
UC Berkeley
UC Berkeley Previously Published Works

Title
Edge Principal Components and Squash Clustering: Using the Special Structure of 
Phylogenetic Placement Data for Sample Comparison

Permalink
https://escholarship.org/uc/item/26q4z9wp

Journal
PLOS ONE, 8(3)

ISSN
1932-6203

Authors
Matsen, Frederick A
Evans, Steven N

Publication Date
2013

DOI
10.1371/journal.pone.0056859
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/26q4z9wp
https://escholarship.org
http://www.cdlib.org/


Edge Principal Components and Squash Clustering:
Using the Special Structure of Phylogenetic Placement
Data for Sample Comparison
Frederick A. Matsen IV1*, Steven N. Evans2

1 Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America, 2 Department of Statistics, University of California, Berkeley, California, United

States of America

Abstract

Principal components analysis (PCA) and hierarchical clustering are two of the most heavily used techniques for analyzing
the differences between nucleic acid sequence samples taken from a given environment. They have led to many insights
regarding the structure of microbial communities. We have developed two new complementary methods that leverage
how this microbial community data sits on a phylogenetic tree. Edge principal components analysis enables the detection of
important differences between samples that contain closely related taxa. Each principal component axis is a collection of
signed weights on the edges of the phylogenetic tree, and these weights are easily visualized by a suitable thickening and
coloring of the edges. Squash clustering outputs a (rooted) clustering tree in which each internal node corresponds to an
appropriate ‘‘average’’ of the original samples at the leaves below the node. Moreover, the length of an edge is a suitably
defined distance between the averaged samples associated with the two incident nodes, rather than the less interpretable
average of distances produced by UPGMA, the most widely used hierarchical clustering method in this context. We present
these methods and illustrate their use with data from the human microbiome.
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Introduction

Samples from microbial communities are complex, often

containing millions of bacteria that differ to varying degrees.

With high-throughput environmental sequencing, one can get a

direct estimate of the composition of these microbial populations,

even for microbes that cannot be cultured. Such estimates of

composition can be too complex to compare directly, and so

researchers have developed various ways of comparing popula-

tions. One option is to classify the collection of sequencing reads

taxonomically, or group the reads into ‘‘operational taxonomic

units’’ (OTUs) and then use a discrete comparison index such as

the Jaccard index [1] to obtain a distance between samples. A

shortcoming of such an approach is that it ignores the degree to

which taxonomic labels represent similar or quite different

organisms.

In 2005, Lozupone and Knight proposed a phylogenetics-based

method to compute distances between samples that takes the

natural hierarchical structure of the data into account. Their

method, unweighted UniFrac [2], was followed by weighted UniFrac in

2007 [3] to incorporate abundance information. A key feature of

both distances is that differences in community structure due to

closely related organisms are weighted less heavily than differences

arising from distantly related organisms. The UniFrac methodol-

ogy can powerfully differentiate communities of interest in a

variety of settings [4–6]; the papers describing the UniFrac

variants have hundreds of citations as of the beginning of 2012.

We have recently shown that the classical earth-mover’s distance

(a.k.a. Kantorovich-Rubinstein (KR) metric) [7] generalizes the

weighted UniFrac distance.

Once distances have been computed between samples using

UniFrac, these distances are typically fed into general-purpose

ordination and clustering methods, such as principal coordinates

analysis and UPGMA. Although it is appropriate to apply such

techniques to distance matrices of this sort, the classical methods

do not use the fact that the underlying distances were calculated in

a specific manner, namely, on a phylogenetic tree. Consequently,

in an application of principal components analysis, it is difficult to

describe what the axes represent. Similarly, in hierarchical

clustering, it is unclear what is driving a certain agglomeration

step; although it can be explained in terms of an arithmetic

operation, a certain amount of interpretability in the original

phylogenetic setting is lost.

In this paper, we propose ordination and clustering procedures

specifically designed for the comparison of microbial sequence

samples that do take advantage of the underlying phylogenetic

structure of the data. The input for these methods are collections

of assignments of sequencing reads to locations on a ‘‘reference’’

phylogenetic tree: so-called phylogenetic placements. These placements

may be obtained by software specialized to do model-based

placement [8,9], by using BLAST on a database built from the leaf
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sequences, or by clustering the sequences first and then building a

tree on representative sequences as is commonly done for UniFrac.

Our edge principal components analysis (edge PCA) algorithm applies

the standard principal components construction to a ‘‘data

matrix’’ generated from the differences between proportions of

phylogenetic placements on either side of each internal edge of the

reference phylogenetic tree. Our squash clustering algorithm is

hierarchical clustering with a novel way of merging clusters that

incorporates information concerning how the data sit on the

reference phylogenetic tree.

The results of the analyses can be readily visualized and

understood. The principal component axes of edge PCA can be

pictured directly in terms of the reference phylogenetic tree,

thereby attaching a clear interpretation to the position of a data

point along that axis (Fig. 1). Edge PCA is also capable of picking

up minor — but consistent — differences in collections of

placements between samples: a feature that is important in our

example application. The squash hierarchical clustering method is

such that each vertex of the clustering tree is associated with a

specific distribution of mass on the phylogenetic tree; the length of

an edge in the clustering tree has a simple interpretation as the

distance between the mass distributions associated with the two

incident vertices (Fig. 2).

Edge PCA provides complementary information to a more

traditional application of PCoA or NMDS to a distance matrix

derived from UniFrac. Indeed, PCoA/NMDS gives a overall

picture of how the biological samples compare in terms of overall

similarities and differences, whereas edge PCA selects specific

lineages that are high variance and compares the samples on that

basis. This difference can be seen clearly in our example application.

The work presented here is distinct from recent work on data

analysis methods for sets of trees. PCA on sets of trees has been

developed in two contexts. Wang and Marron [10] have

developed PCA on unlabeled planar trees, while Nye [11] has

developed a PCA for phylogenetic trees with branch lengths and

leaf labels. Those methods have the trees themselves as underlying

objects of study; edge PCA, in contrast, takes vectors of edge

weights on a single tree as input.

The work presented here shares some intent with double

principal components (DPCoA) analysis as applied to distributions

of phylotypes on a phylogenetic tree [12,13]. The idea of a

DPCoA analysis is to perform a principal components analysis on

the phylotype abundance table in a way that down-weights

differences between species that are close to one another on the

phylogenetic tree. As such, it is somewhat similar to doing

multidimensional scaling or principal components on the pairwise

distance matrix generated by a UniFrac/KR analysis. It differs

from the methods presented here because it only uses the tree in

the form of a pairwise distance matrix; consequently it cannot

leverage the edge-by-edge structure of the tree.

There are also some connections between edge PCA and the

statistical comparison features of MEGAN [14] and LEfSe [15] in

that the structure of a tree is used as part of a comparative

framework. Our method and these methods all highlight regions of

the tree for which important differences exist between samples.

However, MEGAN and LEfSe work in the setting where one is

explicitly trying to find statistically meaningful differences between

pre-labeled sets of samples. The edge PCA algorithm, on the other

hand, is an exploratory technique that does not attempt to make a

hypothesis-testing statistical statement.

Figure 1. A graphical representation of the operation of edge principal components analysis (edge PCA). The phylogenetic distribution
of reads for a given sample determines its position in the principal components projection. For the first axis, reads that fall below edges with positive
coefficients on that axis’ tree (marked in orange on the tree) move the corresponding sample point to the right, while reads that land on edges with
negative coefficients (marked in green on the tree) move the corresponding sample point to the left. The second axis is labeled with a subtree of the
first tree (the position of which is marked with a star on the first principal component tree): reads below edges with positive coefficients move sample
points up, while reads below edges with negative coefficients move sample points down. The principal components shown here are the actual
principal components for the example shown in Figures 4, 5, and 6.
doi:10.1371/journal.pone.0056859.g001

Ordination and Clustering for Phylogenetic Data
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The ordination and clustering methods presented here are

implemented in the guppy binary as part of the pplacer package,

available at http://matsen.fhcrc.org/pplacer/. The methods take

the recently-standardized JSON format for phylogenetic place-

ments [16] as input. A tutorial and demonstration applying these

methods can be found at http://fhcrc.github.com/microbiome-

demo/.

Results

Intuitive presentation of methods
Here we give a simple overview of the two methods presented in

this paper. The starting point for the methods is a collection of

mappings of sequences onto a phylogenetic tree. This may be done

by clustering sequences and building a tree de novo, by assigning

sequences to the leaves of the tree using BLAST, or by mapping

sequences into edges of the tree using model-based ‘‘phylogenetic

placement’’ methods.

Edge principal component analysis. Edge PCA is easily

explained in the context of classical PCA, with the usual

interpretation of PCA as a method to find a weighted sum of

variables that maximizes variance. Edge PCA does a transforma-

tion such that the variables of interest are indexed by the edges of

the tree, and these variables are then fed into the standard PCA

machinery (Fig. 3). The consequent variable weightings can then

be visualized on the tree (Fig. 4 and Fig. 5), and the samples can be

plotted in the corresponding space (Fig. 6).

More intuitively, this process finds edges of the tree across which

there is a high level of between-sample heterogeneity. That is, it

finds those edges such that there are lots of reads on one side of the

edge in a subset of the samples, and lots of reads on the other side

of the edge in the complement of that subset. Those edges are then

given a signed weight according to how strong this effect is. The

sign of an edge considered in isolation is arbitrary, but the relative

signs of any two edges indicate the extent of their anti-correlation

in the between-sample heterogeneity. For example, if reads being

mapped on the root side of one edge is significantly correlated with

reads being mapped on the leaf-side of another edge, these edges

will have different signs. The vector made in this manner, with the

magnitudes of entries being determined by the level of between-

sample heterogeneity, and the relative signs being determined by

(anti-)correlations, is the first principal component vector. The

second principal component is built in the same manner but after

projecting out the first principal component, and so on.

In our visualization tool, each principal component eigenvector

is represented by a single colored and thickened reference tree: the

thickness of an edge is proportional to the magnitude of the

corresponding entry of the eigenvector and the color specifies the

sign of that entry (Fig. 4 and Fig. 5). For the trees shown here,

orange signifies a positive entry, while green represents a negative

entry.

Then, the projection of a given sample onto the plane is

determined by the distribution of reads in the sample relative to

the weighted edges. Specifically, a read on the leaf side of an edge

with a positive weight will move the sample in the positive

direction along that principal component, while a read on the root

side will move it in a negative direction (Fig. 1). For edges with a

negative weight the situation is reversed.

This behavior is achieved by a simple transformation of the data

before applying the classical PCA machinery (Fig. 3). The first step

is to build one vector per sample indexed by the edges of the tree

filled by the ‘‘imbalance’’ between the fraction of reads on either

side of that edge. This imbalance is defined, for a given edge e and

sample s, by cutting the tree in two by removing e (and any

associated placements), then taking the difference between the

number of reads of s in the part of the tree containing the root

minus the fraction in the part of the tree not containing the root.

Edge PCA is then simply standard principal components analysis

applied to the samples-by-edges data matrix created in this way.

Namely, we construct the E|E covariance matrix of this data

matrix and then calculate its eigenvalues and their corresponding

eigenvectors. Each eigenvector can be displayed on the tree,

because the coordinates of the eigenvector correspond to internal

edges of the tree. A large entry in an eigenvector corresponding to

one of the bigger eigenvalues identifies an edge across which there

is substantial heterogeneity among the associated set of mass

differences (see Methods). Moreover, we can project each sample

onto an eigenvector to visualize how the sample is spread out with

respect to that ‘‘axis’’ (Fig. 1 and 6).

A significant emphasis of the edge PCA methodology is to

obtain clearly interpretable axes for projection, and this is easiest

when the eigenvectors have distinct sets of nonzero entries. When

that is the case, a read in a certain region of the tree will move the

corresponding sample point in one direction only. The support of a

vector is the set of nonzero indices of that vector, thus the degree

to which nonzero entries of principal components appear on

shared edges will be called support overlap. We describe two means

of support overlap minimization: one is rotating the principal

Figure 2. A visual depiction of the squash clustering algorithm.
When two clusters are merged, their mass distributions are combined
according to a weighted average. The edges of the reference tree in this
figure are thickened in proportion to the mass distribution (for
simplicity, just a subtree of the reference tree is shown here). In this
example, the lower mass distribution is an equal-proportion average of
the upper two mass distributions. Similarities between mass distribu-
tions, such as the similarity seen between the two clusters for the G.
vaginalis clade shown here, are what cause clusters to be merged. Such
similarities between internal nodes can be visualized for the squash
clustering algorithm; the software implementation produces such a
visualization for every internal node of the clustering tree. Note that in
this figure only the number of reads placed on each edge is shown,
although each placement has an associated location on each edge
when performing computation.
doi:10.1371/journal.pone.0056859.g002

Ordination and Clustering for Phylogenetic Data
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component axes in the plane that they span, and the other is an

explicit penalization scheme.

The rotation support overlap minimization simply rotates the

principal components in the space that they span. For example,

the rotation of the two principal components fv1,v2g is

fv1 cos hzv2 sin h,{v1 sin hzv2 cos hg. This rotation can greatly

decrease the overlap of the support vectors, for example the pair of

vectors (1=
ffiffiffi
2
p

,1=
ffiffiffi
2
p

) and ({1=
ffiffiffi
2
p

,1=
ffiffiffi
2
p

) when rotated become

(1,0) and (0,1). By rotating in the space spanned by the principal

component eigenvectors, the projection of the points in the

principal component space are correspondingly rotated, thus

preserving the relative positions of the points in the principal

component space. Although it preserves their relative positions, it

does lose the original meaning of the principal component vectors:

for example, the first dimension in this rotated space is no longer

the component of maximal variance, although the proportion of

the total variance in the subspace spanned by first k vectors is

unchanged. Nevertheless, we have found this rotation to be useful

for finding structure in edge PCA applications.

The second approach is to explicitly penalize the overlap

between the second eigenvector and the first by subtracting out a

measure of their overlap. As described in the Methods section, we

have defined the second ‘‘penalized component’’ as having the

second eigenvector v be chosen to maximize v’Sv{cv’diag(v2
1)v

for some positive c, where S is the covariance matrix and v1 is the

first eigenvector. However, we have not had tidy results using this

explicit penalization, possibly because the first principal compo-

nent is fixed and the second is then modified to avoid overlap with

the first.

Squash clustering. Squash clustering is a type of hierarchical

clustering that also uses the structure of the data to visualize what

is happening with the clustering in more detail than is possible

using a distance matrix only. The starting point is, as before, a

collection of reads placed on a phylogenetic tree. Such a collection

may be thought of as a distribution of a unit amount of mass across

the tree. In the simplest setting, for a collection of N placements on

a tree each read is given mass 1=N; that mass is assigned to the

‘‘best’’ position for that read on the tree. Another option is to

distribute the 1=N mass for a given read across the tree in

proportion the posterior probability of assignment of that read to

various positions (see Methods).

This mass distribution may be used to produce distances

between collections of phylogenetic placements. Given two

samples for a given locus, each sample is placed individually on

the phylogenetic tree, and so each sample is thought of as a

distribution of mass on the tree. The Kantorovich-Rubinstein

Figure 3. How the edge PCA algorithm works. (a) For every edge of the tree, the difference is taken between the number of reads on the non-
root side the number of reads on the root side (root marked with a star). (b) The results of this are put into a matrix corresponding to the sample
number (row) and the edge number (column). (c) The standard PCA algorithm is then applied, resulting in a collection of eigenvectors (the principal
components) and eigenvalues. (d) These eigenvectors are indexed by the edges of the tree, and hence they can be mapped back onto the tree.
doi:10.1371/journal.pone.0056859.g003

Ordination and Clustering for Phylogenetic Data
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(KR) or ‘‘earth-mover’s’’ distance may then be used to quantify the

difference between those two samples. This distance is defined

rigorously in [7], but the idea is simple to explain. Imagine that the

phylogenetic tree is a road network and that each sample is

represented by the distribution of a unit of mass into piles of dirt

along this road network. The distance between two samples is then

defined to be the minimal amount of ‘‘work’’ required to move the

dirt in the first configuration to that in the second configuration (in

this context the amount of work needed to move an infinitesimal

mass d a distance x is defined to be d:x). Thus, similar collections

of phylogenetic placements result in similar dirt pile configurations

that don’t require much mass movement to transform one into the

other, while quite different collections of placements require that

significant amounts of mass must move long distances across the

tree. This distance is classical, having roots in 18th century

mathematics, and is a generalization of the weighted UniFrac

distance [3,7].

Squash clustering is hierarchical clustering using the KR

distance but with a different way of using merged clusters: rather

than taking averages of distances as is done in average-linkage

clustering (also known as UPGMA), in squash clustering one takes

distances between averages of samples. That is, given a collection

of mass distributions on the reference phylogenetic tree, each of

which correspond to a cluster that has been built at some stage of

the procedure, when the procedure merges two clusters one simply

takes a weighted average of the two corresponding mass

distributions to get the mass distribution that corresponds to the

new, larger cluster (Fig. 2). The ‘‘squash’’ terminology describes

this averaging procedure: the original mass distributions for a

given cluster are stacked on top of one another and then

‘‘squashed’’ down to produce a new object with unit total mass.

Every internal vertex of the clustering tree is associated with a

distribution of mass on the phylogenetic tree, i.e. the squashed

mass for the samples below that vertex. The length of an edge

between two arbitrary adjacent vertices on the tree can be

computed by using the KR distance between the distributions of

mass corresponding to those vertices. This edge length calculation

gives the resulting trees an appearance that differs from that of

UPGMA trees because the lengths of the paths from the root to

the various leaves are no longer all the same (i.e. the tree is

typically not ultrametric).

The results of a squash clustering procedure are more

transparent than the equivalent runs of other distance-based

clustering procedures. Because of the merging process, each step of

squash clustering operates on exactly the same type of mathematical

object: a mass distribution on a phylogenetic tree. These mass

distributions can be visualized, revealing the similarities that are

driving a particular clustering step (Fig. 2).

In contrast, for UPGMA or other distance-based hierarchical

clustering techniques, the internal nodes are represented by

fundamentally different sorts of objects than the leaves. The

internal nodes for the classical methods are represented by an

agglomeration of points, and hierarchical clustering variants all

have different ways of using the collection of between-point

distances to compute distances between agglomerations of points.

Consequently, it is not possible to find a manifestation of an

internal node (like the equivalent of one of the mass distributions in

Figure 2) where the distances to that manifestation are the

distances used to create the clustering tree.

These internal node visualizations are automatically generated

by the software implementation of the squash clustering algorithm.

An example application of both edge PCA and squash clustering

can found in our tutorial at http://fhcrc.github.com/microbiome-

demo/.

Example application: the vaginal microbiome
In this section we apply our clustering and ordination methods

to pyrosequencing data from the vaginal microbiome. The

‘‘Fredricks’’ data set consists of sequence information from swabs

taken from 242 women from the Public Health, Seattle and King

Figure 4. The first principal component for the combined
vaginal data, representing about 56 percent of the variance.
The reference tree is colored by principal component sign (positive
colored orange, negative colored green) and thickened proportional to
magnitude. The edges across which maximal between-sample hetero-
geneity is found are those leading to the Lactobacillus clade and those
leading to the Sneathia and Prevotella clade. This axis corresponds to
taxa that are important in the diagnosis of bacterial vaginosis, as
Sneathia and Prevotella are associated with bacterial vaginosis, while
Lactobacillus is associated with a healthy microbiome.
doi:10.1371/journal.pone.0056859.g004

Figure 5. The second principal component for the combined
vaginal data, representing about 24 percent of the variance.
Low-weight regions of the tree are excluded from the figure. The edges
across which maximal between-sample heterogeneity is found are
those between two different Lactobacillus clades: L. iners and L.
crispatus. Thus, the second important ‘‘axis’’ appears to correspond to
the relative levels of these two species.
doi:10.1371/journal.pone.0056859.g005

Ordination and Clustering for Phylogenetic Data
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County Sexually Transmitted Diseases Clinic between September

2006 and June 2010 of which 222 samples resulted in enough

material to analyze [17] (Sequence Read Archive submission

SRA051298). DNA was extracted and the 16S gene was amplified

in the V3–V4 hypervariable region using broad-range primers and

sequenced using a 454 sequencer with FLX chemistry. Sequences

were pre-processed using the R/Bioconductor [18,19] package

microbiome. The ‘‘Forney’’ data set is an analogous data set of 454

reads from the V1–V2 hypervariable region amplified from

vaginal swabs [20]. These sequences were downloaded as

Sequence Read Archive submission SRA022855. The stability of

reads from different regions of the same gene is the subject of a

manuscript under preparation.

A custom maximum likelihood reference tree consisting of

relevant sequences from RDP [21] and a local collection was built

using RAxML 7.2.7 [22] using the GTR+4C model as described in

[17]. Sequences were aligned with Infernal v1.0.2 [23], and placed

into this tree using pplacer [9] with the default parameter choices

along with the -p and –inform-prior options.

The principal components for the vaginal samples indepen-

dently recover previous knowledge about the contribution of

certain microbial species to distinct types of vaginal microbial

Figure 6. Edge principal components analysis (edge PCA) applied to the combined Forney and Fredricks data set and plotted
separately. The axes for the edge principal components plot are described in Figures 4 (x-axis) and 5 (y-axis). The Nugent score is a diagnostic score
for bacterial vaginosis, with high score indicating bacterial vaginosis.
doi:10.1371/journal.pone.0056859.g006

Ordination and Clustering for Phylogenetic Data
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environment. A microscopic examination of Gram-stained spec-

imens from the vaginal mucosa can be used to define a diagnostic

criterion called the Nugent score. The Nugent score ranges from 0 to

10, with a high number indicating bacterial vaginosis (BV). The

scoring criteria include a relative paucity of gram-positive rods

described as Lactobacillus morphotypes, an abundance of bacteria

resembling Gardnerella and Bacteroides species (small gram variable

and gram negative rods, respectively), and an abundance of curved

gram-negative rods [24]. The edge principal component algorithm

appears to both agree with and extend these microscopic criteria:

the first principal component for the vaginal data set identifies a

negative association between Lactobacillus species versus species

belonging to Sneathia and Prevotella (both gram-negative rods) and

Megasphera (gram negative cocci) (Fig. 4). Both Prevotella and

Megasphera have been independently identified as prevalent

members of the vaginal microbiome, and are associated with a

clinical diagnosis of BV [20,25]. The second principal component

reveals that important differences between samples exist at the

species level. Indeed, it highlights the substantial amount of

heterogeneity between the amount of two Lactobacillus species

observed: L. iners and L. crispatus (Fig. 5). This latter observation is

interesting from the medical perspective, as the Nugent criteria

attribute the same significance to all Lactobacillus morphotypes

regardless of species. In the context of the edge PCA analysis,

however, a distinction is made between the two Lactobacillus species

based on the population distribution of other organisms in the

sample.

The samples from the two studies form a revealing pattern when

plotted on these axes along with the corresponding Nugent score

(Fig. 6). As described above, samples on the left side have Sneathia

and Prevotella and lack Lactobacillus while those on the right side

have the opposite. Samples on the bottom have lots of L. iners and

a small amount of L. crispatus, while those on the top have the

opposite.

Lactobacillus is associated with a low Nugent score and thus a

negative BV diagnosis; in the results presented here L. crispatus

dominated samples are not found to have a high Nugent score

(indicating BV), while L. iners dominated samples sometimes are.

In both the Forney and the Fredricks data sets, the samples with

the highest Nugent score lie on a continuum of samples from the

left to the lower right (from Sneathia/Prevotella to L. iners -dominant).

A similar pattern is observed when the samples are divided by race

(Fig. S2). Reviewing the taxonomically classified data from the

Fredricks study confirms this trend. These plots indicate the

possibility of a medically relevant difference between these two

Lactobacillus species in a pattern that is consistent between two

large, independent studies. It is also significant that phylogenetic

placement on a reference tree containing full-length 16S rRNA

gene sequences allows a direct comparison between the two data

sets despite the fact that each sequenced a different region of the

16S rRNA gene. We emphasize that the PCA was not informed of

either the Nugent score associated with the specimens or the

taxonomic classifications of the sequences.

Principal coordinates (PCoA) and multidimensional scaling

(MDS) form a complementary set of techniques to edge principal

components. PCoA applied in this context (Fig. 7) demonstrates

two important facts about the vaginal specimens (a similar picture

results from MDS; results not shown). First, it is clear that the BV

negative (small Nugent score) specimens are very similar to one

another in composition, and that the BV positive (high Nugent

score) specimens are different from one another. This information

is not recovered by the edge PCA analysis, which instead finds

interesting structure within the BV negative specimens. This

example emphasizes the complementary nature of edge PCA and

these more classical methods, where the former gives specific

information about the changes of the relative proportions of

phylogenetic groups, whereas the latter gives a comparison of the

overall composition.

Squash clustering was applied to the collection of vaginal

samples in the Fredricks data set. As we have already remarked,

because meaningful internal edge lengths can be assigned to the

squash clustering tree, it is not ultrametric, whereas the UPGMA

tree is (Fig. 8). The two tight clusters at the bottom of (a) and (b)

contain the Lactobacillus -dominated vaginal samples seen on the

left side of (Fig. 6) and correspond to L. iners (upper tight cluster)

and L. crispatus (lower tight cluster). A more detailed leaf-labeled

comparison between the two trees is available in the supplemen-

tary material (Fig. S1).

Squash clustering simulation study
It is difficult to find a collection of microbial communities that

have a known hierarchical structure, thus simulation was used to

validate the effectiveness of the squash clustering methodology.

The simulation process is described in detail in the Methods

section, but we highlight several important points here. The

primary ingredients for the simulation are a fixed ‘‘clustering tree’’

representing the hierarchical relationship between a set of

communities and a ‘‘reference tree’’ of species as above. The

simulation generates artificial collections of placements on the

reference tree for each leaf of the clustering tree. The success of the

clustering algorithms is judged by comparing the original

clustering tree to the result of the clustering method applied to

the artificial collections of placements. This accuracy comparison

is done using the rooted Robinson-Foulds (RF) metric (Methods).

A number of parameters determine the steps in the simulation

process. Every internal node of the clustering tree is associated

with a ‘‘reconstructability’’ parameter; this parameter determines

the level of similarity between descendants of that internal node. In

this simulation, the reconstructability parameter is set to a single

value for all internal nodes of the tree.

Our simulations show that squash clustering and UPGMA

applied to KR distances perform similarly across a wide range of

simulation parameters (Fig. 9). Not only do the squash clustering

and UPGMA methods have similar levels of accuracy, but their

results are also topologically quite similar to one another. Thus

squash clustering, with its more transparently meaningful branch

lengths, may prove to be an attractive choice for researchers

wishing to find hierarchical structure in their data.

Discussion

Conclusions
Direct nucleic acid sequencing from environments – ranging

from the human body to acid mine drainages – has revolutionized

our understanding of the microbial world. In parallel, computa-

tional techniques have made great leaps forward in their capacity

to classify reads taxonomically [26] and map them onto

phylogenetic trees [8,9]. There has also been a considerable

amount of work on useful ways to derive distances between

samples [2,3,27].

In our paper we have established a new method, ‘‘edge

principal components analysis’’ (edge PCA), that associates the

principal components axes with signed weightings on the edges of

a phylogenetic tree of the species under consideration. By using

colors and thickness to visualize these weightings, the user can gain

an understanding of what phylogenetic factors drive the separation

of the samples. Because the comparison is done in an explicitly

phylogenetic context, edge PCA can pick up consistent differences
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between samples that are subtle from a distance-based standpoint

but are readily apparent from the richer tree-based one.

We have also developed a variant of UPGMA, ‘‘squash

clustering’’, that enables visualization of the internal nodes of

clustering trees. Because the clustering is done directly on the type

of mathematical object that are being visualized, one gains insight

into what is driving a particular clustering step.

In this paper we describe these methods and demonstrate their

practical effectiveness via an application to vaginal microbiome

data. We present simulation results demonstrating the effective-

ness of the squash clustering technique in recovering hierarchical

structure. In the Methods section, we explain the methods more

formally, offer theory connecting these new techniques each

other, and show consistency of squash clustering in a simple

setting.

In future work we will apply the basic step of the edge principal

components method — transforming phylogenetic placement

samples into vectors indexed by the edges of the tree — in other

contexts. In this paper, we followed this transformation with an

application of principal components analysis, but many other

options are possible. Our next step will be to apply classical

supervised learning techniques to similarly transformed data.

Generalization and limitations
The methods described here, although implemented for

comparison of microbial communities, may in fact be used in

more general settings. Edge PCA may be used whenever each

sample can be represented by a collection of mass distributed over

a common tree structure. Squash clustering may be applied in any

case where there is a well-defined notion of the distance between

two samples and a well-defined procedure for averaging two

samples to produce another object of the same type.

There are some limitations to the sort of comparisons that can

be performed using these methods simply because the underlying

data is a collection of phylogenetic placements on a tree. For

example, if a clade of the reference tree is missing, then differences

in read distribution within that clade are not be accounted for in

the comparison. Such issues will be present whenever a reference

tree is being used, whether using phylogenetic placements directly

or mapping reads to the tree using BLAST as a preliminary step in

Figure 7. Principal coordinates analysis applied to the Fredricks vaginal data set.
doi:10.1371/journal.pone.0056859.g007
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Figure 8. The results of (a) squash clustering and (b) UPGMA as applied to the vaginal data. The labels are not shown and they do not
appear in the same order on the two trees. For a comparison of labeled trees, see Supplementary Figure S1.
doi:10.1371/journal.pone.0056859.g008

Figure 9. The results of the cluster accuracy simulation experiment using the rooted Robinson-Foulds (RF) metric. This graphic shows
very similar levels of topological accuracy for squash clustering and UPGMA, as well as high similarity between the topology returned by the two
methods. The figure is divided into panels by the level of reconstructability parameter rt as described in the text (a larger rt implies easier
reconstruction). The x-axis is the value of p for the Zp distance as described in (1). The y-axis is the rooted Robinson-Foulds distance: for the ‘‘squash’’
and ‘‘UPGMA’’ lines it is the distance between the reconstructed tree and the original tree using these two algorithms (lower is more accurate), while
the ‘‘between’’ line shows the distance between the result for the two clustering algorithms (lower is more similar). Note that the maximum rooted RF
distance between two trees with six taxa is four.
doi:10.1371/journal.pone.0056859.g009
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a UniFrac analysis. This disadvantage is balanced by the

advantage of not having to define operational taxonomic units

(OTU’s) by clustering, which can be sensitive to methodological

parameters [28].

We also note that the algorithm is influenced by the level of

taxon sampling in various regions of the reference tree in such a

way that more highly sampled lineages will be assigned

comparatively more weight in the PCA analysis than less sampled

lineages. This is simply because increasing the level of sampling

that produced the reference tree in some region can turn a single

edge into multiple edges, and the difference in mass assigned to the

single variable that corresponded to the ‘‘old’’ edge is now

replicated for each of the variables that correspond to the ‘‘new’’

edges. It can be seen from the variational characterization of the

corresponding eigen-problem (see Methods) that the sum of the

magnitudes of the eigenvector components corresponding to the

‘‘new’’ edges will be typically greater than the magnitude of the

eigenvector component corresponding to the ‘‘old’’ edge. This

does not change the interpretation of the location of points relative

to the weightings on a tree, however, it does mean that highly

sampled lineages may have a disproportionate influence on the

construction of the principal components. We are currently

developing an alternate formulation that uses mass differences

on either side of each point in the reference tree in a manner

analogous to the way edge PCA uses mass differences on either

side of each edge. The new formulation does not treat all edges as

being on an equal footing; rather, it implicitly incorporates

information about edge lengths. This ‘‘length PCA’’ procedure will

therefore not be perturbed by taxon sampling levels in the same

way.

The methods presented here also depend on the number of

phylogenetic placements being correlated with the number of

organisms of that type found in the sample. This is not always true.

Loci such as 16S are often sequenced by first amplifying using a

polymerase chain reaction with a broad-spectrum primer; this

primer may have different efficiencies for different organisms, or

may miss certain organisms altogether. In addition, genetic

material extraction efficiency varies by organism [29]. Neverthe-

less, the results on this example data using our methods do

correspond with analyses made with non-genetic methods such as

morphological comparison (Fig. 6).

Methods

General setting for methods
Phylogenetic placement is a way to analyze the results from

high-throughput sequencing applied to DNA extracted in bulk

from an environmental sample of microbes. It is simply the

assignment of sequencing reads to a ‘‘reference’’ phylogenetic

tree constructed from previously-characterized DNA sequences;

recent algorithms have focused on doing so according to the

phylogenetic maximum-likelihood criterion [8,9]. By fixing a

reference tree rather than attempting to build a phylogenetic tree

for the sample from scratch, recent algorithms of this type are

able to place tens of thousands of query sequences per hour per

processor on a reference tree of one thousand taxa (e.g. species),

with performance scaling linearly in the number of reference

taxa, the number of query sequences, and the length of the query

sequences.

A probability measure on the reference phylogenetic tree is

obtained from a collection of sequence reads as follows. A given

read can be assigned to the phylogenetic tree in its maximum

likelihood or maximum posterior probability location using the

phylogenetic likelihood criterion to obtain a ‘‘point placement.’’ A

point placement can be thought of as a probability measure with

all of the mass concentrated at the best attachment location.

Alternatively, one can express uncertainty in the optimal location

by spreading the probability mass according to posterior

probability (assuming some priors) or ‘‘likelihood weight ratio’’;

see [9] for details. In either case, each read is thought of as a

probability measure on the reference phylogenetic tree. A

probability measure for a collection of reads can be obtained by

averaging the measures for each read individually (that is, by

constructing the probability measure that is the mixture of the

probability measures for each read in which each such measure is

given an equal weight).

Edge principal components analysis
Begin with a phylogenetic tree T and probability measures

P1, . . . ,PS on T , each of which comes from an assignment of the

reads in one of S samples to the phylogenetic tree, as described

above. If T is not already rooted at some vertex, pick an arbitrary

vertex to be the root. Removing a given internal edge e from the

tree splits T into two components: Tz(e) containing the root and

T{(e) without. For a probability measure P on T , define the

corresponding edge mass difference

dP(e)~P(Tz(e)){P(T{(e)):

Suppose that T has E internal edges. The edge mass difference matrix

D is the S|E matrix that has the vectors of edge mass differences

for the successive samples as its rows. Edge principal components

analysis is then performed by first deriving the E|E covariance

matrix S from the matrix D of ‘‘observations’’ followed by

computing the E eigenvectors of S ordered by decreasing size of

eigenvalue (Fig. 3).

Each resulting eigenvector is then a signed weighting on the

internal edges of the tree, and these weightings may be used to

highlight those edges of the tree for which there is substantial

between-sample heterogeneity in the masses assigned to the two

components of the tree defined by the edge. Indeed, recall the

variational characterization of the eigenvectors v1, . . . ,vE of an

E|E non-negative definite matrix M listed in order of decreasing

eigenvalue:

v1~ arg max
DDvDD~1

Sv,MvT

v2~ arg max
DDvDD~1,v\v1

Sv,MvT

� � �

vE~ arg max
DDvDD~1,v\fv1,...,vE{1g

Sv,MvT,

where EvE is the usual Euclidean length of the vector v, Sv,wT is

the usual Euclidean inner product of the vectors v and w, and

v\fv1, . . . ,vkg indicates that v is perpendicular to each of the

vectors v1, . . . ,vk. Thus, an edge that receives a weight with large

magnitude from an eigenvector corresponding to one of the bigger

eigenvalues of the covariance matrix S may be viewed as an edge

across which there are substantial dissimilarities between samples

in the amount of mass placed in the components on either side of

the edge.

In our visualization tool, each eigenvector is represented by a

single colored and thickened reference tree: the thickness of an

edge is proportional to the magnitude of the corresponding entry

of the eigenvector and the color specifies the sign of that entry
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(Fig. 4 and Fig. 5). For the trees shown here, orange signifies a

positive entry, while green represents a negative entry. Moreover,

we can project each sample onto an eigenvector to visualize how

the sample is spread out with respect to that ‘‘axis’’ (Fig. 6).

When considering the weight assigned to a single edge in

isolation, only the magnitude of the weight matters and not the

sign, because if v is an eigenvector for a particular eigenvalue, then

so is {v. However, sign matters when comparing the weights

assigned to two or more edges: if the edge mass differences for two

edges are strongly negatively associated, then the corresponding

entry of the covariance matrix will be very negative, and the

corresponding two entries of the eigenvector for a large eigenvalue

will have different signs.

Changing the chosen root from vertex x to vertex y does not

affect the eigenvalues or the magnitudes of the entries in the

corresponding eigenvectors, and it only changes the signs of the

entries for the edges between x and y. This may be seen as follows.

Note first that if an edge e is between x and y, then re-rooting flips

the sign of dP(e), whereas dP(e) is remains the same if e is not

between x and y. Define K to be the diagonal E|E matrix such

that Ke,e~{1 for edges e on the path between x and y, and 1

otherwise. Note that K~K{1. The covariance matrix S’ for the

re-rooted tree and that for the original tree are related by a

similarity transformation: S’~KSK . Thus, the eigenvalues for S
are the same as those for S’, and vk is an eigenvector of S if and

only if Kvk is an eigenvector of S’.
As with classical principal components analysis, the question

arises of choosing an appropriate number k such that the

eigenvectors corresponding to the k largest eigenvalues represent

‘‘signal’’ in the data, whereas the remaining E{K eigenvectors

represent ‘‘noise’’. That is, one wishes to choose k such that the

projection of the data onto the subspace spanned by the first k
eigenvectors is a reasonably faithful lower-dimensional summary

of the data that does not miss important features. There is no

clear-cut, ‘‘one-size-fits-all’’ solution to this problem. The usual

approach is to first construct a scree plot that depicts for each i the

proportion of the total variance explained by the ith eigenvector

(that is, Svi,MviT=½
PE

j~1 Svj ,MvjT] and the proportion of the

total variance explained by the first i eigenvectors (that is,Pi
j~1 Svj ,MvjT

h i. PE
j~1 Svj ,MvjT

h i
). One then chooses k so

that the there is a substantial jump from the proportion of variance

explained by the kth eigenvector to the proportion explained by

the (kz1)st and, moreover, so that the proportion of variance

explained by the first k eigenvectors is close to 1. Also, a wish to

represent the data graphically by plotting the projection onto the

subspace spanned by the first k eigenvectors makes a choice of

1ƒkƒ3 desirable if it is reasonable in terms of the above criteria.

We now shift our attention to support overlap minimization.

We will measure overlap of vectors v and w two ways: either in an

‘1 sense by considering
P

i Dviwi D, or in an ‘2 sense by consideringP
i v2

i w2
i . Either of these can be extended to define an overlap of a

collection of vectors by considering the sum of their pairwise

overlaps.

The rotation idea is simple: rotate the eigenvectors in the space

that they span. Specifically, assume that we want to apply this

process to the first k eigenvectors; let V be the matrix with the first

k eigenvectors as columns. Such a rotation can be obtained by

multiplying V on the right by an arbitrary k|k rotation matrix

X[O(k); the columns of the resulting matrix are the rotated

eigenvectors. The rotation Support Overlap Minimization (SOM)

process finds the rotation that minimizes the ‘1 overlap function

applied to VX for X[O(k).

One disadvantage of the rotation process is that the axes lose

their inherent meaning; for example, the first dimension is no

longer the axis of maximal variance. An alternative means of

minimizing support overlap is to explicitly penalize the ‘2 overlap.

For the second component, this can be done by taking the highest-

eigenvalue eigenvector of the matrix P(S{cdiag(v2
1))P, where P

is the projection onto the orthogonal complement of the span of

v1, which can be obtained by power iteration. In that case,

v2~arg maxfv’Sv{cv’diag(v2
1)v : v’v~1,v’v1~0g:

We have not been as successful with this approach as with the

rotation described above; in the examples we have tried a large

value of c is needed to see a significant decrease in overlap, but

that leads to an excessive distortion of the principal component

vectors.

Squash clustering
Squash clustering is a type of hierarchical clustering using the

earth-movers, or Kantorovich-Rubinstein (KR) distance described

above. The key difference with other types of hierarchical

clustering happens when merging two clusters: we simply take a

weighted average of the two corresponding mass distributions to

get the mass distribution that corresponds to the new, larger

cluster (Fig. 2).

Agglomerative hierarchical clustering in general proceeds by

iterating the following sequence of steps until there is a single

cluster and a corresponding 1|1 pairwise distance matrix.

1. Find the smallest off-diagonal element in the current pairwise

distance matrix. Say it is the distance between clusters i and j.

2. Merge the i and j clusters, making a cluster k.

3. Remove the ith and jth rows and columns from the distance

matrix.

4. Calculate the distance from the cluster k to the other clusters.

5. Insert the distances from k into the distance matrix.

Classical hierarchical clustering methods calculate the distance

in step number 4 as some function of the distance matrix. In

particular, average-linkage clustering or UPGMA calculates the

distance between two clusters as the average between pairs of items

in the clusters.

Squash clustering takes the average of the mass distributions

and then computes KR distances from the merged cluster to the

other clusters. That is, if we merge two clusters that correspond to

sets of m and n original mass distributions and are represented by

averaged mass distributions m and n, then the new cluster is

represented by the mass distribution

m

mzn
mz

n

mzn
n:

Because these merged clusters are simply mass distributions, one

can calculate KR distances as usual for the next stage of clustering.

The series of merges in the clustering algorithm determines the

topology of the rooted clustering tree that the algorithm produces.

Leaves of the tree correspond to individual samples.

The KR distances between these mass distributions can be used

to assign branch lengths to the clustering tree. Specifically, each

internal node is associated with exactly one mass distribution, and

the length of a given branch between two internal nodes u and v is

equal to the KR distance between the mass distributions associated

with u and v. The mass distributions corresponding to the internal
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nodes of the phylogenetic tree can be visualized using the software

implementation. In contrast, for UPGMA the branch lengths are

differences of ‘‘heights’’ that are calculated as certain averages of

distances from the original distance matrix. (We note that in the

default UPGMA implementation in R, the branch lengths for

‘‘pendant’’ branches leading to leaves are arbitrarily specified by

the user and thus the trees may not appear ultrametric.)

In the next section, we investigate connections between edge

PCA and squash clustering, compare squash clustering and

UPGMA in more detail, and show that squash clustering is

consistent given ultrametric data.

Further results
Given probability measures P and Q on the rooted tree T , the

Zolatarev-like Zp generalization of the KR distance is defined for

p§1 as

Zp(P,Q)~

ð
T

DP(t(y)){Q(t(y))Dp l(dy)

� �1
p

, ð1Þ

where l is the natural length measure on the tree and t(y) is the

subtree on the other side of y from the root [7]. The classical KR

distance is (1) with p~1; this is the value that corresponds to

weighted UniFrac. It is shown in [7] that choosing a different root

does not change the distance. It is also noted there that if P and Q

only assign mass to leaves of the tree and y is in the interior of edge

e then

P(t(y)){Q(t(y))j j~
1

2
P(Tz(e)){Q(Tz(e))j jz P(T{(e)){Q(T{(e))j jð Þ,

furnishing a connection with edge PCA.

At each stage of the squash clustering algorithm we have a

pairwise distance matrix with rows and columns indexed by the

clusters that have already been made by the algorithm. Initially,

the clusters are just the individual samples and the entries in the

pairwise distance matrix are computed using equation (1).

We now compare UPGMA and squash clustering in more

detail. For UPGMA, if clusters i and j containing respective

numbers of items a and b are merged to form a cluster k with azb
items, then the average-linkage distance between another cluster ‘
with c items and the new cluster k is (writing d(:,:) for the distance

between individual items)

distance(k,‘)~
1

(azb)c

X
y[k,z[‘

d(y,z)

~
a

azb

1

ac

X
w[i,z[‘

d(w,z)z
b

azb

1

bc

X
x[j,z[‘

d(x,z)

~
a

azb
distance(i,‘)z

b

azb
distance(j,‘),

and so the entries of the updated UPGMA distance matrix are just

suitably weighted averages of the entries of the previous distance

matrix.

At each stage of squash clustering, on the other hand, a cluster is

associated with a probability measure on the tree T . When two

clusters i and j containing respective numbers of items a and b and

associated with respective probability measures P and Q are

merged to form a cluster k, then the new cluster k is associated

with the probability measure
a

azb
Pz

b

azb
Q and the distance

from k to some other cluster ‘ associated with the probability

measure R is

Zp

a

azb
Pz

b

azb
Q,R

� �
, ð2Þ

which is analogous to the above equation for the UPGMA

averaging procedure. As remarked above, the ‘‘squash’’ interpre-

tation of (2) comes from recalling that the probability measures

associated with the two clusters are each simple averages of all of

the measures for the items in the clusters (Fig. 2). That is, if Sz is

the probability measure associated with original item z, then

P~
1

a

X
x[i

Sx

and

Q~
1

b

X
y[j

Sy,

and the probability measure associated with the new cluster k is

a

azb
Pz

b

azb
Q~

1

azb

X
z[k

Sz,

the (unweighted) average of the probability measures in z.

A natural question to ask is whether the distance between a

probability measure R and the weighted average of two

probability measures P and Q is equal to the similarly weighted

average of the distance between R and P and the distance between

R and Q. The answer is in general ‘‘no’’: starting from (1) we have

from the Minkowski inequality that for 0vtv1:

Zp(t Pz(1{t)Q,R)~

ð
T

t P(t(y)){R(t(y))ð Þz(1{t) Q(t(y)){R(t(y))ð Þj jp l(dy)

� �1
p

ƒt

ð
T

P(t(y)){R(t(y))j jp l(dy)

� �1
p

z(1{t)

ð
T

Q(t(y)){R(t(y))j jp l(dy)

� �1
p

~tZp(P,R)z(1{t)Zp(Q,R):

The early iterations of the UPGMA and squash clustering

algorithms can be quite similar because the pairs of objects being

merged are close together relative to their distance to the other

objects. For example, if p~1, then the above inequality is an

equality whenever P(t(y)){R(t(y)) and Q(t(y)){R(t(y)) have

the same sign for all y[T .

Consistency of squash clustering on ultrametric

data. An appealing feature of UPGMA is that if the pairwise

distances which are used to initialize the algorithm are the leaf-to-

leaf distances for an ultrametric rooted tree T , then UPGMA is

guaranteed to return T . In this section we show that squash

clustering has a similar property in a simple special case. This

observation complements the validation work done using simula-
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tion to show that squash clustering does recover hierarchical

structure when it is present.

In order to explain the result for squash clustering, we must first

review the simple demonstration of the above result for UPGMA.

Imagine that the ultrametric rooted tree T is oriented on the

page with the root at the top and the leaves at the bottom, and for

simplicity assume that it is a bifurcating tree. By the assumption of

ultrametricity, all the leaves will sit on a horizontal line. Imagine

the internal nodes z1, . . . ,zm of T are listed in order of increasing

distance from the line so that z1 is the closest. For simplicity,

suppose further that no two of these distances are equal, so that we

don’t have to adopt an arbitrary convention for breaking ties.

Each internal node corresponds to a set of leaves – namely, those

that are below it.

We proceed inductively to demonstrate that the merges done by

the algorithm reproduce, in order, the sets of leaves below the

internal nodes z1, . . . ,zm and that the distances between clusters

assigned by UPGMA agree with the original node-to-node

distances in T . The base case is trivial. Assume the algorithm

satisfies the inductive hypothesis for all zj with jvi. The two nodes

descending from zi in T are each an internal node of the form zj

for some jvk or a single leaf. Call the two corresponding sets of

leaves below these nodes Ai and Bi. By induction, Ai and Bi are

present among the clusters that have been constructed by

UPGMA after the (i{1)st merge. The distance in T between

any pair of leaves (x,y) with x[Ai and y[Bi is the same. By

construction, the UPGMA distance between Ai and Bi,

(#Ai)
{1(#Bi)

{1
X

x[Ai ,y[Bi

d(x,y),

is equal to the distance between any two such leaves x and y.

Furthermore, the UPGMA distance between Ai (resp. Bi) and any

other cluster Ci present after (i{1) UPGMA merges is equal to

the common distance in T between any leaf in Ai (resp. Bi) and

any leaf in Ci. Moreover, by the definition of zi, this common

distance is greater than the UPGMA distance between the clusters

Ai and Bi. It is now clear that the ith merge of UPGMA merges

the clusters Ai and Bi to produce a cluster that coincides with the

set of leaves below zi in T and that the updating of distances

maintains the agreement between node-to-node distances in T
and UPGMA cluster-to-cluster distances.

A similar argument leads to an analogous statement for squash

clustering. Again, assume that the reference tree T is an

ultrametric rooted tree. For each leaf ‘, assume that there is a

single sample S‘ consisting of a single read mapped to ‘. We will

show that in this case both squash clustering and UPGMA applied

to KR Z1 distances return the reference tree T as the clustering

tree.

First note that the Z1 distance between the two samples S‘ and

S‘’ is simply the distance on the tree between the leaves ‘ and ‘’.
These distances are ultrametric by assumption. Thus, UPGMA

run with KR distances will return T as the clustering tree in this

case.

Further, squash clustering and UPGMA start with the same

clusters (each read in a cluster by itself), every cluster is trivially the

set of leaves below a node of the reference tree T , and the

distances between clusters are the same for the two methods.

Suppose, then, that after some number of iterations of the two

methods we are still in a situation where the two methods have the

same clusters available to merge, these clusters are disjoint sets of

leaves below nodes of T , and the distances between the clusters

available to merge are the same for the two methods.

Call the available clusters C1, . . . ,Cm. By definition, squash

clustering and UPGMA will merge the same pair of clusters – say,

without loss of generality, C1 and C2. The Z1 squash clustering

distance is the optimal transport (earth movers’) distance between

the probability measure that puts mass (#C1z#C2){1 at each

leaf of C1|C2 and the probability measure that puts mass

(#Ci)
{1 at each leaf of Ci for iw2. Because, as we remarked

above, d(x’,y’)~d(x’’,y’’) for any x’,x’’[C1|C2 and y’,y’’[Ci,

iw2, the optimal transport distance is necessarily this common

value. Thus, the updating of the distances between the clusters

available for merging is the same for the two methods. Therefore,

by induction, the trees produced by the two methods will be the

same and will coincide with the tree T .

Simulation methodology for clustering validation
In this section we present methodology for making artificial

‘‘samples’’ that are hierarchically related. These are then used to

compare squash clustering to UPGMA. The code for these

simulations can be found on the commiesim branch of pplacer at

http://github.com/matsen/pplacer/tree/commiesim.

Start with a true ‘‘clustering tree’’ C: the tree of communities on

which we are simulating. Let T be a phylogenetic ‘‘reference’’ tree

of the organisms of interest: the phylogenetic tree of the actual

species from which the simulated placements will be drawn. Write

L for the set of leaves of T . Before describing the simulation we

recall some standard terminology. A split of T is the partition of the

leaves L induced by an edge of T : it consists of the two subsets of

A,B of L that are on either side of the edge. We have A|B~L
and A\B~1, and we use the notation ADB to denote that the

subsets A and B form a split.

The first step of simulation assigns subsets of L to the leaves of

the clustering tree C. The elements of each such subset are the

organisms found in that particular ‘‘community’’; the community

will then be used to generate simulated placements by sampling

some number of members of the community with replacement.

For example, suppose that a leaf x of the clustering tree C is

associated with the set S of leaves of the reference tree T ; to

generate a sampled collection of placements for x we first sample

from S with replacement. The resulting multi-set of leaves of the

reference tree T is made into a collection of placements by turning

each element into a placement consisting of a unit point mass at

the given leaf of the reference tree.

These simulated collections of placements are then used to

reconstruct the clustering tree by applying either squash clustering

or UPGMA on the KR distances.

Subsets of the leaf set L of T are assigned to leaves of the

clustering tree C by a recursive procedure that proceeds down the

clustering tree beginning with the root r. At each stage there is a

current internal node t of C and a set of leaf sets Jt associated with

t. The recursion is initialized with Jr~fLg. We proceed down the

tree C from a node t in two stages: we first split the set of subsets Jt

and then assign some of these subsets to each child of t.

The splitting stage is done by selecting splits (a.k.a. bipartitions)

of T and using them to cut apart the leaf subsets. For example,

suppose that Jt~fS1, . . . ,Skg is the set of subsets of L associated

with the internal node t of C that we are currently processing. We

select an ‘‘effective’’ split ADB of T i.e. one such that A\Si and

B\Si are non-empty for some i. Applying this split produces the

new collection of leaf subsets fS1, . . . ,A\Si,B\Si, . . . ,Skg. Each

one of the Sj corresponds to a connected region of the reference

tree T , and applying an effective split corresponds to disconnecting

one of those regions by cutting an edge of T . In the simulation, we

sample an integer e from a Poisson distribution with mean m and
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then sample e effective splits uniformly with replacement from the

set of all effective splits for the subsets in Jt. We apply those splits

successively as above to split the subsets in Jt. This splitting

produces a new set of leaf subsets that we call Kt.

Next, for each child of the current internal node t, we select a

subset of Kt of size n to pass on to the child. We do this in such a

way that q of the subsets selected are the same for each child, while

the remaining n{q are selected independently of the correspond-

ing selections for the other children. Here n is a fixed parameter

and q is a realization of a binomial distribution with number of

trials n and success parameter 0ƒrtƒ1. The ‘‘reconstructability

parameter’’ rt determines the level of similarity between the

children of t: for internal nodes with high rt the subsets assigned to

its children will be quite similar, while for those with low rt the

subsets will tend to be different.

More specifically, suppose that the children of t are the nodes

t1, � � � ,t‘. We first sample q elements from Kt with replacement to

make a set M of subsets of L with at most q elements. Next, for

1ƒiƒ‘, we sample n{q elements from Kt with replacement to

make a set Li of subsets of L with at most n{q elements. Then,

Jti
, the set of subsets associated with the node ti, is defined to be

the set M|Li. By recurring in this fashion, every node t of the

clustering tree C is assigned some set Jt of subsets of the set of

leaves L of the reference tree T . For each leaf t of the clustering

tree, placements are simulated as described above from the set of

leaf subsets Jt.

For the study reported in Figure 9, the following parameters

were used. The clustering tree C was, in the usual ‘‘Newick’’

bracketing notation for binary rooted trees, the tree

((a,(b,c)),(d,(e,f ))). The reference tree T was the tree for

microbes in the vaginal environment used in the rest of the

paper. 500 trials were performed for every parameter setting, and

100 placements were generated for each clustering leaf of each

trial. The mean number of cuts m was set to 10, and the number of

sets selected n was set to 5. The reconstructability parameters rt for

all internal nodes were set to the value specified in the panel label

of the figure.

The Robinson-Foulds (RF) metric [30] of two trees T and S was

computed as half the size of the symmetric difference of the split-

set of T and that of S. Because the classical RF distance is

calculated on unrooted trees, while the clustering trees in the study

are rooted, we attached a fictitious ‘‘root leaf’’ to the root before

calculating RF distances to account for the position of the root. We

call the resulting quantity the rooted Robinson-Foulds distance. For a

bifurcating tree on six leaves such as C, the maximal rooted RF

distance is four.

Supporting Information

Figure S1 A comparison of the clustering results for the
Fredricks data using the software of [32]. The software uses

the Hungarian (a.k.a. Munkres) algorithm to find an optimal one-

to-one matching between edges of the trees minimizing differences

in a topological score between pairs of matched branches as

follows. Given two trees T and S on the same samples, let S(T)
and S(S) be the bipartitions of the samples induced by cutting the

edges of T and S. For two bipartitions i and j, one associates an

‘‘agreement score’’ s(i,j) describing the proportion of shared

elements between the sides of the bipartitions. The algorithm finds

a one-to-one matching between S(T) and S(S) that minimizes the

total agreement score between matched bipartitions. Each tree is

drawn in a way which shows the agreement scores: a thick branch

represents an edge which has a low agreement score with its

partner in the matching. The program arranges the trees such that

matched edges are close to one another on the tree. Branches

shown in red mean the colored branch is longer than the branch in

the other tree, while those in blue are opposite; the intensity of the

color indicates the degree of this difference.

(PDF)

Figure S2 The combined vaginal samples divided by
race, plotted with respect to the first two principal
components and colored by Nugent score.

(TIFF)
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