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ARTICLE

Inter-outbreak stability reflects the size of the
susceptible pool and forecasts magnitudes of
seasonal epidemics
Martin Rypdal 1 & George Sugihara2

For dengue fever and other seasonal epidemics we show how the stability of the preceding

inter-outbreak period can predict subsequent total outbreak magnitude, and that a feasible

stability metric can be computed from incidence data alone. As an observable of a dynamical

system, incidence data contains information about the underlying mechanisms: climatic

drivers, changing serotype pools, the ecology of the vector populations, and evolving viral

strains. We present mathematical arguments to suggest a connection between stability

measured in incidence data during the inter-outbreak period and the size of the effective

susceptible population. The method is illustrated with an analysis of dengue incidence in San

Juan, Puerto Rico, where forecasts can be made as early as three to four months ahead of an

outbreak. These results have immediate significance for public health planning, and can be

used in combination with existing forecasting methods and more comprehensive dengue

models.
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Dengue is a systemic viral infection with an estimated 390
million human cases per year, worldwide1. The four cur-
rently known dengue virus serotypes (DENV1−4) are

transmitted between humans via the Aedes aegypti and Aedes
albopictus mosquitoes2. Emerging work on dengue epidemic
outbreaks reveals a complex problem involving antigenic differ-
ences between and within serotypes, changes in human popula-
tions caused by immune adaptation and migration patterns,
complex mosquito vector ecology, climate effects, changing
transmissivity and viral evolution among others3–11. However
desirable as a scientific tool, an explicit and highly detailed model
that includes such factors would have limited utility as a public
health tool because of the difficult information it would require as
inputs. Notwithstanding, when viewed as a dynamic systems
problem such mechanistic information may already be contained
and potentially accessible in other more readily obtainable
observables such as incidence data12,13. Although the epidemio-
logical variable most targeted and most readily measured is the
infection rate, the size of the susceptible pool (the total number of
individuals at risk of infection) can also be important for deter-
mining outbreak magnitude, but directly measuring it is proble-
matic and may not be feasible in advance of an outbreak. Indeed
existing methods for susceptible reconstruction7,14–16 requires
information that prohibits use in forecasting.

Here we provide theoretical and empirical evidence to show
that information about susceptibles that cannot be observed
directly can be captured by a dynamic proxy variable that can be
calculated in real time from incidence data alone. Specifically, we
show that the stability of low-disease periods, when the dynamics
are most sensitive to small variations, predicts the magnitude of
the ensuing outbreak. We demonstrate the method using inci-
dence data on dengue epidemics in San Juan Puerto Rico, to show
how it can predict both the peak and the cumulative magnitude of
an outbreak, and at the same time provide a quantitative early-
warning indicator to identify its onset. Such forecasts can be
made months in advance and as such are potentially useful for
informing public health initiatives in planning and resource
allocation.

Results
Computing a proxy for susceptibles. The theoretical set up is
illustrated in Fig. 1 where the attractor (composed of annual
epidemic cycles) is portrayed as having trajectories with a dis-
continuity at the end of each outbreak. Each annual excursion has
two parts: an inter-disease period and the outbreak itself. This
suggests a mixed modeling approach where we distinguish the
equilibrium dynamics of the inter-outbreak period (April-August
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Fig. 1 Schematic illustration of SIR dynamics with randomly reset susceptible populations. a Schematic illustration showing an attractor expanded out in
time with unstable outbreak periods (red) and stable inter-outbreak periods (black) that are stochastically reset (dashed lines). The attractor was
constructed from a realization of an SIR model with a periodically varying β(t) to represent the seasonal cycle, as shown in (b), but where each year the
population’s susceptible pool is drawn randomly (the stochastic reset). c The annually reset dynamics of S(t) is shown in (c). d The dynamics of I(t). The
figure is constructed using β(t)= a+ b(1− cos(2πt/τ− ϕ)), and parameters τ= 1 year, a= 0.0005, and b= 0.001. At times t= kτ, k= 1, …, 14, the initial
conditions were reset to S= r, where r is a random variable with the uniform distribution over {60, 70, …, 120}

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10099-y

2 NATURE COMMUNICATIONS |         (2019) 10:2374 | https://doi.org/10.1038/s41467-019-10099-y | www.nature.com/naturecommunications

www.nature.com/naturecommunications


for dengue in San Juan) from the ensuing unstable outbreak
dynamics. This distinction is supported by an EDM analysis of
dengue in Fig. 2 (see Methods). Importantly, we view the tran-
sition from the previous year’s outbreak to the early inter-
outbreak period as a stochastic discontinuity in the otherwise
conitnuous dynamics. It is a time when complex vital dynamic
mechanisms set the initial conditions that characterize the sus-
ceptible pool for the next outbreak— a high dimensional gap in
the temporal evolution. In simple terms, this corresponds to a
class of models having local disease-free equilibria that are not
unique and are not endemic, but are parameterized anew with
each epidemic cycle. During the inter-outbreak period the
attractor is trivial (a stable disease-free equilibrium), higher
dimensional during the outbreak itself, and very high dimensional
(stochastic discontinuity) between cycles (a hypothesis validated
for dengue in Fig. 2). Again, the discontinuity determines which
inter-outbreak trajectory the system will follow into the
next epidemic cycle, and thereby sets the initial conditions for the
ensuing outbreak.

As a specific simple example, note that in the basic SIR model
(where I= infected and S= susceptible, R= recovered, and β and
γ are phenomenological parameters that relate to the force of
infection and the basic reproduction number),

_I ¼ βSI � γI
_S ¼ �βSI
_R ¼ γI

ð1Þ

any state with I= 0 is an equilibrium point of the system
independent of the value S. Thus, when the system is close to a
disease-free equilibrium, S= S* becomes a system parameter,
and the linearized equation for the fluctuations around the
equilibrium becomes _I ¼ ðβS� � γÞI. Because, the relation
between the effective susceptible pool and the leading

eigenvalue is

λ ¼ βS� � γ; ð2Þ
λ is a proxy for S*. Thus, the stability of the dynamics during

the inter-outbreak period will scale with the size of the susceptible
population.

Note heuristically in Eq. (2) that climatic variability could drive
the parameter β and thereby influence λ. Indeed, for continuous
seasonally recurring epidemics, outbreaks are often thought of as
being driven by climatic conditions that vary between seasons,
with some of the year-to-year variability in outbreak magnitude
attributed to multiyear climate variability17,18. Thus, it is reason-
able to view changes in λ immediately leading to the transition as
being driven by slow changes in β that reflect the pulse of
the seasonal climatic drivers. Because one annual cycle consists of a
stable inter-outbreak period (where λ < 0) followed by a critical
transition as λ becomes positive, λ approaching 0 becomes an
early-warning indication of the imminent outbreak19. Figure 1
shows a schematic illustration of this mixed modeling scheme
using the SIR model in Eq. (1), with a seasonally varying
(sinusoidal) β with no inter-annual variability, and randomly reset
values of S.

The general mathematical argument that λ is a proxy for
susceptibles is presented in the Methods. The scheme encom-
passes a wide range of mathematical models, from the simple SIR
models to the most complex vector-host models. Supplementary
Fig. 4 demonstrates the method’s robustness using an SIR model
with a recruitment term that allows for stochastic jumps of
random sizes, at random times.

Dengue in San Juan, Puerto Rico. We demonstrate the
approach with an analysis of the record of dengue hospitali-
zations in San Juan, Puerto Rico. To validate the mixed mod-
eling framework asserted in Fig. 1, we perform an empirical
dynamic analysis on the data (EDM)20,21 (see brief intro-
ductory animation http://tinyurl.com/EDM-intro12). Figure 2
shows that the inter-outbreak periods have an optimal
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Fig. 2 Empirical dynamical analysis for inter-disease periods and outbreak periods in the time series of dengue incidence in San Juan. a The low optimal
embedding dimension21 of the inter-outbreak period (E= 3) is consistent with contraction of the dynamics onto stable states, while the outbreak period is
higher dimensional (E= 9). b The S-map test for nonlinearity20 shows linear equilibrium dynamics for the inter-disease periods and nonlinear dynamics for
the outbreak periods, consistent with the hypothesized mixed model set up (see Methods)
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embedding dimension, E= 3 and linear equilibrium dynamics
consistent with local contraction of the dynamics onto a point
equilibrium (random linear displacements around a fixed
point), while the outbreaks involve regions of the attractor that
are significantly higher dimensional, E= 9, and exhibit non-
linear dynamics (see Methods). This evidence supports the
theoretical set up as described above.

With discrete weekly incidence data I(t) the stability of the
system during the inter-outbreak period is quantified by the

discrete-time eigenvalue or “multiplier” λ* constructed as an
average of local eigenvalues λ�t . (Note that λ ¼ lnðλ�Þ

Δt provides the
leading eigenvalue of the linearized continuous dynamics.) These
λ�t are calculated by linear regression of the relation I(t+ Δt)=
λ*I(t) for values of t in a 12-week running window with Δt=
1 week (see Methods for robustness to parameter choice). The
resulting time series of local values of λ�t are shown by the thin
red and blue lines in Fig. 3a, b. Clearly, during stable inter-disease
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Fig. 3 Prediction of dengue outbreak magnitudes in San Juan. a The back lines show the incidence time series and the thin red curve shows the time series
for the eigenvalues λ�t calculated in 12-week running windows. The thick red horizontal bars represent the average value of the eigenvalue λ* in the
assessment interval (the proxy for estimating susceptibles) calculated 12 weeks prior to the onset of an outbreak (as defined dynamically where λ�t > 1 (see
Methods)). b As in (a) with the proxy 〈λ*〉 calculated on an arbitrary fixed date 16 weeks prior to September 1 with an arbitrary 16-week assessment
interval. A detailed analysis of robustness to the choice of assessment interval is given in Supplementary Figs. 1 and 2. By definition (λ > 0) there are no
outbreaks in 2003 and 2005. c shows the correlation between predictors and the subsequent outbreak sizes using the onset protocol in (a). d As in
(c), but for the fixed-time protocol in (b)
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periods λ* < 1, and outbreak onsets occur when λ* exceeds unity,
thus λ* > 1 is an early-warning indicator.

The proxy for susceptibles λ* is calculated as an average of hλ�t i
over a time interval sufficiently long to reliably estimate hλ�t i and
which is far enough in advance to be useful. We denote the period
over which values of λ�t are averaged the “assessment interval”.
Thus, in Fig. 3a, c the proxies hλ�t i are calculated with a 12-week
assessment window ending 3 months prior to onset (here defined
by λ* > 1) and beginning with data 6 months prior (Methods).
Figure 3c shows the performance measured by the Pearson
correlation between hλ�t i and the observed outbreak magnitude. It
is 0.71 (p= 6 × 10−4). Importantly, these results are robust to
how the assessment interval is selected, how the magnitude of an
outbreak is defined, and how the predictor is constructed (see
Supplementary Figs. 1 and 2). This robustness is highlighted in
Fig. 3b, d with an assessment interval that is arbitrarily fixed by
calendar day. The correlation between the predictors hλ�t i and the
outbreak magnitudes is 0.76, with p= 5 × 10−5.

A generic approach. This prediction scheme is conceived to be
generic for seasonal epidemics, and its performance will vary with
the specifics of the disease, including how reliable the inter-
outbreak data are (affected by the severity of the disease or lack
thereof), the potential role of climatic drivers during the outbreak
(such as the massive hurricane in 2017) and particularly how
soon before the new outbreak the new virus has evolved (whether
there is sufficient advance time to assess λ*). To test its generality
we examined records of influenza incidence gathered from the
World Health Organization database, where we identified 27
countries with data having less than 80% missing values during
the assessment periods (see Methods). The results summarized in
Fig. 4 show positive correlations between the λ*-based predictors
and outbreak magnitudes for 26 of the 27 countries. Supple-
mentary Fig. 32 shows the corresponding analyses for data on
influenza-like illness in New York City and in the mid-Atlantic
Census division, with results that are consistent with the results of
the country-level influenza data, and slightly better for New York
City. The generally weaker predictive skill (defined as the Pearson
correlation) in these data than for dengue in San Juan could be

related to many factors including (1) differences in the severity of
the diseases with possible under-reporting of influenza in the
inter-disease periods; (2) the fact that the coarser country-level flu
data are generally less suitable for detecting low-dimensional
dynamics22; (3) fundamental differences in the biology of the
disease, such as a faster rate of evolution for the flu virus. (4) We
also note that if novel strains of the influenza virus are introduced
too close to onset of an outbreak, the assessment interval will not
accurately reflect the susceptible pool, and the method should
not perform. This was likely the case for countries in the southern
hemisphere with respect to the 2009 swine-flu pandemic, a
novel virus first described at the beginning of the southern
hemisphere outbreak in April of that year (too late for estima-
ting susceptibles there). However, in the northern hemisphere,
the novel swine-flu signal arising by contagion from the south
produced a clear dynamic signal over the summer inter-outbreak
months in the north that allowed a good sampling of the
dynamics to estimate the susceptible populations. This
produced a skillful forecast of subsequent very large winter out-
breaks in northern countries. The case can be seen by comparing
Supplementary Figs. 5, 6 and 9, with e.g. Supplementary Figs. 15
and 20.

Discussion
The results for dengue presented here are consistent with previous
studies that have built prediction models based on incidence data
alone23. These studies show statistically that the “momentum” of
the early part of the outbreak (the incidence in the late inter-
disease period) can be associated with outbreak magnitude.
However, the result is purely phenomenological and may be dri-
ven by something more fundamental. Our alternative mechan-
istic interpretation is based on the mathematical argument that
dynamic stability should march with susceptibles. Thus, in theory,
a stability metric should provide a good indicator for the mag-
nitude of the subsequent outbreak. Thus, although momentum
may be correlated, a dynamic proxy for susceptibles may repre-
sent a better mechanistic explanation. The bottom-line is shown
in Supplementary Fig. 33, where an analysis parallel to what is
presented in Fig. 3 is given, except that the predictor used is the
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magnitudes in the 27 different countries having less than 80% missing values during the assessment period. Details in the Methods (Supplementary
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average number of hospitalizations 〈I(t)〉 over the assessment
periods, instead of the average multipliers hλ�t i. As expected, the
two predictors 〈I(t)〉 and hλ�t i are positively correlated, but
as shown in Supplementary Fig. 33, the more mechanistic average
multipliers hλ�t i perform better than statistical momentum 〈I(t)〉
as a predictor of outbreak magnitude.

Finally, Supplementary Fig. 34 shows how the demonstrated
correlations can be used to make out-of-sample predictions of
outbreak size and outbreak peaks. The model is a simple linear
regression using hλ�t i as a predictor variable trained on the first
six outbreaks of the time series of dengue hospitalizations in San
Juan, and tested on the last 13 outbreaks.

Methods
The general framework for estimating susceptibles. Consider ordinary differ-
ential equations of the form (classical epidemic models (SIR and SIRS models) are
special cases)

ðI: ; S: Þ ¼ FðI; S; βÞ;
where I= (I1,…, In) and S= (S1,…, Sn) represent infected and susceptible popu-
lation sizes (humans and/or vectors) respectively, β represents time-varying system
parameters (e.g. seasonal climate variables), and F is a generally unknown non-
linear function. By disregarding birth and death rates, the condition F(0, S; β)= 0
for all S and β indicates that any disease-free state of the system (inter-outbreak
period) represents an equilibrium that is independent of the values of S and β.
Because the stability of an inter-outbreak period is determined by the Jacobian
matrix DF(0, S; β), and since F is constant in the plane I= 0, it holds that

∂F
∂S

jI¼0 ¼ 0:

The latter shows that the Jacobian A is singular in the inter-outbreak period so

that the linearized dynamics of I has reduced dimensionality: I
: ¼ AðS�; βÞI, where

A ¼ ∂F
∂I

jI¼0;

and S* is a parameter. This simplification means that the stability of the system is
determined by A’s leading eigenvalue λ, which crucially depends on S* and β. The
practical beauty of the dimensionality reduction is that the leading eigenvalue can
be estimated from the incidence data by sampling the time series data of I, during
the inter-outbreak periods, where linearization is a reasonable approximation.
Thus, regardless of the complexity of the attractor during the outbreak itself, or
subsequently where the dynamics are so high dimensional as to be effectively
stochastic, the leading eigenvalue during the subsequent stable inter-outbreak
period should be a proxy for the realized value of S* determining the outbreak.
Again, this general framework encompasses a wide range of mathematical models,
from the simple SIR models to the most complex vector-host models (see below).

A note on λ in the Bailey−Dietz model. The classical Bailey−Dietz model for
vector-transmitted diseases model has the form

_Sh ¼ Λh � β1ShIv � μhSh
_Ih ¼ β1ShIv � γhIh � μhIh

_Rh ¼ γhIh � μhRh

_Sv ¼ Λv � β2SvIh � μvSv
_Iv ¼ β2SvIh � μvIv

:

By omitting the deterministic recruitment rates and death rates, the system
becomes

_Sh ¼ �β1ShIv
_Ih ¼ β1ShIv � γhIh

_Rh ¼ γhIh
_Sv ¼ �β2SvIh
_Iv ¼ β2SvIh

:

for which any disease-free state (Sh ¼ S�h , Ih= 0, Sv ¼ S�v , Iv= 0) is an equilibrium.
At a disease-free equilibrium, the Jacobian has rank 2, and the linearlized equations
for Ih and Iv are

_Ih ¼ β1S
�
hIv � γhIh

_Iv ¼ β2S
�
v Ih

and the eigenvalues are

λ ¼ γh
2

±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γh
2

� �2
þβ1β2S

�
hS

�
v

r

:

In particular, the leading eigenvalue is an increasing function of the susceptible
populations S�h and S�v .

Empirical dynamic modeling study (EDM). Empirical dynamic modeling
involves studying system dynamics from an attractor (or in our case, attractor
regions) constructed from time series (see brief introductory animation http://
tinyurl.com/EDM-intro; SI of ref. 12). If system behavior is governed by determi-
nistic rules, then attractor manifolds exist, and these can be built from lags of a
single variable21, or multivariately from combinations of variables13,24,25. The
details and code for EDM including a tutorial describing the specific analyses
undertaken here for computing the optimal embedding dimension (Fig. 2a) and the
S-map test for nonlinearity (Fig. 2b) are found in refs. 12,21,24 and on CRAN for
rEDM https://cran.r-project.org/web/packages/rEDM/vignettes/rEDM_tutorial.
html

Estimation of λ�t and definition of outbreak onset. From time series data I(t) of
dengue incidence in San Juan, we construct a time series of discrete-time eigen-
values (local multipliers) λ�t . Thus, we identify segments or windows

Wt ¼ ðIðt � TÞ; Iðt � T þ 1Þ; ¼ ; IðtÞÞ
of length T= 12 weeks and estimate a local discrete eigenvalue or multiplier,
denoted λ�t by performing a linear regression (with zero intercept) of the model I
(t′+ 1)= λ*I(t′) using the data contained in each window Wt. Thus, the time series
of λ�t is generated from the moving 12-week windows, where each discrete
eigenvalue λ�t depends only on the values of I in each window Wt. Note that λ

�
t is

computed from a locally varying Jacobian but is not a local Lyapunov exponent as
for S-maps21. To define the onset of a disease outbreak dynamically, we construct a
smoothed version ~λ�t of the signal λ�t using an arbitrary10-week moving average.
Supplementary Fig. 1 shows that results are robust to the specific length of the
moving average. A time tc is called an outbreak onset if ~λ�tc�1 < 1 and ~λ�tc > 1. We
note that because dengue in San Jua\n is predictably seasonal, the dynamic defi-
nition of onset coincides closely with a fixed calendar date for onset (September 1)
allowing for better advance warning.

Assessment intervals and robustness. To predict outbreak magnitude, we
compute an average multiplier (average discrete-time eigenvalue) over a period of
time that is far enough in advance of the outbreak (so as to be useful and not to
include the outbreak dynamics), but which samples the final inter-outbreak
dynamics sufficiently to reliably estimate an effective eigenvalue proxy for the
susceptibles. We denote this period over which values of λ�t are averaged by ~J , and
denote the assessment interval J as the segment of the incidence time series which is
used to obtain hλ�t i. The assessment interval J includes the T− 1 weeks prior to the
beginning of ~J since λ�t are obtained in running windows of length T. The
assessment interval is defined by its advance prediction time t1 (the time between
the end of the assessment interval and the onset of the subsequent outbreak), and
its length n, i.e.

~J ¼ ftc � tn�Tþ1; ¼ ; tc � t2; tc � t1g;
with tk+1= tk + (1 week), and

J ¼ ftc � tn; ¼ ; tc � t2; tc � t1g:
Thus, the susceptible proxy 〈λ*〉 is computed as the average μt in J:

hλ�i ¼ 1
n

X

t2~J
λ�t :

For the analysis presented in Fig. 2a, c, the values t1= 12 weeks, and n=
24 weeks were used; however, the results are robust to the choice of t1 and n (see
Supplementary Fig. 1). The average multipliers 〈λ*〉 are compared with the
subsequent outbreak magnitudes, yielding a correlation coefficient ρ= 0.71 with p
= 6 × 10−4. The outbreak magnitude here is defined as the total number of
reported cases within a year in the time period from outbreak onset to the
beginning of the subsequent assessment interval. The robustness of the results was
tested by computing the correlation coefficient ρ and the p value for a range of t1
values and n values. The results of this robustness analysis are presented in
Supplementary Figs. 1 and 2. To simplify the robustness analysis, the outbreak
magnitudes are defined as the total number of reported cases in the year following
the outbreak onset.

In Supplementary Fig. 3a, c we present an analysis similar to Fig. 2a, c except
that here we are estimating the peak of the outbreak (defined as the maximum
number of reported cases in a week in the time period between the outbreak onset
and the beginning of the subsequent assessment period). The corresponding
robustness analysis is presented in Supplementary Fig. 4.

Analysis of influenza data. The influenza analysis used time windows of length T
= 30 weeks to calculate μt and an assessment interval of 5 weeks (includes inci-
dence values beginning 35 weeks prior to an outbreak). This means that the proxy
calculation is made 5 weeks prior to the outbreak. Outbreak onsets were defined
dynamically as described above, and the outbreak magnitudes were defined as the
total number of reported cases per capita in the year following the outbreak onsets.

Although the influenza database includes 79 different countries, only about half
of these had sufficient data (free of excessive missing values) for a meaningful
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analysis. For a country to be included in the analysis, we liberally required at least
ten assessment periods, with subsequent outbreak periods that each contain data
for at least 20% of its weeks. The time series from 27 countries meet this minimal
condition, and the prediction results for these countries are shown in Fig. 4.

Construction of Fig. 2. Figure 2 justifies the mixed modeling approach with an
empirical dynamical modeling (EDM) study on the outbreak periods and the inter-
disease periods of the time series of dengue incidence in San Juan. Full details and
code for such a study are found on CRAN for rEDM (https://rdrr.io/cran/rEDM/).

Figure 2a shows how the predictive skill (Pearson correlation) with simplex
projection varies with embedding dimension. The inter-disease periods are defined
as the time series segments containing data points between 30 and 12 weeks prior
to the outbreak onsets. This yields 20 time series segments. The simplex predictions
were made out of sample by using the first ten of these to construct the “library”
attractor that is used to forecast the last ten segments out of sample.

Briefly, simplex projection is forecasting using nearest neighbor analogs to the
E-dimensional vectors

vt ¼ ðIðt � E þ 1Þ; ¼ ; Iðt � 1Þ; IðtÞÞ:
To each of the vectors vt we associate the value I(t+ 1), requiring that I(t+ 1)

belongs to the same segment as I(t). The association vt 7! Iðt þ 1Þ defines a real-
valued function in E variables, that we denote by F. F constructed from the first ten
segments is used to make out-of-sample prediction on the test data consisting of
the last ten segments of the time series. We reconstruct attractors in each segment
by taking vectors

wt ¼ ðIðt � E þ 1Þ; ¼ ; Iðt � 1Þ; IðtÞÞ
and compute the 2-norm distances

dts ¼ wt � vsk k;
for each vs in the library. The prediction of I(t+ 1) is the weighted average

Ipredðt þ 1Þ ¼ 1
M

X

Eþ1

i¼1

e�dtsðiÞFðsðiÞÞ;

where dts(1) ≤ dts(2) ≤⋯ ≤ dts(E+1) are the E+ 1 smallest distances between library
vectors and the vector wt, and M is a normalizing factor. The red curve in Fig. 2a
shows the correlation between I(t+ 1)− I(t) and the predicted values Ipred(t+ 1)
− I(t) as functions of the embedding dimension E. The red curve shows a low
optimal embedding dimension E= 3 consistent with collapse to stable states and
the blue curve shows the same analysis for the outbreak periods (defined as the
30 weeks following disease onsets) yields a higher optimal E= 9.

Figure 2b shows the S-map test for nonlinearity20 and shows the predictive skill
(Pearson correlation) of the S-map predictors as functions of the localization
parameter θ. If predictability increases for values of θ > 0, then nonlinear state
dependence is established (localization on the attractor is important). For the inter-
disease periods an embedding dimension E= 3 is used and for the outbreaks E= 9
is used. S-map predictions involve constructing linear models for each point
predicted using weighted multivariable linear regression

Iðt þ 1Þ ¼ α0 þ α1Iðt � E þ 1Þ þ � � � þ αEIðtÞ
That is, points on the library attractor are given exponential weight depending

on how close on the attractor they are to the predictee, and this is used for
computing the Jacobian coefficients by SVD. That is, a linear surface is fit to each
point on the attractor, meaning that for each test vector predicted a linear model is
computed by weighing the data points y= I(s+ 1) and x= vs in the library by a
factor proportional to e�θdts=hdi where 〈d〉 is the mean (2-norm) distance between
the predictee and the library vectors vs. Hence, the estimated regression parameters
α̂k (the sequentially computed Jacobian coefficients determined by SVD) depend
on via the predictee on the localization parameter θ. Thus, the predicted value

Ipredðt þ 1Þ ¼ α̂0 þ α̂1Iðt � E þ 1Þ þ � � � þ α̂EIðtÞ
depends on the nonlinear control parameter θ. Figure 2b shows how the predictive
skill of the S-map method varies with this parameter. If prediction skill increases
for any value of θ > 0, nonlinear state dependence is established which indicates
nonequilibrium nonlinear dynamics during outbreaks (blue curve). If not, the
dynamics are essentially linear-stochastic and stable but driven by external
perturbation (red curve).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Data of dengue incidence are from http://dengueforecasting.noaa.gov. The data of
influenza incidence are from http://www.pnas.org/content/suppl/2016/10/26/
1607747113.DCSupplemental/pnas.1607747113.sd01.txt. Only studies with fewer than
80% of values missing were included. All other data are available from the authors upon
reasonable request.

Code availability
The code used to analyze data is available from the first author upon request. General
code for EDM analysis is available on CRAN at https://rdrr.io/cran/rEDM/.
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