
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Role Classification and Transition of OSS Developers

Permalink
https://escholarship.org/uc/item/26s8j362

Author
Song, Yunlong

Publication Date
2021

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/26s8j362
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Role Classification and Transition of OSS Developers

THESIS

submitted in partial satisfaction of the requirements
for the degree of

MASTER OF SCIENCE

in Software Engineering

by

Yunlong Song

Thesis Committee:
Professor David Redmiles, Chair

Associate Professor Hadar Ziv
Assistant Professor Iftekhar Ahmed

2021

© 2021 Yunlong Song

TABLE OF CONTENTS

Page

LIST OF FIGURES iv

LIST OF TABLES v

ACKNOWLEDGMENTS vi

ABSTRACT OF THE THESIS vii

1 Introduction 1

2 Research method 4
2.1 Research questions . 4
2.2 Literature search strategy . 5

3 Results 10
3.1 Overview . 10
3.2 Role classification models . 12

3.2.1 The onion model . 15
3.2.2 Participative system . 27
3.2.3 Modeling project organizations . 27
3.2.4 Development maturity and specialized roles 28
3.2.5 Active contributors and supporting contributors 30
3.2.6 Project centric and community centric roles 30

3.3 Role identification methods . 33
3.3.1 Membership based . 34
3.3.2 Count based . 40
3.3.3 Network based . 40
3.3.4 Turnover based . 41
3.3.5 Event based . 48
3.3.6 Other methods . 52

3.4 Role transition patterns . 55
3.4.1 The onion model . 55
3.4.2 Participative system . 57
3.4.3 Within project organizations . 57
3.4.4 Development maturity roles . 59

ii

3.4.5 Retiring path . 59
3.4.6 Project-centric and community-centric roles 59

4 Discussion 62
4.1 Disclose the method used for role identification 62
4.2 GitHub projects as study subject . 63
4.3 The overlap and conflict of role identification 63

5 Conclusion 65

Bibliography 67

iii

LIST OF FIGURES

Page

2.1 Query Performed for Searching Literature 8
2.2 Literature selection process . 9

3.1 Temporal view of publications . 13
3.2 Citation distribution of paper repository . 13
3.3 Number of projects selected by each literature 14
3.4 Projects selected by multiple literature . 14
3.5 The onion model. Adapted from ”Evolution patterns of open-source soft-

ware systems and communities.” by Kumiyo Nakakoji, Yasuhiro Yamamoto,
Yoshiyuki Nishinaka, Kouichi Kishida, and Yunwen Ye, 2002, In Proceedings
of the International Workshop on Principles of Software Evolution (IWPSE
’02). 16

3.6 A framework to describe participative system . Adapted from ”Understand-
ing the nature of collaboration in open-source software development,” by C.
Jensen and W. Scacchi, 2005, 12th Asia-Pacific Software Engineering Confer-
ence (APSEC’05), pp. 8 pp.- . 28

3.7 The quality assurance paths. Adapted from ”Role Migration and Advance-
ment Processes in OSSD Projects: A Comparative Case Study,” by C. Jensen
and W. Scacchi, 2007, 29th International Conference on Software Engineering
(ICSE’07), pp. 364-374 . 57

3.8 The development paths. Adapted from ”Role Migration and Advancement
Processes in OSSD Projects: A Comparative Case Study,” by C. Jensen
and W. Scacchi, 2007, 29th International Conference on Software Engineering
(ICSE’07), pp. 364-374 . 58

3.9 Overview of career pathways reported by interviewees. Adapted from ”Hid-
den Figures: Roles and Pathways of Successful OSS Contributors.” by Bianca
Trinkenreich, Mariam Guizani, Igor Wiese, Anita Sarma, and Igor Stein-
macher, 2020, Proc. ACM Hum.-Comput. Interact. 4, CSCW2, Article
180 (October 2020), 22 pages. 60

iv

LIST OF TABLES

Page

2.1 Keywords for Constructing the Searching Query 9
2.2 Searching Result of Conference Publications 9

3.1 Primary studies . 15
3.2 Definitions of roles in the study of Nakakoji et al. 17
3.3 Definitions of roles in the study of Herraiz et al. 17
3.4 Definitions of roles in the study of Shibuya and Tamai 18
3.5 Definitions of roles in the study of Ko and Chilana 19
3.6 Definitions of roles in the study of Oezbek et al. 19
3.7 Definitions of roles in the study of Sinha et al. 21
3.8 Definitions of roles in the study of Lee and Carver 23
3.9 Definitions of roles in the study of Cheng et al. 24
3.10 Definitions of roles in the study of Nakakoji et al. 27
3.11 Definitions of roles in the study of Wagstrom et al. 31
3.12 Comparison of definitions of rockstars . 32
3.13 Definitions of roles in the study of Cheng and Guo 32
3.14 Definitions of roles in the study of Trinkenreich et al. 34
3.15 Literature relevant to membership based role identification methods 35
3.16 Roles, identification criteria, and data source used in membership based methods 35
3.17 Literature relevant to count based role identification methods 40
3.18 Identification criteria, and data source used in count based methods 41
3.19 Literature relevant to network based role identification methods 41
3.20 Identification criteria, and data source used in network based methods 42
3.21 Literature relevant to onboarding based role classification 43
3.22 Definitions of roles in the study of Foucault et al. 47
3.23 Literature relevant to review based role identification methods 49
3.24 Identification criteria, and data source used in review based methods 49
3.25 Definitions of roles in the study of Terry et al. 53
3.26 Literature studied role classification models 61

v

ACKNOWLEDGMENTS

I would like to thank professor David Redmiles who provide insightful advice and authori-
tative guidance, and Zhendong Wang who offered sincere and generous help like a friend.

I would also like to thank my family and roommates who supported me all the time, their
emotional support helped me to stay strong in this pandemic period.

vi

ABSTRACT OF THE THESIS

Role Classification and Transition of OSS Developers

By

Yunlong Song

Master of Science in Software Engineering

University of California, Irvine, 2021

Professor David Redmiles, Chair

It has been acknowledged that many open source software (OSS) projects are successful even

when compared with their commercial counterparts. Previous research has investigated the

artifacts developed by OSS projects and the communities behind those OSS projects. The

different roles that developers play have been studied to provide insights on developers’

behavior and their impact on the OSS projects. By presenting the composition of developers

in a project and a community, these studies can provide guidance for the development of

a successful OSS project and a flourishing community. As for the individual developers,

they can also benefit from obtaining awareness of their roles and the possible role evolution

paths. By reviewing the existing role classifications and transition patterns, I aim to provide

insights as a basis for construction of a systematic and universal role classification model

and role transition patterns of OSS developers.

In this paper, I performed a systematic literature review of research on developers’ roles and

role transition in the OSS community. I identified six role classification models, five major

role identification methods, and role transition patterns that have been studied. I also

provide a series of discussions about methods used by these studies and the roles studied.

vii

Chapter 1

Introduction

Open source software (OSS) has started to be well recognized as a successful software de-

velopment model and has always been a vital part of software development over the past

decades [32][43]. This area has also attracted more and more researchers, and their studies

provide insights into all aspects of OSS projects. One research focus is the communities

around OSS projects, which studies OSS projects from the human aspect. The commu-

nities around OSS projects are becoming increasingly heterogeneous, comprising not only

developers but also designers, managers, and users with a wide-ranging level of expertise

[11]. It would be hard to manage the development team without a clear view of the role

composition. In addition, different from commercial projects, the composition of contrib-

utors are constantly changing, and failing to obtain the awareness of team structure could

lead to projects’ failure. According to the study of Coelho and Valente [12], there are nine

reasons why open source projects fail and three of them are related to the team, they are

lack of time, lack of interest, and conflicts among developers. These reasons could lead to

the loss of contributors. By realizing the loss of contributors, especially these contributors’

roles, it would be easier to find proper candidates and recruit them to make OSS projects

sustainable. And if we want to obtain a precise extraction of contributors’ roles within a

1

project, role classification models are essential.

The role of a developer is not stationary. The community would evolve as the development

of software, and the evolution of the community results from the role changes of its members

[32]. The onion model depicts an role transition pattern based on the observation that the

project members would gravitate towards central roles over time [21]. This model can be used

to describe the role transition of developers within a single project. However, it was later

found to be limited [22] [34]. Other researchers have also proposed different role transition

patterns based on their role definition and observation of various projects [11, 21, 31, 48, 52].

Through informal search, I found that there is still a lack of general understanding on role

classification models and transition patterns from a systematic review perspective. In recent

studies such as the work of Cheng and Guo[11] and the work of Trinkenreich et al.[48], they

reviewed the related work but not with a systematic method. Therefore, it is necessary to

perform a systematic review that aggregates the information regarding the role classification

and transition that is currently dispersed across various studies.

The objective of this systematic review is to identify the role classification models and role

transition patterns. I conducted the literature searching through a seven-step process, in-

cluding querying digital libraries, snowball sampling and manual addition based on experts’

recommendations. In this process, I identified 55 primary studies. These studies are selected

based on the research topic and publication venue, I only include studies that investigate

the roles of OSS developers and published in key conferences such as ICSE and FSE. After

identifying the primary studies, I extracted the role studies in these papers, including role

classification models and role transition patterns. I also compared the differences and sim-

ilarities of these classification models. For the roles whose corresponding role classification

is not specified, I analyzed their definition and identification criteria to find possible models

they can be integrated into.

2

The major results of this study include six role classification models, five major role iden-

tification methods, and role transition patterns that have been proposed by ten papers. I

categorize the role identification methods from the primary studies into five types: member-

ship based, count based, network based, turnover based, and event based.

The contributions of this paper include: 1. summarizing existing role classification models,

role identification methods and role transition patterns, and 2. providing a quick reference for

researchers interested in conducting further studies on OSS developers’ roles. This research

can assist OSS communities and researchers in achieving a better understanding of OSS

developers’ roles and design strategies for projects and contributors.

The remainder of this paper is structured as follows. Section 2 gives an introduction of

the background on OSS developers’ roles. My research questions and the literature search

strategy I used for this paper are presented in Section 3. In Section 4, I present the result of

my study which includes my findings. In Section 5, I provide a series of discussions about

methods used by these studies and the roles studied. I conclude my work in Section 6.

3

Chapter 2

Research method

2.1 Research questions

Developers play different roles in the development of open source software, and they can

transit from one role to another. Both OSS developers and OSS projects can benefit from

identifying developers’ roles and role transition paths. Developers can recognize their po-

sition in the project and possible ways to transit to another role, while projects can stay

sustainable by acknowledging the role composition and role transition of its contributors. I

expect that by summarizing the role classification models and role transition patterns stud-

ied, this study can contribute to the construction of a comprehensive role classification model

with corresponding role transition patterns. Therefore, I propose the following two research

questions.

RQ1: What are the basic roles of developers in the development of open source software?

By answering the first research question, I aim to find the roles developers play in the

development of OSS and also their roles in the OSS community.

4

RQ2: How do OSS developers transit or migrate between various roles in the community?

By answering the second research question, I intend to investigate the different patterns of

role transition in one project or migration across multiple projects.

Through answering these two research questions, I expect to summarize the role classification

models and role transitions of developers in the OSS community, so that this study could

assist OSS developers to achieve awareness of their roles and find methods to obtain the

roles they desire. Furthermore, tool designers can implement tools for project managers or

communities to observe the role composition and transition of projects and communities,

thus facilitate the projects’ or communities’ prosperity.

2.2 Literature search strategy

Our literature search approach is based upon the process established by Kitchenham et al.

[24]. Before forming the query to construct the corpus for the research, I first obtain a small

set of papers based on expert recommendation. This set of papers are used to as the initial

set for initial information search. After I obtained a basic idea of the number of literature

on my topic and the terms that could be used for query, I finally formed the proper query

(Figure 2.1). After acquiring the corpus given by this query, I filter papers based on the

venue type to include only papers published in key conferences. I analyzed the titles and

abstracts of these papers to filter out those which are not relevant to my research. After

that, I further analyzed the introduction and conclusion of each paper. Then, I performed

data extraction on these papers. In addition, I also included several related studies manually.

Finally, I perform a full literature reading for the papers in the corpus.

The literature discovery process can be organized as follow:

5

1. Initial informal search. I first obtained a set of papers recommended by experts, then

performed an informal search based on these papers to validate the necessity of sys-

tematic literature review on this topic. I had 6 papers recommended by experts as

initial set, then I read these papers and iteratively went through the references to find

the relevant literature. This step also provides me the knowledge to construct a proper

query for the next step.

2. Searching digital library. In this step, I formed the proper query to construct the corpus

for this paper (see Figure 2.1), I performed this query in the ACM digital library. This

query is connected by binary operators. The paper repository is managed by using a

free and open source reference management tool, Zotero.

3. Title and abstract filtering. Although the search engine show only the papers whose

abstracts contain the term specified in the query, some of these papers could still be

not highly relevant to my focus. So, I performed an abstract analysis by reading the

abstract of these papers and decided whether to include or exclude papers. This can

reduce the time cost of reading full content of papers.

4. Introduction and conclusion analysis. I read the introduction and conclusion of the

papers which are included after previous steps, papers will also be excluded if they are

found to be irrelevant in this step.

5. Data extraction. I extracted the standard information and primary study specific

data [24] for each paper. The standard information included title, authors, year of

publication, publication type and number of citations. The primary study specific

data extracted included studied roles, role scope, research method, results summary,

future work and limitation.

6. Manual addition. I also included several studies that have solid contributions to this

area, they were found in step 1 but not found in the query result since they are published

6

in small conferences, or indirectly related to my research focus. 10 papers were added

manually, 7 of them are not published in the key conferences we selected. The rest

papers each study a specific role but not referring to term “role” or “character”. Data

extraction is also performed on the papers I found in this step.

7. Citation search. I performed one round of forward snowball sampling based on the set

of papers I have. I used the same analysis to filter out the irrelevant papers, includ-

ing venue type filtering, title and abstract filtering, and introduction and conclusion

analysis. Data extraction is also performed on the papers I found in this step.

The terms I used in the query are based on the research questions and papers I read in

the initial informal search, there are three sets of keywords (Table 2.1). The first set of

keywords (Domain 1) indicates that the underlying research area is Open Source Software,

it contains Open Source Software and related abbreviations, OSS and FLOSS. The other

sets of keywords (Domain 2 and Domain 3) indicate the subjects I are concerned of are roles

of developers in the community, and each domain also contains some synonyms.

Papers are excluded when performing title and abstract filtering, introduction and conclusion

analysis, and full literature reading. The exclusion criterion is that the papers not related

to my subject, open source software developers’ roles, will be excluded. The context of

occurrence of keywords is restricted to be abstract, since if the keywords do not appear

in the abstract, this paper is highly unlikely to be relevant. Keywords “oss” and “open

source” are enclosed within quotation marks to search for exact matches, so that the search

engine will not match terms like “possible” with “oss”, or return papers with only “open”

or “source” instead of “open source” as a whole.

Based on the research questions, I decide to restrict my research area within Software En-

gineering, Human Factors in Computing Systems, and Computer Supported Collaborative

Work. The reason is that this paper focuses on the roles OSS developers play in software

7

{
(“Abstract”:“oss” OR “Abstract”:“open source” OR “Abstract”:floss)
AND
(“Abstract”:team OR “Abstract”:organization OR “Abstract”:community)
AND
(“Abstract”:role OR “Abstract”:character)
}

Figure 2.1: Query Performed for Searching Literature

development, while Software Engineering includes the papers study the process of software

development, Human Factors include papers that study human factors, developers, in soft-

ware development, and Computer Supported Collaborative Work include papers provide

assistance tools for developers based on their roles. With that criterion, the conferences I

decided to include are: ICSE, FSE, ESEM, CHI and CSCW. Figure 2.2 shows the distribu-

tion of papers’ corresponding conferences.

After forming the query and determining publication venues, I choose ACM library to con-

duct the search. The reason is that it provides features to support my query, and provide

paper access to the publication venues I choose.

Given the paper repository, I read the full content of the literature and extracted the neces-

sary data. As previously mentioned, I extracted the standard information and primary study

specific data for each paper. The standard information were collected by using Zotero and

manually from the digital library, while primary study specific data were collected manually

from the content of papers. I first identify the roles mentioned in the literature. After that,

I analyzed the scope of the roles, which is the projects or ecosystems that provide the data

for these studies. Moreover, I extract the research methods used by these studies, including

the type of data and analysis methods used. In addition, I summarized the results, future

work and limitations of the literature.

8

Figure 2.2: Literature selection process

Item Keyword

Domain 1 OSS, Open Source, FLOSS
Domain 2 Team, organization, community
Domain 3 Role, character

Table 2.1: Keywords for Constructing the Searching Query

Conference Searching results

ICSE 61
ESEM 11
FSE 8
CHI 4

CSCW 4

Table 2.2: Searching Result of Conference Publications

9

Chapter 3

Results

In this chapter, I present the results of the literature review. To answer RQ1, I extract the

roles studied by each paper, categorize role classification models based on 5 types of role

identification criteria, and recognize 6 roles that have not been integrated into any model.

To answer RQ2, I present the role transition patterns that have been proposed by 10 papers.

In the following sections, I first present the overview of the literature in our paper reposi-

tory. Then, based on the extracted data, I categorize the role classification models used in

these studies, and other roles that have not been integrated into any model. After that, I

summarize the role transition patterns proposed. Finally, I present a series of discussions

about the findings from the literature review.

3.1 Overview

I identified 55 literature as primary studies, and the selected studies are presented in Table

3.1.

10

With the data extracted, I can present an overview of the studies. First, I checked the time

distribution of the publication, which is depicted in Figure 3.1. It can be observed that the

study of roles starts in 2002 and only a few papers appear until 2009. And the number

of studies is increasing gradually, and half of the papers were published after 2018, which

implies that this area has gained more attention recently.

The citation count of the paper repository is shown in Figure 3.2. I can see that half of the

papers have less than or equal to 10 citations.

Most of the literature are empirical studies, except one study that designed and implemented

one system but has not performed evaluation. I found 43 research (78%) conducted case

studies, 13 research (23%) conducted one-on-one interviews, 10 research (18%) conducted

survey research, while 2 research (3%) conducted text analyses. These research could use

multiple methods, 15 research used more than one research method, which are case studies

with either one-on-one interviews or survey research. In terms of analysis method, I found

21 research (38%) used only quantitative analysis, 14 research (26%) used only qualitative

analysis, while 20 research (36%) used both quantitative and qualitative analysis. It can be

observed that there are fewer studies that use qualitative analysis methods, but there is no

significant difference between the number of studies using quantitative analysis methods and

those using qualitative analysis methods.

The number of projects studied varies greatly in different literature. Figure 3.3 shows the

distribution of number of selected projects in the paper repository. Not all papers provided

the number of projects they selected, and some of the papers collect data from individual

developers instead of from the projects’ perspective, these literature are not used in this

figure. I can see that most research (31 out of 44) selected less than 50 projects as subjects,

and the half of these research (16 out of 31) selected less than 5 projects. Considering the

effort to conduct an in-depth study of one project, it is reasonable to choose a relatively

small number of projects. There are also studies that selected more than 1,000 projects, and

11

one study that used more than 10,000 projects as subjects. The study that used more than

10,000 projects are conducted by Tsay et al., and they gathered information of all 659,501

closed pull requests and 95,270 related users [49]. The authors of this study also conducted

another study which selected a sample of pull requests from the dataset of the former study,

they did not disclose the number of projects related so that study is not included in this

figure.

I also extracted the projects’ name when provided in the research, and found 181 unique

projects. Among those projects, I found 26 projects selected by more than one studies, as

shown in Figure 3.4. Although GNOME is regarded as an ecosystem in some literature, I

consider GNOME as project for studies that regard GNOME as a large project, the studies

take GNOME as ecosystems are not counted for Figure 3.4. Among all 55 studies, I found 20

of them collected projects’ data from GitHub. The possible reasons are the large available

samples and convenient collection. Due to the large amount of projects hosted on GitHub,

it is easier to find available and representative projects. GitHub also provides convenient

API for researchers to collect all sorts of information related to projects or users, and there

are sources to collected dumped data like GHTorrent.

3.2 Role classification models

Contributors can have various type of interactions with projects, such as using the product,

making code contribution, reporting issues, training newcomers, and so on. Researchers

have proposed different models to classify contributors in the community of an OSS project

or ecosystem, such as the onion model. In this section, I present six different models that

have been investigated by previous studies. There are twenty one studies either proposed or

investigated a role classification model, these studies are shown in Table 3.26.

12

Figure 3.1: Temporal view of publications

Figure 3.2: Citation distribution of paper repository

13

Figure 3.3: Number of projects selected by each literature

Figure 3.4: Projects selected by multiple literature

14

Identifier Year Reference Identifier Year Reference
[PS1] 2002 Nakakoji et al. [32] [PS29] 2017 Zhou et al. [59]
[PS2] 2005 Nakakoji et al. [31] [PS30] 2017 Cheng et al. [10]
[PS3] 2006 Herraiz et al. [20] [PS31] 2017 Coelho and Valente [12]
[PS4] 2007 Jensen and Scacchi [21] [PS32] 2018 Coelho et al. [13]
[PS5] 2009 Nurolahzade et al. [33] [PS33] 2018 Bayati [4]
[PS6] 2009 Shibuya and Tamai [36] [PS34] 2018 Middleton et al. [29]
[PS7] 2010 Oezbek et al. [34] [PS35] 2018 Calefato et al. [7]
[PS8] 2010 Terry et al. [47] [PS36] 2018 Balali et al. [3]
[PS9] 2010 Ko and Chilana [25] [PS37] 2018 Dias et al. [15]
[PS10] 2011 Sinha et al. [38] [PS38] 2018 Valiev et al. [51]
[PS11] 2011 Jergensen et al. [22] [PS39] 2018 German et al. [18]
[PS12] 2012 Dabbish et al. [14] [PS40] 2018 Steinmacher et al. [42]
[PS13] 2012 Wagstrom et al. [52] [PS41] 2019 Cheng and Guo [11]
[PS14] 2012 Canfora et al. [9] [PS42] 2019 Zhou et al. [60]
[PS15] 2013 McDonald and Goggins [28] [PS43] 2019 Tan [44]
[PS16] 2013 Lee et al. [27] [PS44] 2019 Müller [30]
[PS17] 2014 Fagerholm et al. [16] [PS45] 2019 Steinmacher et al. [41]
[PS18] 2014 Tsay et al. [49] [PS46] 2019 Avelino et al. [1]
[PS19] 2014 Bosu and Carver [5] [PS47] 2020 Wang et al. [54]
[PS20] 2014 Tsay et al. [50] [PS48] 2020 Subramanian [43]
[PS21] 2015 Steinmacher et al. [39] [PS49] 2020 Canedo et al. [8]
[PS22] 2015 Foucault et al. [17] [PS50] 2020 Trinkenreich et al. [48]
[PS23] 2016 Steinmacher et al. [40] [PS51] 2020 Tan et al. [45]
[PS24] 2016 Zhu et al. [61] [PS52] 2020 Wang [53]
[PS25] 2016 Sarma et al. [35] [PS53] 2020 Silva et al. [37]
[PS26] 2017 Joblin et al. [23] [PS54] 2020 Wessel [55]
[PS27] 2017 Lee and Carver [26] [PS55] 2020 Tan et al. [46]
[PS28] 2017 Hata et al. [19]

Table 3.1: Primary studies

3.2.1 The onion model

To understand the “natural production evolution” of OSS development, Nakakoji et al.

conducted a case study in 2002 [32]. In this study, they proposed a model to describe the

general structure of OSS community, which looks like a onion with eight layers (See Figure

3.5). Each layer represent a role, and they argue that the role of contributors will evolve from

outside to the inner circle. There are eight roles, in the order from outside to inside layer,

they are passive user, reader, bug reporter, bug fixer, peripheral developer, active developer,

15

Figure 3.5: The onion model. Adapted from ”Evolution patterns of open-source software
systems and communities.” by Kumiyo Nakakoji, Yasuhiro Yamamoto, Yoshiyuki Nishinaka,
Kouichi Kishida, and Yunwen Ye, 2002, In Proceedings of the International Workshop on
Principles of Software Evolution (IWPSE ’02).

core member, and project leader. The definitions of these roles are presented in Table 3.2.

They did not specify the method they used to construct this general framework.

Nakakoji et al. collected data through survey, mailing list archives, and quantitative data

when necessary. They did not provide a systematic method that can be used to identify

these roles in other OSS projects, such as offering some factors or metrics. However, this

“onion model” makes a solid contribution to the role classification method in OSS projects,

and provide a basis for future researchers to discover proper factors that can be used to

identify different roles.

Herraiz et al. conducted a study to investigate the difference of joining process between

volunteers and hired developers [20]. In this study, they used the onion model provided by

Ye et al. [58], which contains a more theoretical identification and description of the roles.

However, not all roles are studied, they collected metrics like 1st message, 1st report, 1st

fix, 1st commit to identify the role transition of developers, but ignored roles like passive

users whose activity cannot be traced. The roles mentioned in this study are shown in Table

3.3. However, the roles with clear identification methods only include advanced user, bug

16

Roles Definition

Passive user Users who just use the system in the same way as most of
us use commercial software

Reader Active users of the system
Bug reporter Contributors who discover and report bugs
Bug fixer Contributors who fix the bug that is either discovered by

themselves or reported by bug reporters
Peripheral developer Contributors who contribute occasionally new functionality

or features to the existing system
Active developer Contributors who regularly contribute new features and fix

bugs
Core member Contributors who are responsible for guiding and coordinat-

ing the development of an OSS project
Project leader Often the person who has initiated the project

Table 3.2: Definitions of roles in the study of Nakakoji et al.

reporter, bug fixer, and committer. Herraiz et al. mined CVS, mailing list and Bugzilla to

collect statistics, then they identified roles based on these statistics. Herraiz et al. found

that there is not a clear “common” joining pattern, and its behavior does not seem to comply

with the predictions of the onion model. Also, onion model is followed only by the volunteer

developers but not for hired developers.

Roles Definition

Plain user occasionally visit the project’s web site, and maybe reads
mailing lists.

Advanced user occasionally send some messages to mailing lists.
Bug reporter report bugs
Bug fixer fix bugs
Core developer collaborates in the project with a high level activity
Committer Contributors who have write access to code repository of the

project through VCS

Table 3.3: Definitions of roles in the study of Herraiz et al.

In 2009, Shibuya and Tamai conducted an study to investigate the process of participation

in OSS communities. In this study, they only studied a subset of roles from the onion model.

The roles they studied are bug reporters and committers. Bug reporters are developers

who submit bug reports, while committers are developers who have write-access to the code

17

repository. The identification criteria for these roles are presented in Table 3.4. Shibuya and

Tamai extracted qualitative (publicly available documents) and quantitative (bug tracking

system and revision control systems) data of three OSS projects and conducted an analysis.

They found that the number of active developers does not change significantly when the

total number of committers increases for the selected OSS projects and most part of the

development is executed by core members. They also found difficulties faced by newcomers,

such as selection of a suitable task, and they identified patterns of contributor activities.

Moreover, they presented two types of paths to become a member with write access, which

will be further discussed in Section 3.4.

Roles Definition

Active developers Contributors who submit at least one contribution in a specified
month

Bug reporters Contributors who submit bug reports
Committers Contributors who have write-access to code repository

Table 3.4: Definitions of roles in the study of Shibuya and Tamai

In 2010, Ko and Chilana investigated Mozilla contributors to investigate power users’ activi-

ties [25]. In this study, they separated contributors based on onion model. The contributors

are separated into four categories: core developers, active developers, reporters, and users,

the definitions of these roles are presented in Table 3.5. Ko and Chilana collected data

mainly by analyzing Mozilla Bugzilla bug report repository. Through the analysis, they

found that the primary value of open bug reporting is in recruiting talented reporters, and

not in deriving value from the masses. One limitation of this study is that the classification

of contributors was static, so contributors may be placed in the wrong group. Thus, they

suggest a future direction that understanding contributions over time.

After the onion model has been proposed, researchers have carried out experiments to verify

if the onion model is correct under different settings. Oezbek et al. conducted a social

network analysis to check if the onion model is valid with respect to the participation in

OSS project mailing-list traffic [34]. They collected data from the mailing list archive to

18

Roles Definition

Core developers Release drivers, super reviewers, module owners, peers
Active developers Contributors who had been assigned any reports
Reporter Contributors who had reported at least one bug
User The remaining contributors

Table 3.5: Definitions of roles in the study of Ko and Chilana

construct the network, and the roles are classified based on network properties possessed by

different nodes. Three roles are involved in this study, they are core developer, co-developer,

and periphery. The definitions of roles are presented in Table 3.6.

Based on their visual observation and quantitative analysis of the network, they claimed

that the onion model could be misleading as core appears to have qualitatively different

roles as well. Although they found the core developers could be qualitatively different,

they did not discover the precise identification criteria for these roles. Apart from that,

the transition of individual mailing-list participants towards ever higher participation is

qualitatively discontinuous, which also contradict the smooth transition from layer to layer

suggested by the onion model.

Roles Definition

Core Developers who have sent at least one e-mail to the list in at
least k calendar months, with k=8

Co-developer Developers who strongly oriented to the core but also share some
links between each other

Peripheral partici-
pants

Developers who either only connected to the project core or not
at all

Table 3.6: Definitions of roles in the study of Oezbek et al.

Herraiz et al.’s work [20] found that the joining process does not seem to comply with the

predictions of the onion model within single project, but whether this will hold true under

the context of ecosystem is not studied. In 2011, Jergensen et al. conducted a study to

examine whether the onion model of joining and progressing still holds true in large project

ecosystems and how the model might change in such settings [22].

19

In this study, Jergensen et al. selected six projects from GNOME ecosystem as subjects.

They mined mailing list archives, bug tracking system, and source code repositories to collect

data. They used an approach similar to Herraiz et al., they identified developers’ roles based

on their first contribution to mailing lists, project bug tracker, and project source code. In

that case, they studied a subset of onion model roles which are users, bug reporters, bug

fixers, and committers.

Through analyzing the role transition of contributors, they found little support for the

traditional onion model within a single project, but it is supported slightly more often when

considering multiple projects. They also found that tenure in a project or the ecosystem

did not have a high impact on the centrality when both number of contributions and the

eigenvector centality are considered. They discovered four progression paths, these role

transition patterns will be further illustrated in Section 3.4.

Sinha et al. studied the phenomenon of the induction of external developers as code commit-

ters in 2011 [38]. The roles studied in this paper include core committer, non-core committer,

bug submitter, and bug committer. The identification criteria for these roles are presented

in Table 3.7. The roles they studied are subset of the onion model, but with slightly different

definitions. After mining data from code repositories and bug-tracking systems, they classify

the committers based on the criteria and analyze their activities. They found that developers

establish trust and credibility in a project by contributing to the project in a non-committer

role, and employing the organization of a developer is another factor that influences trust.

In 2014, Bosu and Carver proposed an novel core identification method called Core Iden-

tification using K-means (CIK) [5]. CIK will classify developers into two groups, core and

peripheral, based on 6 SNA centrality measures. They aim to identify how OSS developers’

reputation affects the outcome of their code review requests, with the assumption that core

developers have a better reputation.

20

Roles Definition

Core committer User who has committed code to the project code repository
before the first release

Non-core commit-
ter

User who did not commit code to the project code repository
before the first release

Bug submitter User who has created a bug report in bug-tracking system, but
has not committed code to the code repository

Bug committer Person who has submitted a code patch in the bug-tracking sys-
tem but who has not committed code

Table 3.7: Definitions of roles in the study of Sinha et al.

Different from Oezbek et al.’s work ,Bosu and Carver construct the social network with

code review interactions instead of mailing list. The SNA centrality measures they used

include betweeness, closeness, eigenvector, PageRank, and eccentricity. They use K-means

clustering algorithm to combine these different measures into a new measure and detect the

core developers.

With analysis regards the first feed back interval, review interval, acceptance rate, and

number of patches per review request, Bosu and Carver found that core developers enjoy

quicker first feed back intervals, shorter review intervals, and higher code acceptance rates.

They did not observe any qualitative differences among core developers in this study, which

implies the criteria for further classification of core developers may not be relevant to core

developers’ code review activity.

In 2017, Joblin et al. conducted a comparison of count-based operationalizations and

network-based operationalizations. Count-based role classification relies on simple counts

of individual developers’ activities as mentioned in Section 3.2.2. In this paper, Joblin et al.

collected these metrics from both the mailing list archive and version control system. They

used these operationalizations to classify developers into core and peripherals based on the

standard 80th percentile threshold, since it is widely used and it has been justified in other

research.

21

They identified three count-based operationalizations and proposed five network-based op-

erationalizations. The three count-based operationalizations are based on three metrics:

commit count, lines of code (LOC) count, and mail count. As for the network-based op-

erationalizations, they are degree centrality, eigenvector centrality, hierarchy, role stability,

and core-peripheral block model. Each of these five operationalizations reflects one type of

characteristics that should distinguish core and peripheral developers.

To evaluate the count-based operationalizations and network-based operationalizations, they

also conducted a survey to collect developers’ perception of roles. After the evaluation, they

found that count-based operationalizations of developer roles are outperformed by network-

based operationalizations. In addition, the network perspective can offer valuable insights

regarding developer roles which are concealed by non-technical operationalizations.

One-Time Contributors (OTCs) are on the very fringe of the peripheral developers. To

provide a better understand of OTCs, Lee and Carver investigated activities of core contrib-

utors, peripheral contributors, and OTCs. In this study, they classified contributors based

on their code contribution, the roles, and their definitions are shown in Table 3.8. Lee and

Carver mined projects’ repositories for information such as code-review data, inline com-

ments, patch data, request details, and contributors’ data. Through analysis, they found

that OTCs represent a distinct group of contributors compared to core and peripheral devel-

opers. The results confirmed that OTCs do face unique barriers and stronger barriers than

other peripheral contributors do, and their patches are also different from other peripheral

developers. It implies that peripheral developers can be further divided into more groups

of contributors with qualitative differences, and the criteria for this classification could be

related to the barriers they face and the patches they commit.

To make a project sustainable, it is necessary to attract and retain developers, especially

project leaders and core developers. This is also true under the context of ecosystems. Cheng

et al. conducted a case study on the GNOME ecosystem to reveal the factors that influence

22

Roles Definition

OTC Contributors who have one code patch marked with a status of
’MERGED’

Peripheral Contributors who contribute less than 2% of the total code in the
repository but not OTCs

Core Contributors who contribute 2% or more of the total code in the
repository

Table 3.8: Definitions of roles in the study of Lee and Carver

developers’ chances to evolve into project leaders and core developers [10].

In this study, Cheng et al. used the widely accepted role classification model proposed by Xu

et al. [57]. This model contains four roles: active users, project leaders, core developers, and

co-developers. Cheng et al. decided to only consider project leaders, core developers, and

co-developers, since their focus is on the evolution of the developers. However, they did not

adopt all the calculation methods given by Xu et al., the reasons are that project leaders and

core developers are not listed in GNOME dataset, and there are different ways to identify

core developers. The definitions of these roles are presented in Table 3.9. Apparently, these

two categories of core developers are identified using level of contribution based method

similar to Lee and Carver [26] and network analysis based method similar to Oezbek et al.

[34].

Cheng et al. used the development data of GNOME to identify developers’ roles and extract

indicators for developers’ subjective willingness and project environment. After analysis,

they were able to discover that different sets of indicators that influence different role tran-

sitions. Moreover, they suggested to investigate the evolution of developer roles in other

larger OSS ecosystems, such as GitHub, to validate the generalizability of the results.

In 2018, Coelho et al. conducted a survey to reveal core developers’ motivations for joining

an open source project [13]. In this study, they identified core developers based on the

number of commits. They first define the core team as developers who produce 80% of

23

Roles Definition

Project leader Initiator of a project.
Developmental
core developer

Top developers whose cumulative contribution is just more than
or equal to 80% work of the project.

Collaborative core
developer

Developers in the center of the cooperation network of developers
in the project.

Co-developer Developers who have no significant contributions

Table 3.9: Definitions of roles in the study of Cheng et al.

the overall amount of commits in a project, then exclude developers who have less than

5% of total number of commits. After core developer identification, they surveyed the core

developers and analyzed the response. They revealed the motivations, the most common

project characteristics and practices that most helped engagement and barriers faced by for

the core developer. They also compared their results with other studies focused on other

roles, such as One-Time Code Contributors (OTC), casual contributors and newcomers.

In 2018, Calefato et al. aimed to study developers’ personality in various contexts, for ex-

ample, different roles [7]. They studied two roles, core developers and peripheral developers.

Core-peripheral is a simplified version of the onion model, there have been studies using

different criteria to distinguish core developer and peripheral developers [5] [23] [26]. In this

study, core developers are the project members with commit access to the repositories, while

peripheral developers are the commit authors without access to the repository. Calefato et

al. identified the role of developers based on data extracted from project code repositories.

Unlike GitHub, There is no visible role labels of participants regarding the subjects for this

study, the Apache Software Foundation projects. Therefore, they collect commit metadata

from Git repositories for information such as committer id to find the integrator who have

commit access. The results show that developers’ traits do not vary with their roles, mem-

bership, and extent of contribution. The roles refer to two groups of developers at the same

time period, while membership refers to comparison of the same developers before and after

obtaining membership. They also found that developers’ personality evolves over time as

24

more conscientious, agreeable and neurotic, and the openness and agreeableness traits are

antecedents of successfully becoming a project contributor.

In 2019, Müller conducted a study to build a better understanding of OSS communities, their

dynamics over time, key players and dependencies on them [30]. The role involved in this

study is the top contributor, which are the contributors who contribute the majority of the

project. In this study, they use lines of code (LoC) to measure developers’ contribution. This

study is still on going when this paper is published. Based on the preliminary results, they

confirmed the assumption that most code in open source projects is created by just a small

number of active contributors. They realized the limitation of using LoC as measurement

and mentioned other measurement methods as future improvements. They also presented

other improvements such as evaluating communities by their lifetime, comparing active and

inactive projects, and so on.

Avelino et al. conducted an empirical investigation of projects’ abandonment and survival in

2019 [1]. They aimed to provide empirical evidence on the frequency of project abandonment

and survival, the differences between abandoned and surviving projects, and the motivation

and difficulties faced when assuming an abandoned project.

In this study, they studied the core developers but give the another name which is Truck

Factor (TF) developers. TF is the minimal number of developers that the project depends

on for its maintenance and evolution, and the departure of influential TF developers is TF

developers detachment (TFDD). To identify the TF developers, they used the algorithm

proposed by Avelino et al. [2]. The TF developers are computed based on the degree of

authorship (DOA), and the developers with the highest DOA of at least 50% of the system’s

files. In this study, the metrics needed for TF calculation were extracted from GitHub

projects’ repositories. This algorithm is also used by Canedo et al. [8] to identify core

developers.

25

Through the analysis of TFDD in the OSS projects, they found that TFDDs indeed happen

in open source projects, and that projects can survive such conditions by attracting new

core contributors. Moreover, the results of the survey revealed the motivation that led these

developers to take over the studied projects after the project faced a TFDD, and revealed

the principal enablers and barriers faced by these developers during this process.

By comparing the factors that attract new contributors in Coelho et al.’s work [12] with this

paper’s results about attracting new TF developers, they found that new TF developers are

motivated by their own use and need to save projects in contrast to new, casual or one-time

contributors. As future directions, they suggested the design of tools to assess the risks

faced by an open source project, in case it is abandoned by its TF developers, and develop

recommenders of TF developers for a system.

As the effect of gender diversity in OSS communities has gained increasing attention, Canedo

et al. conducted a research to investigate the gender diversity and work practices of core

developers contribution to OSS communities. In this study, they mined software repositories

and identified the core developers using Truck Factor (TF) algorithm, then identified their

gender and compare their contributions. Moreover, they conducted a survey with women

core developers to understand their perceptions about gender bias.

To identify the core developers, they also used the same TF algorithm proposed by by

Avelino et al. in 2016 [2]. This study is not classified as the same category as Avelino et

al.’s work, since in this study they define core developers as “developers that significantly

contribute to the development of a system”, and this study’s focus is not the maintenance

of OSS projects. However, the core developers and maintainers are highly coincident, and I

will elaborate on this in Section 4.1.

Through identifying the women core developers in OSS communities and conducting a survey,

Canedo et al. found that there are more significant underrepresented women core developers

26

than women developers. However, there are no statistically significant gender-related dif-

ferences in the work practices of core developers. And women core developers believe that

gender diversity is important for OSS communities.

3.2.2 Participative system

To better understand the nature of collaboration in OSS development, Nakakoji et al. pro-

posed a framework (See Figure 3.6) to describe a participative system [31]. A participative

system refers to an organic socio-technical system “in which the social and technical in-

frastructures interconnecting users and artifacts” through supporting collaboration both in

designing and using artifacts and in framing individual and collective goals. In this frame-

work, Nakakoji et al. classified OSS projects participants into three types based on their

type of engagement, the definitions of these roles are shown in Table 3.10. Although a precise

definition is given, they did not present how they use this definition and project’s data to

identify different roles in their case study on GIMP. This case study also tested their hypoth-

esis about the transition patterns based on this role classification, which will be illustrated

in Section 3.4.

Roles Definition

Passive participants Only use objects of design hosted by a participative
system

Active participants Contribute to objects of design in a participative system
Power participants Influence both the objects of design and the participa-

tive system itself

Table 3.10: Definitions of roles in the study of Nakakoji et al.

3.2.3 Modeling project organizations

et al.’s work [20] shows that the onion model is not working well when depicting the joining

process, and Jensen and Scacchi pointed out that the onion model also fails to draw out

27

Figure 3.6: A framework to describe participative system . Adapted from ”Understanding
the nature of collaboration in open-source software development,” by C. Jensen and W.
Scacchi, 2005, 12th Asia-Pacific Software Engineering Conference (APSEC’05), pp. 8 pp.-

the presence of multiple tracks of project career advancement through different role-sets.

Jensen and Scacchi conducted an empirical analysis of the role migration and project career

advancement process through comparative case studied in 2007, to make the socio-technical

process explicit. In this study, Jensen and Scacchi investigated three OSS project organi-

zations (Mozilla.org, Apache.org, and NetBeans.org), and they present the role-sets, role

migration and advancement process in these projects. The role-sets are identified based on

participant interviews and web site mining. The detailed identification for each role is not

presented, while the responsibility and how to obtain some of the roles are illustrated in the

study. The role transition mentioned in this paper will be further illustrated in Section 3.4.

3.2.4 Development maturity and specialized roles

Another study on roles in ecosystem was conducted by Wagstrom et al [52]. in 2012. In

this study, they examine a subset of communities found in GitHub and identify a variety of

28

roles. In this study, Wagstrom et al. collected metrics like watch, issues, PR, and marked as

member from the project repositories, and retrieved relevant users’ information like account

information, the users they are following, their followers, and the repositories they own.

Then based on this information, they identified a set of roles.

The roles they found can be divided into two classes: Development maturity and Specialized

roles. Development maturity roles include lurkers, issues, independent, aspiring, external

contributors, and internal collaborators; specialized roles include prodder, project steward,

code warriors, nomad warriors, and project rockstars. The definitions of these roles are

presentated in Table 3.11.

Besides identifying these roles, they also found that these roles often persist across sub-

communities in the GitHub ecosystem. However, GitHub hosts more than 100 million

projects, so a validation of this role classification on a larger scale may reveal other properties

of these roles and discover other roles.

The concept of project rockstars is adopted from Dabbish et al.’s work in 2012, and this

concept is also adopted by Lee et al. The comparison of rockstars in these three literature

is shown in Table 3.12. Wagstrom et al. provided finer identification criteria compared with

Dabbish et al.’s work, their criteria include the level of contribution based on the number of

commits and range of influence based on the number of followers. In the study of Dabbish

et al., they interviewed users of GitHub and identified a group of developers referred as

“coding rockstars”. In this study, they found 4 key features of visible feedback driving a rich

set of inferences around commitment, work quality, community significance and personal

relevance. In the study of Lee et al., they used GitHub’s API to collect developers’ actions

include commit, follow as data. They sorted developers based on their number of followers

and number of actions performed and identified four rockstars. They found that these

rockstars’ actions have a greater influence on their followers, and the type of actions affect

their followers differently. Their influence on followers may depend on a project’s age, and

29

their followers’ activity will increase when they increase the activity on a project. Moreover,

their followers use them as guide to projects to work on.

3.2.5 Active contributors and supporting contributors

In 2019, Cheng and Guo proposed another role classification by analyzing OSS contributors’

activities. In this study, they first extracted six activities of contributors (knowledge sharing,

code contribution, issue coordination, progress control, code tweaking, and issue reporting),

then they identify two groups of contributors with hierarchical clustering analysis. These

two groups are active contributors and supporting contributors, and they further analyzed

the clusters of each role and found four clusters in the active contributors group and five

clusters for supporting contributors. Clusters in the active contributors are named as intense

code contributors, coordinators, core developers, and all-rounders. Clusters in supporting

contributors are named as engaged issue reporters, occasional issue reporters, progress con-

trollers, issue fixers, and rare contributors. The definitions of these roles are presented in

Table 3.13. This role classification is based on the type of contribution as they use six ac-

tivities which represent different types of contributions in hierarchical clustering analysis, so

the contributors are merged into the same cluster when they are similar in the term of type

of contribution. This study also includes an analysis of role dynamics and discussion about

role change, the role transition mentioned in this paper will be further illustrated in Section

3.4.

3.2.6 Project centric and community centric roles

Previous studies mainly focus on the roles within a project, even when ecosystem is consid-

ered. However, as the open source community drastically matured, non project-centric roles

emerge and become important to OSS communities. In 2020, Trinkenreich et al. conducted

30

Roles Definition

Development ma-
turity roles

These roles track the progress of an individual as they become
socialized into the community to become full contributors

Specialized roles These roles include roles that a contributor can take depending
on their commitment and interest

Lurkers Individuals who have only taken action to monitor a project or
issues related to a project.

Issues Individuals who have been active on the project issue tracker,
either by filing new issues or commenting on existing issues or
pull requests

Independent Individuals who have forked the project source code repository
using the GitHub infrastructure but have not issued any pull
requests

Aspiring Individuals who have created pull requests that have been closed
but have never had their pull requests merged

External contribu-
tors

Individuals who have created pull requests that were later merged
into the project source code, but are not official contributors to
the project or members of the organization that own the project

Internal collabora-
tors

Individuals who are marked as contributors to the project or
are members of the organization that owns the project and have
source code in the main project repository

Prodder Individuals who identify and take on long standing issues or is-
sues that have idle for a long time. They are top 20% individuals
in terms of the number of issues they have prodded, subject to a
floor than an individual must have been involved on at least 1%
of the issues in a project

Project stewards Individuals who primarily focus on managing the project. They
are the top 20% of individuals working on a project both in terms
of number of issues closed and number of pull requests closed

Code Warriors Individuals who have frequent and consistent commits to a
project. They are the top 20% of individuals working on a project
in terms of both the frequency of their commits and also the stan-
dard deviation of the time between their commits

Nomad Coders Individuals who have contributed only minor code changes and
then have either move onto the next projects or individuals who
are participating in one project, but make minor contributions
to another project

Project Rockstars Individuals who have a high visibility in their project and are
significant contributors to their project. They are in the top
20% in terms of the number of commits to a project and the
number of people in the project who follow them

Table 3.11: Definitions of roles in the study of Wagstrom et al.

31

Study Definition

[PS12] Developers with thousands of followers
[PS13] Developers in the top 20% in terms of the number of commits

to a project and the number of people in the project who follow
them

[PS16] Developers whose number of followers and actions were signifi-
cantly different from other developers

Table 3.12: Comparison of definitions of rockstars

Roles Definition

Active contributors Major group with high dendrogram height
Supporting contributors Major group with low dendrogram height
Intense code contributors Contributors who develop a certain functionality of the

software within a short time period.
Coordinators Contributors who focus mainly on Knowledge Sharing,

Issue Coordination, and Issue Reporting activities.
Core developer Contributors who perform actively in Code Contribu-

tion, Code Tweaking, Progress Control, and Knowledge
Sharing

All-rounders Contributors who have medium level of contribution in
all dimensions

Engaged issue reporters Contributors who focus on Issue Reporting, report more
issues

Occasional issue reporter Contributors who focus on Issue Reporting, report
fewer issues

Progress controllers Contributors who mostly engage in the Progress Con-
trol activity

Issue fixers Contributors who focus on making small tweaks to the
code or fixing bugs.

Rare contributor Contributors who only participate in a minuscule
amount of activities

Table 3.13: Definitions of roles in the study of Cheng and Guo

a study to investigate the roles and activities that are part of the current OSS landscape

and the different career pathways in OSS [48]. They found another set of roles named

community-centric roles.

In order to investigate the ”behind the scene” roles, Trinkenreich et al. recruited experienced

and well-recognized OSS contributors for interviews. With the data collected by interviews,

32

they discovered the prevalence of community-centric roles. They classified roles into two

groups: project-centric roles and community-centric roles. Project-centric roles include OSS

coder, OSS project manager and OSS system admin. Community-centric roles include OSS

community founder, community manager, and OSS community manager can be further

divided into OSS strategist, OSS mentor, OSS treasurer, OSS writer, OSS advocate, and

OSS license manager. The definitions of these roles are shown in Table 3.14.

Trinkenreich et al. found that people can build a career in OSS through different roles and

activities, and people’s career pathways are fluid, moving between project and community-

centric roles. This study is based on interviews instead of data collected from projects, so

they suggested to conduct an in-depth analysis of community-centric roles, to understand

what projects currently do to foster them, and what are the needs for these roles to flourish.

They did not propose measurements for the community-centric roles, so they also suggested

researchers to work on proposing ways to identify and measure the evolution of stakeholders

performing nontechnical roles in OSS.

3.3 Role identification methods

Previous research gave different definitions and identification criteria to different roles, roles

under the same name could have different identification methods while roles under different

names could share similar identification methods. In this section, I categorize the role iden-

tification methods used by the primary studies into six categories: membership based, count

based, network based, turnover based, usage based, and development process based.

33

Roles Definition

Community-
centric roles

The roles related to the creation and management of the com-
munity

Project-centric
roles

The roles related to the project deliverable

OSS community
founder

Contributors who create a new product or new project

OSS advocate Contributors who develop plans to bring new contributors, in-
creasing contributions to the OSS project, and making the com-
munity inclusive, welcoming and safe

OSS mentor Contributors who train newcomers
OSS strategist Contributors who foster the adoption of OSS technology or im-

prove its processes and improve transparency in organizations or
communities

OSS treasurer Contributors who lead strategical budgetary decisions for the
OSS project or foundation

OSS writer Contributors who contribute to documentation
OSS license man-
ager

Contributors who oversee the compatibility and compliance of
software licenses

OSS coder Contributors who perform activities related to developing new
code, maintaining existing code, and writing tests

OSS project man-
ager

Contributors who perform management-centric activities such as
managing budget, and perform product-centric activities such as
managing releases and project deliverable.

OSS system ad-
min

Contributors who support the base operational systems, selects,
configures, connects, and fine-tune the subsystems that are com-
ponents of a robust and efficient larger part

Table 3.14: Definitions of roles in the study of Trinkenreich et al.

3.3.1 Membership based

This category represents the role classification methods based on whether the developer is

recognized as a project member. Such membership can be observed by different ways and

usually related to the privileges to manage the project. There are five studies under this

category, these studies are shown in Table 3.15. The roles investigated and identification

criteria used by these studies are listed in Table 3.16. Although the roles studied by these

literature are similar, the methods used to identify these roles are quite different, range

from scraping visible roles on web pages to inferring write permission from event logs. The

34

definitions and the methods they used are presented in this section.

Study Year Reference

[PS29] 2017 Zhou et al. [59]
[PS31] 2017 Coelho and Valente[12]
[PS34] 2018 Middleton et al. [29]
[PS35] 2018 Calefato et al. [7]
[PS37] 2018 Dias et al. [15]
[PS38] 2018 Valiev et al. [51]
[PS43] 2019 Tan [44]
[PS47] 2020 Wang et al. [53]
[PS52] 2020 Wang [54]
[PS55] 2020 Tan et al. [45]

Table 3.15: Literature relevant to membership based role identification methods

Roles Identification criteria Data source

Insider, outsider Visible role GitHub interface
Core, peripheral Committer Git repository
Internal member, external
member

Role flag and public profile GitHub pull request, public
profile

Elite, nonelite Events related to write per-
mission

GitHub project events

Maintainer Repository owner GitHub
Maintainer Contributors’ label MAINTAINERS files of

Linux kernel
Maintainer Visible role PyPI

Table 3.16: Roles, identification criteria, and data source used in membership based methods

Insider and outsider. Middleton et al. studied project communities on GitHub to discover

which forms of software contribution characterize developers who join the project team, and

they proposed two roles, insiders and outsiders, to define membership on GitHub [29]. The

insiders are contributors who obtain the ability to commit changes to the project repository,

while outsiders are the contributors without such write access. To identify the insiders,

Middleton et al. collected the developers’ roles on GitHub interface, and consider the roles

that indicate “write access”, such as ”Collaborator” or ”Member”, as insiders. Although it is

easy to collect the role information when it is visible, there are other challenges. One is that

the available roles have changed during their study, and they had to find the correspondence

35

between roles manually. Another challenge is that GitHub provides the option to change the

default visibility of project roles. To minimize the possible influence caused by invisible roles,

they consulted the commit history of projects on GHTorrent where they can also identify

insiders, since there are actions that can only be performed by project members.

Core and peripheral. As mentioned in section 3.2.1, Calefato et al. classified developers

into core and pheripheral developers based on commit access.

Internal member and external member. Unlike the previous two membership-based

role classifications, the classification used by Dias et al. is not based on “write access”

to repositories [15]. In this paper, Dias et al. investigated the activity of internal and

external developers. Internal developers are contributors that work for the company that

open-sourced the project, while external developers are contributors that do not work for

that company. They also utilized the features provided by GitHub to collect data, but

instead of using visible roles on GitHub interface, they identify role of developer based on a

flag “site admin”. This flag indicates the role of the site administrator with permissions to

manage high-level application and VM settings, all users and organization account settings,

and repository data. They consulted GitHub representatives and confirmed that this flag

is only true for GitHub employees. They also analyzed the public profiles of the top 10

contributors to avoid false negatives (a paid that does not have its site admin flag enabled).

After the role identification, the analysis of contributors showed that both internal and

external developers are rather active when it comes to submitting pull requests. Many

externals play important roles in the studied projects, but internal developers still play the

central roles in the projects. The differences between internal and external developers are

that the majority of the external developers are casual contributors, external developers’

contributions range from documentation to complex code.

Elite developer and nonelite developer. In 2020, Wang et al. investigated a group of

developers named elite developers [53]. In this study, they intend to analyze elite developers’

36

activities in a comprehensive way. They defined elite developers as developers who own

administrative privileges in the project and identified elite developers by developers’ write

permission for repository. They collected data from the GitHubArchive public data dump on

Google Cloud and GitHub API. To identify the elite developers, they analyzed the event data

to determine if a developer has write permission, since the list of developers’ permissions is

only accessible for repository owners. By analyzing the activities of elite developers, Wang et

al. found that elite developers participate in a variety of activities, and elite developers tend

to put more effort into supportive and communicative activities and less effort into coding

as the project grows. As for the impact of elite developers’ activities on project outcomes,

they found that elite developers’ efforts in nontechnical activities are negatively correlated

with the project’s outcomes in terms of productivity and quality in general, except bug fix

rate.

Later, in a follow-up study, Wang presented a fresh approach to investigate developers’ public

activities to advance their understanding and further support the OSS community [54]. The

role studied in this research is still elite developers and have the same identification criteria

as previous work. In this study, Wang designed a tool that can be used to collect, model, and

analyze elite developers’ online contributing activities. The automation approach proposed

can leverage GitHub’s event log and apply a set of statistic methods to provide analytic

support to elite developers.

Maintainer. In 2017, Zhou et al. used qualitative methods to understand maintainer

behavior and to design suitable measures for maintainers’ work, then use maintainers’ activity

data to quantify the growth of the system, the growth of workloads, work distribution and

scalability of maintainers’ work [59]. Zhou et al. choose Linux kernel as the subject. In

this study, the maintainers as part of the core group, and some of them do not write code.

Zhou et al. identified maintainers based on contributors’ label, only individuals explicitly

labeled as “maintainer” in MAINTAINERS files were considered as maintainer. Through a

37

mixed method of qualitative and quantitative analysis, they found that there are systematic

differences among modules, and most of the modules have not grown appreciably over the

last decade. For maintainers, the effort per maintainer does not increase, but the distribution

of work is highly unbalanced, suggesting that a few maintainers may experience an increasing

workload. They also discovered that assigning multiple maintainers to a file yields only a

power of 1/2 increase in productivity.

Since only individuals explicitly labeled as “maintainer” were considered, there could be un-

recognized maintainers. Moreover, their approach did not consider all the ways maintainers’

effort, such as participation in discussion. There are also other limitations, such as only

considering the mainline repository, and the uniqueness of Linux kernel limits the general-

ization. In that case, another research that using the similar method but has a more precise

maintainer identification and using a set of representative OSS projects could provide better

insights into maintainers’ behavior.

Tan applied the identification method used by Zhou et al. In 2019 [44]. In Zhou et al.’s

study, they found that assigning multiple maintainers to a file yields only a power of 1/2

increase in productivity, but they did not provide solutions to adjust the workflow to adapt

the project. In Tan’s study, they evaluated a new workflow: the multiple-committer model

(MCM) that was applied by a subsystem of the Linux kernel to confront the heavy work-

load of the maintainers.They found that the model works well on the i915 subsystem and

appears to effectively reduce the pressure in the subsystem. And they obtained 3 dimensions

of factors, a system can determine if it meets these factors and then decide regarding the

adoption. Later, in a follow-up study, Tan et al. also used this identification method and

continued to investigate the model, MCM, to relieve the burden on maintainers [45]. Apart

from that, they reviewed the online documents related to the MCM and conducted inter-

views to understand which factors are important for the implementation of the MCM. They

also proposed an approach to identify potential committers using a collaboration network.

38

Finally, they conducted interviews to validate the generality of the results.

Understanding the reasons that lead to failure will help maintainers prevent failures happen.

Coelho and Valente investigated to reveal the reasons and strategies that could be effective

in 2017 [12]. Coelho and Valente first send the survey to maintainers on GitHub to gather

information about the reasons behind failures. In this study, the maintainers they choose

are the repositories’ owners or projects’ principal contributors if the repositories are owned

by organizations. They discover a set of nine reasons for the failure based on analysis, the

top reasons include lack of time, lack of interest, project is completed, usurped by competi-

tor, project is obsolete, project is based on outdated technologies, low maintainability, and

conflicts among developers. They also collected projects’ information about the practises

applied and show that some maintenance practices have an important association with a

project’s failure or success. Moreover, they collect data from the issues of failed projects,

and reveal the principal strategies developers have tried to overcome the failure of the studied

projects. Based on their work, researchers can work on defining and validating ””maturity

models”” for open source projects, and minimize the risks of adopting the projects. They

also provide future work like conducting investigation on proactive strategies to avoid the

failure of projects, such as maintainer recommendation system.

Code reuse brings many benefits to modern software development, which will create com-

plex networks of interdependencies of projects. Such a network of projects is named ecosys-

tem. Valiev et al. studied ecosystem-level factors affecting the sustainability of open-source

Python projects in 2018 [51]. In this study, Valiev et al. collected a panel data set of Python

PyPI packages and modeled the factors that explain projects becoming dormant. Then they

interviewed package maintainers to triangulate the model results and refine the discovered

effects. Valiev et al. define maintainers as the same group of developers as core contributors,

and they are highly active and have the deepest knowledge of the code base. They did not

disclose the method they used to identify maintainers. However, based on PyPI documen-

39

tation, maintainer is a collaborator role available for a project on PyPI, so they are likely to

identify the maintainer based on that.

3.3.2 Count based

The studies in this section classified developers based on quantitative measures of contribu-

tors’ contribution, including the number of commits, lines of code (LoC), and so on. There

are ten studies which used count based role identification methods, these studies are shown in

Table 3.17. In the study of Coelho and Valente, they identify maintainers as project owners

or principal developers. They did not specify how they determine a developer is principal

developer or not, however, they are likely to use the code contribution as measure to identify

principal developer. The identification criteria and data source used by these studies are

listed in Table 3.18.

Study Year Reference

[PS3] 2006 Herraiz et al. [20]
[PS6] 2009 Shibuya and Tamai [36]
[PS13] 2012 Wagstrom et al. [52]
[PS30] 2017 Cheng et al. [10]
[PS27] 2017 Lee and Carver [26]
[PS31] 2017 Coelho and Valente [12]
[PS32] 2018 Coelho et al. [13]
[PS44] 2019 Müller [30]
[PS41] 2019 Cheng and Guo [11]
[PS49] 2020 Canedo et al. [8]

Table 3.17: Literature relevant to count based role identification methods

3.3.3 Network based

Different from classifying developers’ roles based on their membership or quantitative mea-

sures of their contribution, another approach is conducting social network analysis. By

40

Study Identification criteria Data source

[PS27] Percentage of code contribution Project repositories
[PS31] Principal developers GitHub repositories
[PS32] Number of commits GitHub project repositories
[PS44] Lines of code Git repositories
[PS49] Truck Factor GitHub project repositories
[PS3] Level of activity CVS, mailing list, and Bugzilla
[PS6] Frequency of contribution Bug tracking system and revision

control systems
[PS13] Number of issues, commits and fol-

lowers
Project repositories and users related

[PS30] Percentage of code contribution Development data of GNOME
[PS41] 6 factors GitHub project repositories

Table 3.18: Identification criteria, and data source used in count based methods

constructing a network of developers with their direct or indirect interactions, researchers

can observe the hierarchy of contributors, and identify roles of developers based on their

characteristics revealed by the network. Although the studies under this category all use

network analysis methods, they utilized different measures and different data source.

The studies in this section all classify developers based on the onion model. There are three

studies under this category, these studies are shown in Table 3.19. The roles investigated

and identification criteria used by these studies are listed in Table 3.20.

Study Year Reference

[PS7] 2010 Oezbek et al. [34]
[PS19] 2014 Bosu and Carver [5]
[PS26] 2017 Joblin et al. [23]
[PS30] 2017 Cheng et al. [10]

Table 3.19: Literature relevant to network based role identification methods

3.3.4 Turnover based

Turnover is the phenomenon of continuous influx and retreat of human resources in a team.

Foucault et al. conducted a research to study developer’s turnover in OSS. In this study,

41

Study Identification criteria Data source

[PS7] Social network analysis Mailing list
[PS19] Social network analysis using K-

means clustering algorithm based on
centrality measures

Code review

[PS26] Five network-based operationaliza-
tions and the standard 80th per-
centile threshold

Email, VCS, code review

[PS30] Social network analysis development data of GNOME

Table 3.20: Identification criteria, and data source used in network based methods

they classified developers based on external and internal turnover. The external turnover

refers to the movements of developers in and out of a project, while internal turnover refers

to the movements of developers inside a project. They defined three roles under the context

of both internal turnover and external turnover, these roles are newcomer, leaver, and stayer.

The definitions of these roles are given in Table 3.22.

In this study, they collect information from centralized VCS to identify authors, measure

quality of project’s modules and modulate project. They proposed and investigated metrics

to measure turnover in OSS projects. Based on the results, they found that high turnover lead

to success, but external turnover has a negative impact on the quality of the modules. And

they also showed turnover patterns which reveals that the projects act differently regarding

turnover.

Onboarding

Onboarding is a process that helps newcomers become integrated members of their organiza-

tions [16]. There are two roles involved in this process: newcomer and mentor. Newcomers

are the developers who are new to a project and want to contribute, while mentors are

experienced developers who support newcomers to get through the onboarding process and

start to contribute. I put this as a subsection of Turnover based category, since the major

42

participant of this process, newcomer, has the same definition as external newcomer defined

in turnover.

Onboarding is an important process for OSS projects to be sustainable, since the contribu-

tors, especially peripheral contributors, are constantly changing. There are ten studies under

this category, these studies are shown in Table 3.21. Researchers have studied the barriers

faced by newcomers and mentors in onboarding process [39] [3] [41], proposed assistance

tools [9] [40] [35] for newcomers. There are also a number of studies that provide suggestions

and practises for projects to attract and assist newcomers [16] [37] [46] [36].

Study Year Reference Research focus

[PS6] 2009 Shibuya and Tamai [36] Project characteristics
[PS14] 2012 Canfora et al [9] Assistance tool
[PS17] 2014 Fagerholm et al. [16] Mentoring, project characteristics
[PS21] 2015 Steinmacher et al. [39] Barriers
[PS23] 2016 Steinmacher et al. [40] Assistance tool
[PS25] 2016 Sarma et al. [35] Assistance tool
[PS36] 2018 Balali et al. [3] Barriers
[PS45] 2019 Steinmacher et al. [41] Barriers
[PS51] 2020 Tan et al. [46] Onboarding practise
[PS53] 2020 Silva et al. [37] Onboard and motivate students

Table 3.21: Literature relevant to onboarding based role classification

Barriers. To assist newcomers onboard, it is necessary to identify the barriers they meet

in the onboarding process and find suitable practises to overcome these barriers [39]. Stein-

macher et al. conducted an empirical study to address this issue in 2015. In this study,

Steinmacher et al. identified the the barriers from multiple sources including systematic lit-

erature review, open question responses, students’ feedback and semi-structured interviews.

They defined a model composed of 58 barriers including 13 social barriers. Thus provide a

solid basis for practises and tools that can be used to overcome these barriers.

In 2018, Balali et al. identified 44 barriers faced by newcomers and mentors in OSS projects

[3]. Different from newcomers’ barriers identified by Steinmacher et al. [39], they 19 barriers

43

that affect mentors and 16 newcomers’ barriers that have not been previously identified.

They collected data by interviewing selected mentors. Through analysis, they found some

barriers affect only newcomers or only mentors, other barriers affect both newcomers and

mentors. Moreover, most of the barriers identified relate to personal and interpersonal issues.

They also uncovered strategies to help newcomers overcome barriers and find gap in how to

help newcomers deal with social barriers.They also discovered some gender-specific challenges

and identified factors that influence the onboarding and retention of women contributors in

OSS community.

In 2019, Steinmacher et al. reported a two phase study which consists of designing a model

of 58 barriers [39] and proposing a portal [40]. This paper is a summary of their previous

work, and they provided future directions such as using the model to plan further qualitative

and quantitative studies to investigate specific barriers.

Tools and guidance. In 2012, Canfora et al. proposed an assistant tool named Yoda. Yoda

is an approach to identify mentors by relying on historical data from the mailing list and

versioning systems, and then recommend them when a newcomer joins the project. This

paper defines five factors, inspired by ArnetMiner, that can be used to identify mentors,

and these factors will be computed based on the communication network constructed with

extracted data. These factors capture the interactions between this newcomer and possible

mentors, the difference of newcomer and mentors in terms of experience in this project, and

mentors’ technical activity. After identifying candidate mentors with these factors, Canfora

et al. adapted an approach proposed for bug triaging to find an appropriate mentor based

on textual analysis of newcomer’s request. The performance of Yoda is evaluated through an

empirical study, developers in five OSS projects are selected as participants for the survey.

The results show that Yoda can provide more precise recommendations compared to the

recommendation approach relying on top committers.

After identifying the barriers faced by newcomers, Steinmacher et al. proposed a portal

44

named FLOSScoach to support newcomers in 2016. This portal is based on the model of

barriers they defined in previous work, and it provides information and strategies to assist

newcomers to overcome these barriers.

Apart from presenting the design of this portal, Steinmacher et al. also performed a study

to evaluate the portal. This study analyzed diaries, self-efficacy questionnaire, and a ques-

tionnaire based on Technology Acceptance Model. The results indicate that FLOSScoach is

capable of guiding newcomers and lowering barriers related to the orientation and contribu-

tion process, but it was not effective in lowering technical barriers.

After building the web portal FLOSScoach, Sarma et al proposed another system called

BugExchange in 2016. BugExchange is a system that curates tasks from OSS projects to

help train newcomers. Through mining project repositories, BugExchange can collect tasks,

then it will analyze tasks to identify the skills required and complexity for each task. With

such information, BugExchange will recommend tasks to newcomers and provide a network

of near-peer mentors.

Sarma et al. conjecture that BugExchange may reduce newcomer dropouts and foster more

casual contributors, but evaluation of the system is not performed. They adapted the same

evaluation procedure used for FLOSScoach, but also planned to collect more information

from other relevant people like instructors and observe the use of this system. They also

planned to incorporate BugExchange into FLOSScoach.

Suggestions for projects. To examine how mentoring and project characteristics influence

the effectiveness and efficiency of the onboarding process, Fagerholm et al. conducted a

study in 2014. The influence of mentoring is analyzed by comparing the performance of

developers who are onboarded by the collaboration program with developers who joined the

same projects by nature process. Fagerholm et al. collected developers’ activity in terms

of speed of contribution and total number of commits, and the results indicate that the

45

mentoring has had a positive influence on the effectiveness and efficiency of the onboarding

process. As for project characteristics, they selected five characteristics that could influence

the onboarding process. The characteristics include commits, contributors, appeal, lifetime,

and peripheral contribution. To analyze the influence of these characteristics, they measured

four projects’ characteristics and compared them also in terms of speed of contribution and

total number of commits. The results show that if the project which has higher numbers

on these characteristics, their contributors also have higher speed values and higher level

of contribution. Therefore, they claimed that higher numbers in size, appeal, and lifetime

are related to an improvement in the performance of new developers. Similar to Fagerhom

et al.’s work, Shibuya and Tamai conducted a study to find the main projects’ attributes

where successful newcomers contribute to them. In this study, they take developers with

more followers as successful and popular developers, and collect these developers’ activities

from GHTorrent. By analyzing these data, they extracted a list of project characteristics

that newcomers contribute to them for the very first of their joining period in GitHub. The

list consist of 15 attributes and are sorted based on their importance, the importance of each

attribute is computed using Random Forest.

To support newcomers onboarding, GitHub encourages projects to apply labels such as good

first issue (GFI) to tag issues suitable for newcomers. But, many newcomers still fail when

they attempt to solve these issues. In 2020, Tan et al. conducted a preliminary study on

this mechanism from its application status, effect, problems, and best practices. To collect

data, Tan et al. first constructed a dataset with GHTorrent. They analyzed 9,368 GFIs

from 816 popular GitHub projects and found GFIs need more days to be solved, and almost

half of GFIs are not solved by newcomers. After that, they conducted email survey to

analyze factors and problems related to the effectiveness of GFIs, and summarized strategies

to identify appropriate GFIs.

Students are a special group of contributors in the OSS community, and previous studies

46

have only focused on software developers in general. Researches that foster the participation

of students not only can increase the OSS workforce, but it also benefit students, since online

contributions are considered when making hiring decisions. Silva et al. conducted a study

on analyzing what motivates students to participate in OSS and how to onboard them.

In this study, Silva et al. took Google Summer of Code (GSoC) program as subject, and

developed an engagement theory that explains how to onboard students and how students

become motivated to participate. This study is composed of three phases. In the first phase,

they build the onboarding theory based on the analysis of applications. And in the second

phase, they build the motivation theory based on empirical data. Finally, they present the

theory to student and analyze the perceptions. The students’ perceptions indicate that the

motivational theory broadened their understanding of GSoC and inspired them to engage

in such programs. By using GSoC as subject, the generalizability of their theory could be

limited. Future research can extend the results by using larger set of OSS projects as the

subject, and it is also necessary to evaluate this theory with a larger sample size.

Roles Definition

Newcomer Developers who joined the team of a module in the period P2

Leavers Developers who left the team of a module within the period of P1

Stayers Developers who contribute to a module in both P1 and P2

Table 3.22: Definitions of roles in the study of Foucault et al.

Quasi contributor

In 2018, Steinmacher et al. investigated how and why quasi-contributors fail [42]. Quasi-

contributors are external developers who did not succeed in getting their contributions ac-

cepted to an OSS project. Based on this definition, quasi-contributors are a subset of ex-

ternal newcomers. In this study, they identified quasi-contributors as newcomers who had

no “accepted contribution” to that specific project, while the “accepted contribution” are

any changes that passed the pull-request cycle and merged to the project code base. I find

47

no role similar to quasi-contributor in the existing role classification models. Another role

involved in this study is integrator, they are developers who merge pull requests.

In this study, Steinmacher et al. analyzed pull requests of selected popular OSS projects on

GitHub and conducted two surveys with quasi-contributors and integrators separately. They

found that quasi-contributors are common, and the most common reason for nonacceptance

was “mismatch between developer’s and team’s vision/opinion”. Moreover, one-third of the

developers disagreed with their nonacceptance and declared the nonacceptance demotivated

or prevented them from placing another PR.

First time contributor

In 2020, Subramanian investigated the characteristics of the first pull request made to an

OSS project by developers to understand the first time contributor [43]. In this study, they

mined the first pull request using GitHub API, and collected the user’s first contribution in

GitHub. First time contributor is similar to the newcomer, but the first time contributions

studied in this paper are not in terms of specific projects but a community (GitHub). This

paper revealed the top 15 languages/file types used and the size of contributions in first

PR. Based on the results, they suggested moderators to prioritize tasks based on the top

languages and file types, and the first time contributors should not be discouraged to take

up big tasks.

3.3.5 Event based

Event based identification methods refers to methods that identify contributors based on

specific event they participate, such as code review, bug report and bug patch.

48

Review

To ensure the quality of code, developers’ submission to projects usually need to be reviewed

by other contributors. This category include identification methods that identify reviewers

based on the data related to review event. There are three studies under this category, these

studies are shown in Table 3.23. The identification criteria and data source used by these

studies are listed in Table 3.24.

Study Year Reference

[PS5] 2009 Nurolahzade et al.[33]
[PS24] 2016 Zhu et al. [61]
[PS39] 2018 German et al. [18]

Table 3.23: Literature relevant to review based role identification methods

Study Identification criteria Data source

[PS5] Reviews in bug reports Mozilla Bugzilla database
[PS24] Code review comment GitHub code contribution

data of four projects
[PS39] Code review OpenStack code review

Table 3.24: Identification criteria, and data source used in review based methods

In 2009, Nurolahzade et al. examined the development process of Mozilla foundation and

highlighted how different parties involved affect and steer the process [33]. Apart from

the developers who submit the patch, they found module owners and peer developers are

involved in the patch review process. Module owners are the developers who have authority of

a module, a change to the code need to be approved by module owner, while peer developers

are involved by conducting peer reviews.

Nurolahzade et al. mined Mozilla Bugzilla database to collect bug reports, patches and

relevant developers. The methods they used to identify the module owners, module owner

peers and peer developers are not disclosed. By analyzing the events, they found that most

development and peer reviews in Firefox come from a group of developers who make up the

core developer group, and the assigned developers are primarily responsible for bug reports

49

and are supported by peer developers and module owners. They also found that peers

decrease module owners’ workload by providing ideas before a patch is developed, reviewing

patches before module owners, and finding and reporting back errors. They also discovered

a pattern that module owners are concerned about long-term maintainability, while peers

are interested in functionality and usability, which benefits module owners as they can use

the feedback to make a better decision.

Fairness of code review is important to the quality of software products, as it can impact

the productivity and motivation of participants. German et al. proposed a framework

that describes how fairness affects modern code review and evaluates the role of fairness

in the code review process. There are two roles involved in the code review process, they

are authors of the code and reviewers. In this study, German et al. invited authors and

reviewers to participate in the survey, they did not present the process they identify these

participants. Their results presented evidence that fairness is an issue, and they presented

a set of guidelines to address unfairness.

In 2016, Zhu et al. compared patch-based and pull-request-based tools in terms of code con-

tribution effectiveness [61], and such comparison may lead to strategies and practices making

the code contribution more satisfying and efficient from both contributors’ and maintainers’

perspectives. The roles studied in this paper are contributor and maintainer. In this study,

Zhu et al. synthesized the results of published papers and investigated four GitHub projects.

They first mined project repositories for information such as issues, review, and pull request,

then they borrowed metrics for analyzing contribution practice, and conducted two sub-

studies to address the internal and external validity. The contributors and maintainers are

identified based on data such as the submitter and operator of pull requests. They found

that modern tools, such as PR systems, have a lower processing time and attract more par-

ticipation, and these improvements are at least partially attributed to the advanced features

of PR systems.

50

Bug report and bug fix

Developers not only make code contributions to add new features or modules to OSS projects,

they also report bugs and submit bug patches to improve the code quality and make OSS

projects sustainable. As mentioned in the previous sections about the onion model, bug

reporter and bug fixer can be identified by investigating bug tracking system such as Bugzilla.

They are also called bug submitter and bug committer in the study of Sinha et al. [38], or

issue reporter and issue fixer in the study of Cheng and Guo [11]. Such distinct event makes

it easy to identify and separate them from other contributors.

In 2014, Tsay et al. conducted another study to investigate how developers in open work

environments evaluate and discuss pull requests [50]. The third party audience member

identified in this study are similar to the bug reporter, however, third party audience mem-

bers only report problems but do not actually contribute code. These third party developers

hold a stake in particular code contributions, often needing a particular change for their own

usage. They will apply pressure to core members to influence their evaluation decisions. In

this study, they collected data from a sample of extended discussions around pull requests

and interviews, and they found three types of participants are involved. Apart from third

party audience members, the participants also include submitters and project core members.

The submitters are developers who submit the pull requests, and core members are identified

based on their commit access.

There is another group of developers that contribute to the bug report and fix of OSS

projects, but they participate the bug bounty programs instead. An bug bounty programs

is a reward program offered by an organization to external parties, authorizing them to

perform security assessments on the organization’s assets. Considering the reward offered,

bug bounty contributors and other bug reporters could have a qualitative difference.

To understand the characteristics of bug bounty program contributors, Hata et al. conducted

51

a study in 2017 [19]. In this study, they analyzed the history of bug bounty programs and

contributors and conducted a survey. They further classified bug bounty contributors into

non-project-specific bug bounty hunters and project-specific security contributors, based on

whether they contribute to specific programs. This study provided insights to make bug

bounty programs better and insights for further studies of new software development roles.

3.3.6 Other methods

There are also other identification methods used by only a few literature, and cannot be

categorized into the types of role identification methods listed above. I also put the studies

which did not specify the identification methods in this subsection.

Usage based

In 2010, after conducting an interview to understand how members of OSS community per-

ceive usability issues, Terry et al. discovered a way to distinguish users into four groups.

These groups are reference users, bleeding edge users, stable release users, and linux distri-

bution users, and the first two groups are referred as core users. The definitions of these roles

are presented in Table 3.25. In this study, they found that FOSS project members possess

rather sophisticated notions of software usability, and uncovered a wide range of practices

that ultimately work to improve software usability.

Unspecified methods

I found three studies that investigated developers’ roles but did not present the identification

criteria used. Two of the studies investigated maintainers while another study investigated

lead and core developers.

52

Roles Definition

Core user Motivated users who closely follow and interact with
the project.

Reference users Users with close social ties to individual project mem-
bers, with domain expertise and extensive experience
using the software

Bleeding edge users Users who use nightly builds of the software.
Stable release users Users who use the software and provide feedback when

it is released as a stable version
Linux distribution users Users who only use software provided in their Linux

distribution

Table 3.25: Definitions of roles in the study of Terry et al.

Zhou et al. investigated how open-source projects on GitHub differ with regard to forking

inefficiencies [60]. They conducted interviews with active developers, including 15 main-

tainers and fork owners. However, they did not disclose the method they used to identify

active developers or maintainers. Besides conducting interviews and literature analysis to

identify potential context factors of forking inefficiencies, they also mined repository dumps

on GHTorrent for information like forks, external commits, external pull requests and issues.

Then they used multiple regression modeling to test the correlation between hypothesized

context factors and outcome. This study revealed that there are significant inefficiencies in

the collaborative development process of many communities, and many of these inefficien-

cies associate with common project characteristics and practices. Based on the analysis,

Zhou et al. provided specific best practices for project maintainers to reduce forking-related

inefficiencies.

Apart from reducing the workload of maintainers by using better workflow, software bots

can also be helpful by automating routine tasks and interacting with human developers.

However, software bots can be disruptive [6], especially for newcomers considering the social

barriers they face [40]. Under this context, Wessel conducted a research to design and

evaluate strategies to mitigate problems related to software bots [56].

53

In this study, there are three phases. The first phase includes analyzing pull requests,

interviewing with contributors, maintainers, and bot developers. Similar to the work of Zhou

et al. [60], this study also used projects on GitHub as subject, and it also did not present

the method they used to identify maintainers. The next two stages include design strategies

to support developers’ interactions and transforming design strategies to bot prototypes.

These two stages are not completed when they report their research. Although the focus of

this study is not identify maintainers, presenting their strategy will increase the reliability

of their study. This is especially true in GitHub, since different groups of maintainers

could be considered as maintainers using different criteria. For example, if core developers

are regarded as maintainers, then maintainers can be identified with the method used by

middleton et al. [29] or network analysis used by Bosu and Carver [5].

In 2013, McDonald and Goggins conducted a study with lead and core developer to under-

stand how OSS communities measure success [28]. In this study, they selected 10 lead and

core members of three large OSS projects hosted on GitHub, and conducted semi-structured

interviews. McDonald and Goggins did not disclose the definition or the methods they used

to identify the lead and core developers, so I decided to take lead and core developer as a

different role. Since this study aim to exam how OSS community leaders evaluate the success

of their projects, this role could be related to a high level of participation and involved in

project management, thus it could be a combination of core developers and project leaders

(or OSS community managers).

McDonald and Goggins found that the number of contributors are most commonly cited

as measures of success, and there is considerable value in making code submissions public

through pull requests. They also discovered that visible activities on GitHub’s interface are

important indicators. Moreover, external metrics, like IRC channel, number of people visit

API documentation, and number of downloads, are also important measures of success.

Tsay et al. conducted a study to understand how information in transparent OSS environ-

54

ments is used to evaluate contributions [49]. In this study, they studied the social connection

between submitters and project managers, however, they did not disclose the method used

to identify project managers. Since the dataset they used are a sample of pull requests, so

the identification criteria they used are likely to be related to the push access to repositories.

In that case, the project manager is similar to roles such as insider, core, internal member,

and elite developers in membership based model or maintainer.

Tsay et al. found that project managers used information involving both good technical

contribution practices for a pull request and the strength of the social connection between

the submitter and project manager when evaluating pull requests. The results also revealed

that pull requests with many comments were much less likely to be accepted, but this is

moderated by the submitter’s prior interaction in the project. In addition, well-established

projects were more conservative in accepting pull requests.

3.4 Role transition patterns

Apart from providing role classification models, some of the studies also investigated the

role transition patterns. In this section, I will present the role transition patterns studied.

Some patterns describe linear paths, such as onion model, type of engagement, development

maturity roles and retiring path, however, developers may skip roles when migrate along

the path. Other studies discovered transition paths that are more complex, such as the ones

within project organizations, and the ones about project-centric and community-centric roles.

3.4.1 The onion model

In 2002, Nakakoji et al. proposed an onion model (Figure 3.5) to describe the general

structure of OSS community [32]. They also studied the evolution of communities and

55

present a role transition path of developers. In this path, developers first are attracted to

an OSS community as Passive Users, then gradually obtain understanding of the the system

and recognition within the community. As they gain more understanding and recognition,

their roles migrate from Passive Users to Readers, Bug Fixers and eventually Core Members.

However, not all members want and will become Core members. This path describes a linear

role transition pattern, and such pattern is later challenged by other researchers. In 2006,

Herraiz et al. found that there is not a clear joining pattern, and its behavior does not seem

to comply with the predictions of the onion model [20]. In this study, they discovered that

the path given by onion model is followed only by the volunteer developers but not for hired

developers. These two type of paths followed by different developers are also identified by

Shibuya and Tamai in 2009 [36]. In 2010, Oezbek et al. conducted a study to investigate

onion model [34]. They found that core member status may be qualitatively different, and

the transition of individual mailing-list participants towards ever higher participation is

qualitatively discontinuous. They did not propose any new transition pattern, but provided

evidence that the existing transition pattern could be misleading. In 2011, Jergensen et al.

studied the progression paths of developers and grouped the progression paths into five major

categories based on their relationship to the socialization process in the software ecosystem

[22]. These paths are social-technical path, accelerated path, technical-social path, technical

only path, and source only path. In 2017, Cheng et al. investigated factors that will influence

developers’ role evolution [10]. In this study, they claimed that there are four evolutionary

lines of developers. These evolutionary lines include from co-developers to core developers,

from co-developers to project leaders, from core developers to project leaders, and from

project leaders to core developers. They only studied the transition from core developers to

project leaders.

56

(a) Mozilla.org

(b) NetBeans.org

Figure 3.7: The quality assurance paths. Adapted from ”Role Migration and Advancement
Processes in OSSD Projects: A Comparative Case Study,” by C. Jensen and W. Scacchi,
2007, 29th International Conference on Software Engineering (ICSE’07), pp. 364-374

3.4.2 Participative system

In 2005, Nakakoji et al. conducted a study that challenges the linear transition path of the

onion model and argued that one’s role change over time is a result of his/her changing type

of engagement [31]. Such changes of types of engagement demonstrate a migration path of

a participant engaging in a participative system. They proposed the transition path that

individuals migrate along the spectrum of passive, active, and power engagement.

3.4.3 Within project organizations

In 2007, Jensen and Scacchi investigated the role-sets, role migration and advancement pro-

cess in three project organizations [21]. The role-sets covers various roles that participate

different aspects of these three projects, including quality assurance (See Figure 3.7), devel-

opment(See Figure 3.8), and so on.

57

(a) Apache.org

(b) Mozilla.org

(c) NetBeans.org

Figure 3.8: The development paths. Adapted from ”Role Migration and Advancement
Processes in OSSD Projects: A Comparative Case Study,” by C. Jensen and W. Scacchi,
2007, 29th International Conference on Software Engineering (ICSE’07), pp. 364-374

58

3.4.4 Development maturity roles

In Wagstrom et al.’s work [52], the development maturity roles they proposed provide a finer

grained method to follow a user through their participation in a project as they move from

an interested lurker to a core project member. In this transition pattern, it is possible to

skip roles in this progression, but each individual occupies only a single role at a time.

3.4.5 Retiring path

In 2019, Cheng and Guo studied the role dynamics of OSS developers [11]. They presented

the heatmaps of role transition frequency which implies multiple role transition paths. They

discovered that people usually began to engage in a project by assuming Issue Fixer and

Engaged Issue Reporter roles. They also found a possible retiring path which developers

transit from Progress Controller to Occasional Issue Reporter.

3.4.6 Project-centric and community-centric roles

In 2020, Trinkenreich et al [48]. studied the career pathways of successful OSS contribu-

tors, and presented the career pathways they discovered based on the interview (See Figure

3.9). They found that developers’ career pathways are fluid, moving between project and

community-centric roles.

59

Figure 3.9: Overview of career pathways reported by interviewees. Adapted from ”Hidden
Figures: Roles and Pathways of Successful OSS Contributors.” by Bianca Trinkenreich,
Mariam Guizani, Igor Wiese, Anita Sarma, and Igor Steinmacher, 2020, Proc. ACM Hum.-
Comput. Interact. 4, CSCW2, Article 180 (October 2020), 22 pages.

60

Year Literature Authors

2002 Evolution patterns of open-source software systems and
communities [32]

Nakakoji et al.

2006 The processes of joining in global distributed software
projects [20]

Herraiz et al.

2007 Role Migration and Advancement Processes in OSSD
Projects: A Comparative Case Study [21]

Jensen and Scac-
chi

2009 Understanding the process of participating in open
source communities [36]

Shibuya and
Tamai

2010 How power users help and hinder open bug reporting
[25]

Ko and Chilana

2010 The Onion Has Cancer: Some Social Network Analysis
Visualizations of Open Source Project Communication.
[34]

Oezbek et al.

2011 Entering the circle of trust: developer initiation as com-
mitters in open-source projects [38]

Sinha et al.

2011 The onion patch: migration in open source ecosystems
[22]

Jergensen et al.

2012 Social coding in GitHub: transparency and collabora-
tion in an open software repository [14]

Dabbish et al.

2012 Roles in a networked software development ecosystem:
A case study in GitHub. [52]

Wagstrom et al.

2013 GitHub developers use rockstars to overcome overflow
of news [27]

Lee et al.

2014 Impact of developer reputation on code review out-
comes in OSS projects: an empirical investigation [5]

Bosu and Carver

2017 Classifying developers into core and peripheral: an em-
pirical study on count and network metrics, etc. [23]

Joblin et al.

2017 Are one-time contributors different?: a comparison to
core and periphery developers in FLOSS repositories
[26]

Lee and Carver

2017 Developer Role Evolution in Open Source Software
Ecosystem: An Explanatory Study on GNOME [10]

Cheng et al.

2018 Why we engage in FLOSS: answers from core developers
[13]

Coelho et al.

2018 On developers’ personality in large-scale distributed
projects: the case of the apache ecosystem [7]

Calefato et al.

2019 Managing the open cathedral [30] Müller
2019 Activity-based analysis of open source software contrib-

utors: roles and dynamics [11]
Cheng and Guo

2019 On the abandonment and survival of open source
projects: An empirical investigation

Avelino et al.

2020 Hidden Figures: Roles and Pathways of Successful OSS
Contributors. [48]

Trinkenreich et al.

2020 Work Practices and Perceptions from Women Core De-
velopers in OSS Communities

Canedo et al.

Table 3.26: Literature studied role classification models
61

Chapter 4

Discussion

In this section, I review my results and provide some discussions about my findings.

4.1 Disclose the method used for role identification

Some studies did not provide the criteria used for role identification [60] [56], or the specific

type of data they used for identification [12]. This makes their study hard to reproduce

and also becomes a threat to validity. In the work of Zhou et al. [60], they interviewed

maintainers of several popular OSS projects on GitHub, but did not provide the method they

used to identify these maintainers. There could be different methods to identify maintainers

of projects on GitHub, including methods based on visible roles or pull request events, so it

will become a threat to validity of sample selection if no specific method is shown. Similarly,

Wessel also did not disclose the method they used to identify maintainers [56]. In the study

of Coelho and Valente, they defined maintainers as repositories’ owner or projects’ principal

contributor, however, they did not present the method they used to distinguish principal

contributors from the other contributors. As presented in the previous sections, there are

62

different ways to identify the core contributors, such as count-based and network-based,

which could utilize different metrics of the project.

4.2 GitHub projects as study subject

Among all the primary studies, 21 studies collected data from projects hosted on GitHub,

and the data sources include the dump on GHTorrent, GitHub user interface, and GitHub

API. GitHub is chosen since a large quantity of different projects are hosted on GitHub and

it provides a variety of metrics of projects. Considering the number of projects hosted on

GitHub, it is easy to find different projects to obtain a representative sample. And since

the researchers can apply the same data extraction procedure to all the projects, the cost

of collecting a dataset of large size becomes affordable. However, as the type of information

available could be different from platform to platform, such as assigned role of developers, I

suggest future researchers not to limit their subjects in one platform. By gathering different

type of information across various platforms, they may find more insights into characteristics

of developers’ roles.

4.3 The overlap and conflict of role identification

Among the role classification models presented in the previous sections, I find some similar

roles in different models. The first set of similar roles are maintainer, core developer and code

warrior, these roles are all related to a high level of contribution to the project. While another

set of roles related to a low level of contribution are peripheral, rare contributor, nomad coder.

Lurker, user, passive participant are similar roles that make no code contribution to the

project, but they may contribute in another way, such as participating mailing list or issues

of the project. There is also a set of roles that related to project progress management, they

63

are project leader, progress controller, OSS project manager, and OSS strategist. However,

project leader is also defined as the initiator of the project in the studies of Nakakojio et

al. and Cheng et al., which is identical to OSS community founder. Apart from that, there

is a set of roles related to bug report, they are bug reporter, issues, bug submitter, and

issue reporter. Internal member and internal collaborator are similar as well since they both

include the contributors that work for the organization who own the project.While insider,

core developer, and elite developer are similar as they can be identified based on write-access

to the project.

Moreover, there are also roles that under the same name but have different identification

criteria. One example is the maintainer, as shown in the previous section, maintainers can

be identified based on TF algorithm, contributors’ label or pull requests. There are other

roles that also have different criteria, such as core, active contributor, and rockstar. Under

diverse circumstances, the effectiveness of different identification criteria could be different

as well. For researchers who intend to propose a finer model of OSS developers’ roles, they

need to take the effectiveness of different criteria into consideration.

64

Chapter 5

Conclusion

In this study, I identified 55 studies that investigated the roles of developers in the OSS

community. I found six role classification models, and five major role identification methods:

membership based, count based, network based, turnover based and event based. Moreover,

I present the role transition patterns studies by these research. This study can be used as a

baseline for future research on construction of a systematic and universal role classification

model and corresponding role transition patterns of OSS developers. Finally, I provide a

series of discussions about methods used by these studies and the roles studied.

Considering the role classification models studied, I found that the onion model has been

further investigated and improved after emergence, such as studies which conducted verifi-

cation of role transition or provided a finer definition of roles. However, other models have

not receive much attention and been investigated by researchers under different conditions.

It is also important to notice that no one model has used all types of role identification

methods discovered in this paper, although they could have used more than one type of role

classification methods. In that case, the current role classification models could be improved

with further study in role identification methods. For future work, I suggest researchers to

65

conduct further research in the models other than the onion model and the effectiveness of

different role identification methods, which could contribute to the construction of finer role

classification models.

66

Bibliography

[1] G. Avelino, E. Constantinou, M. T. Valente, and A. Serebrenik. On the abandon-
ment and survival of open source projects: An empirical investigation. In 2019
ACM/IEEE International Symposium on Empirical Software Engineering and Measure-
ment (ESEM), pages 1–12. ISSN: 1949-3789.

[2] Guilherme Avelino, Leonardo Passos, Andre Hora, and Marco Tulio Valente. A novel
approach for estimating truck factors. pages 1–10.

[3] Sogol Balali, Igor Steinmacher, Umayal Annamalai, Anita Sarma, and Marco Aurelio
Gerosa. Newcomers’ barriers. . . is that all? an analysis of mentors’ and newcomers’
barriers in OSS projects. 27(3):679–714.

[4] Shahab Bayati. Understanding newcomers success in open source community. In Pro-
ceedings of the 40th International Conference on Software Engineering: Companion
Proceeedings, ICSE ’18, pages 224–225. Association for Computing Machinery.

[5] Amiangshu Bosu and Jeffrey C. Carver. Impact of developer reputation on code re-
view outcomes in OSS projects: an empirical investigation. In Proceedings of the 8th
ACM/IEEE International Symposium on Empirical Software Engineering and Measure-
ment, ESEM ’14, pages 1–10. Association for Computing Machinery.

[6] Chris Brown and Chris Parnin. Sorry to bother you: Designing bots for effective rec-
ommendations. In 2019 IEEE/ACM 1st International Workshop on Bots in Software
Engineering (BotSE), pages 54–58.

[7] Fabio Calefato, Giuseppe Iaffaldano, Filippo Lanubile, and Bogdan Vasilescu. On devel-
opers’ personality in large-scale distributed projects: the case of the apache ecosystem.
In Proceedings of the 13th International Conference on Global Software Engineering,
ICGSE ’18, pages 92–101. Association for Computing Machinery.

[8] Edna Dias Canedo, Rodrigo Bonifácio, Márcio Vinicius Okimoto, Alexander Serebrenik,
Gustavo Pinto, and Eduardo Monteiro. Work practices and perceptions from women
core developers in OSS communities. In Proceedings of the 14th ACM / IEEE In-
ternational Symposium on Empirical Software Engineering and Measurement (ESEM),
ESEM ’20, pages 1–11. Association for Computing Machinery.

[9] Gerardo Canfora, Massimiliano Di Penta, Rocco Oliveto, and Sebastiano Panichella.
Who is going to mentor newcomers in open source projects? In Proceedings of the ACM

67

SIGSOFT 20th International Symposium on the Foundations of Software Engineering,
FSE ’12, pages 1–11. Association for Computing Machinery.

[10] Can Cheng, Bing Li, Zeng-Yang Li, Yu-Qi Zhao, and Feng-Ling Liao. Developer role evo-
lution in open source software ecosystem: An explanatory study on GNOME. 32(2):396–
414. Company: Springer Distributor: Springer Institution: Springer Label: Springer
Number: 2 Publisher: Springer US.

[11] Jinghui Cheng and Jin L. C. Guo. Activity-based analysis of open source software
contributors: roles and dynamics. In Proceedings of the 12th International Workshop
on Cooperative and Human Aspects of Software Engineering, CHASE ’19, pages 11–18.
IEEE Press.

[12] Jailton Coelho and Marco Tulio Valente. Why modern open source projects fail. In
Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2017, pages 186–196. Association for Computing Machinery.

[13] Jailton Coelho, Marco Tulio Valente, Luciana L. Silva, and André Hora. Why we
engage in FLOSS: answers from core developers. In Proceedings of the 11th International
Workshop on Cooperative and Human Aspects of Software Engineering, CHASE ’18,
pages 114–121. Association for Computing Machinery.

[14] Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herbsleb. Social coding in GitHub:
transparency and collaboration in an open software repository. In Proceedings of the
ACM 2012 conference on Computer Supported Cooperative Work, CSCW ’12, pages
1277–1286. Association for Computing Machinery.

[15] Luis Felipe Dias, Igor Steinmacher, and Gustavo Pinto. Who drives company-owned
OSS projects: internal or external members? 24(1):16.

[16] Fabian Fagerholm, Alejandro S. Guinea, Jürgen Münch, and Jay Borenstein. The role of
mentoring and project characteristics for onboarding in open source software projects.
In Proceedings of the 8th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement, ESEM ’14, pages 1–10. Association for Computing Ma-
chinery.

[17] Matthieu Foucault, Marc Palyart, Xavier Blanc, Gail C. Murphy, and Jean-Rémy Fall-
eri. Impact of developer turnover on quality in open-source software. In Proceedings of
the 2015 10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2015,
pages 829–841. Association for Computing Machinery.

[18] Daniel M. German, Gregorio Robles, Germán Poo-Caamaño, Xin Yang, Hajimu Iida,
and Katsuro Inoue. ”was my contribution fairly reviewed?”: a framework to study
the perception of fairness in modern code reviews. In Proceedings of the 40th Interna-
tional Conference on Software Engineering, ICSE ’18, pages 523–534. Association for
Computing Machinery.

68

[19] Hideaki Hata, Mingyu Guo, and M. Ali Babar. Understanding the heterogeneity of
contributors in bug bounty programs. In Proceedings of the 11th ACM/IEEE Inter-
national Symposium on Empirical Software Engineering and Measurement, ESEM ’17,
pages 223–228. IEEE Press.

[20] Israel Herraiz, Gregorio Robles, Juan JosÉ Amor, Teófilo Romera, and Jesús M.
González Barahona. The processes of joining in global distributed software projects. In
Proceedings of the 2006 international workshop on Global software development for the
practitioner, GSD ’06, pages 27–33. Association for Computing Machinery.

[21] Chris Jensen and Walt Scacchi. Role migration and advancement processes in OSSD
projects: A comparative case study. In Proceedings of the 29th international conference
on Software Engineering, ICSE ’07, pages 364–374. IEEE Computer Society.

[22] Corey Jergensen, Anita Sarma, and Patrick Wagstrom. The onion patch: migration
in open source ecosystems. In Proceedings of the 19th ACM SIGSOFT symposium and
the 13th European conference on Foundations of software engineering, ESEC/FSE ’11,
pages 70–80. Association for Computing Machinery.

[23] Mitchell Joblin, Sven Apel, Claus Hunsen, and Wolfgang Mauerer. Classifying devel-
opers into core and peripheral: an empirical study on count and network metrics. In
Proceedings of the 39th International Conference on Software Engineering, ICSE ’17,
pages 164–174. IEEE Press.

[24] Barbara Kitchenham and Pearl Brereton. A systematic review of systematic review
process research in software engineering. 55(12):2049–2075.

[25] Andrew J. Ko and Parmit K. Chilana. How power users help and hinder open bug
reporting. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’10, pages 1665–1674. Association for Computing Machinery.

[26] A. Lee and J. C. Carver. Are one-time contributors different? a comparison to core
and periphery developers in FLOSS repositories. In 2017 ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement (ESEM), pages 1–10.

[27] Michael J. Lee, Bruce Ferwerda, Junghong Choi, Jungpil Hahn, Jae Yun Moon, and
Jinwoo Kim. GitHub developers use rockstars to overcome overflow of news. In CHI
’13 Extended Abstracts on Human Factors in Computing Systems, CHI EA ’13, pages
133–138. Association for Computing Machinery.

[28] Nora McDonald and Sean Goggins. Performance and participation in open source soft-
ware on GitHub. In CHI ’13 Extended Abstracts on Human Factors in Computing
Systems, CHI EA ’13, pages 139–144. Association for Computing Machinery.

[29] Justin Middleton, Emerson Murphy-Hill, Demetrius Green, Adam Meade, Roger Mayer,
David White, and Steve McDonald. Which contributions predict whether developers
are accepted into github teams. In Proceedings of the 15th International Conference
on Mining Software Repositories, MSR ’18, pages 403–413. Association for Computing
Machinery.

69

[30] Matthias Müller. Managing the open cathedral. In Proceedings of the 2019 27th ACM
Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/FSE 2019, pages 1176–1179. Association
for Computing Machinery.

[31] K. Nakakoji, K. Yamada, and E. Giaccardi. Understanding the nature of collabora-
tion in open-source software development. In 12th Asia-Pacific Software Engineering
Conference (APSEC’05), pages 8 pp.–. ISSN: 1530-1362.

[32] Kumiyo Nakakoji, Yasuhiro Yamamoto, Yoshiyuki Nishinaka, Kouichi Kishida, and
Yunwen Ye. Evolution patterns of open-source software systems and communities. In
Proceedings of the International Workshop on Principles of Software Evolution, IWPSE
’02, pages 76–85. Association for Computing Machinery.

[33] Mehrdad Nurolahzade, Seyed Mehdi Nasehi, Shahedul Huq Khandkar, and Shreya
Rawal. The role of patch review in software evolution: an analysis of the mozilla firefox.
In Proceedings of the joint international and annual ERCIM workshops on Principles
of software evolution (IWPSE) and software evolution (Evol) workshops, IWPSE-Evol
’09, pages 9–18. Association for Computing Machinery.

[34] Christopher Oezbek, Lutz Prechelt, and Florian Thiel. The onion has cancer: some
social network analysis visualizations of open source project communication. In Pro-
ceedings of the 3rd International Workshop on Emerging Trends in Free/Libre/Open
Source Software Research and Development, FLOSS ’10, pages 5–10. Association for
Computing Machinery.

[35] Anita Sarma, Marco Aurélio Gerosa, Igor Steinmacher, and Rafael Leano. Training
the future workforce through task curation in an OSS ecosystem. In Proceedings of
the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE 2016, pages 932–935. Association for Computing Machinery.

[36] B. Shibuya and T. Tamai. Understanding the process of participating in open source
communities. In 2009 ICSE Workshop on Emerging Trends in Free/Libre/Open Source
Software Research and Development, pages 1–6.

[37] Jefferson Silva, Igor Wiese, Daniel M. German, Christoph Treude, Marco Aurélio
Gerosa, and Igor Steinmacher. A theory of the engagement in open source projects
via summer of code programs. In Proceedings of the 28th ACM Joint Meeting on Euro-
pean Software Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/FSE 2020, pages 421–431. Association for Computing Machinery.

[38] Vibha Singhal Sinha, Senthil Mani, and Saurabh Sinha. Entering the circle of trust:
developer initiation as committers in open-source projects. In Proceedings of the 8th
Working Conference on Mining Software Repositories, MSR ’11, pages 133–142. Asso-
ciation for Computing Machinery.

[39] Igor Steinmacher, Tayana Conte, Marco Aurélio Gerosa, and David Redmiles. Social
barriers faced by newcomers placing their first contribution in open source software

70

projects. In Proceedings of the 18th ACM Conference on Computer Supported Coopera-
tive Work & Social Computing, CSCW ’15, pages 1379–1392. Association for Computing
Machinery.

[40] Igor Steinmacher, Tayana Uchoa Conte, Christoph Treude, and Marco Aurélio Gerosa.
Overcoming open source project entry barriers with a portal for newcomers. In Pro-
ceedings of the 38th International Conference on Software Engineering, ICSE ’16, pages
273–284. Association for Computing Machinery.

[41] Igor Steinmacher, Marco Gerosa, Tayana U. Conte, and David F. Redmiles. Overcoming
social barriers when contributing to open source software projects. 28(1):247–290.

[42] Igor Steinmacher, Gustavo Pinto, Igor Scaliante Wiese, and Marco A. Gerosa. Almost
there: a study on quasi-contributors in open source software projects. In Proceedings of
the 40th International Conference on Software Engineering, ICSE ’18, pages 256–266.
Association for Computing Machinery.

[43] Vikram N. Subramanian. An empirical study of the first contributions of developers to
open source projects on GitHub. In Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering: Companion Proceedings, ICSE ’20, pages 116–118.
Association for Computing Machinery.

[44] Xin Tan. Reducing the workload of the linux kernel maintainers: multiple-committer
model. In Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering,
ESEC/FSE 2019, pages 1205–1207. Association for Computing Machinery.

[45] Xin Tan, Minghui Zhou, and Brian Fitzgerald. Scaling open source communities: an
empirical study of the linux kernel. In Proceedings of the ACM/IEEE 42nd Interna-
tional Conference on Software Engineering, ICSE ’20, pages 1222–1234. Association for
Computing Machinery.

[46] Xin Tan, Minghui Zhou, and Zeyu Sun. A first look at good first issues on GitHub.
In Proceedings of the 28th ACM Joint Meeting on European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering, ESEC/FSE 2020,
pages 398–409. Association for Computing Machinery.

[47] Michael Terry, Matthew Kay, and Ben Lafreniere. Perceptions and practices of usability
in the free/open source software (FoSS) community. In Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems, CHI ’10, pages 999–1008. Association
for Computing Machinery.

[48] Bianca Trinkenreich, Mariam Guizani, Igor Wiese, Anita Sarma, and Igor Steinmacher.
Hidden figures: Roles and pathways of successful OSS contributors. 4:180:1–180:22.

[49] Jason Tsay, Laura Dabbish, and James Herbsleb. Influence of social and technical fac-
tors for evaluating contribution in GitHub. In Proceedings of the 36th International
Conference on Software Engineering, ICSE 2014, pages 356–366. Association for Com-
puting Machinery.

71

[50] Jason Tsay, Laura Dabbish, and James Herbsleb. Let’s talk about it: evaluating con-
tributions through discussion in GitHub. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, FSE 2014, pages
144–154. Association for Computing Machinery.

[51] Marat Valiev, Bogdan Vasilescu, and James Herbsleb. Ecosystem-level determinants
of sustained activity in open-source projects: a case study of the PyPI ecosystem. In
Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE
2018, pages 644–655. Association for Computing Machinery.

[52] Patrick Wagstrom, Corey Jergensen, and Anita Sarma. Roles in a networked software
development ecosystem: A case study in GitHub. page 12.

[53] Zhendong Wang. Assisting the elite-driven open source development through activity
data. In Proceedings of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE
2020, pages 1670–1673. Association for Computing Machinery.

[54] Zhendong Wang, Yang Feng, Yi Wang, James A. Jones, and David Redmiles. Unveiling
elite developers’ activities in open source projects. 29(3):16:1–16:35.

[55] Mairieli Wessel. Enhancing developers’ support on pull requests activities with
software bots. In Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering,
ESEC/FSE 2020, pages 1674–1677. Association for Computing Machinery.

[56] Mairieli Wessel. Leveraging software bots to enhance developers’ collaboration in on-
line programming communities. In Conference Companion Publication of the 2020 on
Computer Supported Cooperative Work and Social Computing, CSCW ’20 Companion,
pages 183–188. Association for Computing Machinery.

[57] Jin Xu, Yongqin Gao, Scott Christley, and Gregory Madey. A topological analysis of
the open source software development community. page 10.

[58] Y. Ye, K. Nakakoji, Y. Yamamoto, and K. Kishida. The co-evolution of systems and
communities in free and open source software development.

[59] Minghui Zhou, Qingying Chen, Audris Mockus, and Fengguang Wu. On the scalability
of linux kernel maintainers’ work. In Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE 2017, pages 27–37. Association for
Computing Machinery.

[60] Shurui Zhou, Bogdan Vasilescu, and Christian Kästner. What the fork: a study of
inefficient and efficient forking practices in social coding. In Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, ESEC/FSE 2019, pages 350–361. Association
for Computing Machinery.

72

[61] Jiaxin Zhu, Minghui Zhou, and Audris Mockus. Effectiveness of code contribution: from
patch-based to pull-request-based tools. In Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, FSE 2016, pages
871–882. Association for Computing Machinery.

73

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	ABSTRACT OF THE Thesis
	Introduction
	Research method
	Research questions
	Literature search strategy

	Results
	Overview
	Role classification models
	The onion model
	Participative system
	Modeling project organizations
	Development maturity and specialized roles
	Active contributors and supporting contributors
	Project centric and community centric roles

	Role identification methods
	Membership based
	Count based
	Network based
	Turnover based
	Event based
	Other methods

	Role transition patterns
	The onion model
	Participative system
	Within project organizations
	Development maturity roles
	Retiring path
	Project-centric and community-centric roles

	Discussion
	Disclose the method used for role identification
	GitHub projects as study subject
	The overlap and conflict of role identification

	Conclusion
	Bibliography

