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Ultimate Navigation Chip:
Synthetic Aperture Navigation with Cellular Signals and IMU

ALI A. ABDALLAH, KIMIA SHAMAEI, ANDREI M. SHKEL, AND ZAHER M. KASSAS

MOTIVATION
• Americans spend, on average, 90% of their

time indoors

• No single infrastructure-free technology ex-
ists today that provides submeter-level or
meter-level localization indoors

OUR APPROACH
Exploit cellular long-term-evolution (LTE) signals
of opportunity due to their inherent desirable char-
acteristics:

• High received carrier-to-noise-ratio: C/N0 ≈
55-80 dB-Hz in different indoor environments

• Free to use: exploit LTE reference signals
(dataless) without being a subscriber

• Abundant: dozens of nearby eNodeBs corre-
sponding to different providers are available

• High bandwidth: up to 20 MHz and even
higher with LTE-Advanced (up to 100 MHz)

• Favorable geometry: geometrically diverse
by construction to provide maximum com-
munication coverage

CHALLENGES
• Unknown eNodeBs’ states (position, clock

bias, and clock drift)

• LTE eNodeBs’ clocks are less stable than
GNSS clocks and not perfectly synchronized

• Short-delay multipath
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FRAMEWORK 1: LTE-IMU
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FRAMEWORK 2: LTE-SAN

1

2

N

1

2

N

0 1 K − 2 K − 1

Snapshot

F samples

Pedestrian's Trajectory

1 2 N

φ
(u)
1

φ
(u)
N

At instant k

LTE u
th

d

eNodeB

vc

v(k)

φ
(u)
2

Synthetic Uniform Linear Array

LTE-SAN Integration Schemes

EKF
Update

Clock
Models

Random
Walk
Model

x̂(kjj)
Preprocessing

and
Sampling Loops

and Tracking
Correlators

Data

z

0

x̂(kjk)

DOA
Estimation Mitigation

Multipath
Estimation

Carrier Phasex̂(kjk) Data
Formulation

Velocity

x̂(kjk)

y(k)

H(K)

A

1

2

B

1

2z

0

LTE Receiver

SAN Correction

EXPERIMENT 1: LTE-IMU
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EXPERIMENT 2: LTE-SAN
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