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1. Introduction
California winter precipitation has many influences on local ecosystems, agriculture, wildfire, and water resources 
(Chang et al., 2015; Lund et al., 2018; Westerling et al., 2006), and imposes challenges to management across the 
state. CA's Mediterranean climate has the majority of its precipitation occurring in winter (Swain et al., 2018). 
With anomalously lower winter precipitation and higher temperatures, CA has experienced one of the most 
severe droughts on record during 2012–2016, caused billions of dollars in economic losses and millions of tree 
deaths (Lund et al., 2018). Meanwhile, variation in winter precipitation affects fuel availability and flammabil-
ity, which are closely linked to wildfire severity in the following dry season (Littell et al., 2009, 2016). Future 
winter precipitation changes in CA associated with global warming and enhanced potential evapotranspiration 
will directly affect the state's economy and environment. However, robust projection of CA precipitation remains 
challenging, as evidenced by the large discrepancy among state-of-the-art climate models (Allen & Luptow-
itz, 2017; Choi et al., 2016; Langenbrunner & Neelin, 2017b; Simpson et al., 2016). Considerable uncertainties 
exist in model projections of CA 21st century precipitation in the Climate Model Intercomparison Project (CMIP) 
versions 3 and 5 (Neelin et al., 2013) and, as we show here (Figure 1), the recent Coupled Model Intercomparison 
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Project Phase 6 (CMIP6). This uncertainty is attributable to internal variability (Deser et  al.,  2012; Thomp-
son et al., 2015) and differences in modeling the responses of CA rainfall to tropical-midlatitude-Arctic atmos-
pheric circulation changes (Allen & Luptowitz, 2017; Choi et al., 2016; Cvijanovic et al., 2017; S.-Y. S. Wang 
et al., 2017).

California lies within a transition zone between mid-to-high-latitude regions that are expected to become 
wetter and subtropical regions expected to be drier by the end of the 21st century (Neelin et  al.,  2013). The 
latitudinal differences of precipitation changes arise from the “rich-get-richer” mechanism, that is, tropical and 
mid-to-high-latitude (subtropical) regions of climatological moisture convergence (divergence) will become 
wetter (drier; Choi et  al.,  2016; Neelin et  al.,  2013). Teleconnections from pacific decadal oscillation (PDO; 
Choi et al., 2016), Indian ocean (Zhou et al., 2020), western pacific (Linkin & Nigam, 2008), southern pacific 
(Mamalakis et al., 2018), and Atlantic (Park et al., 2019) regions modulate CA winter precipitation. Further, 
future poleward expansion of the Hadley Cell (Choi et  al.,  2016) and Arctic Amplification (AA; Cvijanovic 
et al., 2017) could reduce CA precipitation, while possible increased southerlies on the North America (NA) west 
coast (Simpson et al., 2016) and mean circulation changes related to El Niño teleconnections (Allen & Luptow-
itz, 2017), may enhance CA precipitation. These complex teleconnections between CA precipitation and remote 
oceanic regions provide useful constraints for model predictions, and pose the challenge of comprehensively 
analyzing the teleconnections in the context of reducing model uncertainties.

Previous studies have focused on a specific remote region or single teleconnection linked to CA precipitation 
through correlation analysis (Chang et al., 2015; Choi et al., 2016; Neelin et al., 2013), while the relative impor-
tance of controls from different regions have not been explored from a causality perspective. Correlation can 
be highly biased by confounding effects from autocorrelation, indirect controls, and common drivers, leading 
to spurious, noncausal, and interpretability-limited relationships (Kretschmer et  al.,  2016; Runge, Bathiany, 
et al., 2019). Climate model experiments through a controlled perturbation of the system or idealized simulations 
can provide physically interpretable causal links (Allen & Luptowitz, 2017; Cvijanovic et al., 2017; Simpson 
et al., 2016). However, opposing conclusions have been drawn (Allen & Luptowitz, 2017; Simpson et al., 2016) 
due to different choices of physical representations within the climate models. Constraining model performance 
to represent one specific causal link may tradeoff against the other causal links (Langenbrunner & Neelin, 2017b). 
The recently developed causal inference method (Runge, Bathiany, et al., 2019; Runge, Nowack, et al., 2019) 
provides a new way to evaluate interaction networks within climate model projections (Nowack et al., 2020), 
giving it the potential to assess the complex teleconnection networks affecting CA precipitation.

Here, we applied the causal discovery algorithm (Nowack et al., 2020; Runge et al., 2015) to observations (1979–
2014) and 18 CMIP6 climate models (historical: 1979–2014, future: year 2020–2100, SSP585), to infer direc-
tional teleconnections that significantly modulate CA precipitation projections. The identified major teleconnec-
tions are then applied as constraints to reduce uncertainty in projected CA precipitation.

2. Data Sets and Methods
2.1. Data Sets and Preprocessing

Reanalysis and model simulated data sets of daily sea level pressure and precipitation are used in our studies. 
Reanalysis data sets include daily sea level pressure data from NCEP-NCAR, precipitation data set from Climate 
Prediction Center (CPC), and sea level pressure and precipitation data from European Centre for Medium-Range 
Weather Forecasts (ECMWF). Daily mean sea level pressure and precipitation data sets from 18 climate models 
in CMIP6 are used for historical (1979–2014) and future (2020–2100, the SSP585 emission scenario, O'Neill 
et al., 2016) analyses. For models with multiple runs, we first averaged multiple runs of each model, and used 
the calculated multirun average of each model for multimodel ensemble mean calculations and future climate 
change analysis (Chang et  al.,  2015; Neelin et  al.,  2013; Simpson et  al.,  2016). The model names, variable 
names, and their corresponding realization IDs are listed in Table S1 of Supporting Information S1. As we focus 
on intraseason atmospheric interactions at a weekly scale, each data set was aggregated to a weekly temporal 
resolution (Runge et al., 2015), and bi-linearly interpolated to 2.5° 𝐴𝐴 ×  2.5°, which was the same spatial resolution 
to that of NCEP-NCAR data sets. To make time series stationary for causal inference, all data sets (including 
model simulated and reanalysis data sets of precipitation and sea level pressure) were detrended by removing the 
long-term (1979–2014) winter weekly mean and removing the linear trend in each anomaly data set (Nowack 
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et al., 2020; Runge et al., 2015). For precipitation data, considering future different change patterns in northern 
and central-southern CA (Figure 1), we calculated the areal average precipitation of each CA subregion, and used 
the areal average for subsequent evaluation and future precipitation change analysis.

2.2. Methods

A data driven causal discovery frame (Nowack et  al.,  2020; Runge et  al.,  2015) is used to infer the directed 
and time-lagged causal networks in observations and climate model simulations, and a multiobjective optimiza-
tion method-Pareto optimality (Langenbrunner & Neelin, 2017a, 2017b) is used to choose an optimal subset of 
CMIP6 models for future precipitation change analysis based on inferred causal networks (the detailed workflow 
shown in Figure S1 of Supporting Information S1). In the causal discovery frame, varimax-rotated principal 
component analysis (PCA) was applied to global sea level pressure (SLP) anomaly data to extract components 
which can represent major modes of climate variability (Hannachi et  al.,  2007; Nowack et  al.,  2020; Runge 
et al., 2015; Vejmelka et al., 2015). PCMCI (PC is named after its inventors, Peter Spirtes and Clark Glymour 

Figure 1. Unconstrained Climate Model Intercomparison Project (CMIP6) models project a wide range for future California 
precipitation. California (CA) winter (December, January, February) precipitation change of the multimodel ensemble 
means in CMIP6 for the end of century (2070–2100 average high emission scenario (SSP585)) relative to a historical 
period of 1979–2014. (a) Multimodel ensemble mean precipitation changes (mm d −1). (b) Model agreement on the sign of 
precipitation changes among the model ensemble. Cold (warm) colors indicate the number of models (of 18) agreeing on 
positive (negative) precipitation change and passing a binomial test at a 95% confidence level, while white color represents 
nonsignificant (p > 0.05) changes. (c) Statistics of mean precipitation changes of CMIP6 models in northern California 
(38.8–42.4°N), and (d) central-southern California (32.0–38.8°N). Each red line in (c, d) represents precipitation change value 
of each individual climate model. The multimodel ensemble mean is computed by first averaging multiple available runs of 
each individual model, and the black dashed lines represent multimodel ensemble mean precipitation changes in northern and 
central-southern California.
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(Spirtes et  al.,  2000), and MCI is the acronym for momentary conditional independence; Runge, Nowack, 
et al., 2019), which is particularly suitable for high-dimensional and autocorrelated climate data, was used to 
exclude confounding effects and identify causal controls from different regions on CA rainfall.

Principal component analysis (PCA) followed by a Varimax rotation (PCA-Varimax) is a dimension reduction 
method to extract large-scale regional climatological processes (Hannachi et  al.,  2007; Nowack et  al.,  2020; 
Runge et al., 2015; Vejmelka et al., 2015). PCA, also referred as empirical orthogonal functions (EOFs), has 
been numerously used to identify global or regional components of climate variability, such as ENSO (Alexan-
der et al., 2002), Pacific Decadal Oscillation (PDO; Newman et al., 2016), and North Pacific Oscillation (NPO; 
Linkin & Nigam, 2008; Yu & Kim, 2011). Traditional PCA without rotation shows limitations to spatially and 
explicitly split contributions from different physically defined climate processes with nonorthogonal time series, 
therefore making patterns more difficult to interpret (Guilloteau et al., 2021; Nowack et al., 2020). Varimax rota-
tion on leading components of PCA makes the loading of weights at different grid locations either large or very 
small, allowing spatial patterns associated with the components to become more localized and reflect modes for 
actual physical processes (Nowack et al., 2020; Runge et al., 2015). Here, to remove noisy components, we used 
a truncated PCA. For sea level pressure (SLP) data, we obtained components through PCA that explained more 
than 95% of global SLP variance for further rotation. We then selected 26 components (Figure 2) that explained 
about 69% of SLP-related variance and had been shown to directly or indirectly affect CA precipitation in the 
literature (the references of related regions and their corresponding links to CA precipitation are listed in Table S2 
of Supporting Information  S1). We here estimated the components using 36-year observations (1979–2014), 
and used the estimated weights to consistently extract component time series of SLP during historical period 
(1979–2014) and future period (2020–2100) from CMIP6 (Nowack et al., 2020).

PCMCI is used to infer atmospheric interactions between different regions (Runge et al., 2015). Compared to 
commonly used Granger causality method, PCMCI significantly improves the detection power (true-positive 
rate) of causal links when the analyzed systems have high-dimensional variables and strong autocorrelation, both 
of which are relevant in our studies (Runge, Bathiany, et al., 2019; Runge, Nowack, et al., 2019). Two steps, PC 
(named after Peter Spirtes and Clark Glymour, Spirtes et al., 2000), and MCI (momentary conditional independ-
ence) test, are included in the PCMCI method. To test whether there exists a causal link from a driver to a target 
variable (e.g., the causal link from 𝐴𝐴 𝐴𝐴 to Y), the first step, PC, iteratively performs conditional independence 
tests and selects the typically few relevant necessary confounders (e.g., the confounder set 𝐴𝐴 𝐴𝐴 ). The second step, 
MCI, uses the necessary confounders (e.g., the confounder set 𝐴𝐴 𝐴𝐴 ) selected in the PC step, to further conduct a 
conditional independence test (e.g., test whether 𝐴𝐴 𝐴𝐴 and Y are conditionally independent given Z), alleviating the 
problem of strong autocorrelation and achieving final causal link inference. Compared with directly using all 
potential drivers as confounders, the PC step filters out necessary fewer confounders and feeds them into MCI 
for the conditional independence test, thereby avoiding conditioning on high-dimensional variables that lowers 
causal link detection power (Nowack et al., 2020; Runge et al., 2015). Details of the PCMCI method can be found 
in Runge, Nowack, et al. (2019). Generally, conditional independence test methods in PC and MCI can be linear 
or nonlinear. Here, we used a partial correlation method for conditional independence test, and the absolute 
value of partial correlation coefficient in the MCI step was used to measure the causal strength. We focused on 
linear causal links between different SLP regions and linear causal controls from different SLP regions on CA 
precipitation. The parameter, maximum time lag of PCMCI, was set to 4 weeks, as we focused on intra-sea-
sonal atmospheric interactions at a weekly time resolution, and expected dependencies to be stationary (Runge 
et al., 2015). The time lags ranged from −4 to 0 weeks, where a negative time lag represented a time-lagged 
causal control and a time lag of 0 represented dependency within a week (Runge et al., 2015; Runge, Bathiany, 
et al., 2019). We selected candidate conditions with a significance level of α, which was optimized using the 
Akaike information criterion (among pc-α = 0.05, 0.1, 0.2; Nowack et al., 2020). The final links are statistically 
significant (two-tailed Student's t test, 𝐴𝐴 𝐴𝐴 value < 0.05). Since causal interactions between different seasons may 
differ (Nowack et al., 2020), and most of CA rainfall occurs in winter, we construct the causal network in Decem-
ber, January, February (DJF; Allen & Luptowitz, 2017; Neelin et al., 2013).

Similar to the causal network evaluation method in Nowack et al. (2020), we applied the widely used 𝐴𝐴 𝐴𝐴1 -score 
to compare the causal network similarity between observations and models considering the imbalance of the 
number of true links and nonlinks (true links only account for about 6% of all possible links in the network). 
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Figure 2. Critical regions with sea level pressure (SLP) significantly affect California (CA) precipitation during historical and future periods. Critical regions that may 
directly or indirectly affect winter rainfall in CA (a), and time-lagged causal control strengths from SLP of different regions on CA precipitation (b) for northern CA 
precipitation during 1979–2014; (c) for central-southern CA precipitation during 1979–2014; (d) for northern CA precipitation during 2020–2100; (e) for central-
southern CA precipitation during 2020–2100. In (a), the location of each region (node) is determined by its corresponding spatial loading calculated from Varimax-
principal component analysis (PCA), and the number on each region represents the order of each component in all components (explain more than 95% variance of 
global sea level pressure) calculated by Varimax-PCA. In (b–e), the strength of causal control in each row was normalized to a 0–1 range using the row's maximum 
control strength, and unnormalized strength of causal control is shown in Figure S2 of Supporting Information S1. Stronger controls are shown with deeper red colors, 
and nonsignificant (p value > 0.05) controls are shown with the light-cyan color. Red boxes in (b, c) indicate observationally constrained reanalysis data sets.
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𝐴𝐴 𝐴𝐴1 -score, based on the existence or nonexistence of links without consideration of link strength, balances preci-
sion and recall. It is defined by

𝐹𝐹1 =
2 × Precision × Recall

Precision + Recall
 (1)

Precision =
TP

TP + FP
 (2)

Recall =
TP

TP + FN
 (3)

where 𝐴𝐴 TP is the number of correct links exist in observations and models, and 𝐴𝐴 FP (𝐴𝐴 FN ) is the number of falsely 
detected links (not detected links) relative to observations. Considering that models may represent teleconnec-
tions reasonably well but with a bias in its time lag, a relaxation of time lag up to 1 week (if a causal link with the 
same sign of dependence to observation existed in models but its time lag differed from the observed one within 
1 week, we treated the link as a corrected one) is applied when calculating each score (Nowack et al., 2020).

Pareto optimality is applied to identify an optimal subset of climate models that simultaneously achieve higher 
performance in terms of multiple observation-based evaluation metrics. Pareto optimality, named after Vilfredo 
Pareto (Ehrgott, 2012), is a multiobjective optimization technique that quantifies performance trade-offs across 
multiple metrics. The approach finds optimal models called the Pareto frontier that improve one measure of perfor-
mance without degrading another (Branke et al., 2008; Langenbrunner & Neelin, 2017b; Shoval et al., 2012). In 
general, a single metric cannot capture multiple aspects of model performance. For example, traditional bias (e.g., 
root mean square error) or correlation-based metrics have been used for multimodel evaluation and intercompar-
ison (Langenbrunner & Neelin, 2017b; Nowack et al., 2020; Sanderson et al., 2017); however, these metrics are 
not process-oriented and may lead to spurious relationships (Eyring et al., 2019; Runge, Bathiany, et al., 2019). 
By combining causal inference with Pareto optimality, we can constrain climate model ensemble projection 
uncertainties (the uncertainty is assessed using the range of projected changes, i.e., the maximum minus the 
minimum) in a more physically explainable way.

3. Results and Discussions
3.1. Uncertainty in CMIP6 Model Projected CA Precipitation Change and Dominant Drivers

Eighteen CMIP6 models (Table S1 in Supporting Information S1) were selected based on availability of daily 
historical and future precipitation (Pr) and sea level pressure (SLP) during historical and a high emission scenario 
(SSP585). A wide range of CA precipitation changes were predicted by the MultiModel Ensemble (MME; 
Figures 1a, 1c and 1d) and the large discrepancy in the signs of CMIP6 simulated CA precipitation changes 
(Figure 1b) was generally consistent with those of CMIP5 (Neelin et al., 2013), indicating the large uncertain-
ties remained in CMIP6 models after a decade of model developments. Over northern CA, the CMIP6 MME 
mean precipitation increased by 0.59 mm d −1 (∼15% of the observed historical mean during 1979–2014), and 
models agreed on the positive precipitation change (Figure 1b). The central-southern CA MME mean precipita-
tion increased by 0.07 mm d −1 (∼4% of the observed historical mean during 1979–2014). However, models did 
not agree on the signs of the change (failing a binomial test, p value > 0.05).

The observed causal networks revealed that both northern and central-southern CA precipitation were modulated 
by SLP at multiple remote oceanic regions, while the strongest controller was over the west coast of Northern 
America region (node 22, Figure 2, Table S2 in Supporting Information S1). These nodes are determined by 
spatial loading calculated from Varimax-PCA (see Section 2.2), and the number on each region represents the 
order of each component in all components (explaining more than 95% variance of global sea level pressure). 
References of all selected nodes are listed in Table S2 of Supporting Information S1. The majority of CMIP6 
model causal networks also confirmed the strong teleconnection between node 22 SLP and CA precipitation 
(passing a binomial test at a 95% confidence level). Over node 22, the west coast higher pressure pushes storm 
tracks away from CA, resulting in anomalously drier winters (Choi et al., 2016; Cvijanovic et al., 2017; Seager 
et al., 2015, 2017), while lower pressure is robustly associated with wetter winters (Guirguis et al., 2020; Seager 
et al., 2015). Over the central-southern CA, both observation and the majority of CMIP6 models (13 out of 18) 
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agreed on the secondary control of northeastern pacific region (node 18) SLP on CA precipitation. The variations 
of SLP over node 18 were often associated with variations of SLP in tropical eastern pacific temperature and SLP, 
which were associated with El Niño events (Alexander et al., 2002; Yu & Kim, 2011).

In addition, our results confirmed that the controls from SLP over dominant remote oceanic regions (e.g., nodes 
22, 18) on CA precipitation are conserved in future simulations, suggesting these teleconnections continue under 
future climate change (Figures  2b–2e). Several other independent analyses have also found sustainability of 
future teleconnections under global warming (Allen & Luptowitz, 2017) due to poleward expansion of the Hadley 
cell (Choi et al., 2016; Lu et al., 2007) or thermal expansion and robust west coast SLP trends (Swain et al., 2016).

3.2. Constraining CMIP6 Simulated CA Precipitation With Causal Networks

To quantify the agreement between observed and modeled causal networks, we compared the causal network 
similarity score (F1-score metric, see Section 2.2) against the model bias during the historical period (1979–
2014). Here, the causal link strength, which was also potentially important, was not considered when calculating 
the F1-score because we focused on the causal network structure and considered the sparsity of the network 
structure (Nowack et  al.,  2020). This constraint helps identify an ensemble of models that more realistically 
represent atmospheric teleconnections important for CA precipitation. We found that CMIP6 models with higher 
F1-scores (higher similarity to the observed networks) tended to have lower precipitation biases (mean abso-
lute error) over both north (Pearson r = −0.55, p < 0.05, Figure 3a) and central-south CA (Pearson r = −0.66, 
p < 0.05, Figure 3b). These negative correlations were robust when using other bias evaluation metric (e.g., root 
mean square error) and adding two more models with daily historical simulations but without projections under 
the SSP585 scenario (Figure S3a in Supporting Information S1) or using alternative observationally constrained 
reanalysis data (Figure S3b in Supporting Information S1, ECMWF data sets). These results indicate that the 
SLP-CA precipitation causal relationship in CMIP6 models is an important constraint for simulated CA precipita-
tion. Importantly for our next analysis, the CMIP6 dominant causal links were sustained in the future simulations 
(Figures 2d and 2e).

To evaluate robustness of future precipitation changes, MME-mean or weighted-MME methods are often 
used (Eyring et al., 2019). However, the prevailing one-model-one-vote MME mean method is often criticized 
because of diverse model skills and model interdependence (Abramowitz et al., 2019). Although weighted-MME 

Figure 3. Relationship between model-data causal network similarity (F1-score) and model bias for historical (1979–2014) California (CA) precipitation. (a) Northern 
CA and (b) central-southern CA. The F1-score and model bias are evaluated relative to NCEP-NCAR SLP and Climate Prediction Center (CPC) precipitation reanalysis 
data sets (model evaluation results referring to European Centre for Medium-Range Weather Forecasts (ECMWF) data sets are shown in Figure S3 of Supporting 
Information S1). For precipitation bias, the areal average of each CA region (northern or central-southern region) is calculated first, then the mean absolute error 
between the observed and simulated areal average precipitation series is calculated. Here, the ensemble mean of precipitation bias is plotted.
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methods consider model skills and independence (Knutti et al., 2017; Sander-
son et al., 2017), how to assign weights to each model is not always clear 
(Langenbrunner & Neelin,  2017b; Stocker,  2014; B. Wang et  al.,  2018). 
Here, we used the multiobjective optimization concept-Pareto optimality 
(see Section 2.2) to choose a subset of CMIP6 models for future precipita-
tion change analysis. The Pareto optimality has been widely used to balance 
metric trade-offs in different disciplines, including climate model parameter-
ization (Langenbrunner & Neelin, 2017a) and precipitation analysis (Langen-
brunner & Neelin, 2017b). The Pareto-optimal subsets of models with higher 
F1-score, lower MAE in historical CA precipitation, and higher mutual 
information (a nonlinear correlation-based metric to measure the consist-
ency) (Hlinka et al., 2014; Pechlivanidis et al., 2018) between simulated and 
observed node 22 SLP, were selected over northern and central-southern 
CA using an orthogonal array-based method (Eendebak & Vazquez, 2019; 
Schoen et al., 2010). The constrained optimal models (models marked out in 
Table S1 of Supporting Information S1) showed wetter future conditions in 
CA (Figure 4) with mean precipitation increased by 0.78 mm d −1 in north-
ern CA (∼20% compared to observed 1979–2014 mean), and increased by 
0.39 mm d −1 in central-southern CA (∼25% of observed 1979–2014 mean). 

The findings of future increase in winter precipitation of CA are consistent with the results in (Allen & Ander-
son, 2018; Allen & Luptowitz, 2017; Langenbrunner & Neelin, 2017b; Zecca et al., 2018). Our results are robust 
even when included five additional suboptimal models (marked out in Table S1 of Supporting Information S1) 
that showed mean precipitation increased by 0.81 mm d −1 in northern CA and 0.35 mm d −1 in central-south-
ern CA. Further, the uncertainty range for future CA precipitation changes was reduced by 47% (0.9 versus 
1.7 mm d −1) in northern CA and by 71% (0.4 versus 1.4 mm d −1; Figure 4).

3.3. Tracing the Sources of Dominant Controls on CA Precipitation

In addition to the fact that SLP variation over the west coast of North American (node 22) strongly controlled both 
northern and central-southern CA precipitation (Figure 2), most of the CMIP6 models agreed with the observed 
nodes 18, 11, and 1 SLP controls on node 22 SLP variation (Figure 5a), and that these controls are sustained in 
the future (Figure 5b). Higher pressure (lower pressure) in north-central (node 11) and subtropical eastern pacific 
(node 18) was associated with higher (lower) SLP in node 22 (Figures 5c and 5d), while the signs of the relation-
ship between SLP in the west Indian ocean (node 1) and node 22 were opposite (Figure 5e). Higher pressure in 
node 11 was suggested to be a factor for steering the wet winter air masses away from CA (Cvijanovic et al., 2017; 
Guirguis et al., 2020).

Lower pressure in node 18 was significantly associated with anomalously lower pressure and higher sea surface 
temperature in tropical central-eastern pacific (nodes 0 and 4; Figures S4 and S5 in Supporting Information S1), 
coinciding with El Niño events which were suggested to be a nonnegligible driver for wetter CA winters in histor-
ical and future projections (Allen & Anderson, 2018; Allen & Luptowitz, 2017; Zecca et al., 2018). In addition to 
north-central and subtropical eastern Pacific, a significant relationship also exists between the west Indian ocean 
and west coast of CA. Oscillations of SLP in the western Indian ocean (node 1) have a strong relationship with the 
Madden-Julian oscillation (MJO; Oliver & Thompson, 2011), which modulate blocking (Henderson et al., 2016), 
and atmospheric rivers (Mundhenk et al., 2018) in the northeast pacific, leading to profound regional impacts 
along the west coast of North America (Zhou et al., 2020). Our results revealed the robustness and consistency 
of these three distinct causal relationships associated with CA precipitation in both observations and CMIP6 
models.

Future SLP changes over the dominant nodes explained why constrained models showed wetter precipitation 
changes in CA. Compared to MME projected mean SLP changes, the constrained optimal models consistently 
showed lower SLP conditions over node 22 (Figure 6a) with future mean SLP decreased by 1.27 hPa, which was 
robustly associated with wetter winters in CA (Seager et al., 2015; S.-Y. S. Wang et al., 2017). Compared to MME 
mean SLP changes, constrained optimal models showed lower SLP mean changes over node 18 (−0.44 versus 
0.04 hPa, Figure 6b) and node 11 (−0.22 versus 0.75 hPa, Figure 6c), and higher SLP changes over node 1 (0.56 

Figure 4. Causality-constrained Climate Model Intercomparison Project 
(CMIP6) models predict a wetter future California with lower uncertainty 
bounds. (a) Future precipitation changes (2070–2100 minus 1979–2014) 
over northern California (CA) and (b) central-southern CA. Boxes represent 
lower and upper quartiles (25th and 75th percentile) and the median (50th 
percentile), and whiskers span the range (minimum and maximum) of the full 
distributions.
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versus 0.19 hPa, Figure 6d). Further, the uncertainty range for future SLP changes was reduced by 50% (2.04 
versus 4.04 hPa) in node 22%, 46% in node 18 (1.24 versus 2.29 hPa), 31% in node 11 (4.46 versus 6.51 hPa), 
and 51% in node 1 (0.76 versus 1.55 hPa; Figure 6). Compared to the SLP change ranges over node 22, 18, and 
1, constrained optimal models over node 11 showed larger spread of SLP changes with lower SLP uncertainty 
reduction rate and different signs of SLP changes (Figure 6c), implying that uncertainty in node 11 needs to be 
further explored. As precipitation in CA was directly and negatively associated with SLP over node 22, decreased 
SLP in node 22 (Figure 6a) suggested increased precipitation in CA. SLP over node 22 was positively associated 
with SLP in nodes 18 (Figure 5c) and 11 (Figure 5d), and negatively associated with SLP in node 1 (Figure 5e). 
Therefore, lower SLP in nodes 18 and 11 along with higher SLP in node 1 consistently implied lower SLP in 
node 22. These results confirmed the inferred causal controls from nodes 22, 11, 18, node 1 on future wetter CA 
precipitation changes. We highlight the complexity of precipitation associated causal networks and the usefulness 
of using the causal networks to constrain projection uncertainties.

4. Conclusions
In summary, we identified the role that sea level pressure in critical oceanic regions has on California winter 
precipitation in observations and CMIP6 simulations. We showed that climate models with more realistic 
causal networks tend to have lower present-day precipitation biases in both northern and central-southern CA. 
Variability and future winter precipitation changes in CA are strongly controlled by SLP off the west coast 

Figure 5. Time-lagged causal control strengths from sea level pressure (SLP) variation over remote oceanic regions on SLP variation over the west coast of North 
American (node 22): (a) 1979–2014. (b) 2020–2100. (c) Relationships between node 22 and node 18 SLP. (d) Relationships between node 22 and node 11 SLP. (e) 
Relationships between node 22 and node 1 SLP. Red boxes indicate observationally constrained reanalysis data in (a).
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of Northern America. CMIP6 models constrained by observed causal struc-
tures, precipitation, and SLP over the identified dominant regions projected 
wetter end-of-century northern and central-southern California regions 
(mean precipitation increased by 20% and 25%, respectively), with much 
lower uncertainty ranges. CA drought in recent decades was suggested to 
be intensified compared to that in earlier history (Diffenbaugh et al., 2015; 
Williams et al., 2022), while our results showed increased precipitation at the 
end of 21st century compared to precipitation observations of recent decades. 
The reason for the difference may be attributed to future intensified tele-
connections that could increase CA precipitation (Allen & Luptowitz, 2017; 
Cai et al., 2015; Zecca et al., 2018; Zhou et al., 2020). Our causal networks 
identified the dominant controllers of present and future CA precipitation to 
be SLP over the eastern pacific, north-central pacific, and west Indian ocean, 
relationships supported by previous studies (Allen & Luptowitz, 2017; Choi 
et al., 2016; Cvijanovic et al., 2017; Zhou et al., 2020). Our identified causal 
networks therefore provide powerful constraints for narrowing the spread of 
CMIP6 model projected precipitation in CA and should be applied to other 
regions and climate variables.

Data Availability Statement
All data sets and code are publicly available. Links of used data sets and 
code are listed below. NCEP-NCAR sea level pressure data: https://psl.noaa.
gov/data/gridded/data.ncep.reanalysis.html; CPC precipitation data: https://
psl.noaa.gov/data/gridded/data.cpc.globalprecip.html; ECMWF data: https://
www.ecmwf.int/en/forecasts/datasets/-reanalysis-datasets/era-interim; 
COBE SST2 data set: https://psl.noaa.gov/data/gridded/data.cobe2.html. 

CMIP6 data: https://esgf-node.llnl.gov/search/cmip6. PCMCI code: https://github.com/jakobrunge/tigramite; 
PCA-Varimax code: https://github.com/peernow/CME_NCOMMS_2020. Pareto optimality code: https://oapack-
age.readthedocs.io/en/latest/examples/example_pareto.html.
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