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associations can be missed or misattributed. Furthermore, 
imprecisely modeling the effects of both  KIR  and  HLA-C  
could result in a failure to replicate if these loci’s allele fre-
quencies differ among populations. To further illustrate the 
extended QMFG test’s advantages, we apply the extended 
QMFG test to a UK cohort study and the Norwegian Mother 
and Child Cohort (MoBa) study.  Conclusion:  We find a sig-
nificant  KIR – HLA-C  interaction effect on birth weight. More 
generally, the QMFG test can detect genetic associations 
that may be missed by standard genome-wide association 
studies for quantitative traits.  © 2017 S. Karger AG, Basel 

 Introduction 

 Complex familial disorders result from interactions be-
tween environmental and genetic factors. One such inter-
action, which can contribute to disease susceptibility and 
variation in quantitative traits, occurs when the fetal envi-
ronment is modified by the interaction of proteins ex-
pressed from maternal and offspring genes. During preg-

 Keywords 

 Maternal-fetal genotype interaction · KIR · HLA ·
Gene-gene interaction · Family-based association · 
Quantitative traits · Variance components · 
Intergenerational effects · The Norwegian Mother and 
Child Cohort (MoBa) Study 

 Abstract 

  Background/Aims:  Maternal and offspring cell contact at 
the site of placentation presents a plausible setting for ma-
ternal-fetal genotype (MFG) interactions affecting fetal 
growth. We test hypotheses regarding killer cell immuno-
globulin-like receptor  (KIR)  and  HLA-C  MFG effects on human 
birth weight by extending the quantitative MFG (QMFG) test. 
 Methods:  Until recently, association testing for MFG interac-
tions had limited applications. To improve the ability to test 
for these interactions, we developed the extended QMFG 
test, a linear mixed-effect model that can use multi-locus 
genotype data from families.  Results:  We demonstrate the 
extended QMFG test’s statistical properties. We also show 
that if an offspring-only model is fit when MFG effects exist, 
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nancy, the maternal and fetal semiallogenic cells come 
into direct contact, resulting in an intricate connection 
between the 2 individuals. Depending on the combination 
of maternal and offspring genotypes, maternal immune 
recognition of fetal cells is one possible form of maternal–
fetal genotype (MFG) interaction. MFG interactions can 
alter the conditions in which the fetus develops and have 
the potential to impact offspring traits. MFG interactions 
have been shown to be involved in perinatal diseases  [1–5]  
as well as those that occur later in life  [6–15] .

  One example of an MFG interaction involves genes 
that are thought to regulate human birth weight  [16–18] . 
Besides variation in birth weight being of intrinsic interest 
in human evolution, extremes in birth weight are strongly 
associated with obstetric complications and perinatal 
mortality. For instance, whereas high birth weight causes 
obstructed labor  [19] , preeclampsia and fetal growth re-
striction are 2 consequences of poor placentation in early 
pregnancy  [20] . Trophoblast invasion and spiral artery 
transformation are important processes that affect the 
maternal blood supply to the placenta and therefore im-
pact fetal growth. Uterine natural killer (uNK) cells are 
distinctive maternal lymphocytes, which are only found in 
a woman’s mucosal lining during placentation, that accu-
mulate around the invasive trophoblast cells. Human ma-
ternal uNK receptors, which are encoded by the killer cell 
immunoglobulin-like receptor  (KIR)  gene family, can 
bind to human leukocyte antigens (HLA) expressed by fe-
tal trophoblast cells thus forming an immune interaction 
between maternal and fetal cells  [21] . Although other 
genes  [22, 23]  and environmental factors  [24–27]  are very 
likely to influence birth weight, there is evidence that this 
interaction between uNK KIR and trophoblast HLA influ-
ences the balance between restricted and amplified fetal 
placental cell invasion, transformation of spiral arteries, 
and, in turn, fetal development. 

  Trophoblast cells express 3 HLA class I molecules: 2 
nonclassical (HLA-G and HLA-E) and 1 classical (HLA-
C)  [28] . Of these 3, only HLA-C is polymorphic. Although 
there are 2,902 known  HLA-C  alleles, they can be placed 
into 2 groups,  C1  and  C2 , which differ in their epitopes, 
when considering their effect on birth weight  [29] . Allo-
typic recognition of C1 or C2 epitopes varies by  KIR  gene. 
It is important to note that beyond the influence of the 
offspring  HLA-C  genotype, the maternal  HLA-C  genotype 
may also play an important role in placental development. 
It is hypothesized that, during uNK cell development, the 
maternal KIR interacts with her own HLA-C molecules, 
thus “educating” or “licensing” her uNK cells and chang-
ing the way they interact with her offspring’s HLA-C mol-

ecules during placentation  [16, 18, 30, 31] . That uNK edu-
cation occurs in the uterus is supported by evidence that 
maternal MHC (major histocompatibility complex) class 
I antigens educate the uNK cells in murine models  [32] .

  Models involving  KIR  genes together with  HLA-C  
have been found to be essential in explaining associations 
with pregnancy disorders including preeclampsia, fetal 
growth restriction, and recurrent miscarriage  [16, 33, 34] . 
Fifteen  KIR  genes have been identified, mapping to chro-
mosome 19q13.4 within the 1-Mb leukocyte receptor 
complex  [35] .  KIR  genes are denoted by the number of 
extracellular immunoglobulin domains (2D or 3D) and 
the length of the cytoplasmic tail (L for long and S for 
short). This region of the human genome is highly vari-
able. In fact, the number and nature of the genes in the 
region can differ between individuals. Hiby et al.  [17]  
found that a parsimonious model, which shows the pres-
ence or absence of the gene  KIR2DS1  in the mother, was 
sufficient to present the interaction of  KIR  and  HLA-C  as 
a predictor of birth weight in normal pregnancies using 
subjects from the UK and Norway. Thus, for simplicity, 
in this article, we refer to 2 alleles, – and +, representing 
the absence and presence of the  KIR2DS1  gene on a chro-
mosome, respectively. 

  Until recently, association testing for MFG interac-
tions with quantitative traits was limited to retrospective 
likelihood designs  [36–38] , which model the distribution 
of genotypes conditional on the phenotypes  [39] . These 
designs are direct extensions of association testing for 
MFG interactions with qualitative traits  [40, 41] . In addi-
tion to potential difficulties in parameter interpretation, 
such approaches have typically been limited to case-par-
ent trios and cannot easily account for the main effects of 
other covariates  [42, 43] . To address these modeling lim-
itations, the quantitative MFG (QMFG) test was devel-
oped  [43] . This linear mixed-effect approach can quickly 
and accurately test for various scenarios of joint maternal 
and offspring effects and can handle pedigrees of any size.

  The QMFG test was originally developed to address 
interactions that occur at a single locus, but this limited 
its applicability to only a small number of scenarios. Thus, 
we extend the model to multiple loci in this article. The 
 KIR – HLA-C  interaction as a predictor of birth weight 
serves as an interesting and important example where our 
extension to the QMFG test can provide new insights. We 
apply the QMFG test to the UK cohort  [16, 17, 33, 34]  and 
the Norwegian Mother and Child Study (MoBa) cohort 
 [44]  used by Hiby et al.  [17]  to extend their findings and 
test the hypothesis of a  KIR – HLA-C  MFG interaction ef-
fect on human birth weight.
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  Methods 

 The QMFG Model  
 Consider a pedigree  f  with  N  f  offspring who are genotyped, 

phenotyped for a quantitative trait, and have mothers who are ge-
notyped. Note that the pedigree  f  can be multigenerational so that 
an offspring can also be a mother (see  Fig. 1  for simple examples). 
We start with the case in which there are no environmental covari-
ates and the variance can be partitioned into 2 components, the 
additive genetic variance ( σ   2  a ) and the environmental variance ( σ   2  e ). 
The vector of quantitative trait values  y  f  has  N  f  entries and can be 
expressed as  

  y  f  =  μ  +  X  f  β  +  A  f  +  e  f  =  ν  f  +  A  f  +  e  f . (1)

  The parameter  μ  denotes a vector of  N  f  grand means.  X  f  is an 
 N  f  ×  m  matrix where the rows correspond to the offspring in ped-
igree  f . Each row contains a single 1 entry corresponding to the 
observed maternal-offspring genotypes and the rest of the entries 
are 0.  β  is the  m -component column vector of regression coeffi-
cients for all possible MFG combinations.  A  f  and  e  f  are vectors of 
random effects such that  A  f   ∼   MVN (0, 2 σ   2  a  Φ f ), where Φ f  is an
 N  f  ×  N  f  matrix of kinship coefficients, and  e  f   ∼   MVN (0,  σ   2  e   I ), where 
 I  is an  N  f  ×  N  f  identity matrix  [45] . This model can be extended to 
include other variance components such as shared environmental 
variance or dominance genetic variance or additional covariates 
 [45] . In the case of birth weight, additional covariates may include 
gestational age, sex, and ethnicity/cohort. 

  The number of genetic parameters in  β  depends on the model. 
Inspired by Hiby et al.  [17] , we model the MFG effects of a single 
biallelic locus (i.e.  HLA-C ) so that there are 7 possible mother-
offspring genotype combinations. Note that for the birth weight 
example, we refer to the  HLA-C  alleles as  C1  and  C2 , which more 
precisely corresponds to the classification of the numerous  HLA-C  
alleles into 2 groups of  HLA-C  alleles based on having a C1 or C2 
epitope. If we add to the model the interaction of this locus with a 
maternally acting biallelic locus (i.e. alleles – and + representing 
the absence or presence of  KIR2DS1 ), then we have 21 mother-
offspring genotype combinations. The vector of QMFG regression 
coefficients for these 2 loci therefore consists of parameters of the 
form  β  ijk  where  i  denotes the number of maternal  KIR2DS1 + al-
leles,  j  denotes the number of maternal  C2  alleles, and  k  denotes 
the number of offspring  C2  alleles ( Table 1 , column 4). As with the 
single SNP version of the QMFG test, one of the parameters for the 
MFG effects is made the reference state (in our case, we make
 β  000  = 0 the reference state, so 0 copies of the variant alleles, + and 
 C2 )   to avoid nonidentifiability.

  Model Descriptions 
 A variety of models (Models 0–9,  Tables 1  and  2 ) are fit to sim-

ulated data. All models include parameters for a grand mean ( μ ), 
sex effect ( β  sex ), and variance components ( σ   2  a  and  σ   2  e ). To make 
estimation practical, we impose constraints on the 20 QMFG pa-
rameters based on our prior understanding of a possible underly-
ing immune response. The most general  KIR-HLA-C  model that 
we consider for birth weight, Model 1, imposes restrictions so that 
there are 3 freely estimated parameters: (1) an effect for the mater-
nal  KIR , modeled as a +   allele dominant effect, (2)  β  KIR , an effect 
for those offspring with more  C2  than their mother, denoted by 
 β  more , and (3) a  KIR – HLA-C  interaction effect when the mother has 
at least one + allele and the offspring has more  C2  alleles than their 

mother,  β  int  ( Table 1 , column 5). Thus,  β  001  =  β  012  =  β  more ,  β  i  00  = 
 β  i  10  =  β  i  11  =  β  i  21  =  β  KIR  for  i  = 1, 2, and  β  i  01  =  β  i  12  =  β  more  +  β  KIR  + 
 β  int  for  i  = 1, 2. Otherwise,  β  ijk  = 0 .  Models 0 and 2–5 include ad-
ditional constraints on the parameters of Model 1 ( Table 2 , rows 
4–7) depending upon the hypothesis. 

  Because genome-wide association studies (GWAS) typically 
include an individual’s own genotype but not their mother’s geno-
type (offspring-only), Models 6–9 are used to explore the effects of 
misspecification when an offspring-only model is incorrectly ap-
plied to data generated under an MFG interaction scenario. For 
Model 6 ( Table 1 , column 6), offspring  HLA-C  effects are denoted 
by parameters  β  C1/C2  and  β  C2/C2 . Estimating an additive offspring 
 HLA-C  effect requires the additional constraint  β  C1/C2  =  β  C2/C2  
(Model 7;  Table 2 , row 9). For Model 8, we can similarly define 
offspring   + effects by parameters  β  –/+  and  β  +/+  ( Table 2 , row 10). 
Estimating an additive offspring +   effect requires the additional 
constraint 2 β  –/+  =  β  +/+  (Model 9;  Table 2 , row 11).

  Inference 
 The log-likelihood of the data for pedigree  f  is
  11 1

ln | Ω | Ω .
2 2

t

f f f f f f fL y y� �
 (2)

  The covariance matrix is denoted by Ω f  = 2 σ   2  a Φ f  +  σ   2  e I f . Because 
pedigrees are independent, the log-likelihood,  L , of the full dataset 
is  L  = ∑ f   L  f . For inference, we use likelihood ratio tests (LRTs) or 
Akaike Information Criteria (AIC). LRTs can easily handle com-
parisons between models and their submodels from  Table 2 . The 
LRT statistic is equal to twice the difference in log-likelihoods 
maximized under the null and alternative models. The LRT as-
ymptotically follows a χ 2  distribution with degrees of freedom 
equal to the difference in the number of parameters under the null 

b

a

  Fig. 1.  Family structures. Offspring used in analyses are shaded in 
gray.  a  Grandparents-parents-offspring family with 2 offspring.
 b  Extended 3-generation family with 5 offspring. 
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 Table 2.  Model descriptions

Type Model Genetic effects modeled Additional constraints Genetic parameters 
estimated4

Null model1 0 None βKIR = βmore = βint = 0 
or
βC1/C2 = βC2/C2 = 0 or
β–/+ = β+/+ = 0

0

QMFG models2 1 Maternal KIR2DS1
More HLA-C2
Interaction

None βKIR
βmore
βint

2 Interaction βKIR = βmore = 0 βint
3 Maternal KIR2DS1

More HLA-C2
βint = 0 βKIR

βmore
4 Maternal KIR2DS1 βmore = βint = 0 βKIR
5 More HLA-C2 βKIR = βint = 0 βmore

Standard off-
spring models3

6 Genotypic offspring HLA-C effect None βC1/C2
βC2/C2

7 Additive offspring HLA-C effect 2βC1/C2 = βC2/C2 βC1/C2
8 Genotypic offspring KIR2DS1 effect None β–/+

β+/+
9 Additive offspring KIR2DS1 effect 2β–/+ = β+/+ β–/+

 1 Model 0 is a submodel of all other models (Models 1 – 9). 2 Models 2 – 5 are submodels of 1 (parameterization 
shown in Table 1). 3 Model 7 is a submodel of Model 6 and Model 9 is a submodel of Model 8 (parameterization 
of Model 6 is shown in Table 1). 4 All models additionally estimate a grand mean (μ), sex effect (βsex), and vari-
ance components (σ2

a and σ2
e). 

 Table 1.  Maternal-offspring genotype combinations and model parameters for the KIR2DS1 and HLA-C

Maternal 
KIR2DS1

Maternal 
HLA-C 

Offspring 
HLA-C 

General 
QMFG model

Model 1: maternal KIR,
more offspring HLA-C2, 
and interaction effects

Model 6: 
HLA-C off-
spring effects 

–/– C1/C1 C1/C1 0 0 0
–/– C1/C1 C1/C2 β001 βmore βC1/C2
–/– C1/C2 C1/C1 β010 0 0
–/– C1/C2 C1/C2 β011 0 βC1/C2
–/– C1/C2 C2/C2 β012 βmore βC2/C2
–/– C2/C2 C1/C2 β021 0 βC1/C2
–/– C2/C2 C2/C2 β022 0 βC2/C2
–/+ C1/C1 C1/C1 β100 βKIR 0
–/+ C1/C1 C1/C2 β101 βKIR + βmore + βint βC1/C2
–/+ C1/C2 C1/C1 β110 βKIR 0
–/+ C1/C2 C1/C2 β111 βKIR βC1/C2
–/+ C1/C2 C2/C2 β112 βKIR + βmore + βint βC2/C2
–/+ C2/C2 C1/C2 β121 βKIR βC1/C2
–/+ C2/C2 C2/C2 β122 βKIR βC2/C2
+/+ C1/C1 C1/C1 β200 βKIR 0
+/+ C1/C1 C1/C2 β201 βKIR + βmore + βint βC1/C2
+/+ C1/C2 C1/C1 β210 βKIR 0
+/+ C1/C2 C1/C2 β211 βKIR βC1/C2
+/+ C1/C2 C2/C2 β212 βKIR + βmore + βint βC2/C2
+/+ C2/C2 C1/C2 β221 βKIR βC1/C2
+/+ C2/C2 C2/C2 β222 βKIR βC2/C2
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and alternative hypotheses. When comparing models that are not 
nested, we use the AIC. If  c  is the number of freely estimated pa-
rameters, 

   AIC  = 2 c  – 2 L . (3)

  We then select the model that minimizes the AIC as our best 
model.

  Type I Error, Power, and Model Misspecification 
 Because our models are linear mixed models, it is straightfor-

ward to calculate power using noncentrality parameters (NCPs) 
 [46, 47]  when the study sample is composed of mother-offspring 
pairs or small families (e.g., 2-generation nuclear families). How-
ever, as the families get large or we wish to examine the effects of 
model misspecification, using an NCP is more difficult and so we 
rely on simulations. We first verify that our simulations are accu-
rate by comparing them to power estimated from the NCP with 
mother-offspring pairs, nuclear families with 2 siblings, and grand-
parents-parents-offspring families (for an example of a grandpar-
ents-parents-offspring family, see  Fig. 1 a; for a more detailed expla-
nation of NCP, see online suppl. materials; for all online suppl. 
material, see www.karger.com/doi/10.1159/000456033). Then, we 
conduct simulation studies with 300 three-generation 5-offspring 
families, each having the structure shown in  Figure 1 b in order to 
examine the type I error, power, and parameter estimate accuracy 
for the QMFG test with multiple loci and extended families. 

  For the purpose of examining the type I error, Scenario I data 
are simulated under the null hypothesis of no genetic effects at the 
studied loci. Scenario II data are simulated under conditions so 
that birth weight is affected only when an offspring has more  C2  
than his or her mother and the mother has at least 1 copy of the 
 KIR2DS1  gene (a dominant-acting maternal + allele). Scenario III 
involves the same interaction effect in Scenario II as well as sepa-
rate effects for the dominant-acting maternal + allele that is inde-
pendent of  HLA-C  and for more  C2  in the offspring than in the 
mother that is independent of  KIR2DS1 . These simulation scenar-
ios are summarized in  Table 3 . Unless otherwise specified, the + 
allele frequency is 20% and the  C2  allele frequency is 30%; these 
values are chosen based on frequencies observed in white British 
populations  [17] . 

  Each simulation run consists of 2,000 repetitions in which birth 
weight is simulated with a grand mean  μ  (3.5 kg) and a sex effect 
to reduce the average weight if the offspring is female ( β  sex  = –0.2 
kg). For the most part, variance components are simulated to allow 
for a high heritability of birth weight as found by Demerath et al. 
 [48]  ( σ   2  a  = 0.2025 kg 2  and  σ   2  e  = 0.0475 kg 2 ; residual heritability  h  2  = 
0.81), although we also examine the effects of lower heritability 
with and without shared environmental variation. 

  Genomic control values ( λ ) are reported as an assessment of 
type I error accuracy  [49] . The significance level used to estimate 
power is 0.001. If  r  is the proportion of rejected tests and  N  is the 
number of simulation repetitions, the standard errors for the pow-
er estimates are calculated as 

1
.

r r
SE

N
 

  Proportion of variation explained is estimated empirically by di-
viding the difference in residual variance under the null and alter-
native models by the residual variance under the null hypothesis. 
All simulations and analyses are conducted using the statistical 
genetics software package Mendel  [50] . 

 UK Cohort and the MoBa Study 
 Details of the participants from the UK cohort study  [16, 17, 

33, 34]  and MoBa  [44]  (a Norway-wide prospective population-
based study of over 110,000 pregnancies conducted by the Norwe-
gian Institutes of Public Health) were previously published .  Hiby 
et al.  [17]  used a subset of these mother-offspring pairs from the 
UK and Norway and found a significant association between the 
maternal  KIR2DS1  and increased offspring birth weight, especial-
ly in the presence of more  C2  in offspring than their mothers. 
However, they did not explicitly test for an interaction between 
these loci or determine if there were additional independent effects 
of the loci. In this article, we use the same mother-offspring pairs, 
 KIR 2 DS1  genotypes, and  HLA-C  genotypes as Hiby et al.  [17]  in 
an effort to allow direct comparison to their analyses and to refine 
the characterization of the effects. Ethical approval was obtained 
from the Cambridge Research Ethics Committee (reference No. 
01/197 and 05/Q0108/367; Cambridgeshire, UK) for the UK study 
and from the Regional Committee for Medical Research Ethics and 
the Data Inspectorate for the MoBa study (reference No. 
HBREC.2016.12). All adult subjects provided informed written 
consent. A detailed description of the genotyping is described else-
where  [16, 33, 51] . Both mothers and offspring were genotyped for 
 HLA-C  and mothers’  KIR  genotypes were determined.

  Pregnancies with preeclampsia or fetal growth restriction as 
well as normal pregnancies were included in these cohorts. In both 
studies, small babies (<5th centile) were heavily oversampled and 
large babies ( ≥ 90th centile) were slightly oversampled. As in Hiby 
et al.  [17] , we run our analyses only on the offspring that had birth 
weight data >5th centile, were firstborn singletons from full-term 
births (38–42 weeks), and whose mothers were over the age of 18 
and had no medical conditions including preexisting and gesta-
tional diabetes, hypertension, renal disease, and autoimmune dis-
ease. Of the 1,316 pregnancies that fit these criteria, 7 pregnancies 
were dropped due to a missing offspring  HLA-C  genotype. Our 
analyses, therefore, include 1,309 pregnancies. Of these, 403 came 
from the UK cohort and an additional 906 came from the MoBa 
cohort. These birth weights were approximately normally distrib-
uted within their respective cohorts. 

 Table 3.  Simulation scenarios

Scenario KIR and HLA-C 
genetic effects

Simulated values1

I None βKIR = βmore = βint = 0

II Interaction βKIR = βmore = 0
βint = {0.05, 0.07, ..., 0.35}

III Maternal KIR2DS1
More HLA-C2
Interaction

βKIR = 0.05
βmore = –0.1
βint = {0.05, 0.07, ..., 0.35}

 1 All models additionally simulate a grand mean μ (3.5 kg), sex 
effect (βsex = –0.2 kg if female), and variance components (σ2

a = 
0.2025 kg2 and and σ2

e = 0.0475 kg2).
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  We fit several models for  KIR2DS1 ,  HLA-C , and birth weight 
encompassing single-locus and multi-locus effects separately and 
jointly to the 1,309 mother-offspring pairs from the UK and MoBa 
cohorts. Models 0–5 are compared using the AIC to determine 
whether a  KIR – HLA-C  interaction is appropriate for these data. 
Because Hiby et al.  [17]  provide results with and without gesta-
tional age as a covariate, a sensitivity analysis is performed to as-
certain the effect of excluding gestational age from the best model 
on the estimated parameters. We also consider another model that 
aims to capture a possible paternal parent-of-origin effect (see on-
line suppl. materials).

  Results 

  Modeling a Two-Locus Interaction Effect 
  To examine type I error rates of the extended QMFG 

test, we simulate data under the null hypothesis of no ge-
netic effects of  HLA-C  or  KIR  (Scenario I). Based on the 
work of Hiby et al.  [17] , we examine the statistical prop-
erties of the interaction-only model that requires that the 
mother have at least + allele and the offspring have more 
 C2  alleles than his/her mother to affect a difference in 
birth weight (Model 2). The results comparing the null 
model of no genetic effects (Model 0) to the alternative 
model estimating a  KIR – HLA-C  interaction (Model 2) 
are displayed as a Q-Q plot in  Figure 2 a. All the points fall 
between the confidence bounds, showing that there is no 
bias in the type I error for the QMFG test in this scenario 
( λ  = 1.055). 

  Under Scenario II, data are simulated with  KIR – 
HLA-C  interaction effects ( β  int ) ranging from 0.05 to 0.35 
kg in increments of 0.02 kg. Fitting the same null (Model 
0) and alternative (Model 2) models, we calculate the 

power analytically using NCPs at a significance level of 
0.001 and each of the following study designs: 1,500 
mother-offspring pairs, 750 two-sibling nuclear families, 
or 750 grandparents-parents-offspring families (equiva-
lent numbers of mother-offspring pairs in each study). 
We compare the NCP results to simulation results for 
each of these study designs. In each case, the analytical 
power is slightly higher than the power using simulations, 
suggesting that the simulations may be slightly conserva-
tive (see online suppl. materials and online suppl. Fig. S1 
for details). 

  Continuing with Scenario II and using Model 0 as the 
null model and Model 2 as the alternative model, the 
power to detect a  KIR – HLA-C  interaction effect for 300 
extended families ( Fig. 1 b) is shown in  Figure 2 b. When 
the significance level is 0.001, 80% power is reached when 
the  KIR – HLA-C  interaction effect is approximately 0.19 
kg, that is, when the proportion of variation explained by 
the  KIR – HLA-C  interaction effect is approximately 0.011. 
 Figure 3 a shows that the parameter estimates are unbi-
ased when Model 2 is fit to data simulated with a  KIR –
 HLA-C  interaction effect of 0.19 kg. Together the type I 
error rate, power, and bias estimates demonstrate that the 
QMFG test has good statistical properties.

  We also used this scenario and these models to com-
pare the power between study designs. Each design has 
an equivalent number of mother-offspring pairs. Inter-
estingly, we found that under these conditions 750 grand-
parents-parents-offspring families tend to have more 
power than 300 extended families, which have more 
power than 1,500 mother-offspring pairs, which have 
more power than 750 two-sibling nuclear families 
( Fig. 4 ). 
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  Fig. 2.  Statistical properties of the extended 
QMFG when testing for a  KIR – HLA-C  in-
teraction (df = 1). Power calculated by sim-
ulation (2,000 replicates).  a  Q-Q plot. Ge-
notypes and birth weight phenotypes were 
simulated for 300 pedigrees under the null 
hypothesis of no genetic effects of  HLA-C  
or  KIR  (Scenario I; genomic control value, 
 λ  = 1.055).  b  The power to detect a  KIR –
 HLA-C  interaction effect when data are 
simulated under Scenario II ( KIR – HLA-C  
interaction only). Error bars represent ap-
proximate 95% confidence intervals. 
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  Modeling Two-Locus Main and Interaction Effects  
 We check for bias in type I error rates for our most 

complex 2-locus model (Model 1, with parameters for an 
effect of the dominant maternal + allele [ β  KIR ], an effect 
of an offspring having more  C2  [ β  more ], and an effect of 
their interaction [ β  int ]). We simulate data with no genetic 
effects (Scenario I) and under Scenario III that involves a 
 KIR – HLA-C  interaction and main effects of a dominant-
acting maternal + allele and more  C2  in the offspring. We 
find similar type I error rates, power, and lack of bias in 

the estimates when comparing Model 1 to Model 0 as we 
found for the interaction effect alone (online suppl. Fig. 
S2–S4). We also compare Model 1 to a model with only 
independent effects of  HLA-C  and  KIR2DS1  (no interac-
tion, Model 3). We find accurate type I error rates and 
lack of bias in the estimates (results not shown) and in-
creased power over the 3-degree-of-freedom test for the 
same effect size (see online suppl. materials for details; 
online suppl. Fig. S2–S3). 

  Model Misspecification  
 In this section, we examine the effect of using a model 

that is more general than the true model and the effects 
of using overly restrictive or incorrect models. Unsurpris-
ingly, using a more general model leads to a loss of power 
but parameter estimates are unbiased (see online suppl. 
materials and online suppl. Fig. S5 and S6 for details). 

  For simulations in which an interaction between the 
maternal  KIR  and maternal-offspring  HLA-C  provides 
the only genetic effect on birth weight (Scenario II), we 
investigate whether a standard offspring-only analysis 
typically used in a GWAS would detect an association at 
 HLA-C . When data simulated under Scenario II ( Table 3 ) 
are tested using an offspring  HLA-C  genotype model 
(Model 6), with a + frequency of 0.2, power is drastically 
reduced ( Fig. 5 a) compared to the correct QMFG model 
that includes an interaction effect (Model 2). The param-
eter estimate bias and boxplots for Model 6 analyses are 
displayed in  Figure 3 b for the case in which the data are 
simulated with an interaction effect size of 0.35 kg. Over 
the 2,000 simulations, the grand mean is slightly under-
estimated and the variance components are overestimat-
ed. Online supplementary Figure S7 shows the power 
when testing Scenario II-generated data using an additive 
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  Fig. 3.  Parameter estimate bias. Birth 
weight phenotypes simulated given  μ  = 3.5 
kg,  β  sex  = –0.2 kg,  σ   2  a  = 0.2025 kg 2 , and  σ   2  e   = 
0.0475 kg 2  as well as additional  KIR  and 
 HLA-C  effects.  a  A  KIR – HLA-C  interac-
tion-only model is fit to Scenario II ( KIR –
 HLA-C  interaction only) data with a  KIR –
 HLA-C  interaction effect of 0.19 kg ( β  int  = 
0.19 kg).  b  Model is misspecified as a geno-
typic offspring  HLA-C  model and is fit to 
Scenario II data with a  KIR – HLA-C  inter-
action ( β  int  = 0.35 kg) leading to substantial 
bias in the effects of the offspring alleles. 
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  Fig. 4.  Effect of study design on power. Error bars represent ap-
proximate 95% confidence intervals. Power calculated by simula-
tion (2,000 replicates) for 1,500 mother-offspring pairs, 750 two-
sibling nuclear families, 750 grandparents-parents-offspring fam-
ilies, and 300 extended families. Power to detect a  KIR – HLA-C  
interaction effect when data are simulated under Scenario II ( KIR –
 HLA-C  interaction only).                                                                    
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offspring  C2  model (Model 7 vs. Model 0). Power is 
slightly higher than for the offspring genotypic test (Mod-
el 6), likely due to the reduced degrees of freedom, but 
remains severely attenuated compared to an analysis us-
ing Model 2 when the + frequency is equal.

  Analogously, the offspring model might be used to test 
for an association of  KIR2DS1  with the trait. When using 
the data simulated under Scenario II and an offspring ge-
notypic (Model 8) or additive (Model 9) model to detect 
the effect of the presence of the + allele, power is again 
drastically reduced (online suppl. Fig. S8A and S8B, re-
spectively). Online supplementary Figure S9 shows the 
grand mean and genotypic parameters estimates are bi-
ased upwards for the genotypic model. Taken together, 
these results lead us to conclude that MFG multi-locus 
interactions would often be missed in standard GWAS 
analyses.

  Effect of Population Frequency on the Standard 
Offspring Model 
 In the previous sections, we assumed the + allele fre-

quency is 0.2 ( p + = 0.2) based on the frequency of the 
 KIR2DS1  gene in the chromosomes of the white British 
population. In African populations, the  KIR2DS1  gene is 
found less frequently  [52] . Given that frequencies differ 

between populations, we evaluate how this frequency 
would change power when using standard offspring/ef-
fect-only models. We simulate samples with + frequen-
cies equal to 0.07, 0.2, 0.6, and 1.0 and again use  KIR –
 HLA-C  interaction effect sizes ranging from 0.05 to 0.35 
kg (Scenario II). As the + frequency increases, power also 
increases for both the offspring  HLA-C  genotypic and
additive models. For the specific case where the  KIR –
 HLA-C  interaction effect size is 0.25 kg ( Fig. 5 a, denoted 
by triangles), the estimated power to detect a genotypic 
offspring  HLA-C  effect ranges from 0.0035 (SE = 0.0013) 
when  p + = 0.07 to 0.78 (SE = 0.009) when  p + = 1.0. Simi-
lar results are observed when testing these data for an ad-
ditive offspring  C2  effect (online suppl. Fig. S7, triangles). 
Thus, when using a standard offspring-only analysis, 
conclusions about the importance of  HLA-C  on the birth 
weight depend on the + frequency in the mothers when 
the true underlying effect stems from a  KIR – HLA-C  in-
teraction.

  Effect of Population Frequency on the Single-Locus 
QMFG Test 
 We next consider the effect of  KIR2DS1  frequency 

when the  HLA-C  maternal-offspring effect is modeled 
but the actual effect is due to a  KIR – HLA-C  interaction. 

0 0.01 0.02 0.03 0.04
Proportion variation explained by

KIR–HLA-C interactiona
Po

w
er

1.0

08

0.2

0.4

06

0

0 0.01 0.02 0.03 0.04
Proportion variation explained by

KIR–HLA-C interactionb

Po
w

er

1.0

08

0.2

0.4

06

0

+ Allele freq, model:
p+ = 0.2, correct model
p+ = 1.0, offspring model
p+ = 0.6, offspring model
p+ = 0.2, offspring model
p+ = 0.07, offspring model
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  Fig. 5.  Effect of model misspecification on power. Error bars rep-
resent approximate 95% confidence intervals.                  a  Power to detect 
genotypic  HLA-C  offspring effects. Data simulated under Scenario 
II ( KIR – HLA-C  interaction only) with several  KIR2DS1  frequen-
cies ( p +). The correct model (Model 2) is fit when data are simu-
lated with  +  frequency equal to 0.2. Additionally, the model is mis-
specified such that it tests for genotypic offspring  HLA-C  effects 
(df = 2). Simulations in which the  KIR – HLA-C  interaction effect is 
0.25 kg (the effect size when power is close to 80% for the geno-

typic model when  p + = 1.0) are represented with triangles.                          b  Effect 
of  KIR2DS1  frequency on the single-locus QMFG (SL-QMFG) 
test. Data simulated under Scenario II ( KIR – HLA-C  interaction 
only) and the model is misspecified such that it tests for an effect 
of a single-locus MFG effect of more offspring  HLA-C2  (df = 1). 
Simulations in which the  KIR – HLA-C  interaction effect is 0.13 kg 
(the effect size when power is 85% when  p + = 1.0) are represented 
with triangles.               
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Setting + frequencies equal to 0.07, 0.2, 0.6, and 1.0, we 
simulate data with a  KIR – HLA-C  interaction effect (Sce-
nario II) and test for an effect of more offspring  C2 . Here 
Model 5 corresponds to our alternative hypothesis and 
Model 0 corresponds to the null hypothesis. As shown in 
 Figure 5 b, power to detect the  HLA-C  effect increases 
greatly as the + frequency increases. When the  KIR – 
HLA-C  interaction effect size is 0.13 kg (proportion of 
variation explained  ∼ 0.006), power to detect a more  C2  
effect increases from 0.0065 (SE = 0.0018) when  p + = 0.07 
to 0.85 (SE = 0.008) when  p + = 1.0 ( Fig. 5 b, triangles). 
Thus, when using a single-locus MFG test that explicitly 
models the HLA-C effects, the ability to find a significant 
effect of  HLA-C  on the trait depends on the population 
frequency of the  KIR2DS1  gene when the true underlying 
effect stems from a  KIR – HLA-C  interaction.

  Effect of Reduced Heritability and Shared 
Environment 
 Previously published estimates of birth weight herita-

bility are highly variable  [48, 53–55] . Although Demerath 
et al.  [48]  estimate the heritability to be 81%, other groups 
find that the heritability is substantially lower. As an ex-
ample, Lunde et al.  [54]  estimate that fetal genetic factors 
explain  ∼ 30% of the normal variation in birth weight so 
we alter our simulated variance components such that the 
residual heritability is reduced to 30%. Keeping the total 
variation in birth weight fixed at 0.25 kg 2 , we simulate 
data given Scenario II effect sizes with  σ   2  a  = 0.075 kg 2  and  
 σ   2  e  = 0.175 kg 2  (residual narrow-sense heritability h 2  = 

0.30). Online supplementary Figure S10 shows the effects 
of reduced heritability on power. Compared to the 82% 
power to detect an effect size of 0.19 kg (variance ex-
plained 0.011) when heritability was simulated to be 81%, 
power is 71%.

  Demerath et al.  [48]  do not address the possibility of 
shared environmental effects, which could be due to 
smoking by the mother during pregnancy or her expo-
sure to secondhand smoke  [25] . Lunde et al.  [54]  report 
that the effect of shared environment between full siblings 
accounts for  ∼ 15% of the total variation of birth weight. 
To account for the effects of shared environment, we add 
an additional variance component  σ   2  sh  such that Ω =
2  σ   2  a  Φ +  σ   2  sh  H +   σ   2  e  I  [45] . The household indicator ma-
trix, H = ( h  ij ), has entries 0 or 1 depending on whether 
subjects  i  and  j  are siblings. Keeping the residual narrow-
sense heritability at 30%, we simulate data such that 15% 
of the total variability is due to a shared environment ef-
fect for full siblings with the variance parameters  σ   2  a   = 
0.075 kg 2 ,  σ   2  sh   = 0.0375 kg 2 , and  σ   2  e   = 0.1375 kg 2 . The vari-
ance due to the shared environment has little effect on the 
power for a given heritability (online suppl. Fig. S10).

  Application of the QMFG Test to Birth Weight Data 
 Using the same mother-offspring pairs as Hiby et al. 

 [17] , we fit various models (Models 1–5) that include sin-
gle-locus and 2-locus interaction effects between the 
 KIR2DS1  and  HLA-C  genotypes for mothers and their 
offspring as well as the null model (Model 0). To compare 
how well the models fit these data, we use AIC ( Table 4 ). 

 Table 4.  Comparison of KIR–HLA-C models for the UK and MoBa cohort data (n = 1,309)

Model Genetic effects Genetic 
parameters1

log-
likelihood

Proportion of 
variation explained2

AIC ΔAIC from 
best model

0 None 0 264.88 N/A –523.75 6.86

1 Maternal KIR2DS1
More C2
Interaction

3 271.31 0.0098 –530.61 0

2 Interaction 1 267.00 0.0033 –526.00 4.61

3 Maternal KIR2DS1
More C2

2 269.21 0.0065 –528.41 2.2

4 Maternal KIR2DS1 1 268.87 0.0061 –529.73 0.88

5 More C2 1 265.08 <0.0001 –522.16 8.45

 1 All models additionally adjusted for sex, gestational age, and cohort (UK and MoBa). 2 Proportion of resid-
ual variation explained by KIR and HLA-C effects compared to Model 0.
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The minimum AIC is provided by Model 1, which in-
cludes effects for the maternal  KIR2DS1  and for more
offspring  C2  than maternal  C2 , in addition to the  KIR –
 HLA-C  interaction.

  The effect estimates for Model 1 adjusting for cohort, 
sex, and gestational age are shown in  Table 5  (column 3). 
For this model, the reference group consists of offspring 
that have less or equal  C2  alleles than their mother and 
whose mothers have 0 copies of  KIR2DS1 . According to 
our results, offspring with more  C2  than their mother and 
whose mother has 0 copies of  KIR2DS1  are on average 
0.0867 kg lighter at birth compared to the reference group 
adjusting for sex, gestational age, and cohort ( p  = 0.047). 
Offspring with less or equal  C2  than their mother and 
whose mother has at least 1 copy of the  KIR2DS1  are es-
timated to be 0.0481 kg heavier at birth compared to the 
reference group adjusting for sex, gestational age, and co-
hort ( p  = 0.133). The interaction effect estimate (0.1337 
kg,  p  = 0.040) indicates that on average an offspring who 
has both more  C2  than their mother and whose mother 
has at least 1 copy of the  KIR2DS1  is 0.0951 kg heavier at 
birth compared to the reference group adjusting for sex, 
gestational age, and cohort. Note that the interaction ef-
fect remains significant when the single-locus effects of 
 KIR  and  HLA-C  are not included in the model (Model 2 
vs. Model 0;  p  = 0.039). As a sensitivity analysis, we also 
fit Model 1 without adjusting for gestational age and dis-
cover the effect estimates do not differ greatly ( Table 5 , 
column 2).

  We note that the presence of more  C2  in the offspring 
than their mothers implies allogenic  C2  inherited from 
the father. Without either paternal  HLA-C  genotypes or 
 HLA-C  phasing of the offspring genotypes, testing for a 
paternal parent-of-origin effect is not possible. However, 
we can test alternatives to the more  C2  hypothesis. In par-
ticular, if the effect of the  C2  is due to paternal  C2  then 

 C2/C2  offspring with  C2/C2  mothers should have similar 
weights to  C1/C2  offspring with  C1/C1  mothers or  C2/C2  
offspring with  C1/C2  mothers (online suppl. Table S1, 
Model b). We find that this model fits slightly better than 
the Model 1 (online suppl. Table S1), further supporting 
the paternal parent-of-origin hypothesis.

  Discussion 

 The link between maternal uNK cells and offspring 
trophoblast cells within the placenta presents a plausible 
setting for MFG interactions that affect fetal develop-
ment. Motivated by a previous study that found a signifi-
cant effect of the maternal  KIR2DS1  on human birth 
weight for offspring with more  HLA-C  alleles bearing  C2  
epitope than their mother  [17] , we extend the QMFG test 
to multiple loci and test the hypothesis of a  KIR – HLA-C  
interaction effect on birth weight. 

  Our simulation studies and analytical power determi-
nations show the statistical validity of the QMFG test 
when extended to interactions between the maternal  KIR , 
maternal  HLA-C , and offspring  HLA-C . In situations in 
which the model assumptions are consistent with the 
simulation scenario, the QMFG test has valid type I error 
rates, parameter estimate bias centered around 0, and 
high power (both by simulation or using NCPs) even 
when the proportion of variation explained is low. To ver-
ify that these features are not altered by family structure, 
we examine equivalent numbers of mother-offspring 
pairs as independent mother-offspring pairs, 2-sibling 
nuclear families, and grandparents-parents-offspring 
families. Power depends on the study design; with equiv-
alent numbers of mother-offspring pairs, grandparents-
parents-offspring families have slightly more power than 
extended families, which have more power than indepen-

 Table 5.  Effect estimates and 95% confidence intervals (CI) for Model 1 and the UK and MoBa cohort data with 
and without adjusting for gestational age

Covariates Cohort and sex of fetus Cohort, sex of fetus, and
gestational age

Number of subjects 1,309 1,309
Mean effect of maternal KIR2DS1 (CI) 0.0445 kg (–0.0302, 0.1192) 0.0481 kg (–0.0146, 0.1108)
Mean effect of more C2 (CI) –0.1180 kg (–0.2201, –0.0159) –0.0867 kg (–0.1724, -0.001)
Mean effect of interaction (CI) 0.2027 kg (0.0504, 0.3550) 0.1337 kg (0.0059, 0.2615)
Residual variance (SE) 0.3468 kg2 (0.0136) 0.2427 kg2 (0.0095) 

Proportion of variation explained 0.0111 0.0098
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dent mother-offspring pairs. Interestingly 2-sibling nu-
clear families have less power than the independent 
mother-offspring pairs, all of which has practical ramifi-
cations when planning a study. We also find that reduced 
heritability leads to a reduction in power but shared en-
vironment has little effect on the power.

  We investigate scenarios in which the true underlying 
MFG interaction is partially or entirely misspecified. As 
expected, power is reduced but parameter estimates are 
unbiased when a more general model is used in a case 
where a restricted model is sufficient. The ability to de-
tect an association at a locus involved in an MFG interac-
tion using only offspring genotypes depends on the un-
derlying nature of the MFG interaction, but in general 
power to detect the locus is greatly diminished. We spe-
cifically show that if a standard model, which considers 
only offspring genotypes, is fit to data generated under 
an underlying  KIR – HLA-C  interaction scenario, associa-
tions can be missed or identified incorrectly. These sim-
ulation results provide an explanation for why neither 
 HLA-C  nor  KIR  loci have been found to be significantly 
associated with birth weight in standard GWAS  [22, 23] , 
which fail to account for the effects of maternal geno-
types. Similarly, if a single-locus QMFG test is used when 
2 or more polymorphic loci are involved in the MFG in-
teraction, power will likely be reduced. In particular, 
when using the offspring-only or single-locus QMFG 
analyses, if a researcher is unaware of the existence of the 
second polymorphic locus ( KIR ), they might find an 
 HLA-C  effect in a population where the  KIR2DS1  gene is 
frequent, but fail to replicate the effect in a second popu-
lation where the  KIR2DS1  gene is infrequent even when 
 C2  allele frequency is the same in these 2 populations. 
The researcher would then be inclined to dismiss the first 
result as a false positive. Thus, like the case of offspring 
gene-gene interactions, models that incompletely cap-
ture the MFG interlocus effects can easily lead to incor-
rect conclusions.

  Due to the practical issues of running simulation stud-
ies under all possible models involving multiple loci, we 
limited our modeling to 2 loci each with 2 alleles under 
genetic mechanisms pertinent to our real data applica-
tion. In that way, we were able to reduce the number of 
genetic parameters from 20 to 3. Naturally, power esti-
mates provided in this article will be higher than those 
studies where the models cannot be similarly constrained. 
However, given our results here and in Clark et al.  [43] , 
we are confident that with appropriate sample sizes the 
QMFG test will be statistically sound regardless of the 
specific MFG interaction being studied.

  To date, no other study has looked for an association 
between  KIR – HLA-C  interactions and birth weight after 
accounting for single-locus effects. Using subgroup analy-
ses, Hiby et al.  [17]  found that the effect of maternal  KIR  
on birth weight was significant in offspring with more  C2 
 than their mothers and that this maternal effect was not 
significant in offspring with less or equal  C2 . From their 
analyses, it is difficult to determine whether the effect is 
exclusively a  KIR – HLA-C  interaction effect or whether 
there are also main effects of maternal  KIR  and more  C2  
in the offspring’s genotype than the mother’s genotype. 
Using the QMFG test, we extend these previous analyses 
by building a linear mixed model of  KIR ,  HLA-C , and birth 
weight in order to reanalyze data from the UK and MoBa 
cohorts. Thus, we can determine if the effect of a maternal  
KIR2DS1  gene on offspring’s birth weight varies depend-
ing on whether the offspring has more  C2  by testing the 
statistical significance of the  KIR – HLA-C  interaction pa-
rameter. Using AIC to compare models, the model with 
effects for maternal  KIR2DS1  and more  C2  alleles in the 
offspring’s genotype than the mother’s, and their interac-
tion, is determined to provide a better fit than main effects 
or interaction alone. For this model, there is a significant 
interaction effect on offspring birth weight that explains 
 ∼ 1% of the phenotypic variation in human birth weight.

  Another advantage of using the QMFG test instead of 
conducting subgroup analyses is the ability to determine 
parameter estimates for the maternal  KIR2DS1 , more off-
spring  C2 , and  KIR – HLA-C  interaction effects. Our find-
ings suggest that there are both significant  KIR – HLA-C  
interactions and a main effect of more offspring  C2 . Less 
certain is a  KIR2DS1  effect independent of  HLA-C . These 
results may have implications for prenatal genetic screen-
ing to identify pregnant mothers who are at risk for preg-
nancy complications.

  We chose to model the effect of having more  C2  epit-
opes present in the offspring’s  HLA-C  genotype than in 
the mother’s and a dominant-acting maternal  KIR2DS1  
effect to allow a direct comparison to the analyses of Hiby 
et al.  [17] . As discussed by these researchers  [16] , this 
model is a surrogate for a model that captures the effects 
of the maternal immune response to the fetus having a 
non-self HLA-C antigen derived from the father. Hiby’s 
study design did not include paternal  HLA-C  genotypes 
and therefore comparing the fit of the models presented 
in this article to a paternal parent-of-origin effect, a very 
plausible alternative model, is not possible. However, we 
examined an additional model that is consistent with pa-
ternal parent-of-origin effects and found that this model 
is also plausible.
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  When the data consist of only mother-offspring pairs, 
general statistical software packages that include linear 
mixed model options can be used and, with reparameter-
ization, these packages can also accommodate commonly 
observed, simple study designs such as nuclear families 
 [56] . However, for studies that collect data from families 
of varying sizes and complexity, additional software or 
tools are needed to extract the maternal-offspring geno-
type combinations, impute missing genotype data, and 
construct the design and kinship matrices. To perform 
our analyses, we extended the QMFG test to handle mul-
tiple loci in the statistical genetics software package Men-
del. These extensions will be available in the next version 
of the freely available Mendel package. The power of our 
method to detect significant MFG interactions and our 
flexible software make the QMFG test an effective tool to 
consider when studying genetic factors associated with 
complex traits. 
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