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Models of Cognition:

Neurological possibility does not indicate neurological plausibility.

Peter R. Krebs (peterk@cse.unsw.edu.au)
Cognitive Science Program

School of History & Philosophy of Science
The University of New South Wales

Sydney, NSW 2052, Australia

Abstract

Many activities in Cognitive Science involve complex
computer models and simulations of both theoretical
and real entities. Artificial Intelligence and the study
of artificial neural nets in particular, are seen as ma-
jor contributors in the quest for understanding the hu-
man mind. Computational models serve as objects of
experimentation, and results from these virtual experi-
ments are tacitly included in the framework of empiri-
cal science. Cognitive functions, like learning to speak,
or discovering syntactical structures in language, have
been modeled and these models are the basis for many
claims about human cognitive capacities. Artificial neu-
ral nets (ANNs) have had some successes in the field of
Artificial Intelligence, but the results from experiments
with simple ANNs may have little value in explaining
cognitive functions. The problem seems to be in re-
lating cognitive concepts that belong in the ‘top-down’
approach to models grounded in the ‘bottom-up’ con-
nectionist methodology. Merging the two fundamentally
different paradigms within a single model can obfuscate
what is really modeled. When the tools (simple artifi-
cial neural networks) to solve the problems (explaining
aspects of higher cognitive functions) are mismatched,
models with little value in terms of explaining functions
of the human mind are produced. The ability to learn
functions from data-points makes ANNs very attractive
analytical tools. These tools can be developed into valu-
able models, if the data is adequate and a meaningful
interpretation of the data is possible. The problem is,
that with appropriate data and labels that fit the desired
level of description, almost any function can be modeled.
It is my argument that small networks offer a univer-
sal framework for modeling any conceivable cognitive
theory, so that neurological possibility can be demon-
strated easily with relatively simple models. However, a
model demonstrating the possibility of implementation
of a cognitive function using a distributed methodol-
ogy, does not necessarily add support to any claims or
assumptions that the cognitive function in question, is
neurologically plausible.

Introduction

Several classes of computational model and simulation
(CMS) used in Cognitive Science share common ap-
proaches and methods. One of these classes involves
artificial neural nets (ANNs) with small numbers of
nodes, particularly feed forward networks (Fig. 1) and
simple recurrent networks (SRNs)1 (Fig. 2). Both of
these architectures have been employed to model high

1SRNs have a set of nodes that feed some or all of the
previous states of the hidden nodes back. The nodes are
often described as context nodes. They provide a kind of

level cognitive functions like the detection of syntactic
and semantic features for words (Elman, 1990, 1993),
learning the past tense of English verbs (Rumelhart and
McClelland, 1996), or cognitive development (McLeod
et al., 1998; Schultz, 2003). SRNs have even been
suggested as a suitable platform “toward a cognitive
neurobiology of the moral virtues” (Churchland, 1998).
While some of the models go back a decade or more,
there is still great interest in some of these ‘classics’,
and similar models are still being developed, e.g. Rogers
and McClelland (2004). I argue that many models in
this class explain little at the neurological level about
the theories they are designed to support, however I do
not intend to offer a critique of connectionism following
Fodor and Pylyshyn (1988).

Input nodes

Output nodes

Hidden nodes

Figure 1. Feed forward network architecture

Instead, this paper concerns models where ANNs act
merely as mathematical, or analytical, tools. The fact
that mathematical functions can be extracted from a
given set of data, and that these functions can be success-
fully approximated by an ANN (neurological possibility),
does not provide any evidence that these functions are
capable of being realized in similar fashion inside human
brains (neurological plausibility).

Bridging the Paradigms

Theories in Cognitive Science fall generally into two dis-
tinct categories. Some theories are offered as explana-
tions of aspects of human cognition in terms of what

‘short term memory’ that becomes part of the input in the
next step of the simulation.
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brains do, and the implementation at neural level is usu-
ally of little concern. Arguably, these theories are all
about psychological phenomena and the physical brain
should not even be considered in the context of this ap-
proach. Bennett and Hacker (2003), for example, believe
that

[. . . ] it makes no sense to ascribe such psychological
functions [i.e. perceiving and thinking] to anything
less than the animal as a whole. It is the animal that
perceives, not parts of its brain, and it is human
beings who think and reason, not their brains. The
brain and its activities make it possible for us - not
for it - to perceive and think, to feel emotions, and
to form and pursue projects (Bennett and Hacker,
2003, 3).

Essentially, the top-down2 approach deals with high
level cognitive functions, and the brain, or entire being,
is viewed as a single black box, or a collection of black
boxes with certain functional properties.

Input nodes

Output nodes

Context nodes

Figure 2. SRN architecture

The bottom-up approach, in contrast, deals with the base
elements, namely neurons, and their physiological and
functional properties and processes. Functional aspects
of brains, or parts of brains, are investigated by look-
ing at individual neurons and structures of groups and
networks of neurons. Cognitive Neuroscience and some
work in Artificial Intelligence is concerned with how cog-
nitive functions might be implemented in brains.
Currently, methods are explored to connect the top-down
and the bottom-up approaches in attempts to ground
high-level psychological phenomena in neuro-physiology.
One such research program concerns the mapping or lo-
calizing of cognitive functions in the brain. Modern tech-
nologies such as PET and fMRI3 are commonly used for

2I am using the terms top-down and bottom-up in favor of
high-level and low-level to suggest that these are not static
research programs, but that they are dynamic endeavors aim-
ing to close the divide between them.

3Positron Emission Tomography (PET) and functional
Magnetic Resonance Imaging (fMRI) are based on the as-
sumption that mental activity causes an increase in the
metabolic rate of neurons, and therefore an increase in the
flow of blood. PET detects the locations where positrons are

that purpose although there are many technical and con-
ceptual issues unresolved4.
Other attempts to bridge the divide between the two
paradigms involve computational models which aim to
explain how higher cognitive functions could possibly
be supported by a distributed architecture. In order to
achieve this, descriptive elements from different levels
are brought together in an attempt to present unified
and coherent CMSs of cognitive processes. In the case
of models that are based on simple feed forward ANNs
and SRNs, theoretical and conceptual elements are sub-
jected to a set of neurologically inspired mathematical
tools. An important contribution to the apparent success
of these models is that the analysis and interpretation of
experimental results can be framed in the language of
the theoretical and conceptual entities concerning the
cognitive function. Building models using ANNs is not
a difficult task, particularly if the ANN is small, because
many of the technical and methodological details need
not to be dealt with5.

A Universal Framework

Artificial neural networks are trained using algorithms
that adjust the weights between units, i.e. model neu-
rons, so that the error between the ANN’s computed
output and the expected output is minimized for the
given input. This process is repeated for all possible
input-output pairs many times over. For example, to
implement the XOR-function

On = ( I1 ∧ ¬I2 ) ∨ ( ¬I1 ∧ I2 )

the network will be presented with values for I1 and I2,
i.e. ‘0, 0’, ‘0, 1’, ‘1, 0’ and ‘1, 1’. The weights are adjusted
using an appropriate algorithm to minimize the error be-
tween the network’s output and the output of the train-
ing set, i.e. ‘0’, ‘1’, ‘1’, and ‘0’ respectively. Once the
network is trained, it will compute the output On from
the inputs I1 and I2 according to the XOR-function. In
many discussions about ANNs in the context of cogni-
tive modeling, the inputs are labeled with terms other
than ‘0’s or ‘1’s. Because we can use these labels freely,
there is always the danger of introducing ‘wishful’ ter-
minology not only for labels, but also for methodological
terms. But, as Fodor and Pylyshyn (1988) have pointed
out,

[. . . ] the labels play no role at all in determining
the operation of a Connectionist machine; in par-
ticular, the operation of the machine is unaffected
by the syntactic and semantic relations that hold
among the expressions that are used as labels. To

emitted from decaying atoms of a radioactive tracer (typically
H2O

15), while fMRI detects different levels of oxygenated and
deoxygenated hemoglobin.

4See for example Uttal (2001) for a discussion of issues
surrounding current methods in mapping cognitive functions
onto the brain.

5Many computer programs that implement various ANNs
are freely available, and little technical expertise is required
to use them.
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put this another way, the node labels in a Connec-
tionist machine are not part of the causal structure
of the machine (Fodor and Pylyshyn, 1988, 13).

Only the activation levels of the input nodes and the
connection strengths in the network matter for an ANN
to produce the appropriate output for the function it
is trained to approximate. Nevertheless, labels for
the nodes and terminology for other parts of the net-
works are introduced whenever models are constructed.
Schultz (2003), for example, maps terms from neural nets
onto terms from developmental psychology (here, Piage-
tian theory).

Accommodation, in turn, can be mapped to
connection-weight adjustment, as it occurs, in the
output phase of cascade-correlation learning. [. . . ]
More substantial qualitative changes, corresponding
to reflective abstraction, occur as new hidden units
are recruited into the network. [. . . ] Then the net-
work reverts back to an output phase in which it
tries to incorporate the newly achieved representa-
tions of the recruited unit into a better overall solu-
tion. This, of course, could correspond to Piaget’s
notion of reflection (Schultz, 2003, 128, original ital-
ics).

The terminology from Piagetian theory clearly belongs
to a higher level of description than the true descriptions
of the network’s structure and dynamics.
Churchland (1998) suggests that a recurrent network
could model more challenging cognitive functions. He
considers that a recurrent network may have appropri-
ate architecture for simulating the acquisition of moral
virtues in humans. He argues that a network would be
able to map concepts like cheating, tormenting, lying, or
self-sacrifice within a n-space of classes containing di-
mensions of morally significant, morally bad, or morally
praiseworthy actions, by learning through “repeated ex-
posure to, or practice of, various examples of perceptual
or motor categories at issue” (Churchland, 1998, 83).
Churchland says that

[t]his high-dimensional similarity space [...] displays
a structured family of categorical “hot spots” or
“prototype position”, to which actual sensory in-
puts are assimilated with varying degree of closeness
(Churchland, 1998, 83).

It is beyond the scope of this paper to discuss whether
a model of such a calculus of moral virtues is appropri-
ate, but Churchland certainly demonstrates that it can
at least in principle be modeled with an ANN. However,
feed forward networks and SRNs with suitable numbers
of inputs and outputs and a reasonable number of hidden
units6 can be trained to implement almost any function.
The point here is that a network can implement almost

6Note that the number of hidden nodes and the number
of connections within the network are largely determined by
experience and experiment. There are no definite methods
or algorithms for this.

anything we want to model, as long as we have the ap-
propriate training set for the particular selection of la-
bels for the inputs and outputs of the ANN. As a result
we will have to accept that even simple ANNs provide
a universal, but uninformative, framework for cognitive
models.
There is a further methodological issue to consider. It
may be surprising to learn that neural nets in some mod-
els are not necessarily composed of neurons. Elman et al.
(1998) offer as a “note of caution” that

. . . [m]ost modelers who study higher-level cognitive
processes tend to view the nodes in their models as
equivalent not to single neurons but to larger popu-
lations of cells. The nodes in these models are func-
tional units rather than anatomical units (Elman
et al., 1998, 91).

Can models still be considered as ‘bottom-up’ neural
nets, if they are composed of functional units? I sug-
gest that such models do not belong in the realm of
connectionism, because the replacement of model neu-
rons with “functional units” re-introduces exactly those
black boxes that we trying to eliminate in the ‘bottom-
up’ approach.
The kinds of models that I am describing here, i.e. sim-
ple feed forward ANNs and small SRNs, do not rely
on special neural ‘circuitry’, unlike structured models in
which the models’ architectures reflect a particular part
of brain physiology. The architectures are universal in
the sense that only the number of neurons and connec-
tions vary from model to model. The diversity of models
that have been described in the literature is the product
of applying ANNs as analytical tools to a diverse set of
problems where suitable data sets for training of the net-
works are available. The universal architecture and the
freedom to choose labels and terminology fitting the par-
ticular model explains the proliferation of ANN inspired
models. Traditional mathematical (symbol based) mod-
els may be more constrained as far as the selection of
representations is concerned7. How then are explanatory
links maintained between representations in distributed
models and real world phenomena?

Symbols and Representations

Classic CMS are representational systems using sym-
bols, which carry arbitrarily assigned semantic content.
Haugeland (1985, 1981) and others have argued that
these semantics remain meaningful during processing, as
long as the syntactical structure is appropriate and suit-
ably maintained. Haugeland notes that in an interpreted
formal system with true axioms and truth-preserving
rules, the semantics will take care of itself, if you take
care of the syntax (Haugeland, 1981). The symbol ‘5’,
for example, carries different semantics in a positional
number system. Whether ‘5’ means ‘500’ in ‘1526’, or
‘50’ in ‘1257’ is a function that is governed by the syn-
tactic and semantic rules of the number system. Tying

7Dretske (1981, 1988), among others, has dealt with ques-
tions of representations and their semantics in representa-
tional systems.
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semantics to symbols is much more problematic in con-
nectionist models, because it is part of the connectionist
doctrine that representations (symbols) are distributed
in the structures of neural nets. It is therefore more dif-
ficult to produce a trace of what happens semantically
in an ANN, because no syntactical structure exists.
ANNs are usually described as having distinct and dis-
crete inputs and outputs8, each labeled as having a dis-
tinct and discrete meaning. Such labels may be words,
like boy, girl, read, book, or, the labels may be concepts
such as phonemes, or visual inputs. Such labels have
their own set of problems associated with them. Attach-
ing the value ‘grandmother ’ to one of the input nodes
illustrates my concern. While nearly everyone rejects
the existence of a grandmother-neuron in the brain as
a rather näıve concept, boy-, girl-, or book- neurons are
willingly accepted in models.
Localized representations are no longer available once
the focus shifts on to hidden nodes within the network,
and the ‘representations’ are now described in terms of
weights, or synaptic strengths, between individual units.
However, for a meaningful interpretation of the network
and its dynamics, it is necessary to convey content and
meaning in terms of non-distributed (localized) symbols,
because is not sufficient for a discussion of what goes on
in ANNs to assign semantic content merely to inputs
and outputs. In order to track the flow of information
through the networks, some descriptions are needed, be-
cause explaining the processes in the ANN in terms of
connection-weights between neurons is tedious and un-
suitable for the kinds of models in question. Discussing
representations in terms of connection weights is tedious,
because the number of connections can be considerable,
even in small networks9. A distributed representation R,
i.e. the activation pattern for a particular input I1...k,
could be specified in the form of a matrix, or as a vector,
with as many elements as there are connections in the
network.

R(I1...k) = (.8234, .9872, .1290, . . . , .0012).

In any case, it it necessary to specify all of the numeric
values to capture every single activation pattern. Repre-
sentations and descriptions in this form are unsuitable,
because they reveal little in terms of the cognitive func-
tion that is modeled. Where do new and helpful descrip-
tions come from?

Interpreting models

The representations for words, concepts, phonemes, vi-
sual inputs, and so on, are usually coded in binary, or
as real values, in paired input and output vectors in the
training set for the ANN. During the training the rela-
tionships between the input and output vectors are en-
coded in the hidden layers of the ANN, or as Fodor and
Pylyshyn (1988) put it, ”the weights among connections

8Inputs and outputs of ANNs can also have continuous
values. The kinds of models I am discussing here have typi-
cally discrete values.

9A fully connected feed forward network with 20 input
nodes, 10 hidden nodes, and 5 output nodes has 250 connec-
tions.

are adjusted until the system’s behavior comes to model
the statistical properties of its inputs” (my italics).
Elman (1990), for example, presented 29 words in the
human language one at a time to a simple recurrent net-
work in the form of binary vectors I1 . . . In, such that
a single bit represented a particular word. The words
themselves were presented in sequences forming two and
three word sentences that had been generated accord-
ing to a set of 15 fixed templates. A cluster analysis
of the hidden nodes revealed that the trained network
exhibits similar activation patterns for inputs (words)
according to their relative position in the sequence (sen-
tence) and their probability of occurring in relation to
other words. The analysis of these activation patterns
allowed for the classification of inputs into categories like
nouns or verbs. Moreover, the categories of internal rep-
resentations could be broken down into smaller groups
like human, non-human, large animals, or edibles, and so
on.
Cluster analysis is used as a method to gain insights into
the internal representations of ANNs, but is not with-
out some conceptual problems. Clark (2001) argues that
cluster analysis is an analytic technique to provide an-
swers to the crucial question of what kinds of representa-
tions the network has acquired. However, cluster analy-
sis does not reveal anything that is not already contained
in the raw data of the model. The relationships and pat-
terns in the input datasets and training datasets become
embedded in the structure of the network during train-
ing10. What counts are the mathematical and statistical
relations that are contained in the training datasets. In
many cases the relations may just be tacitly accepted. In
other models these relations are purposefully introduced
from the outset. Under these conditions, the relations
are part of the model’s design. Elman (1990), for ex-
ample, states that “13 classes of nouns and verbs were
chosen” for generating the datasets. Whether the rela-
tions in the data are introduced by design, or whether
the experimenter is unaware of these statistical artifacts,
there should be no surprise that the analysis will reveal
these relations later during the experiment. The imple-
mentation of a model as an ANN and the subsequent ex-
traction of results that are already in the data may have
little value in terms of obtaining empirical evidence. The
training set of pairs of input and output vectors already
contains all there is to the model, and the ANN does
not add anything that could not be extracted from the
training sets through other mathematical or computa-
tional methods.
Green (2001) argues that

these results are just as analytic as are the results
of a mathematical derivation; indeed they are just
mathematical derivation. It is logically not possible
that [the results] could have turned out other than
they did (Green, 2001, 109).

10The patterns and relationships in these datasets can ei-
ther be carefully designed or might be an unwanted by-
product.
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A trained ANN implements a mapping from the input
nodes (I1−n) to the output nodes (O1−i). The power of
the ANN is in its ability to implement some function

O1−i = f(I1−n)

from the training data set. Hoffmann (1998) emphasizes
this point and says that

[t]he greatest interest in neural nets, from a prac-
tical point of view, can be found in engineering,
where high-dimensional continuous functions need
to be computed and approximated on the basis of a
number of data points (Hoffmann, 1998, 157).

The modeler does not need to specify the function
f , in fact, the modeler does not even need to know
anything about f . Knowledge extraction (KE) from
ANNs is concerned with providing a description of the
function f that is approximated by the trained ANN.
The extraction of the function “lies in the desire to have
explanatory capabilities besides the pure performance”
(Hoffmann, 1998, 155). The ability to determine f may
or may not add to the explanatory value of the model.
For moderately sized networks and relatively simple
functions it is quite feasible to describe the model in a
series of simple logic statements or with some high level
programming language. In this step by step description
of the network in terms of its input-output relations,
knowledge of the function that will be ultimately
implemented is not necessary. A particular relationship
could be expressed, albeit awkwardly, in the form

if I1 = 0 and I2 = 1 then On = 1
else if I1 = 1 and I2 = 0 then On = 1
else if I1 = 1 and I2 = 1 then On = 0
else if I1 = 0 and I2 = 0 then On = 0

The simple XOR-function is easily recognized in
this example. This approach may not be practical for
more complicated functions, however it would be possi-
ble in principle. ANNs can even offer a convenient way
of implementing complicated functions approximately,
if some data points of these functions are known. The
number of data points that are available for the training
of the network determine how close the approximation
of the functions can be, unless the function is known
to be linear. The ability to process even relatively
large data sets make ANNs valuable analytical tools to
reveal something about the data. Even employing KE
methods that may help to determine the function f
does not overcome the limitation that the ANN cannot
deliver anything new for the cognitive model. Regres-
sion analysis (curve fitting) performed on the training
dataset will provide a more exact description of f than
to teach an ANN and to perform KE subsequently.
There is a further complication as the data revealed in
the cluster analysis is not accessible within the model.
In other words, the results of the analysis are not fur-
nished by the ANN. Rather, they are interpretations of
the internal structures at a different level of description.
The actual role of the network is that of a predictor,
where the trained network attempts to guess the next

output following the current input11. The analysis of
the experiment is framed in the language of the higher
cognitive function that is the subject of the model.
For the interpretation and the analysis of the results,
the output nodes are neglected and new ‘output’ for
the model is generated by methods that belong to a
higher level of description than the ANN. New ‘insights’
are synthesized from distributed representations by
means and methods external to the ANN. Figure 3
illustrates the disconnectedness of the ANN and the
newly gained ‘insights’ emerging from the network’s
internal representations. The experimenter performs
the task of extracting information about the activation
pattern using a new tool, cluster analysis for example,
however the network has no part in this - ANNs do not
perform cluster analysis. The work is clearly performed
by the modeler’s neurons with the aid of a statistical
procedure and not by the model’s neural structure.

Input nodes

? ?

Figure 3. Actual model architecture

If the ANN is meant to be a model of what might happen
at the neural level, then the question arises, what mech-
anism could be responsible for the equivalent (cluster)
analysis of activation patterns in the brain? In order to
make this information accessible to the rest of the brain,
we will have to introduce some other neural circuit to do
such an analysis of the hidden nodes. Such a new addi-
tion to the network could possibly categorize words into
verbs and nouns, but then we need another circuit to
categorize words into humans, non-humans, inanimates,
or edibles, and another to categorize words into mono-
syllabic and multi-syllabic. In fact, we will need an very
large number of neural circuits just for the analysis of
word categories, provided the training dataset contains
the appropriate relations to allow for such categoriza-
tions.
The class of simple ANNs that I have discussed here can-
not provide any new ‘insights’ in any meaningful sym-
bolic12 or coded form on some output nodes. This, how-
ever, would have to be a crucial function of the model

11The desired output, which follows the input in the train-
ing set, is used as the target to determine the error for back
propagation during the training phase.

12I do not think that ‘distributed’ or ‘sub-symbolic’ rep-
resentations are helpful here. Moreover, this alternative ap-
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to be considered neurologically plausible. For a model
to be neurologically plausible, it would need to deduce
new information about itself. More importantly, it would
be necessary to signal the newly obtained knowledge to
other neurons by changing the state of some nodes. Both
cluster analysis and current methods of KE clearly fail
to do this, although more recent developments in KE
can deliver much more accurate description of f . How-
ever the renewed and possibly accurate synthesis of re-
lations that were present in a training dataset does not
warrant claims that the ANN ‘discovered’, ‘learned’, or
‘recognized’ something or other, even if these relations
were not evident to the experimenter before. The abil-
ity to determine a function f that is contained in some
dataset illustrates the power of ANNs as analytical tools.
However, it should be clear that a different analytical
tool could also have been used to detect the function
f . We must conclude then that the model has failed to
explain any processes at the neural level. Instead, the
network model has only succeeded in offering an alterna-
tive method to encode the data, and the cluster analysis
provides an alternative method to analyze the data.

Conclusions

Computational models and simulations, and models us-
ing ANNs in particular, are commonly used in support of
theories about aspects of human cognition. Some mod-
els deal with high level psychological functions where
the operations at the neural level are of little interest,
and some models are concerned with the implementa-
tion of cognitive functions at neural level. I have ar-
gued that neurological possibility can be demonstrated
for nearly any conceivable psychological theory due to
the universality of simple ANNs. However using the lan-
guage and symbolism of neural nets does not support
any claims for neurological plausibility. The mistake,
I believe, is to bring the top-down psychological model
and the bottom-up neural environment together and to
treat the result as a coherent and meaningful demonstra-
tion. ANNs can be used successfully as models, provided
a clear description of the aims, assumptions and claims
are presented. However, when simple ANNs with small
numbers of nodes are employed to model complex high
level cognitive functions, the experimenter should eval-
uate whether the simplicity of the network can provide
a plausible implementation, because it is all too easy to
provide a neurologically possible model.
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