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Abstract
Introduction: Hypo- and hyperkalemia are associated with a 
higher risk of ischemic stroke. However, this association has 
not been examined in an advanced chronic kidney disease 
(CKD) population. Methods: From among 102,477 US veter-
ans transitioning to dialysis between 2007 and 2015, 21,357 
patients with 2 pre-dialysis outpatient estimated glomerular 
filtration rates <30 mL/min/1.73 m2 90–365 days apart and 
at least 1 potassium (K) each in the baseline and follow-up 
period were identified. We separately examined the associa-
tion of both baseline time-averaged K (chronic exposure) 
and time-updated K (acute exposure) treated as categorized 

(hypokalemia [K <3.5 mEq/L] and hyperkalemia [K >5.5 
mEq/L] vs. referent [3.5–5.5 mEq/L]) and continuous expo-
sure with time to the first ischemic stroke event prior to di-
alysis initiation using multivariable-adjusted Cox regression 
models. Results: A total of 2,638 (12.4%) ischemic stroke 
events (crude event rate 41.9 per 1,000 patient years; 95% 
confidence interval [CI] 40.4–43.6) over a median (Q1–Q3) fol-
low-up time of 2.56 (1.59–3.89) years were observed. The 
baseline time-averaged K category of hypokalemia (adjust-
ed hazard ratio [aHR], 95% CI: 1.35, 1.01–1.81) was margin-
ally associated with a significantly higher risk of ischemic 
stroke. However, time-updated hyperkalemia was associat-
ed with a significantly lower risk of ischemic stroke (aHR, 95% 
CI: 0.82, 0.68–0.98). The exposure-outcome relationship re-
mained consistent when using continuous K levels for both 
the exposures. Discussion/Conclusion: In patients with ad-
vanced CKD, hypokalemia (chronic exposure) was associat-
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ed with a higher risk of ischemic stroke, whereas hyperkale-
mia (acute exposure) was associated with a lower risk of isch-
emic stroke. Further studies in this population are needed to 
explore the mechanisms underlying these associations.

© 2021 S. Karger AG, Basel

Introduction

The kidneys play a critical role in serum potassium (K) 
homeostasis; thus, patients with chronic kidney disease 
(CKD) are prone to dyskalemias (hypo- and hyperkale-
mia, especially the latter) [1, 2]. Dyskalemias in CKD oc-
cur due to various factors including lower estimated glo-
merular filtration rate (eGFR), prevalence of diabetes 
mellitus (DM) and/or cardiovascular disease, and use of 
medications such as renin-angiotensin-aldosterone sys-
tem inhibitors (RAASi) and diuretics, and reduced di-
etary intake of K [1–4] and are associated with adverse 
outcomes, including higher mortality and cardiovascular 
events, and health-care burden [4–11].

Previous studies suggested that dyskalemias (especial-
ly hypokalemia) are associated with a higher risk of isch-
emic stroke [12–15]. Among the general population [14], 
diuretics users [12] and treated hypertensive patients 
[15], hypokalemia was associated with a higher risk of 
ischemic stroke. Conversely, a study in the general popu-
lation [13] showed that higher levels of K were associated 
with a higher risk of ischemic stroke. Patients with ad-
vanced CKD are at higher risk of dyskalemias [4, 16] and 
ischemic stroke [17, 18]. However, the association be-
tween dyskalemias and ischemic stroke has not been ex-
amined in an advanced CKD population. The aim of our 
study was to assess this association in a large population 
of patients with advanced CKD prior to their transition 
to dialysis.

Materials and Methods

Study Population
Longitudinal data from a historical cohort of US veterans tran-

sitioning to dialysis (Transition of Care in Chronic Kidney Disease 
[TC-CKD] cohort [n = 102,477]) from October 1, 2007 to March 
31, 2015 identified from the US Renal Data System were used for 
this study [16, 19, 20]. An initial sample of 60,520 US veterans with 
pre-dialysis outpatient eGFR data was identified. Among these, 
36,644 patients with 2 outpatient eGFRs <30 mL/min/1.73 m2 
measured 90–365 days apart were identified, with the second eGFR 
serving as the index. Further, the sample was restricted to 23,363 
patients with at least 1 year each of the look-back period (baseline) 
and follow-up period (prior to dialysis initiation) from the index. 

Among these, 21,669 patients had at least 1 outpatient or inpatient 
K value each in the baseline and follow-up period. Finally, we ex-
cluded 312 patients (age <18 years at index [n = 1], without medi-
cation data [n = 235], and with ischemic stroke event at the index 
[n = 76]) to yield a final sample size of 21,357 patients (see online 
suppl. Fig. 1; see www.karger.com/doi/10.1159/000516902 for all 
online suppl. material).

Exposure
The exposures of interest were (a) baseline time-averaged K 

levels (average of all K measurements over the 1-year baseline) and 
(b) time-updated K levels to the end of follow-up, categorized as 
hypokalemia (K <3.5 mEq/L), hyperkalemia (K >5.5 mEq/L), and 
referent (3.5 ≤ K ≤ 5.5 mEq/L) [19], and also treated as a continu-
ous exposure.

Covariates
Patient demographic characteristics were extracted from the 

US Renal Data System Patient and Medical Evidence file. Data on 
marital and smoking status were obtained from VA records [21, 
22]. Pre-existing comorbidities as of the index were identified from 
the VA Inpatient and Outpatient Medical SAS, and the VA/Cen-
ters for Medicare and Medicaid Services databases with a diagnosis 
defined as the presence of 2 outpatient or 1 inpatient claims for the 
condition according to the International Classification of Disease, 
Ninth Revision, Clinical Modification (ICD-9-CM) diagnostic and 
Current Procedural Terminology codes. The Charlson Comorbid-
ity Index (CCI) score was calculated using the Deyo modification 
for administrative datasets with kidney disease excluded from the 
algorithm [23]. Data on prescribed medications were collected 
both in the baseline period and as a time-varying covariate for the 
follow-up period from inpatient and outpatient VA pharmacy dis-
pensation records and VA/Centers for Medicare and Medicaid 
Services Medicare Part D. For the baseline period, patients were 
considered to be users if they had at least one 30-day supply dis-
pensation for medications used for chronic therapy (RAASi, loop 
diuretics, K sparing diuretics, thiazide diuretics, nonsteroidal anti-
inflammatory drugs, antiplatelet agents, aspirin, anticoagulants, 
lipid-lowering medications, anti-arrhythmics, digoxin, beta-
blockers, calcium channel blockers, insulin, oral hypoglycemic 
drugs, beta-2 agonist, and calcineurin inhibitors) and at least 1 
dispensation of any day supply for sodium polystyrene sulfonate 
(SPS), trimethoprim, azole antifungals, and laxatives. For the time-
updated K level exposure, medications were treated as a time-vary-
ing covariate and were deemed to be present if the prescription 
date was the same as the K measurement date or if the K measure-
ment fell within the time period covered by the day supply of the 
medication. Laboratory measurements and vital signs data were 
captured over the baseline period and were obtained from VA re-
search databases, as previously described [24, 25]. The eGFR was 
calculated by the Chronic Kidney Disease Epidemiology Collabo-
ration (CKD-EPI) equation [26]. Further, sodium (Na) and eGFR 
levels were treated as time-varying covariates and captured on the 
same date as each individual time-updated K level, when K levels 
were treated as a time-updated exposure.

Outcomes
The outcome of interest was time to the first ischemic stroke 

event over the follow-up period. Ischemic stroke was ascertained 
based on ICD-9-CM diagnosis codes (433.01, 433.11, 433.21, 
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Table 1. Baseline characteristics

Characteristic All 
(N = 21,357)

K <3.5 mEq/L 
(N = 402)

K 3.5–5.5 mEq/L
(N = 20,287)

K >5.5 mEq/L 
(N = 668)

p value

Age at index, years 68.6 (10.4) 65.6 (10.2) 68.6 (10.4) 70.6 (10.2) <0.0001*
Males 20,963 (98.2) 395 (98.3) 19,912 (98.2) 656 (98.2) 0.98†

Race
White 14,712 (68.9) 190 (47.3) 13,392 (68.9) 530 (79.3)

<0.0001†Black 6,044 (28.3) 203 (50.5) 5,725 (28.2) 116 (17.4)
Other 601 (2.8) 9 (2.2) 570 (2.8) 22 (3.3)

Married 12,309 (57.7) 216 (54.0) 11,670 (57.6) 423 (63.3) 0.008†

Region
Northeast 3,155 (14.8) 36 (8.9) 3,007 (14.8) 112 (16.8)

<0.0001†
Midwest 4,776 (22.4) 87 (21.6) 4,562 (22.5) 127 (19.0)
South 9,648 (45.2) 229 (56.9) 9,105 (44.9) 314 (47.0)
West 3,459 (16.2) 46 (11.4) 3,332 (16.4) 81 (12.1)
Other 305 (1.4) 4 (1.0) 267 (1.3) 34 (5.1)

Income ($) 18,036 (6,492–34,662) 17,734 (4,524–34,992) 18,036 (6,684–34,675) 18,042 (1,722–33,876) 0.58‡

Smoking status
Current 6,928 (32.5) 122 (30.4) 6,610 (32.6) 196 (29.3)

0.18†Past 7,524 (35.3) 134 (33.3) 7,147 (35.3) 243 (36.4)
Never 6,892 (32.3) 146 (36.3) 6,517 (32.1) 229 (34.3)

Comorbidities
DM 14,752 (69.1) 284 (70.7) 14,004 (69.0) 464 (69.5) 0.77†

Congestive heart failure 7,466 (34.9) 153 (38.1) 7,097 (34.9) 216 (32.3) 0.16†

Hypertension 20,678 (96.8) 392 (97.5) 19,649 (96.9) 637 (95.4) 0.07†

Hyperlipidemia 16,669 (78.1) 289 (71.9) 15,842 (78.1) 538 (80.5) 0.004†

Peripheral vascular disease 6,579 (30.8) 96 (23.9) 6,257 (30.8) 226 (33.8) 0.003†

Cerebrovascular disease 5,359 (25.1) 87 (21.6) 5,095 (25.1) 177 (26.5) 0.19†

Chronic lung disease 6,308 (29.5) 107 (26.6) 6,013 (29.6) 188 (28.1) 0.31†

Peptic ulcer disease 1,001 (4.7) 14 (3.5) 948 (4.7) 39 (5.8) 0.19†

Ischemic heart disease 10,573 (49.5) 195 (48.5) 10,032 (49.5) 346 (51.8) 0.45†

Paraplegia/hemiplegia 507 (2.4) 8 (1.9) 489 (2.4) 10 (1.5) 0.27†

Anemia 10,145 (47.5) 167 (41.5) 9,624 (47.4) 354 (52.9) 0.001†

Atrial fibrillation 2,456 (11.5) 55 (13.7) 2,321 (11.4) 80 (11.9) 0.35†

Liver disease 1,563 (7.3) 33 (8.2) 1,491 (7.4) 39 (5.8) 0.26†

Malignancies 4,238 (19.8) 71 (17.7) 4,044 (19.9) 123 (18.4) 0.34†

Ischemic stroke/transient ischemic 
stroke 3,261 (15.3) 64 (15.9) 3,109 (15.3) 88 (13.2) 0.29†

Charlson comorbidity index 4 (2–6) 3 (2–5) 4 (2–6) 4 (2–6) 0.22‡

Utilization measures
Outpatient visits 16 (9–28) 17 (10–28) 17 (9–28) 12 (7–20) <0.0001‡

Hospital visits 0 (0–1) 0 (0–1) 0 (0–1) 0 (0–1) <0.0001‡

Emergency room visits 0 (0–1) 0 (0–1) 0 (0–1) 0 (0–0) 0.009‡

Nephrology visits 0 (0–1) 0 (0–1) 0 (0–1) 0 (0–0) <0.0001‡

Medications
RAASi 15,892 (74.4) 292 (72.6) 15,114 (74.5) 486 (72.8) 0.42†

Loop diuretics 11,986 (56.1) 253 (62.9) 11,428 (56.3) 305 (45.7) <0.0001†

K sparing diuretics 1,955 (9.2) 76 (18.9) 1,840 (9.1) 39 (5.8) <0.0001†

Thiazide diuretics 6,969 (32.6) 228 (56.7) 6,547 (32.3) 194 (29.0) <0.0001†

Sodium polystyrene sulfonate 1,684 (7.9) 2 (0.5) 1,496 (7.4) 186 (27.8) <0.0001†

NSAIDs 7,188 (33.7) 137 (34.1) 6,892 (33.9) 159 (23.8) <0.0001†

Digoxin 1,007 (4.7) 22 (5.5) 961 (4.7) 24 (3.6) 0.30†

Beta-blockers 14,650 (68.6) 303 (75.4) 13,931 (68.7) 416 (62.3) <0.0001†

Calcium channel blockers 14,089 (65.9) 307 (76.4) 13,414 (66.1) 368 (55.1) <0.0001†

Anticoagulants 1,839 (8.6) 42 (10.5) 1,757 (8.7) 40 (5.9) 0.02†

Antiplatelets 3,300 (15.5) 41 (10.2) 3,157 (15.6) 102 (15.3) 0.01†

Antihyperlipidemic 16,441 (76.9) 297 (73.9) 15,638 (77.1) 506 (75.8) 0.24†

Anti-arrhythmics 499 (2.3) 16 (3.9) 468 (2.3) 15 (2.3) 0.09†



Dashputre et al.Am J Nephrol 2021;52:539–547542
DOI: 10.1159/000516902

433.31, 433.81, 433.91, 434.00–434.91, and 436) [27] captured as 
the primary diagnosis at an outpatient or inpatient visit. The fol-
low-up started from the index eGFR and patients were followed up 
through first ischemic stroke or censored at dialysis initiation for 
those who did not experience the stroke event, whichever occurred 
first.

Statistical Analysis
Patient characteristics were summarized for the entire sample 

and by hypokalemia (K <3.5 mEq/L), hyperkalemia (K >5.5 
mEq/L), and referent (3.5 ≤ K ≤ 5.5 mEq/L) categories based on 
baseline time-averaged K levels. Data were presented as counts 
(percentages), mean (SD) or median (25–75th percentile), and the 
differences between the K categories were assessed using χ2 tests, 
one-way analysis of variance, and the Kruskal-Wallis test, as ap-
propriate. The association of baseline time-averaged K categories 
with time to ischemic stroke was assessed using multivariable-ad-
justed Cox regression models (models 1–4) which incrementally 
accounted for confounders based on theoretical considerations 
and availability in the database (shown in online suppl. Table 1). 
We also conducted an additional exploratory model (model 5) 
which adjusted for systolic blood pressure (SBP) and diastolic 

blood pressure (DBP) due to their potential mediatory effects. 
Similarly, the association of categorized time-updated K levels and 
ischemic stroke was assessed in incrementally multivariable-ad-
justed models, as described in online suppl. Table 1, with addition-
ally accounting for time-varying medications, eGFR, and Na and 
baseline average K levels in models 4 and 5. Cox regressions using 
cubic splines and fractional polynomials by treating the K levels as 
a continuous exposure were used to assess nonlinearity in expo-
sure-outcome relationship.

Missingness was observed for marital status (0.05%), smoking 
status and region of residence (0.07% each), Na (0.4%), SBP and 
DBP (0.7% each), body mass index (BMI) (10.8%), total choles-
terol (12.3%), triglycerides (13.5%), high-density lipoprotein 
(14.5%), low-density lipoprotein (17.2%), bicarbonate (22.3%), 
time-varying Na (2.3%), and eGFR (6.5%). The main analysis 
(models 1–4 and model 5) for the exposure-outcome relationship 
was conducted using singly imputed data for missing baseline co-
variates derived from regression imputation. In the time-updated 
K level exposure models, time-varying Na and eGFR at each K 
were imputed using the last observation carried forward method. 
We conducted subgroup analyses after categorizing patients by 
age; race; region of residence; prevalent DM; congestive heart fail-

Table 1 (continued)

Characteristic All 
(N = 21,357)

K <3.5 mEq/L 
(N = 402)

K 3.5–5.5 mEq/L
(N = 20,287)

K >5.5 mEq/L 
(N = 668)

p value

Aspirin 6,004 (28.1) 106 (26.4) 5,783 (28.5) 115 (17.2) <0.0001†

Insulin 8,698 (40.7) 177 (44.0) 8,291 (40.9) 230 (34.4) 0.002†

Oral hypoglycemics 7,506 (35.2) 153 (38.1) 7,103 (35.0) 250 (37.4) 0.20†

Calcineurin inhibitors 227 (1.1) 4 (1.0) 215 (1.1) 8 (1.2) 0.93†

Trimethoprim 392 (1.8) 9 (2.2) 368 (1.8) 15 (2.3) 0.59†

Azole antifungals 2,304 (10.8) 34 (8.5) 2,225 (10.9) 45 (6.7) 0.0009†

Beta-2 agonists 3,224 (15.1) 57 (14.2) 3,095 (15.3) 72 (10.8) 0.006†

Laxatives 5,881 (27.5) 101 (25.1) 5,674 (27.9) 106 (15.9) <0.0001†

Vitals
BMI, kg/m2 29.9 (6.1) 31.4 (6.3) 29.9 (6.1) 29.0 (5.8) <0.0001*
SBP, mm Hg 143.6 (16.3) 147.7 (18.8) 143.5 (16.2) 143.8 (17.6) <0.0001*
DBP, mm Hg 74.9 (10.8) 80.1 (13.2) 74.9 (10.8) 72.9 (11.0) <0.0001*
Low-density lipoprotein, mg/dL 94.5 (36.6) 96.8 (40.1) 94.5 (36.6) 93.5 (35.2) 0.41*
High-density lipoprotein, mg/dL 40.0 (13.1) 40.7 (13.2) 39.9 (13.1) 40.4 (11.8) 0.48*
Total cholesterol, mg/dL 172.1 (47.1) 174.5 (50.1) 172.1 (47.1) 169.9 (43.7) 0.35*
Triglycerides, mg/dL 188.5 (145.3) 184.6 (136.6) 188.9 (146.0) 177.7 (127.3) 0.17*

Laboratory measures
Index eGFR, mL/min/1.73 m2 24.8 (20.9–27.6) 24.1 (20.3–27.4) 24.9 (20.9–27.6) 23.4 (19.2–27.3) <0.0001‡

Average K, mEq/L 4.5 (0.5) 3.3 (0.2) 4.5 (0.5) 5.7 (0.2) <0.0001*
Number of K measurements 3 (2–6) 3 (2–6) 3 (2–7) 2 (1–4) <0.0001‡

Bicarbonate, mEq/L 24.9 (3.2) 27.9 (3.9) 24.9 (3.2) 22.8 (3.1) <0.0001*
Sodium, mEq/L 139.5 (2.7) 139.9 (2.8) 139.5 (2.7) 139.4 (2.7) 0.0009*

At least 1 dyskalemia event
K >5.5, mEq/L 3,709 (17.4) 2 (0.5) 3,309 (14.9) 668 (100) <0.0001†

K <3.5, mEq/L 2,431 (11.4) 402 (100) 2,029 (10.0) 0 <0.0001†

Both K <3.5 and K >5.5, mEq/L 371 (1.7) 2 (0.5) 369 (1.8) 0 0.0003†

Data are presented as n (%), mean (SD), and median (Q1–Q3), unless otherwise needed. eGFR, estimated glomerular filtration rate; K, potassium; DM, 
diabetes mellitus; BMI, body mass index; RAASi, renin-angiotensin-aldosterone system inhibitors; SBP, systolic blood pressure; DBP, diastolic blood pres-
sure; NSAIDs, nonsteroidal anti-inflammatory drugs; SD, standard deviation. * One-way analysis of variance. † χ2 test. ‡ Kruskal-Wallis test.
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ure; ischemic heart disease; ischemic stroke/transient ischemic 
stroke (TIA); baseline use of SPS, RAASi, loop diuretics, and anti-
platelet agents; BMI; and index eGFR using singly imputed data. 
Potential interactions between dyskalemia categories and selected 
subgroups were tested by including interaction terms. We con-
ducted several sensitivity analyses. The exposure-outcome asso-
ciation was assessed by categorizing the K levels into granular cat-
egorizes as K <3.5 mEq/L, 3.5–<4.0 mEq/L, 4.0–<4.5 mEq/L (refer-
ence), 4.5–<5.0 mEq/L, 5.0–<5.5 mEq/L, 5.5–<6.0 mEq/L, and 
≥6.0 mEq/L. Further, the exposure-outcome association was as-
sessed among those without baseline history of ischemic stroke/
TIA (n = 18,096). Finally, analyses were repeated using multiple 
imputation (imputation, n = 25) and complete case analyses (n = 
12,388 for baseline K exposure [after excluding missing baseline 
covariates]; n = 6,542 for time-updated K exposure [after exclud-
ing missing baseline and time-varying covariates]). A 2-sided p 
value of <0.05 was used as a threshold of statistical significance. 
Analyses were conducted in SAS Enterprise guide v8.2 (SAS Insti-
tute; Cary, NC, USA) and STATA/MP version 15 (STATA Corpo-
ration, College Station, TX, USA). The study was approved by the 
Institutional Review Boards of the Memphis and Long Beach VA 
Medical centers, with exemption from informed consent.

Results

Baseline Characteristics
The mean (SD) age of the sample was 68.6 (10.4) years; 

98.2% were male; 28.3% were black; and 68.1% had DM 
(shown in Table 1). The most commonly used medica-
tions were lipid-lowering agents (76.9%), RAASi (74.4%), 
and beta-blockers (68.6%). Approximately 8% of the pa-
tients used SPS. The median (25–75th) index eGFR was 
24.8 (20.9–27.6) mL/min/1.73 m2. Patients had a median 
(25–75th) of 3 (2–6) K measurements, with a mean (SD) 
K of 4.5 (0.5) mEq/L in the baseline. Approximately 3 and 
1.9% of the sample had average baseline K levels >5.5 and 
<3.5 mEq/L, respectively. Those with average baseline K 
levels >5.5 mEq/L were more likely to be older, to be 
white, have prevalent hyperlipidemia and anemia, to be 
SPS users, and have lower eGFR, bicarbonate, SBP, DBP, 
and BMI levels. Conversely, those with average baseline 
K levels <3.5 mEq/L were more likely to be younger; 
black; users of loop, K sparing, and thiazide diuretics and 
insulin; and have higher eGFR, bicarbonate, SBP, DBP, 
and BMI levels.

Association of Baseline Time-Averaged Dyskalemia 
Categories with Ischemic Stroke
A total of 2,638 (12.4%) ischemic stroke events (crude 

event rate 41.9 per 1,000 patient years; 95% confidence 
interval [CI] 40.4–43.6) occurred over a median (Q1–Q3) 
follow-up time of 2.56 (1.59–3.89) years. Crude event 

rates for the overall cohort and by baseline time-averaged 
K categories are shown in online suppl. Table 2. In the 
unadjusted analysis, only hypokalemia was associated 
with a higher risk of ischemic stroke (hazard ratio [HR], 
95% CI: 1.37, 1.06–1.76) (shown in Fig. 1 [model 1]). Sim-
ilarly, in the multivariable-adjusted model, only hypoka-
lemia (HR, 95% CI: 1.35, 1.01–1.81) was associated with 
a higher risk of ischemic stroke (shown in Fig. 1 [model 
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Fig. 1. Association of baseline time-averaged K categories with 
time to ischemic stroke (n = 21,357). Models 1–5 account for con-
founders described in online suppl. Table 1. CI, confidence inter-
val; K, potassium.

Fig. 2. Association of baseline continuous time-averaged K with 
time to ischemic stroke (n = 21,357) Dashed and solid lines repre-
sent HR and 95% CI, respectively. Model adjusted for confounders 
accounted in model 4 (fully adjusted) as described in online suppl. 
Table 1. K, potassium; HR, hazard ratio; CI, confidence interval.
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4]). The association for hypokalemia (HR, 95% CI: 1.34, 
0.99–1.79) was attenuated after adjustment for SBP and 
DBP (shown in Fig. 1 [model 5]). Continuous K levels 
showed a nonlinear association (p value for quadratic 
term: 0.002), with lower K levels associated with a higher 
risk of ischemic stroke (shown in Fig. 2).

Associations for the categorized K levels were robust 
to multiple imputation and complete case analyses (data 
not shown). In the multivariable-adjusted model, the as-
sociation of granular K level categories showed a lower 
risk (vs. K 4.0–<4.5 mEq/L) of ischemic stroke associated 
with K 4.5–<5.0 and K 5.0–<5.5 mEq/L (shown in online 
suppl. Table 3 [model 4]). No significant differences were 
observed across subgroups (shown in online suppl. Table 
4). In the sensitivity analysis, among the 84.7% without 
baseline history of stroke, hypokalemia was associated 
with a higher risk of ischemic stroke (shown in online 
suppl. Table 5 [model 4]).

Association of Time-Updated Dyskalemia Categories 
with Ischemic Stroke
Over the follow-up time (median [Q1–Q3]: 2.56 [1.59–

3.89] years), there were a total of 489,486 K measure-
ments with a median (Q1–Q3) of 15 (6–30) K measure-
ments per patient, of which 21,382 (4.5%) and 27,318 
(5.6%) patients were categorized as hypokalemia and hy-
perkalemia, respectively. Online suppl. Table 6 shows the 

distribution of the K categories using the last time-updat-
ed K level prior to ischemic stroke by the baseline time-
averaged K categories among those who experienced a 
stroke event. Online suppl. Table 7 shows the distribution 
of time-updated K categories across all K measurements 
during follow-up by baseline time-averaged K categories. 
In the unadjusted analysis, hyperkalemia was associated 
with a lower risk of ischemic stroke (HR, 95% CI: 0.75, 
0.63–0.89; shown in Fig. 3 [model 1]). The results were 
similar in the multivariable-adjusted model (HR, 95% CI: 
0.82, 0.68–0.98; shown in Fig. 3 [model 4]). Results were 
similar after adjusting for SBP and DBP (HR, 95% CI: 
0.82, 0.68–0.98; shown in Fig. 3 [model 5]). Continuous 
K levels showed a nonlinear association (p value for qua-
dratic term: 0.009), with higher K levels associated with a 
lower risk of ischemic stroke (shown in Fig. 4).

Association of time-updated K categories with time to 
the first ischemic stroke event was similar to the main 
analysis when using multiple imputation and complete 
case analyses (data not shown). In the multivariable-ad-
justed model, the association of granular K level catego-
ries showed a lower risk (vs. K 4.0–<4.5 mEq/L) of isch-
emic stroke associated with K 5.5–<6.0 mEq/L (shown in 
online suppl. Table 8 [model 4]). In the subgroup analy-
sis, significant differences were observed by region of res-
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Fig. 3. Association of time-updated K categories with time to isch-
emic stroke (n = 21,357) Models conducted as described in online 
suppl. Table 1 with further accounting for baseline averaged K lev-
els and time-varying medications, eGFR, and Na levels. CI, confi-
dence interval; K, potassium; eGFR, estimated glomerular filtra-
tion rate; Na, sodium.

Fig. 4. Association of continuous time-updated K with time to 
ischemic stroke (n = 21,357) Dashed and solid lines represent HR 
and 95% CI, respectively. Model adjusted for confounders ac-
counted in model 4 (fully adjusted), as described in online suppl. 
Table 1 with further accounting for baseline averaged K levels and 
time-varying medications, eGFR, and Na levels. HR, hazard ratio; 
CI, confidence interval; K, potassium; eGFR, estimated glomerular 
filtration rate; Na, sodium.
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idence (shown in online suppl. Table 9). In the sensitivity 
analysis, among the 84.7% without baseline history of 
stroke, lower risk of ischemic stroke associated with hy-
perkalemia could no longer be established (shown in on-
line suppl. Table 10).

Discussion/Conclusion

In a nationally representative cohort of US veterans 
with advanced CKD who transitioned to dialysis, hypo-
kalemia (chronic exposure) was associated with a higher 
risk of ischemic stroke irrespective of baseline history of 
ischemic stroke/TIA. Conversely, hyperkalemia (time-
updated and acute exposure) was associated with a lower 
risk of ischemic stroke. Our results were robust to various 
other sensitivity analyses including granular K categories, 
complete case analysis, and multiple imputation.

Our results align with existing research that suggests 
that hypokalemia (chronic exposure) is associated with a 
higher risk of ischemic stroke. Among diuretic users [12], 
general population [14], and a treated hypertensive popu-
lation [15], hypokalemia was associated with a 2.5-, 2.1-, 
and 2-fold higher risk of ischemic stroke, respectively. On 
the other hand, in a general population [13], both K levels 
between 4.3-8.4 mmol/L and a per mmol/L increase in K 
levels were associated with 1.3-fold higher risk of isch-
emic stroke. However, all these studies are characterized 
by the use of baseline K levels (chronic exposure) to de-
fine dyskalemias and long follow-up times for outcome 
assessment (minimum follow-up of 1 year and maximum 
median follow-up of 26.9 years) [12–15].

To determine the short-term risk associated with dys-
kalemias, we also assessed the association of time-updat-
ed dyskalemias (acute exposure) with ischemic stroke 
where we observed that hyperkalemia (and higher levels 
of K) was associated with a lower risk of ischemic stroke. 
Previous studies have hypothesized that hypokalemia 
might be a marker of increased RAAS activity [28], and 
an increased activity in systemic and cerebral RAAS sys-
tem could potentiate the effect of a stroke, by resulting in 
more extensive neurologic damage and neurologic defi-
cits [14]. This may explain the association of hypokalemia 
(chronic exposure) with a higher risk of ischemic stroke. 
Further, a number of studies (animal models and epide-
miological research) [29–37] suggested that higher levels 
of K lead to vasodilation, whereas lower levels of K lead 
to vasoconstriction by exerting effects through Na+/
K+ATPase in the vascular smooth muscle cell. A recent 
study by Li et al. [38] in a rat model observed that elevat-

ed serum K levels alleviated cerebral ischemia-reperfu-
sion injury. A lower risk of ischemic stroke associated 
with time-updated hyperkalemia levels could be ex-
plained by these biological changes exerted by higher lev-
els of K, especially in the acute setting. Patients with ad-
vanced CKD are at higher risk of hyperkalemia [4, 16], 
and the hemodynamic effects exerted by repeated hyper-
kalemia events may acutely potentiate lower blood pres-
sure levels and hence lower the risk of stroke. It is also 
noteworthy that in our cohort, we observed that those in 
the hyperkalemia group (vs. hypokalemia group) based 
on the baseline time-averaged K levels had lower SBP 
(143.8 vs. 147.7 mm Hg) and DBP (72.9 vs. 80.1 mm Hg) 
levels, which supports the hypothesis that vasodilatory ef-
fects of hyperkalemia could lower the risk of ischemic 
stroke. Further, higher dietary intake of K is associated 
with better blood pressure control and lower risk of isch-
emic stroke [39–41]. However, current guidelines recom-
mend restriction of dietary intake of K due to the risk of 
hyperkalemia [42], despite the lack of association be-
tween dietary K intake and serum K levels or hyperkale-
mia [43] and the known health benefits of high dietary K 
intake [2]. However, lack of dietary K intake data did not 
allow us to assess the association of dietary intake of K (in 
concurrence with serum K) with ischemic stroke.

Our study results need to be interpreted in light of sev-
eral limitations. First, our cohort consisted of predomi-
nantly male US veterans, thus limiting generalizability to 
women or to a broader general population. Second, we 
cannot infer causality due to the observational nature of 
the study. Third, we cannot eliminate the possibility of un-
measured confounding due to lack of access to dietary in-
take of K. Several studies have noted the beneficial effects 
of dietary K intake and lowering of blood pressure and 
stroke risk [39–41]. Finally, our source cohort is designed 
such that outcomes such as mortality are only observed fol-
lowing dialysis initiation, but for this study, we assessed 
dyskalemia-ischemic stroke association in the pre-dialysis 
period. Thus, caution should be exercised when interpret-
ing the association of time-updated hyperkalemia and low-
er risk of ischemic stroke as dyskalemias are associated 
with a short-term risk of death [10, 44], which could not be 
ascertained due to the nature of our cohort.

In conclusion, in patients with advanced CKD transi-
tioning to dialysis, hypokalemia as a chronic exposure 
was associated with a higher risk of ischemic stroke, while 
hyperkalemia as an acute exposure was associated with a 
lower risk of ischemic stroke. Further studies are needed 
to explore this association and shed light on the possible 
mechanisms driving this relationship.
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