure, dilated cardiomyopathy, hypertrophic cardiomyopathy and 

myocardial infarction (nGWAS = 38,339). Second, we repeated the GWAS after excluding 

62 participants with prevalent hereditary hemochromatosis (nGWAS = 39,277) to examine 

whether the identified genome-wide significant loci associated with iron homeostasis were 

driven by hereditary hemochromatosis cases. Third, we performed a sex-stratified GWAS for 

males (nGWAS = 19,025) and females (nGWAS = 20,314) separately.

LD score regression analysis was performed using ldsc version 1.0.067. With ldsc, the 

genomic control factor (lambda GC) was partitioned into components reflecting polygenicity 

and inflation, using the software’s defaults.

Regional association plots were generated with LocusZoom (version 1.4)68 using LD data 

from the 1000G phase 3 European reference panel. In instances where lead SNPs were not 

part of the 1000G phase 3 reference panel, in-sample LD was calculated using PLINK 1.9.

Heritability and genetic correlation analysis

SNP-heritability of T1 time was assessed using BOLT-REML v2.3.469. We also computed 

genetic correlation between T1 time and other cMRI measures including LV end diastolic 

and systolic volumes, LV mass, LV ejection fraction, left atrial end diastolic and systolic 

volumes and left atrial ejection fraction using ldsc version 1.0.070. These cMRI-based 

phenotypes from the UKB have been described previously71,72.

EQTL and TWAS methods

We performed an expression quantitative trait locus look-up using version 8 of the 

Genotype-Tissue Expression (GTEx) database73. In-sample LD was calculated for all 

variants within 1 Mb of genome-wide significant lead SNPs using PLINK 1.9. List of proxy 

SNPs for each lead SNP were generated using an LD r2 threshold of > 0.8. We searched 

the GTEx v8 database for statistically significant differential gene expression in right atrial 

appendage and left ventricular tissues associated with the lead SNPs and their proxies. When 

no significant differential gene expression associated with the lead SNP was identified, 

significant findings from the closest proxy were reported.

We then performed a transcriptome-wide association analysis to test the mediating effects 

of gene expression levels in right atrial appendage and left ventricular tissue on T1 time. 

We used pre-computed transcript expression reference weights derived using elastic net 

models from S-PrediXcan on GTEx v8 eQTL data for the right atrial appendage and 

LV74. S-Predixcan was then run with its default settings. A Bonferroni-corrected two-sided 

P-value threshold < 7.5 × 10−6 (0.05/6,637 genes tested) was used to define significant gene 

expression-phenotype associations.
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Cardiac fibrosis assay and profiling

We used primary human cardiac fibroblasts (ACBRI5118, Cell Systems) for all in vitro 
experiments. Cells were cultured in Lonza FGM-3 Cardiac Fibroblast Growth Medium 

(CC-4525). The cardiac fibroblast activation assay was initiated by performing a media 

exchange for starvation media (CC-4525 without FBS and supplements) containing TGFβ1 

(Sigma T7039) at 10 ng/ml. Controls were given starvation media only. Total RNA was 

extracted using the Direct-zol RNA Miniprep kit (Zymo Research, R2051). Standard 

RNA-seq libraries were generated and sequenced by Genewiz on an Illumina NovaSeq. 

Sequenced reads were aligned to the human genome (GRCh38) using Salmon (version 

1.8.0)75. Differential expression analysis was performed with DESeq2 (1.30.1)76.

Fifty thousand cardiac fibroblasts were used as input for ATAC-seq, following the OMNI-

ATAC-seq protocol77. Transposed DNA was purified with a Qiagen PCR MinElute kit 

(Qiagen 28004), and final ATAC-seq libraries were purified with a 1.8X SPRI purification 

using SPRISelect beads (Beckman Coulter) following PCR amplification. Libraries were 

sequenced on an Illumina Nextseq 500. Reads were mapped to the human genome 

(GRCh38) using Bowtie2 with default paired-end settings (version 2.3.4.3)78. Next, all 

non-nuclear and unmapped paired reads were discarded. Duplicated reads were removed 

with the Picard MarkDuplicates function, default settings. Visualization of ATAC-seq 

signals was done with Homer (version 4.10)79, and all reads were normalized by read 

count where scores represent read count per bp per 1 × 107 reads. Motif enrichment 

analysis was performed with Homer using the findMotifsGenome.pl function with default 

parameters. Peak calling was carried out with MACS2 (callpeak–nomodel–broad) (version 

2.2.6) using all ATAC-seq libraries as input. Reads were counted for each condition from the 

comprehensive peak file by using bedtools (multicov module) (version v2.26.0)80. Quantile 

normalization of ATAC-seq data sets was performed with CQN (version 1.36.0)81, and 

offsets were fed into DESeq2 to quantify differential accessibility.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1 |. Overview of the automated pipeline for native myocardial T1 time measurement at 
the interventricular septum using machine learning.
A representative healthy heart and one with increased interstitial fibrosis are shown for 

illustration. Cardiac T1 mapping using the Shortened Modified Look-Locker Inversion 

(shMOLLI) recovery sequence was performed at the mid-ventricular short-axis. A machine-

learning model trained on the raw MRI T1 maps generated automated segmentation of 

the interventricular segment (solid yellow contour) followed by selection of representative 

myocardial regions of interest (dashed yellow contour) using morphological operations. 

T1 map color legends were then used to transform pixel intensities within the region of 

interest into T1 times. For each participant, the median T1 time by ROI was calculated 

and used as the representative T1 time. MRI, magnetic resonance imaging; ROI, region of 

interest; SAX, short-axis; shMOLLI, Shortened Modified Look-Locker Inversion. The heart 

schematics were drawn by using pictures from Servier Medical Art, which were further 

modified. Servier Medical Art by Servier is licensed under a Creative Commons Attribution 

3.0 Unported License (https://creativecommons.org/licenses/by/3.0/). T1 maps shown are 

reproduced by kind permission of UK Biobank ©.
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Figure 2 |. Change in native myocardial T1 time associated with prevalent cardiovascular, 
metabolic and systemic inflammatory diseases as compared to healthy controls.
Healthy controls free of prevalent dilated cardiomyopathy, hypertrophic cardiomyopathy, 

heart failure, atrial fibrillation, atrioventricular node/distal conduction disease, hypertension, 

diabetes mellitus, aortic stenosis, chronic kidney disease, hemochromatosis and rheumatoid 

arthritis constituted the reference group. Numbers of controls or cases with available native 

myocardial T1 time are shown below each category. For each disease, a representative 

T1 map of a case is provided from the study sample. Multiple linear regression was 

implemented and a two-sided P-value threshold adjusted for multiple testing of < 3.1 ×10−3 

was used to define statistically significant associations. Data are presented as mean adjusted 

change in T1 time along with (1 − α)*100 (%) confidence intervals. Confidence intervals 

were constructed using the adjusted two-sided α (3.1 × 10−3) for multiple testing. AV, 

atrioventricular. T1 maps shown are reproduced by kind permission of UK Biobank ©.
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Figure 3 |. Adjusted cumulative incidence of heart failure, atrial fibrillation, atrioventricular 
node/distal conduction disease and MACE stratified by top 20th percentile vs. lower 80th 
percentile of native myocardial T1 time.
MACE, major adverse cardiovascular events.

Nauffal et al. Page 27

Nat Genet. Author manuscript; available in PMC 2024 May 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4 |. Genome-wide and transcriptome-wide association analyses.
a, Native myocardial T1 time genome-wide association results across 22 autosomes. 

Nearest genes are used for annotation. A fixed effect multiple linear regression model was 

implemented. The dashed grey line represents the threshold for genome-wide significance 

(two-sided P-value < 5 × 10−8 adjusted for multiple testing). b, Volcano plots depicting 

transcriptome-wide association results for native myocardial T1 time using human left 

ventricular tissue gene expression from GTEx v8 and S-PrediXcan. Upward facing triangles 

reflect increased T1 time associated with increased gene expression in left ventricular 

tissue. Downward facing triangles reflect decreased T1 time associated with increased 

gene expression in left ventricular tissue. The dashed grey line represents the threshold 

for transcriptome-wide significance (two-sided P-value < 7.5 × 10−6 adjusted for multiple 

testing).

Nauffal et al. Page 28

Nat Genet. Author manuscript; available in PMC 2024 May 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5 |. Multi-omic examination of human cardiac fibroblast activation.
a, Graphical schematic describing the cardiac fibroblast activation experiments created 

with BioRender.com. b, Principal component analysis of control and TGFβ1-treated 

cardiac fibroblast RNA-seq. c, Volcano plot displaying differentially expressed genes 

between control (0 h) and stimulated cardiac fibroblasts (72 h post-TGFβ1 treatment) 

assessed using a generalized linear model implementing a negative binomial distribution. 

Expected differentially expressed cardiac fibrosis regulator genes are labeled. Red dots 

indicate significantly differentially expressed genes (FDR < 0.01) with |log2 fold-change| 

> 1.0 associated with TGFβ1 treatment. d, Heatmap of normalized expression levels for 
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prioritized genes associated with GWAS loci and expressed in cardiac fibroblasts. Red 

labels indicate that the gene is significantly differentially expressed (FDR < 0.01). e, 

Genome browser tracks showing expected enhanced chromatin accessibility in cardiac 

fibroblasts around IGFBP1 and IGFBP3, which are known to mediate TGFβ1-induced 

cardiac fibroblast activation. Labels indicate hours (h) post-TGFβ1 treatment. f, Principal 

component analysis of ATAC-seq data from activated cardiac fibroblasts. g, left, Heatmap 

displaying differential chromatin accessibility analysis presented as normalized accessibility 

counts. Columns represent average accessibility for 3 replicates. Right, de novo motif 

enrichment analysis carried out on the clusters of differentially accessible ATAC-seq peaks. 

h, Venn diagram showing the intersection of significantly differentially expressed genes 

from RNA-seq, differentially accessible peaks enriched in TGFβ- treated fibroblasts (FDR 

< 1 × 10−10), and prioritized genes associated with GWAS loci. i, Representative genome 

browser track of ATAC-seq data depicting decreased chromatin accessibility in a promoter 

flanking region upstream of the KANK1 locus following TGFβ1 treatment concordant 

with RNA-seq data demonstrating decreased expression with TGFβ1 treatment. Genomic 

coordinates are based on Genome Reference Consortium Human Build 38.
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Table 1 |

Study sample characteristics at time of first visit for cMRI

Baseline characteristics n (%)

Participants 41,505

Age at MRI (mean (SD)) 64.0 (7.7)

Male 19,956 (48.1)

Body mass index, kg/m2 (mean (SD)) 26.5 (4.3)

Cigarette smoking*

Never 25,663 (62.4)

Prior 14,009 (34.1)

Current 1,422 (3.5)

Alcohol use*

None 1,948 (5.5)

Light-to-moderate 19,436 (54.6)

Heavy 14,198 (39.9)

Adequate physical activity* 26,612 (73.0)

Hypertension 12,561 (30.3)

Diabetes mellitus type 2 1,409 (3.4)

Diabetes mellitus type 1 162 (0.4)

Hyperlipidemia 433 (1.0)

Chronic kidney disease 344 (0.8)

Coronary artery disease 2,457 (5.9)

Myocardial infarction 840 (2.0)

Dilated cardiomyopathy 61 (0.1)

Hypertrophic cardiomyopathy 29 (0.1)

Heart failure 278 (0.7)

Aortic stenosis 77 (0.2)

Atrial fibrillation 1,197 (2.9)

Ventricular arrhythmia/History of cardiac arrest 118 (0.3)

Atrioventricular node/Distal conduction disease 288 (0.7)

Rheumatoid arthritis 579 (1.4)

Beta blocker 2,235 (5.4)

ACE-inhibitor/ARB 5,709 (13.8)

Mineralocorticoid receptor antagonist 78 (0.2)

Statins 8,024 (19.3)

Native myocardial T1 time, ms (mean (SD)) 918.1 (41.5)

LV mass, g (mean (SD)) 90.1 (29.6)

LV ejection fraction, % (mean (SD)) 60 (6)

LV end systolic volume, ml (mean (SD)) 58.1 (18.9)
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Baseline characteristics n (%)

LV end diastolic volume, ml (mean (SD)) 143.3 (32.7)

LA end systolic volume, ml (mean (SD)) 33.6 (14.1)

LA end diastolic volume, ml (mean (SD)) 72.8 (20.2)

LA ejection fraction, % (mean (SD)) 54.8 (8.6)

Values are presented as the number (percentage) unless otherwise specified. A subset of the study sample had data available for each cMRI 
parameter: LA end systolic volume/LA end diastolic volume/LA ejection fraction (n = 37,234); LV end systolic volume/LV end diastolic 
volume/LV ejection fraction/LV mass (n = 40,869).

*
Data for cigarette smoking, alcohol use and self-reported physical activity was available for 41,094, 35,582 and 36,462 out of 41,505 study 

participants (percentage reported reflects proportion of those with non-missing data). Adequate physical activity is defined as ≥ 150 min of 
moderate or ≥ 75 min of vigorous activity or equivalent combination per week. ACE, angiotensin converting enzyme; ARB, angiotensin receptor 
blocker; cMRI, cardiac magnetic resonance imaging; SD, standard deviation; LA, left atrium; LV, left ventricle.
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