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Fifteen new risk loci for coronary artery disease highlight arterial 
wall-specific mechanisms

A full list of authors and affiliations appears at the end of the article.

Abstract

Coronary artery disease (CAD) is a leading cause of morbidity and mortality worldwide1,2. 

Although 58 genomic regions have been associated with CAD to date3–9, most of the heritability 

is unexplained9, indicating additional susceptibility loci await identification. An efficient 

discovery strategy may be larger-scale evaluation of promising associations suggested by genome-

wide association studies (GWAS). Hence, we genotyped 56,309 participants using a targeted gene 

array derived from earlier GWAS results and meta-analysed results with 194,427 participants 

previously genotyped to give a total of 88,192 CAD cases and 162,544 controls. We identified 25 

new SNP-CAD-associations (P < 5x10-8, in fixed effects meta-analysis) from 15 genomic regions, 

including SNPs in or near genes involved in cellular adhesion, leucocyte migration and 

atherosclerosis (PECAM1, rs1867624), coagulation and inflammation (PROCR, rs867186 

[p.Ser219Gly]) and vascular smooth muscle cell differentiation (LMOD1, rs2820315). Correlation 

of these regions with cell type-specific gene expression and plasma protein levels shed light on 

potential novel disease mechanisms.

The CardioMetabochip is a genotyping array that contains 196,725 variants of confirmed or 

suspected relevance to cardiometabolic traits derived from earlier GWAS.10 A previous 

meta-analysis by the CARDIoGRAMplusC4D consortium of 79,138 SNPs common to the 

CardioMetabochip and GWAS arrays, identified 15 new loci associated with CAD3. Using 
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the CardioMetabochip, we genotyped 56,309 additional samples of European (EUR; ~52%), 

South Asian (SAS; ~23%), East Asian (EAS; ~17%) and African American (AA; ~8%) 

ancestries (Supplementary Information; Supplementary Tables 1, 2, 3; Supplementary Fig. 

1). The results from our association analyses of these additional samples were meta-analysed 

with those reported by CARDIoGRAMplusC4D at 79,070 SNPs in two fixed effects meta-

analyses, one in EUR participants and a second across all four ancestries (Figure 1 and 2). 

(Over-lapping samples were removed prior to meta-analysis [Methods]). A genome-wide 

significance threshold (P≤5x10-8 in the fixed effects meta-analysis) was adopted to minimise 

false positive findings. However, even at this strict P-value threshold, there is still a small 

chance of a false-positive result. The EUR fixed effects meta-analysis identified 15 SNPs 

associated with CAD at genome-wide significance (P<5x10-8) from nine distinct genomic 

regions that are not established CAD-associated loci (Table 1; Supplementary Table 4; 

Supplementary Fig. 2). An additional six distinct novel CAD-associated regions were 

identified in the all ancestries fixed effects meta-analysis (Table 1; Figure 2; Supplementary 

Table 4). In total, 15 novel CAD-associated genomic regions (25 SNPs) were identified 

(Supplementary Fig. 3 and 4). The lead SNPs had at least nominal evidence of association 

(P<0.05) in either a fixed effects meta-analysis of the EUR studies with de novo genotyping, 

or in a fixed effects meta-analysis of all the studies with de novo genotyping (Supplementary 

Table 5, Supplementary Fig. 5). Within the CARDIoGRAMplusC4D results for these SNPs, 

there was no evidence of heterogeneity of effects (P≥0.10) and allele frequencies were 

consistent with our EUR studies (Supplementary Table 5). Tests for enrichment of CAD-

associations within sets of genes11 and Ingenuity Pathway Analysis confirmed known CAD 

pathways (Supplementary Information; Supplementary Tables 6, 7, 8).

To prioritize candidate causal genes at the new loci, we defined regions encompassing the 

novel CAD-associated SNPs based on recombination rates (Supplementary Table 9) and 

cross referenced them with expression quantitative trait loci (eQTL) databases including 

GTEx12, MuTHER13 and STARNET14 (Methods). Twelve of the 15 novel CAD-associated 

SNPs were identified as potential eQTLs in at least one tissue (P<5x10-8; Table 2, 

Supplementary Table 10). Haploreg analysis15 (Methods) showed CAD-associated SNPs 

were enriched for H3K27ac enhancer marks (P < 5.1x10-4) in multiple heart related tissues 

(left ventricle, right atrium, aorta) in the EUR results and in one heart related tissue (right 

atrium) and liver in the all ancestry analyses (Supplementary Table 11). We next tested for 

protein quantitative trait loci (pQTL) in plasma on the aptamer-based Somalogic platform 

(Methods). Twenty-four proteins from the newly identified CAD regions were assayed and 

passed QC. Of our 15 novel CAD-associated SNPs, two associated with plasma protein 

abundance in trans: rs867186 (NP_006395.2:p.Ser219Gly), a missense variant in PROCR 
was a trans-pQTL for protein C (P=10-10, discussed below) and rs1050362 

(NP_054722.2:p.Arg140=) a synonymous variant in DHX38 was a trans-pQTL for the 

apolipoprotein L1 (P=5.37x10-29; Methods) which is suggested to interact with HPR in the 

DHX38 region (string database).

To further help prioritize candidate genes, we also queried the mouse genome informatics 

database to discover phenotypes resulting from mutations in the orthologous genes for all 

genes in our 15 CAD-associated regions (Table 2). To understand the pathways by which our 

novel loci might be related to CAD risk, we examined the associations of the 15 novel CAD 
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regions with a wide range of risk factors, molecular traits, and clinical disorders, using 

PhenoScanner16 (which encompasses the NHGRI-EBI GWAS catalogue and other 

genotype-phenotype databases).

Six of our loci have previously been associated with known CAD risk factors, such as major 

lipids (PCNX3,17 C12orf43/HNF1A, SCARB1, DHX38)18 and blood pressure (GOSR2,19 

PROCR20). The sentinel variants for the CAD and risk factor associations at PCNX3, 

GOSR2 and PROCR were the same, implicating them in known biological pathways. Two 

correlated SNPs (r2=0.93, D’=1.0 in 1000 genomes) rs11057830 and rs11057841 tag the 

CAD-association in the SCARB1 region (Table 1; Supplementary Table 4), a region reported 

previously to be associated with HDL (rs838876, β=-0.049, P=7.33x10-33)18. A rare 
nonsynonymous variant rs74830677 (NP_005496.4:p.Pro376Leu) in SCARB1 also 

associated with high levels of high-density lipoprotein cholesterol (HDL-C)21. Conditional 

analyses showed that the CAD-association was independent of the common variant HDL 

association (Supplementary Information, Supplementary Fig. 6). We found the CAD SNPs 

and the common HDL-C SNP, rs838880 overlap enhancers active in primary liver tissue 

(Supplementary Fig. 7). SCARB1 is highly expressed in liver and adrenal gland tissues 

(GTEx; Supplementary Fig. 7)12. These findings suggest that the discovered genetic 

variants most likely play a role in regulation of liver-restricted expression of SCARB1.

The DHX38 region has previously been associated with increased total and LDL 

cholesterol18. Both CAD-associated SNPs in DHX38, rs1050362 

(NP_054722.2:p.Arg140=) and rs2072142 (synonymous and intronic respectively; Table 1, 

Supplementary Table 4) are in LD but not strongly correlated with the previously reported 

cholesterol increasing SNP, intronic in HPR, rs2000999, (r2=0.41, D’=1 in 1000 Genomes 

EUR). Deletions in the HP gene have recently been shown to drive the reported cholesterol 

association in this region22. The CAD SNPs are in strong LD with SNPs that increase 

haptoglobin levels23 (rs6499560, P=2.92x10-13, r2=0.97), and haptoglobin has been 

reported to be associated with increased CAD risk24. HP encodes an alpha-2-glycoprotein 

which is synthesised in the liver. It binds free haemoglobin and protects tissues from 

oxidative damage. Mouse models indicate the role of Hp with development of 

atherosclerosis25, where the underlying mechanism is disruption of the protective nature of 

the Hp protein against hemoglobin-induced injury of atherosclerotic plaque. While the 

CAD-associated SNPs are eQTLs (or in LD with eQTLs) for multiple genes in the region 

e.g. DHODH in aorta artery12 (rs1050362 A allele, β=0.41, P=1.4x10-9), DHX38 in 

peripheral blood26, atherosclerotic aortic root14 (P<8x10-26; Table 2, Supplementary Table 

10), the A allele at rs1050362 is also associated with increased expression of HP in left 

ventricle heart (β=0.535, P=8.71x10-10)12 and decreased expression of HP in whole blood 

(β=-0.27, P=1.22x10-10)12. While there could be multiple causal genes in the region, 

together these findings suggest HP is a promising candidate gene.

PROCR encodes the endothelial protein C receptor (EPCR). We found the G allele at 

rs867186 (which codes for the glycine residue at p.Ser219Gly) in PROCR confers protection 

from CAD (OR[95%CI]=0.93[0.91-0.96]; Table 1, Supplementary Fig. 8). The same variant 

is also associated with increased circulating levels of soluble EPCR (which does not enhance 

protein C activation)27, increased levels of protein C28, increased factor VII levels29, and 
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increased risk of venous thrombosis27. Consistent with these associations, the variant has 

also been demonstrated to render the EPCR more susceptible to proteolytic cleavage, 

resulting in increased shedding of membrane-bound EPCR from the endothelial surface30 

causing elevated protein C levels in the circulation31. We found evidence of a second, 

independent CAD-association at rs6088590 (r2=0, D’=0.01 with rs867186 in 1000G EUR 

samples; Supplementary Fig. 8), an intronic SNP in NCOA6 with the T allele conferring 

increased risk of CAD (conditional on rs867186, conditional P=1.14x10-5, OR[95% 

CI]=0.97[0.95-0.98]). No additional SNPs were associated with CAD after conditioning on 

rs867186 and rs6088590 (P>0.01).

Five of the novel CAD regions identified in the current analysis include genes that encode 

proteins expressed in smooth muscle cells (LMOD1, SERPINH1, DDX59/CAMSAP2, 

TNS1, PECAM1)32,33. The CAD risk allele (T) of rs2820315, which is intronic in 

LMOD1, is associated with increased expression of LMOD1 in omental and subcutaneous 

adipose tissues13,34 (MuTHER, β=0.11, P=1.43x10-11). The protein is found in smooth 

muscle cells (SMC)32,33. In vitro and transgenic mouse studies demonstrate an essential 

requirement for CArG elements in the expression of LMOD1 through both serum response 

factor (SRF) and myocardin (MYOCD)35. Myocardin has emerged as an important 

molecular switch for the programs of SMC and cardiac myocyte differentiation36,37. The 

CAD-associated SNP (or tag) is an eQTL for IPO9 in peripheral blood mononuclear cells38, 

however, given the prior biological evidence LMOD1 would make the most plausible 

candidate gene.

rs1867624 is upstream of PECAM1, which encodes platelet/endothelial cell adhesion 

molecule 1, a protein found on platelet, monocyte and neutrophil surfaces. The C-allele is 

associated with reduced CAD risk (Table 1), increased expression of PECAM1 in peripheral 

blood mononuclear cells38 (β=0.1199, P=1.38x10-107) and is in LD with rs2070784 and 

rs6504218 (D’=1.0, r2>0.8 in 1000G EUR samples), which are eQTL for PECAM1 in aortic 

endothelial cells (P=4.35x10-13) and stimulated CD14+ monocytes39 respectively 

(P<1.7x10-24; Supplementary Table 10)39. PECAM-1 has been implicated in the 

maintenance of vascular barrier integrity, breach of which is a sign of inflammatory 

response. Failure to restore barrier function contributes to the development of chronic 

inflammatory diseases such as atherosclerosis. PECAM-1 expressing endothelial cell 

monolayers have been shown to exhibit increased steady-state barrier function, as well as 

more rapid restoration of barrier integrity following thrombin-induced perturbation 

compared to PECAM-1 deficient cells40. Expression of PECAM-1 has been shown to be 

correlated with increased plaque burden in athero-susceptible regions of the aorta in mice41 

and also with decreased atherosclerotic area in the aorta overall42. Together, these findings 

prioritise PECAM1 as a candidate causal gene for this CAD-associated region in humans.

Of the 58 previously established CAD loci3–9, 47 were included on the CardioMetabochip. 

Forty-five regions were directionally concordant with the previous reports (two were neutral) 

and thirty-four of these 45 (42 SNPs) had at least nominal evidence of association in a fixed 

effects meta-analysis (P<0.05) in either our EUR or all ancestry studies with de novo 
genotyping (Supplementary Table 12). Twenty-three of these formally replicated at a 

Bonferroni significance level P=0.05/47=0.001). PHACTR1, CXCL12 and COL4A1-
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COL4A2 had more statistical support of association (smaller P-values despite fewer 

samples) in SAS compared with the other ancestries. The PHACTR1 SNP, rs9349379, is 

ancestrally informative, as the A allele frequency ranges between 0.29 in the Taiwanese and 

0.91 in African Americans (Supplementary Table 12). In contrast, the COL4A1-COL4A2 
SNP, rs4773144, had similar allele frequencies across ancestries (EAF=0.56-0.62). The 

stronger effect size in SAS (OR[95%CI]=0.91[0.86-0.95] versus 0.98[0.95-1.02] in EUR, 

heterogeneity P=0.0042) could suggest gene-environment or gene-gene interactions at this 

locus.

We have reported 15 novel CAD-associations, which, together with previous efforts, brings 

the total number of CAD-associated regions to 73. In addition to implicating atherosclerosis 

and traditional risk factors as mechanisms in the pathobiology of CAD, our discoveries 

highlight the potential importance of biological processes active in the arterial wall involving 

endothelial, smooth muscle and white blood cells and promote coronary atherogenesis.

Online Methods

Study participants

A full description of the component studies with de novo genotyping is given in the 

Supplementary Information and Supplementary Table 1. In brief, the European (EUR) 

studies comprised 16,093 CAD cases and 16,616 controls from EPIC-CVD (a case-cohort 

study embedded in the pan-European EPIC prospective study), the Copenhagen City Heart 

Study (CCHS), the Copenhagen Ischemic Heart Disease Study (CIHDS) and the 

Copenhagen General Population Study (CGPS) all recruited within Copenhagen, Denmark. 

The South Asian (SAS) studies comprised up to 7,654 CAD cases and 7,014 controls from 

the Pakistan Risk of Myocardial Infarction Study (PROMIS) a case-control study that 

recruited samples from 9 sites in Pakistan, and the Bangladesh Risk of Acute Vascular 

Events (BRAVE) study based in Dhaka, Bangladesh. The East Asian (EA) studies comprised 

4,129 CAD cases and 6,369 controls recruited from 7 studies across Taiwan that collectively 

comprise the TAIwan metaboCHIp (TAICHI) Consortium. The African American (AA) 

studies comprised 2,100 CAD cases and 5,746 controls from the Atherosclerosis Risk in 

Communities Study (ARIC), Women’s Health Initiative (WHI) and six studies from the 

Myocardial Infarction Genetics Consortium (MIGen).

Ethical approval was obtained from the appropriate ethics committees and informed consent 

was obtained from all participants.

Genotyping and quality control in studies with de novo genotyping

Samples from EPIC-CVD, CCHS, CIHDS, CGPS, BRAVE and PROMIS were genotyped 

on a customised version of the Illumina CardioMetabochip (referred to as the “Metabochip

+”, Illumina, San Diego, USA), in two Illumina-certified laboratories located in Cambridge, 

UK, and Copenhagen, Denmark, by technicians masked to the phenotypic status of samples. 

The remaining studies were genotyped using the standard CardioMetabochip10 in Hudson-

Alpha and Cedars Sinai (TAICHI50, WHI, ARIC51) and the Broad Institute (MIGen).
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Each collection was genotyped and underwent QC separately (Supplementary Tables 1 and 

2). In brief, studies genotyped on the Metabochip+ had genotypes assigned using the 

Illumina GenCall software in Genome Studio. Samples were removed if they had a call rate 

< 0.97, average heterozygosity >±3 standard deviations away from the overall mean 

heterozygosity or their genotypic sex did not match their reported sex. One of each pair of 

duplicate samples and first degree relatives (assessed with a kinship co-efficient > 0.2) were 

removed.

Across all studies, SNP exclusions were based on minor allele frequency (MAF) < 0.01, P < 

1x10-6 for Hardy Weinberg Equilibrium or call rate (CR) less than 0.97 (full details are 

given in Supplementary Table 2). These exclusions were also applied centrally to studies 

genotyped on the CardioMetabochip, namely the ARIC, WHI, MIGen and TAICHI studies. 

Principal component analysis (PCA) was applied to identify and remove ancestral outliers. 

More stringent thresholds were adopted for SNPs used in the PCA for TAICHI and those 

studies genotyped on the Metabochip+, namely, CR < 0.99, PHWE < 1x10-4 and MAF < 

0.05. In addition, one of each pair of SNPs in LD (r2> 0.2) was removed, as were variants in 

regions known to be associated with CAD.

SNP association analyses and meta-analyses

Statistical analyses were performed in R or PLINK 52 unless otherwise stated.

We collected sufficient samples, to ensure the study was well powered to detect effect sizes 

in the range of OR=1.05-1.10 which have typically been reported for CAD. With 88,000 

cases the study would have 88% power to detect an OR=1.05 for a SNP with MAF=0.2 at 

α=5x10-8, assuming a multiplicative model on the OR scale. For a lower MAF of 0.1 the 

study would have 0.93 power to detect OR=1.07 at α=5x10-8, assuming a multiplicative 

model. Power calculations were performed using Quanto.

Association with CAD was assessed in studies with de novo genotyping from EUR, SAS, 

and EA, using the Genome-wide Efficient mixed model analysis (GEMMA) approach53. 

This model includes both fixed effects and random effects of genetic inheritance. CAD 

(coded 0/1) was the outcome variable, up to five principal components and the test SNP, 

coded additively, were included as fixed effects. P-values from the score test are reported. 

The AA studies were analysed using a logistic model in PLINK, with CAD as the outcome 

variable and SNP coded additively as predictor. The covariates used by each study, including 

the number of principal components are reported in the Supplementary Information. 

Genomic inflation was at most 5% for any given study (Supplementary Table 3, 

Supplementary Fig. 1). A subset of the PROMIS study and EPIC-CVD consortium were 

contributed to the CARDIoGRAMplusC4D 2013 report. To avoid any overlap of individuals 

in our studies with those in CARDioGRAMplusC4D, two analyses of these two studies were 

performed. One analysis included all the samples. A second analysis of the PROMIS and 

EPIC-CVD studies was performed after excluding all samples that had been contributed to 

the CARDIoGRAMplusC4D study and before meta-analyzing our results with the results 

from CARDIoGRAMplusC4D consortium. The CARDIoGRAMplusC4D SNP association 

results were converted onto the plus strand of GRh37, checked for heterogeneity and 

checked to ensure allele frequencies were consistent with EUR populations.
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Fixed effects inverse variance weighted meta-analysis was used to combine results across 

studies in METAL54. Heterogeneity P-values and I2 values were calculated and any SNP 

with P < 0.0001 for heterogeneity was removed. We performed two meta-analyses, the first 

involved just the European studies with de novo genotyping and the 

CARDIoGRAMplusC4D results to minimize ancestral diversity. The second involved all 

studies with de novo genotyping and the CARDIoGRAMplusC4D results to maximize 

sample size and statistical power. Given the ancestral diversity of the component studies 

with de novo genotyping, we also implemented meta-analyses with MANTRA55, a meta-

analysis approach designed to handle trans-ethnic study designs. However, for our studies 

the data were broadly consistent with the results from METAL (Table 1, Supplementary 

Table 4) and we therefore primarily report the fixed effect meta-analysis.

Conditional association analyses

Analyses to test for secondary association signals across seven regions with potential for 

independent signals were performed using GCTA56. GCTA implements a method for 

conducting conditional analyses using summary-level statistics (effect size, standard error, 

P-value, effective sample size) and LD information (r2) between SNPs estimated from a 

reference panel56. Conditional analyses were performed in CARDIoGRAMplusC4D, EUR, 

SAS, and EAS respectively and the results were combined using an inverse-variance-

weighted fixed effects meta-analysis approach. The conditional analyses were not performed 

in AA, because the SNP-level case-control counts were not made available for ARIC, 

MIGen, and WHI. 1000Genome Phase3 v5 ethnic-specific reference panel was used to 

provide LD information (r2) for the conditioned SNPs and other SNPs in the test regions for 

each of the 3 ancestries considered in the analyses. As approximately 9% of 

CARDIoGRAMplusC4D samples were SAS and the remainder EUR, in order to calculate 

LD for this dataset, we sampled with replacement the genotypes of 50 individuals from the 

1000Genome SAS reference panel and combined them with the genotypes of the 503 EUR 

individuals available in 1000 Genomes. To identify SNPs that are associated with CAD 

independently of the lead SNP in the test region, the association of each SNP in the region 

was tested conditioning on the most significant SNP in the overall meta-analysis of EUR, 

SAS, EAS and CARIoGRAMplusC4D. The SNPs were identified as independent signals for 

a specific region, if the conditional P≤1x10-4. In each region, we performed several rounds 

of conditional analyses until the conditional P-values >1x10-4 for all SNPs in the region.

eQTL and epigenetic analyses

The MuTHER dataset contains gene expression data from 850 UK twins for 23,596 probes 

and 2,029,988 (HapMap 2 imputed) SNPs. All cis–associated SNPs with FDR<1%, within 

each of the 14 newly identified CAD regions (IMPUTE info score >0.8) were extracted from 

the MuTHER project dataset for each of the tissues, LCL (n=777), adipose (n=776) and skin 

(n=667).

The GTEx Project provides expression data from up to 449 individuals for 52,576 genes 

annotated in Gencode v12 (including pseudo genes) and 6,820,472 genotyped SNPs (using 

the Human Omni5-Quad array).
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From each resource, we report eQTL signals, which reach the resource-specific thresholds 

for significance described above, for SNPs that are in LD (r2>0.8) with our sentinel SNP.

In addition to the publicly available MuTHER and GTeX databases imputed to HapMap and 

1000Genomes, respectively, we used a curated database of over 100 distinct eQTL datasets 

to determine whether our lead CAD-associated SNPs or SNPs in high LD with them (r2 > 

0.8 in Europeans from HapMap or 1000G) were associated with the expression of one or 

more nearby genes in cis57. Our collated eQTL datasets meet criteria for statistical 

thresholds for SNP-gene transcript associations as described in the original studies. 57 In 

total, more than 30 different cells/tissues were queried including, circulating white blood 

cells of various types, liver, adipose, skin, brain, breast, heart and lung tissues. Complete 

details of the datasets and tissues queried in the current work can be found in the 

Supplement Information and Supplementary Table 10, and a general overview of a subset of 

over 50 eQTL studies has been published57. We first identified all sets of eQTLs in perfect 

LD (r2=1 among Europeans in HapMap or 1000G) with each other for each unique 

combination of study, tissue, and transcript. We then determined whether any of these sets of 

eQTL were either in perfect (r2 = 1) or high LD (1>r2> 0.8) with our lead CAD SNP 

(Supplementary Table 10).

We required that any eQTL had P<5x10-8 for association with expression levels to be 

included in the eQTL tables.

We examined chromatin state maps of 23 relevant primary cell types and tissues. Chromatin 

states are defined as spatially coherent and biologically meaningful combinations of specific 

chromatin marks. These are computed by exploiting the correlation of such marks, including 

DNA methylation, chromatin accessibility, and several histone modifications58,59.

pQTL analyses

We conducted plasma protein assays in 3,301 healthy blood donors from the INTERVAL 

study60 who had all been genotyped on the Affymetrix Axiom UK Biobank genotyping 

array and imputed to a combined 1000Genomes + UK10K haplotype reference panel61. 

Proteins were assayed using the SomaLogic SomaScan platform, which uses high-specificity 

aptamer-binding to provide relative protein abundances. Proteins passing stringent QC (e.g. 

coefficient of variation<20%) were log transformed and age, sex, duration between 

venepuncture and sample processing and the first 3 principal components of genetic ancestry 

were regressed out. Residuals were then rank-inverse normalized before genomewide 

association testing using an additive model accounting for imputation uncertainty.

Enrichment analyses

Ingenuity pathway analyses—We used the Core Analysis' function in the Ingenuity 

Pathway Analysis (IPA) software (Ingenuity Systems, Redwood City) to identify canonical 

pathways enriched with one or more SNPs with a low P-value in the all ancestry meta-

analysis.

Modified MAGENTA—Given the Metabochip comprises a select set of SNPs and lacks 

complete genomic coverage10, MAGENTA, which assumes random sampling of variants 
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from across the genome, could not be directly implemented. Therefore a modified version of 

MAGENTA involving a hypergeometric test to account for the chip design was used to test 

for pathways that were enriched with CAD-associated variants11. This approach requires 

defining two sets of variants; a null set of variants that are not associated with CAD and a set 

that are associated with CAD, referred to as the “associated set”. Multiple variants can map 

to the same gene and still be included in the test. SNPs in LD were pruned out of the 

association results such that r2 < 0.2 for all pairs of SNPs (based on 1,000 Genomes Project 

data62; Supplementary Table 6) prior to implementation of the modified MAGENTA. The 

null set was defined as the 1,000 remaining QT interval SNPs with the largest P-values (least 

evidence) for association with CAD. The associated set was defined as variants (after LD 

pruning) that showed evidence of association P < 1x10-6. This approach was adopted to 

select the null and associated sets so as to limit the number of variants included in the 

hypergeometric cumulative mass function, as a large number of variants results in an 

intractable calculation for the binomial coefficients. The observed P-value from the 

hypergeometric test is compared to the P-values obtained from 10,000 random sets to 

compute an empirical enrichment P-value.

Haploreg: H3K27ac-based tissue enrichment analysis—The associated set as 

defined for MAGENTA was used for Haploreg analyses and compared to a background set 

of 12,000 SNPs previously associated with any trait at P<1x10-5 (taken from sources such as 

NHGRI-EBI GWAS catalogue). Using data from HaploReg15 we counted the number of 

SNPs with an H3K27ac annotation, or in high LD (r2 > 0.8 from the SNiPA63 EUR 1000 

Genomes maps) with a SNP with an H3K27ac annotation. The significance of the 

enrichment in H3K27ac marks from a particular tissue was determined by comparing the 

fraction of associated SNPs with that mark, to the fraction of background SNPs with that 

same mark. A hypergeometric test was used to assign a P-value to the enrichment.

Data availability—The full set of results data from the trans-ancestry meta-analysis and 

the EUR meta-analysis from this report is available through 

www.phenoscanner.medschl.cam.ac.uk upon publication.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Schematic of the study design. The sample-size information is provided as number of cases/

number of controls. Note, samples with de novo genotyping that were also in the 

CARDIoGRAMplusC4D study were removed prior to meta-analysis.* 1,826 CAD cases and 

449 controls from EPIC-CVD with de novo genotyping were also included in 

CARDIoGRAMplusC4D and were therefore excluded from the larger meta-analysis. The 

actual number of EUR individuals contributed to the meta-analysis of our studies with de 
novo genotyping and CARDIoGRAMplusC4D was 14,267 CAD cases and 16,167 

controls.†3,704 CAD cases and 3,433 controls from PROMIS with de novo genotyping were 

also included in CARDIoGRAMplusC4D and were therefore excluded from the larger meta-

analysis. The actual number of SAS samples contributed to the meta-analysis of our studies 

with de novo genotyping and CARDIoGRAMplusC4D was 3,950 CAD cases and 3,581 

controls.
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Figure 2. 
Plot showing the association of ~79,000 variants with CAD (-log10P-value) in up to 88,192 

cases and 162,544 controls from the all ancestry fixed effects meta-analysis. SNPs are 

ordered in physical position. No adjustments to P-values to account for multiple testing have 

been made. The outer track represents the chromosomal number. Blue dots represent known 

loci and red dots are the new loci identified in the current study. Each association peak is 
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labeled with the name of the closest gene(s) to the sentinel SNP. GWAS significance (-

log10(P) ~ 7.3).
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