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22q11.2 deletion syndrome (22q11DS) is a recurrent genetic mutation that is highly penetrant for psychosis. Be-
havioral research suggests that 22q11DS patients exhibit a characteristic neurocognitive phenotype that includes
differential impairment in spatial working memory (WM). Notably, spatial WM has also been proposed as an
endophenotype for idiopathic psychotic disorder, yet little is known about the neurobiological substrates of
WM in 22q11DS. In order to investigate the neural systems engaged during spatial WM in 22q11DS patients,
we collected functional magnetic resonance imaging (fMRI) data while 41 participants (16 22q11DS patients,
25 demographically matched controls) performed a spatial capacity WM task that included manipulations of
delay length and load level. Relative to controls, 22q11DS patients showed reduced neural activation during
task performance in the intraparietal sulcus (IPS) and superior frontal sulcus (SFS). In addition, the typical in-
creases in neural activity within spatial WM-relevant regions with greater memory load were not observed in
22q11DS. We further investigated whether neural dysfunction during WM was associated with behavioral
WM performance, assessed via the University of Maryland letter–number sequencing (LNS) task, and positive
psychotic symptoms, assessed via the Structured Interview for Prodromal Syndromes (SIPS), in 22q11DS pa-
tients. WM load activity within IPS and SFS was positively correlated with LNS task performance; moreover,
WM load activitywithin IPSwas inversely correlatedwith the severity of unusual thought content and delusional
ideas, indicating that decreased recruitment of working memory-associated neural circuitry is associated with
more severe positive symptoms. These results suggest that 22q11DS patients show reduced neural recruitment
of brain regions critical for spatialWM function,whichmay be related to characteristic behavioralmanifestations
of the disorder.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-SA license
(http://creativecommons.org/licenses/by-nc-sa/3.0/).
1. Introduction

The 22q11.2 deletion syndrome (22q11DS), also referred to as
velocardiofacial syndrome, is a genetic disorder caused by a hemizygous
microdeletion of 1.5–3 Mb at chromosome 22q11, and is associated
with variable physical phenotypic features, including cardiac defects,
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mild facial dysmorphology, learning impairments, hypocalcemia, and
immune deficiency (Kook et al., 2010; Walter et al., 2009). In adoles-
cence and young adulthood, up to one-third of 22q11DS patients devel-
op schizophrenia-like psychotic disorders (Green et al., 2009; Murphy
et al., 1999; Pulver et al., 1994). This genetic mutation thus represents
one of the greatest known risk factors for psychosis identified to date
(Jonas et al., 2013; Murphy, 2002).

A compelling aspect of the 22q11DS neurocognitive phenotype is
that working memory (WM) appears to be compromised relative to
other cognitive functions. In particular, children and adolescents with
22q11DS exhibit differential impairment in spatial WM (Bearden
et al., 2001, 2004; Wang et al., 2000), with relative strengths in perfor-
mance onmeasures of auditory attentional capacity and verbal learning
(Bearden et al., 2001; Lajiness-O'Neill, 2005). These findings support
the notion that individuals with the deletion show a characteristic
neurocognitive phenotype, which may be associated with disruption
of neural systems involved in spatial WM function.
the CC BY-NC-SA license (http://creativecommons.org/licenses/by-nc-sa/3.0/).
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Nevertheless, little is currently known about the neural circuitry
underlying spatial WM dysfunction in 22q11DS, nor how it relates to
phenotypic expression of the disorder. Early detection of neural vulner-
ability markers of psychotic symptoms could potentially reduce the
clinical severity and functional impairment caused by these symptoms.
To our knowledge only one previous study of spatialWMhas been con-
ducted in a small sample of children and adolescents with 22q11DS,
which reported hypoactivation in parietal and occipital regions during
performance of a spatial WM task (Azuma et al., 2009); however, in
this cross-sectional study 22q11DS youth also exhibited a different pat-
tern of age-associated changes relative to healthy controls, involving
greater age-related increases in neural activity in predominantly poste-
rior regions in controls, while 22q11DS patients showed the opposite
pattern. One other study in children with 22q11DS investigated non-
spatial WM, and found hypoactivation in frontal regions in 22q11DS
participants relative to unaffected controls, evenwhenmatched for per-
formance, suggesting WM-related neural dysfunction in these patients
(Kates et al., 2007). Previous behavioral work in healthy children and
adolescents supports the notion that WM function develops rapidly
throughout this period, suggesting that both neural and cognitive differ-
ences captured during this age range may be accounted for by develop-
mental delays, or different trajectories (Klingberg et al., 2002; Luciana
et al., 2005; Siegel and Ryan, 1989). Thus, it remains unclear whether
the differential patterns of neural activity observed in the study by
Azuma and colleagues are present in adult 22q11DS patients. In our
study, we further hypothesized that WM dysfunction may serve as an
effective marker for psychosis risk in 22q11DS, as it is considered a fun-
damental aspect of schizophrenia in the general population, whichmay
underlie both cognitive and clinical disturbances associatedwith the ill-
ness (Glahn et al., 2003; Goldman-Rakic, 1994). Spatial WM perfor-
mance is also sensitive to genetic loading for schizophrenia (Glahn
et al., 2003), and in clinical high risk youth WM deficits may predict
conversion to overt psychosis (Pukrop and Bechdolf, 2007).

Using functional magnetic resonance imaging (fMRI) we investigat-
ed underlying neural activity in adults with 22q11DS and healthy con-
trols during performance on a spatial capacity WM task that included
manipulations of load levels and delay length. This task has previously
been shown to be sensitive to genetic liability for schizophrenia in the
context of a twin study (Glahn et al., 2003), and has thus been proposed
as an informative endophenotypic marker for the illness. Research on
the neural circuitry underlying WM capacity in healthy adults has
shown that activity within the intraparietal sulcus (IPS) is sensitive to
manipulations of load levels (Todd and Marois, 2004, 2005; Xu and
Chun, 2006). For example, during performance of a visual WM task,
Todd andMarois (Todd andMarois, 2004) used fMRI to show that activ-
ity within posterior parietal cortex was tightly correlated with the
amount of visual informationmaintained. Based on functional neuroim-
aging findings in idiopathic schizophrenia (Karlsgodt et al., 2007, 2009;
Manoach et al., 2000) and in children with 22q11DS (Azuma et al.,
2009; Kates et al., 2007), we predicted that adult 22q11DS patients
would show hypoactivation within WM circuitry (i.e., superior frontal
sulcus (SFS) and lateral parietal cortices) compared to healthy controls
during task performance, and would not show increased activation of
these regions as a function of increased WM load. Furthermore, we
hypothesized that increased WM load-related neural activity would be
associated with better cognitive performance on WM tasks, and
reduced psychotic symptom severity in 22q11DS patients.

2. Materials and methods

2.1. Participants

The total sample consisted of 41 participants (18–43 years old, 16
22q11DS and 25 healthy controls). 22q11DS participants all had a
molecularly confirmed diagnosis of 22q11.2 deletion syndrome, and
were recruited from an ongoing longitudinal study at the University of
California, Los Angeles (UCLA) (see (Jalbrzikowski et al., 2012) for de-
tails regarding study recruitment procedures). Healthy controls were
recruited from this study and from another large-scale study of healthy
adults at UCLA, the Consortium for Neuropsychiatric Phenomics.
Exclusion criteria for all study participants included the following:
other neurological or medical condition that might affect performance,
insufficientfluency in English, substance or alcohol abuse and/or depen-
dence with the past six months, and/or any contraindications to scan-
ning. Healthy controls additionally did not meet criteria for any major
mental disorder, with the exception of attention-deficit hyperactivity
disorder (ADHD) or a past episode of depression, based on information
gathered during the Structured Clinical Interview for DSM-IV Axis I
Disorders (First et al., 1997). Demographic information for 22q11DS
patients and matched controls are presented in Table 1.

All participants underwent a verbal and written informed consent
process. The UCLA Institutional Review Board (IRB) approved all study
procedures and informed consent documents.

2.2. Procedure

Participants took part in a behavioral training session immediately
prior to the one-hour scan, inwhich they received training on the spatial
capacityWM (SCAP) task in the form of one initial demonstration and a
trial run before completing the experimental run inside of the scanner.

2.3. Measures

2.3.1. Spatial capacity working memory (SCAP) task
Subjects were shown a target array of 1, 3, 5, or 7 yellow circles po-

sitioned pseudo-randomly around a centralfixation (Glahn et al., 2002).
After a variable delay, subjects were shown a single green circle and
were required to indicate whether that circle was in the same position
as one of the target circles. Trial events included a 2-s target array, 1.5,
3, and 4.5-second (s) delay, 3-s probe array, and a jittered (average of
2 s) inter-trial interval (ITI)with a fixation. The rationale for the variable
delay interval was twofold: (i) the jittered delay length allowed for
more efficient estimates of the BOLD response (Dale, 1999), and (ii) par-
ticipantswere unable to anticipate the precise onset of the probe screen,
which could confound the interpretation of activity during the delay pe-
riod. Additionally, the number of memoranda (locations) is parametri-
cally varied, thus allowing the investigation of differential effects of
memory load on neural activation across groups (Cannon et al., 2005).

2.3.2. Neuropsychological assessments
Supervised clinical psychology doctoral students or Ph.D. staff

administered a neurocognitive battery assessing multiple domains of
cognitive functioning. IQ data were acquired for all 22q11DS patients
and controls using the Wechsler Abbreviated Scale of Intelligence
(WASI; (Wechsler, 1999)) or the Wechsler Adult Intelligence Scale
(Wechsler, 2008).

WM was assessed behaviorally with the University of Maryland
letter–number sequencing (LNS) task (Gold et al., 1997). In this task,
the examiner presents combinations of numbers and letters of varying
sequence length, and the participant must repeat the numbers in as-
cending order and the letters in alphabetical order. Because this task re-
quires maintenance of spatial order information in WM (Crowe, 2000),
we predicted that LNS task performance would be closely related to the
cognitive demands of our SCAP fMRI task.

2.3.3. Structured Interview for Prodromal Syndromes
Master's- or Ph.D-level trained clinicians assessed study participants

using the Structured Interview for Prodromal Syndromes (SIPS;
(McGlashan, 2001)), which includes ratings of positive, negative, disor-
ganized, and general symptoms. Symptoms on these scales are rated
from 0 to 6, with zero representing an absence of symptoms and six
referring to an extremely severe or psychotic level of symptoms. All



Table 1
Demographic and clinical information for 22q11DS and control participants.

22q11DS participants
(n = 16)

Control participants
(n = 25)

p-Value

Age (years, ±SD) 23.88 (7.28) 24.36 (6.14) 0.83
Participant education (years, ±SD) 12.38 (0.89) 14.36 (1.75) b0.001
Parental education levela 0/2/2/6/1/5 2/4/6/5/1/7 0.658
Gender (N, % female) 10 (63%) 15 (60%) 0.873
Handedness (left/right, % right)b 1/14 (93%) 0/25 (100%) 0.390
Ethnicity (N, % Latino) 2 (12.5%) 9 (36%) 0.098
Psychotic disorder diagnosis (N, %) 2 (12.5%) None b0.001
SIPS positive symptoms (mean, ±SD)c 8.79 (7.54) 0.75 (2.12) b0.001
SIPS negative symptomsc 11.43 (9.06) 0.25 (0.46) b0.001
SIPS disorganized symptomsc 5.86 (4.74) 1.25 (1.16) b0.001
SIPS general symptomsc 7 (5.14) 1.5 (1.5) b0.001
Psychotropic medication (N, no medication/anti-depressants/antipsychotics/antianxiety/psychostimulants)d 7/8/2/3/5 24/1/0/0/0 b0.001

a No high school/completed high school/some college or technical schools/completed college or technical school/some graduate school or professional school/completed graduate
school or professional school (based on educational attainment of most educated parent).

b Handedness data missing for 1 22q11DS participant.
c SIPS data missing for 2 22q11DS participants; SIPS interview was not administered to 17 control participants, thus these data reflect scores for 8 control participants.
d p-Value reflects a chi-square test between 22q11DS patients and control participants for medication vs. no medication.
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clinical interviewers demonstrated excellent inter-reliability for symp-
tom ratings (see (Jalbrzikowski et al., 2012) for details). These dimen-
sional measures encompass a range of symptom severity, including
sub-threshold (i.e., prodromal) and fully psychotic symptoms. We fo-
cused on the SIPS P1 subscale (unusual thought content/delusional
ideas) given that the presence of unusual thought content and delusion-
al ideasmay be relatedmost closely toWMdysfunction, as the contents
of thoughts are closely related to top-down, executive control influence
(or lack thereof) (Menon et al., 2001). The relationship between neural
activity in IPS and SFS and total positive symptoms (unusual thought
content/delusions, suspiciousness/persecutory ideas, grandiose ideas,
perceptual abnormalities/hallucinations, and disorganized communica-
tion) was also assessed.

2.4. fMRI Acquisition

Data were collected at two scanning facilities at UCLA, each with a 3
T Siemens Trio MRI scanner. While participants completed the SCAP
task, 291 functional T2*-weighted echoplanar images (EPIs) were col-
lectedwith the following parameters: slice thickness=4mm, 34 slices,
TR = 2 s, TE = 30 ms, flip angle = 90°, matrix 192 × 192, FOV =
192 mm. Additionally, a T2-weighted matched-bandwidth high-
resolution anatomical scan (same slice prescription as EPI) and
MPRAGE were collected. The parameters for the MPRAGE were the fol-
lowing: TR=2.3 s, TE= 2.91ms, FOV= 256mm,matrix= 240 × 256,
flip angle = 9°, slice thickness = 1.20 mm, 160 slices.

2.5. Statistical analysis

Analyses of neuropsychological and clinical data were performed
using SPSS software v. 21 (IBM). We compared demographic character-
istics between groups using independent sample t-tests for continuous
variables and chi-square tests for categorical variables.

fMRI data analyseswere performed using tools from the FMRIB soft-
ware library (www.fmrib.ox.ac.uk/fsl), version 5.0 (Smith et al., 2004).
The first 2 volumes from each scan were discarded by the scanner to
allow for T1 equilibrium effects. For each scan, images for each partici-
pant were realigned to compensate for small head movements
(Jenkinson and Smith, 2001). Subjects with average translational mo-
tion greater than 4 mm were excluded (n = 1). Data were spatially
smoothed using a 5-mm, full-width-half-maximum Gaussian kernel.
The data were filtered in the temporal domain using a nonlinear high-
pass filter with a 66 second cutoff. A three-step registration process
was used in which EPI images were first registered to the matched-
bandwidth high-resolution scan, then to the MPRAGE structural
image, and finally into standard (Montreal Neurological Institute
(MNI)) space, using nonlinear transformations (Andersson et al., 2007).

Standardmodel fitting was conducted for all subjects. The following
events were modeled after convolution with a canonical gamma hemo-
dynamic response function: all loads, Load 1, Load 3, Load 5, Load 7,
Delay 1.5 s, Delay 3 s, Delay 4.5 s. Events were modeled with the onset
at the target presentation and a duration of 6.5, 8, and 9.5 s to include
the variable delay and probe periods. The six motion parameters and
temporal derivatives of all regressors were included as covariates of
no interest to improve statistical sensitivity. For each subject, All
loads, Load 1, Load 3, Load 5, Load 7, Load3 N Load1, Load5 N Load3,
Load5 N Load1, Load7 N Load1, Load7 N Load5, Load7 N Load3, Delay
1.5 s, Delay 3 s, Delay 4.5 s, Delay 4.5 s N Delay 3 s, Delay 3 s N Delay
1.5 s, Delay 4.5 s N Delay 1.5 s contrasts were computed. Our primary
analyses focused on the Load5 N Load1 contrast to maximize the WM
load effect, as Load7 is considered to be above the 3–4 item capacity
limit reported in previous studies (e.g., Todd and Marois, 2004).

Due to an administrative error, only a subset of the behavioral data
was available; thus, we modeled all trials in our fMRI analyses. Howev-
er, for 8 control participants with available behavioral data we directly
compared results for the analysis modeling all trials vs. correct trials
only. Importantly, this analysis revealed no significant differences in ac-
tivation between the all trials vs. correct trials only for any of the prima-
ry analyses, i.e. the load contrasts (Load3 N Load1, Load5 N Load1,
Load7 N Load3). Minor differences were detected for the comparison
of all trials vs. correct trials only for analyses including all load and
delay conditions: specifically, therewas greater activity in IPS for all trials
vs. correct trials only, whereas therewas greater activity in posterior cin-
gulate cortex for correct trials vs. all trials (see Supplementary Table 2 for
details). For four 22q11DS subjects with behavioral data we performed
the same analysis, comparing neural activity for all trials vs. correct trials
only, and also found similar results (see Supplementary materials).

The output from the subject-specific analyses was analyzed using a
mixed-effects model with FMRIB's Local Analysis of Mixed Effects
(FLAME). Higher-level analyses included the following conditions
and contrasts at the group-level: all loads, Load 1, Load 3, Load 5,
Load 7, Load3 N Load 1, Load5 N Load3, Load5 N Load1, Load7 N Load1,
Load7 N Load5, Load7 N Load3. Between-group comparisons were con-
ducted for each of these. In order to first rule out potential scanner relat-
ed differences, we checked for differences between scanners in each
group. Once it was established that there were no differences in activa-
tion between scanners (p N 0.05 for all comparisons), all subsequent
group-level analyseswere conductedwith scanner added as a covariate.

Group-level statistics images were thresholded with a cluster-
forming threshold of z N 2.3 and a cluster probability of p b 0.05,
corrected for whole-brain multiple comparisons using Gaussian

http://www.fmrib.ox.ac.uk/fsl)
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random field theory. The search region included 139,264 voxels. Brain
regionswere identified using the Harvard–Oxford cortical and subcorti-
cal probabilistic atlases, and all activations are reported in MNI coordi-
nates. For reporting of clusters, we used the cluster command in FSL.
Anatomical localization within each cluster was obtained by searching
within maximum likelihood regions from the FSL Harvard–Oxford
probabilistic atlas to obtain the maximum z-statistic and MNI coordi-
nates within each anatomical region contained within a cluster.

Secondary analyses were conducted in order to assess the relation-
ship of neural activitywithin a priori regions of interest (ROIs)with clin-
ical and cognitive phenotypes within 22q11DS patients. These analyses
focused on the Load5 N Load1 contrast tomaximize theWM load effect.
In particular, to determine whether performance on a WM task, per-
formed outside of the scanner, is associated with neural activity within
WM-load related regions for 22q11DS patients and controls, we exam-
ined the relationships between percent signal change in left and right
IPS, and left and right SFS, and accuracy on the letter–number sequenc-
ing (LNS) taskusing a partial correlation analysis, controlling for age and
gender.

Secondly, to determine whether neural activity within WM load-
related regions was associated with psychotic symptoms in 22q11DS
patients, the P1 subscale measuring unusual thought content and delu-
sional ideas from the Structured Interview for Prodromal Syndromes
(SIPS) and percent signal change in left and right IPS, and left and
right SFS, was assessed using a partial correlation analysis, controlling
for age and gender. We conducted this analysis within the 22q11DS pa-
tient group only, as the range of scores was (by definition) restricted
among control subjects.

For the analyses of percent signal change in relation to the behavior-
al variables described above, mean percent signal change was extracted
from four pre-defined ROIs, selected based on visual inspection of the
group contrast and the previous literature, which included the right
and left intraparietal sulcus, and left and right SFS. ROIs were defined
using the FSL Harvard–Oxford probabilistic atlas (thresholded at 25%);
we then intersected these anatomically-defined masks with our
group-level Load5 N Load1 contrast in order to isolate voxels within
anatomically-defined regions that were significantly active for WM
load. These anatomically-defined ROIs were then used to extract aver-
age percent signal change values corresponding to 8-s stimulus
convolved with a gamma HRF from the Load5 N Load1 contrast in
22q11DS patients alone (Mumford and Poldrack, 2007). As the relation-
ship between psychosis symptoms and WM-related activation in this
population has not been previously investigated, we did not correct
for multiple comparisons in these exploratory analyses.

3. Results

3.1. Behavioral results

3.1.1. Demographic and clinical characteristics
As shown in Table 1, control and 22q11DS groups were matched on

all demographic factors except for participant education. Patients with
Table 2
Neuropsychological measures.

22q11.2 participants
(n = 15)a

Full scale IQ (±SD)a 76.40 (14.18)
Verbal knowledge
Vocabulary (±SD)a 38.00 (9.46)
Visuospatial skills
Matrix reasoning (±SD)a 30.93 (11.28)
Working memory
Letter–number sequencing (mean % correct, ±SD) 46.44 (13.17)

a Neurocognitive datamissing for 1 22q11DS participant; based on 2-subtestWechsler Abbre
deviations presented are T-scores; statistical analyses are based on raw score values.
22q11DS scored significantly lower than controls on measures of Full
Scale IQ, Matrix Reasoning, and letter–number sequencing (Table 2).
There was a non-significant trend toward lower verbal knowledge
(vocabulary) in 22q11DS patients compared to controls, consistent
with prior literature indicating relative sparing of verbal abilities
(Bearden et al., 2001, 2004; Lajiness-O'Neill, 2005; Wang et al., 2000).

3.2. fMRI results

3.2.1. Working memory activity in controls and 22q11DS patients
We first investigated the set of neural regions active for all WM con-

ditions combined, in order to verify that the set of regions active for
global WM function (e.g., not necessarily load-sensitive) are consistent
with previous studies of WM encoding and maintenance in healthy
adults. Healthy controls (all WM conditions, control group mean) acti-
vated a broad set of neural regions, as shown in Table 3 and Fig. 1a. Re-
gions active included bilateral IPS, bilateral occipital cortex, middle
temporal gyrus, inferior, middle, and superior frontal gyrus, cerebellum,
and anterior cingulate cortex (Fig. 1a, Table 3). Patients activated a sim-
ilar set of regions for all WM conditions combined (all WM conditions,
patient group mean).

A direct group contrast between controls and 22q11DS patients for
all WM conditions revealed that 22q11DS patients had significantly
reduced activation in the left IPS relative to control subjects. Across all
WM conditions there were no regions showing greater activation for
22q11DS patients compared to controls.

3.2.2. Working memory load effects in controls and 22q11DS patients
In healthy controls, high versus low WM load (Load5 N Load1

contrast, control group mean; hereafter referred to as the WM load
contrast), activated a set of regions previously identified as sensitive
to parametric increases in WM load (Fukuda et al., 2010; Todd and
Marois, 2004, 2005; Xu and Chun, 2006). Working memory load-
related regionswithin controls included bilateral IPS and bilateral occip-
ital cortex (Fig. 1b, Table 3). In 22q11DS patients, no regionswere active
for the WM load contrast (Load5 N Load1 contrast, patient group
mean), indicating that 22q11DS patients did not show increases in
neural activity as a function of load.

Our primary contrast of interest, the direct contrast between con-
trols and 22q11DS patients for WM load (Load5 N Load1 contrast), re-
vealed significantly greater activation in controls in bilateral IPS and
SFS as a function of increased load (Fig. 1b and Table 3). There were
no regions showing greater activation for 22q11DS patients compared
to controls for theWM load contrast. Similarly, direct contrast between
groups for Load7 N Load1 showed greater activity for controls than
22q11DS patients in bilateral IPS and SFS. Between-groups contrast for
Load3 N Load1 showed a similar pattern of greater activity in controls
relative to 22q11DS patients in bilateral IPS and SFS, as well as occipital
cortex, and no regions showing greater activity for 22q11DS patients
than controls, similar to the WM load effect seen for the primary WM
load analysis (Load5 N Load1). For the Load7 N Load3 contrast, patients
with 22q11DS showed greater activity than controls in occipital
Control participants
(n = 25)

t-Test p-Value

116.32 (17.01) 7.54 b0.001

60.16 (10.53) 1.91 0.063

56.72 (9.13) 3.98 b0.01

70.80 (12.39) 5.79 b0.001

viated Scale of Intelligence (WASI; vocabulary andmatrix reasoning); means and standard



Table 3
Regions of activation, maximum z-score, and MNI coordinates for direct group contrasts of combined WM conditions and load effects.

Contrast Regions Voxel # Max z-score Max X
(mm)

Max Y
(mm)

Max Z
(mm)

All WM conditions
All conditions, controls N 22q11DS

Left superior parietal lobule, intraparietal sulcus,
supramarginal gyrus, angular gyrus

984 4.28 −26 −64 56

All Conditions, 22q11DS N controls
None

Load effects
aLoad 5 N Load 1, controls N 22q11DS
Right supramarginal gyrus, postcentral gyrus,
intraparietal sulcus

2282 4.78 26 −70 52

Left intraparietal sulcus, superior parietal lobule 587 3.53 −22 −78 34
Right superior frontal sulcus 521 4.20 32 −10 52
Left superior frontal sulcus 458 4.56 −22 −10 48

Load 5 N Load 1, 22q11DS N controls
None

Load 5 N Load 3, controls N 22q11DS
None

Load 5 N Load 3, 22q11DS N controls
None

Load 3 N Load 1, controls N 22q11DS
Right intraparietal sulcus, superior parietal lobule,
postcentral gyrus, supramarginal gyrus, angular gyrus

2316 4.42 28 −66 48

Bilateral occipital fusiform gyrus, lingual gyrus 1595 3.74 6 −90 −14
Left intraparietal sulcus, superior parietal lobule,
supramarginal gyrus

1369 4.06 −24 −78 32

Left superior frontal sulcus 682 5.03 −24 −8 52
Right superior frontal sulcus, middle frontal gyrus 548 4.7 30 −4 52
Left occipital cortex 494 3.98 −50 −58 0
Right occipital cortex 459 3.65 56 −66 0

Load 3 N Load 1, 22q11DS N controls
None

Load 7 N Load 1, controls N 22q11DS
Right intraparietal sulcus, supramarginal gyrus,
postcentral gyrus

2237 4.59 50 −36 56

Left intraparietal sulcus, superior parietal lobule 1120 4.08 −34 −40 32
Left superior frontal sulcus, precentral gyrus,
middle frontal gyrus

805 4.22 −24 −8 50

Right superior frontal sulcus, middle frontal gyrus,
precentral gyrus

725 4.44 22 −6 52

Load 7 N Load 1, 22q11DS N controls
None

Load 7 N Load 3, controls N 22q11DS
None

Load 7 N Load 3, 22q11DS N controls
Bilateral occipital cortex 5822 4.33 26 −62 −16

Load 7 N Load 5, controls N 22q11DS
None

Load 7 N Load 5, 22q11DS N controls
None

Delay effects
Delay 4.5 s, controls N 22q11DS

Left intraparietal sulcus 1409 4.33 −26 −62 56
Delay 4.5 s, 22q11DS N controls

None
Delay 3 s, controls N 22q11DS

Left intraparietal sulcus 1058 5.16 −32 −44 40
Delay 3 s, 22q11DS N controls

None
Delay 1.5 s, controls N 22q11DS

Left intraparietal sulcus 560 4 −26 −64 56
Delay 1.5 s, 22q11DS N controls

None

a Primary load contrast.
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cortices. There were no significant differences in neural activity
between controls and 22q11DS patients for the Load5 N Load3 or
Load7 N Load5 contrasts.

3.2.3. Working memory delay effects
We then investigated differences in neural activity between

22q11DS patients and controls as a function of varying delay lengths,
1.5, 3, and 4.5 s (Supplementary Fig. 1 and Table 3). In both groups we
found a set of fronto-parietal regions active for each delay length.
Group comparison revealed that controls showed significantly greater
activation than 22q11DS patients in the left IPS at each delay length,
and there were no regions showing greater activity for 22q11DS
patients than controls at any delay length, consistent with the findings
observed for the WM load contrasts.
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3.2.4. Relationship between working memory activation and behavioral
performance

Partial correlations revealed that percent signal change in left IPS
was significantly correlatedwith LNS performance for 22q11DSpatients
(r(11) = 0.637, p = 0.010), but not for controls (r(21) = 0.180, p =
0.20; Fig. 2b). The partial correlation between percent signal change in
right IPS and LNS was marginally statistically significant for 22q11DS
patients (r(11) = 0.420, p = 0.076), but not for controls (r(21) =
0.194, p = 0.187).

Similarly, in 22q11DS patients percent signal change in the right SFS
was significantly positively correlated with LNS performance, r(11) =
0.511, p = 0.037, but this relationship was not observed in controls,
r(21) = −0.026, p = 0.453 (Fig. 2c). Partial correlations between per-
cent signal change in left SFS, bilateral IPS and LNS for 22q11DS patients
or controls were not statistically significant.

3.2.5. Relationship betweenworkingmemory-related neural activation and
unusual thought content

To determine whether neural activity within WM load-related re-
gions was associated with psychotic symptoms in 22q11DS patients,
the P1 subscale and the total positive psychotic symptoms scores were
assessed (Fig. 2d and e).

The partial correlation between percent signal change during SCAP
task performance and left IPS and unusual thought content (P1) was
statistically significant (r(10) = −0.639, p b 0.05), indicating that
greater left IPS activation during task performance was associated
with reduced symptom severity (Fig. 2d). The strength of this relation-
ship, as indexed by eta2, was 0.38. The association between left IPS per-
cent signal change and the total positive symptom score from the SIPS
was also statistically significant, r(10) = −0.538, p b 0.05 (eta2 =
0.29), indicating that greater IPS activation was also associated with
lower overall psychotic symptom severity (Fig. 2e). There was also
a trending negative relationship between percent signal change in
right IPS versus unusual thought content, r(10) = −0.452, p = 0.07
(eta2 = 0.20).

There was a trending negative relationship between percent signal
change in left SFS and unusual thought content (r(10) = −0.448,
p = 0.07; eta2 = 0.29). The partial correlations between percent sig-
nal change in left and right SFS and total positive symptom severity,
and between the right SFS and unusual thought content, were not
statistically significant.

4. Discussion

To our knowledge, this is the first study to investigate the neural sub-
strates of spatial WM in adults with 22q11DS, a relatively understudied
population that exhibits a high rate of psychotic illness (Green et al.,
2009; Pulver et al., 1994). Our fMRI findings indicate that, during perfor-
mance on a spatial capacityWM task previously shown to be sensitive to
genetic liability for schizophrenia (Glahn et al., 2003), patients with
22q11DS showed reduced neural activity relative to controls within the
IPS and SFS, regions typically associated withWM load in previous stud-
ies of healthy individuals (Fukuda et al., 2010; Todd and Marois, 2004;
Xu and Chun, 2006). While controls additionally showed the predicted
increases in neural activity as a function of memory load, this pattern
was not present in 22q11DS patients. The relative hypo-activation we
observed within the IPS in 22q11DS patients was consistent across all
delay lengths. Moreover, in 22q11DS patients (but not controls) neural
activity in both the IPS and SFSwas positively correlatedwith behavioral
performance on letter–number sequencing, a task that requiresmanipu-
lation of alpha-numeric information within working memory. Finally,
we found that reduced neural activity within IPS was associated with
more severe clinical symptoms of unusual thought content anddelusion-
al ideas in 22q11DS patients, as measured with the Structured Interview
for Prodromal Syndromes. Taken together, these findings suggest a pat-
tern of reduced neural engagement during WM in 22q11DS, and that
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Fig. 2. Relationship of WM load-related neural activity with behavioral measures (letter–number sequencing task performance and positive psychotic symptoms) in 22q11DS. (a) Rep-
resents the anatomically-defined left IPS and right SFS ROI (after adjusting for age and years of education) from which percent signal change was extracted for correlations with X-axis
variables in b, c, and d. Brain orientations are labeled such that S= superior, I= inferior, P= posterior, andA= anterior; R= right and L= left. For b, c, and d theX-axis values represent
the residuals of: (b) the letter–number sequencing task for 22q11DS patients and controls, with IPS percent signal change on the Y-axis (R2 = 0.41 for 22q11DS patients; R2 = 0.03 for
controls), (c) the letter–number sequencing task for 22q11DS patients and controls, with SFS percent signal change on the Y-axis (R2 = 0.26 for 22q11DS patients; R2 = 0.052 for con-
trols), (d) SIPS P1 (unusual thought content/delusional ideas) subscale for 22q11DS patients, with IPS percent signal change on the Y-axis, R2= 0.38, and (e) SIPS total positive symptoms
for 22q11DS patients, with IPS percent signal change on the Y-axis, R2 = 0.29. Residuals were calculated by regressing percent signal change and cognitive/clinical scores on age and
gender, and are plotted for visualization purposes.
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this dysfunction is associated with both variability in working memory
performance and with psychotic symptom severity. These findings thus
provide initial evidence supporting neural activity during spatial WM
as a potential endophenotype relevant to psychosis risk in 22q11DS.

4.1. fMRI findings

4.1.1. Group differences in neural activity during spatial WM
Consistent with prior literature on the neural underpinnings of WM

in healthy adults (Awh and Jonides, 2001; Courtney et al., 1996; Curtis,
2006 ;Montojo and Courtney, 2008), we found that healthy controls in
our study activated a distributed network of brain regions including bi-
lateral IPS, occipital cortex, middle temporal gyrus, inferior, middle, and
superior frontal gyrus, cerebellum, and anterior cingulate cortex.
22q11DS patients activated a similar set of regions across WM condi-
tions, but showed a pattern of hypo-activation that was localized to
the left IPS. These findings suggest that the neural systems globally rel-
evant to spatial WM function, not specifically related to load level, are
recruited abnormally in 22q11DS. This pattern of results supports
those of the only existing prior fMRI study of spatial WM in children
with 22q11DS, which found significantly reduced activation of parietal,
but not prefrontal regions in 22q11DS patients (Azuma et al., 2009). A
similar pattern was also observed in a high-risk cohort including chil-
dren of parents with schizophrenia (Keshavan et al., 2002).

In contrast, in a study investigating the neural correlates of non-
spatial WM in 22q11DS youth compared to unaffected siblings and
community controls, Kates et al. (Kates et al., 2007) found that all
three groups showed similar activation in parietal regions, but relative
to performance-matched youth with 22q11DS both community and
sibling control groups showed significantly more recruitment of frontal
cortical regions during task performance, including the cingulate and
precentral gyrus (Kates et al., 2007). These findings suggest that
22q11DS patients exhibit hypoactivation within WM circuitry that is
not attributable to performance differences. Our study findings are in
general agreement with the notion of hypoactivation within 22q11DS
patients during spatial WM performance, and underscore the impor-
tance of parietal activity for intact spatial WM performance. These find-
ings extend current understanding of WM function in 22q11DS by
specifically examining the neural correlates of spatial WM in adults
with this syndrome, and its behavioral consequences, which to our
knowledge have not been previously investigated.

4.1.2. Working memory load effects
Research on the neural circuitry underlyingWM capacity in healthy

individuals has shown that activity within IPS is sensitive to manipula-
tions of load levels. During performance of a visual WM task during
fMRI, Todd and Marois (Todd and Marois, 2004) found that activity
within posterior parietal cortex was tightly correlated with the limited
amount of visual information maintained. The finding that neural activ-
ity in IPS increases with set size has been replicated using both simple
and complex items maintained in WM, and neural activity reaches an
asymptote at approximately four items (Fukuda et al., 2010; Todd and
Marois, 2004, 2005; Xu and Chun, 2006). The superior frontal sulcus
also appears to be particularly critical for spatial WM, as suggested by
several neuroimaging studies (Awh and Jonides, 2001; Courtney et al.,
1996; Curtis, 2006), and lesions of the superior frontal gyrus impair
spatial WM functions to a greater extent than verbal or face WM
(du Boisgueheneuc et al., 2006).

Our primary contrast of interest investigated differential effects of
memory load increases between controls and 22q11DS patients. This
analysis revealed a differential increase in neural activity in bilateral
IPS and SFS in healthy adults compared to 22q11DS patients as a func-
tion of load level, and we found that this WM load effect was consistent
regardless of delay length. These findings are in general agreementwith
previous research in patients with idiopathic schizophrenia, indicating
hypoactivation relative to healthy controls within the dorsolateral
prefrontal cortex at higher loads of a spatial capacity WM task
(Cannon et al., 2005). We additionally observed greater activity in oc-
cipital cortices for 22q11DS patients compared to healthy controls at
the highest load level (Load7 N Load3 contrast). However, these early
sensory regions were not within the hypothesized regions associated
with WM load effects or spatial WM processing/representation. Previ-
ous findings suggest that activation within the ventral-occipital cortex
is driven more by the perceptual load of a scene, as opposed to the
amount of information held inWM (Todd andMarois, 2004). The great-
er activity observed for 22q11DS patients than controls in our study
may reflect differences related to the perceptual or iconic representa-
tion of the number of objects presented during the target screen. In ad-
dition, secondary analyses showed that our group differences in fMRI
activity for spatial WM load effects within the IPS and SFS were not
accounted for by antipsychotic or antidepressant medication usage
within our 22q11DS patients.

4.1.3. Working memory delay effects in 22q11DS
While both controls and 22q11DS patients showed activity within a

distributed set of frontoparietal regions for each delay length (1.5, 3, and
4.5 s), group contrasts revealed that controls exhibited greater activity
within left IPS than 22q11DS patients at each delay length. These find-
ings support the interpretation drawn from our WM load effect results,
suggesting that 22q11DS patients show consistent under-recruitment
of neural circuitry critical for spatial WM during task performance, sug-
gesting disruption of a fundamental cognitive process that is relatively
invariant with respect to delay length and memory set size. The results
are also in general agreement with prior findings from studies investi-
gating spatial WM in idiopathic schizophrenia and clinical high-risk
groups, which show disrupted neural circuitry within WM-related re-
gions (Brahmbhatt et al., 2006; Cannon et al., 2005; Seidman et al.,
2006). Additionally, in patients with idiopathic schizophrenia and
their clinically unaffected co-twins, hypo-activation was present re-
gardless of memory load (Glahn et al., 2003). Our findings and those
from previous literature on the neuropathological basis of idiopathic
schizophrenia suggest a similar mechanism may be involved in
22q11DS patients, such that genes relevant to schizophrenia risk
disrupted by the 22q11.2 deletion may contribute to physiological
disturbances in WM neural circuitry and function.

4.1.4. Working memory-related activity and behavioral performance
Based on previous literature, we hypothesized that activity within

WM-relevant neural circuitry (IPS and SFS) would be positively associ-
ated with WM performance outside the scanner. In healthy adults,
strength of fMRI signal during a WM delay interval predicted task per-
formance while inside the scanner, with the authors suggesting that
increased BOLD activity corresponds to increased neural processing
related to increased attention and improved task performance (Pessoa
et al., 2002). We found that neural activity in the IPS and SFS correlated
withWMperformance in out of scanner tasks in 22q11DS patients, sug-
gesting this locus as a critical indicator of WM dysfunction within these
patients. In linewith our findings, previous studies have shown an asso-
ciation between neural activity and behavioral performance in healthy
adults using other WM task paradigms (Pessoa et al., 2002). However,
this relationship was not observed in healthy controls in our study;
this may be due to the reduced variability in letter–number sequencing
task performance among healthy participants, who showed significant-
ly greater overall accuracy on this task relative to 22q11DS patients.

4.1.5. Summary of fMRI findings
Collectively, our findings indicate an overall reduction in the recruit-

ment ofWM-associated neural circuitrywithin patients. The left IPS and
SFS appear to be regions within the WM network that are particularly
affected in 22q11DS patients. Morphological abnormalities have also
been previously reported within these brain regions in prior structural
studies investigating 22q11DS patients, showing decreased graymatter
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in frontal and temporal regions compared to controls (Chowet al., 2002;
Van Amelsvoort et al., 2001). A more recent diffusion tensor imaging
study offered evidence for reducedwhitematter integritywithin frontal
regions in 22q11DS patients compared to controls, suggesting disrupted
structural connectivity in WM-related regions (da Silva Alves et al.,
2011). These findings suggest that structural abnormalities may under-
lie the functional differences we observed between 22q11DS patients
and controls, a hypothesis which we will directly test in future studies.

4.1.6. Working memory-related neural activity and psychotic symptoms
Of great interest was whether activity within brain regions relevant

to WM performance was associated with unusual thought content in
22q11DS patients, as measured by the SIPS. We found initial evidence
for a significant negative relationship between activity within left IPS
and the severity of unusual thought content, such that as activity within
this region decreased, the severity of unusual thought content in-
creased. We also found a negative relationship between activity in this
region and overall positive symptom severity. Our results complement
those of previous studies in patients with idiopathic schizophrenia. For
example, Menon et al. (2001) previously found that greater severity of
unusual thought content in patients with schizophrenia was associated
with reduced right dorsolateral prefrontal cortex (DLPFC) activation
during auditory n-backWM task performance. Importantly, this finding
was specific to symptoms of unusual thought context, as similar rela-
tionships were not observed for symptoms of hallucinatory behavior
and conceptual disorganization. Our findings are the first to show that
variability in WM-associated neural activity in 22q11DS patients, a
population that is highly penetrant for psychosis, is associatedwith psy-
chotic symptom severity. Only two of our 22q11DS patients were diag-
nosed with an overt psychotic disorder, suggesting that even in the
absence of a clinical diagnosis, neural activity withinWMcircuitry is re-
lated to dimensionally measured symptoms of psychosis.

4.2. Genes relevant to WM and psychosis in 22q11DS

The greatly elevated risk for psychosis in 22q11DS offers the possibil-
ity of delineating a relatively homogenous developmental pathway to
the illness. Although a larger study sample is required to investigate ge-
netic variants within the 22q11.2 locus thatmay be relevant to bothWM
and psychosis, we offer speculative suggestions warranting further
study. Notably, among the genes encoded in the deleted region,
catechol-O-methyltransferase (COMT) encodes for an enzyme that is es-
sential for the breakdown of dopamine in the prefrontal cortex (Boot
et al., 2008; Lachman et al., 1996;Weinberger et al., 2001). Prefrontal do-
pamine dysregulation adversely affects executive neurocognitive pro-
cesses, including working memory (Kellendonk et al., 2006; Murphy
et al., 1996; Zahrt et al., 1997). For example, an early study found
evidence for impaired spatialWMperformance associatedwith elevated
levels of dopamine turnover in the prefrontal cortex in both rat and
primate models (Murphy et al., 1996). In healthy adults, a functional
polymorphism within the COMT gene was related to performance on a
test of prefrontal cortical function, the Wisconsin Card Sorting Test
(Egan et al., 2001). The association between COMT, dopamine, and cog-
nitive function suggests that that COMT haploinsufficiency may be rele-
vant to altered neural activity within WM circuitry, as well as clinical
symptoms, in 22q11DS patients. The proline dehydrogenase (PRODH)
gene, which catalyzes the first step in proline catabolism and is involved
in glutamatergic neurotransmission, also resides within the 22q11.2
locus; genetic variation in PRODH has also been shown to play a role in
WM function and other neurophysiological endophenotypes relevant
to schizophrenia, in both human (Kempf et al., 2008; Vorstman et al.,
2009) and animal models (Paterlini et al., 2005). Our results highlight
the value of 22q11DS as a model for studying the contribution of
neurodevelopmental risk genes to brain function and neuropsychiatric
illness.
4.3. Implications

This study sought to take advantage of an intermediate brain pheno-
type to help bridge the gap between a well-characterized genetic dele-
tion and symptoms of psychosis. Our findings offer evidence forWM as
a potential neural endophenotype for psychosis risk in 22q11DS,
supporting its relevance for understanding gene–brain–behavior rela-
tionships in idiopathic schizophrenia. We utilized a dimensional ap-
proach to assess psychotic symptoms, which allows us to capitalize on
the full range of variability rather than restricting our sample to a subset
of impaired patients. The RDoC initiative encourages this approach,with
the goal of promoting innovative methods for characterizing psychopa-
thology based on dimensions of observable behaviors or neurobiologi-
cal measures rather than traditional diagnostic systems (Insel et al.,
2010). Previous research suggests that dimensional ratings of psychosis
explain more variance in dysfunctional behavior, social adaptation, and
global occupation and function than a categorical diagnosis (Rosenman
et al., 2003). Translational studies in genetic mouse models of 22q11DS
can be further used to directly investigate the involvement of specific
neurotransmitters and/or defects in dendritic and synaptic morphology
to the pathophysiology of WM dysfunction and psychosis (Karayiorgou
and Gogos, 2004).

4.4. Limitations

The primary limitation in our study is the small sample size.
Although 22q11DS represents the most common copy number variant
associated with psychosis risk, estimated to occur in 1 out of every
4000 to 6000 live births, subject ascertainment at a single site is a chal-
lenge. Our sample size is large relative to previous studies on neural
function in 22q11DS; however, our results should be considered prelim-
inary until replicated. Additionally, our analysesmodeled neural activity
across all trials, rather than correct trials only; however, secondary anal-
yses in a subset of the sample showed no substantial differences in the
results for all trials vs. correct trials only, suggesting that this did not un-
duly influence the findings. Finally, to our knowledge the relationship
between psychosis symptoms andWM-related activation in this popu-
lation has not been investigated, so in these exploratory analyseswe did
not correct for multiple comparisons. With a FDR multiple comparison
correction at p = 0.05 on the 8 comparisons made between psychosis
symptoms and WM-related activation [4 predefined ROIs (left and
right intraparietal sulcus and superior frontal sulcus) × 2 SIPSmeasures
(unusual thought content and overall positive symptom score)], none of
our 8 partial correlation values survived this corrected threshold.While
we found a consistent pattern of relationships, indicating that higher
activation in the same region critical for WM function (left IPS) was
associated with both better cognitive performance and less severe
psychotic symptoms, these results require validation in larger samples.

5. Conclusions

Currently, the risk and protective factors that account for variability
in clinical outcome in 22q11DS are notwell understood. In this studywe
found that 22q11DS patients exhibited reduced neural engagement of
regions critical for WM relative to controls, and that this dysfunctional
neural activity was associated with specific psychotic symptoms. This
‘deep phenotyping’ approach can provide a more complete and transla-
tional model to aid in the early detection and prevention of psychosis.
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