
A Deployable Identifier-Locator Split Architecture
Spencer Sevilla, J.J. Garcia-Luna-Aceves

{spencer, jj}@soe.ucsc.edu
UC Santa Cruz, Santa Cruz, CA

Abstract—Despite the vast set of prior work on identifier-
locator split architectures, no one approach has seen much
success, adoption, or deployment in the Internet at large. We
identify the key set of challenges that have inhibited the de-
ployment of these proposals to date, and introduce the Dynamic
Internet Mobility for End-Systems (DIME) approach. DIME is
based on dynamic address translation between the transport and
network layers of end hosts, combined with a simple out-of-band
protocol that updates host-address bindings as needed. DIME is
the first and only proposal that achieves a clean identifier-locator
split without requiring modifications to the end-host OS or
applications; modifications to existing network protocols, security
mechanisms, or hardware; or a new host-identifier namespace.
We evaluate a Linux daemon implementation of DIME, and show
that it i outperforms existing mobility proposals such as mobile
IP (MIPv6), multipath TCP (MPTCP), and the Host Identity
Protocol (HIP) across a wide range of performance metrics.

I. INTRODUCTION

Despite the rapid growth and proliferation of mobile de-
vices, the Internet today still does not support seamless host
mobility: connections must be restarted when a host changes
network attachment points, and cannot take advantage of
multiple network paths simultaneously. This inability stems
primarily from the observation that higher-layer protocols
(i.e., TCP and UDP) use IP addresses to consistently identify
communicating processes in hosts, whereas the network layer
uses IP addresses to locate host endpoints in the network. For
communication between two communicating hosts to persist
across address changes, these two functions must be separated.
This separation is known as the identifier-locator split.

The challenge of splitting identifiers from locators has
attracted a large amount of prior work. However, despite the
well understood architectural benefits, no one approach to
the identifier-locator split has seen widespread adoption or
deployment in the Internet at large. Section II summarizes the
prior work in this area with an eye to this deployment gap,
and identifies the primary requirements that such a solution
must exhibit.

Sections III to V introduce the Dynamic Internet Mobility
for End-Systems (DIME) approach based on the requirements
identified in Section II. DIME is based on the key insight that
the addresses used by the transport and application layers need
not be the same as the addresses used in the data plane, and is
the first approach to Internet host mobility that is completely
seamless with respect to applications, the Internet routing
infrastructure, and the control and data planes of existing
protocols used in the Internet. As such, DIME is the only
solution that can be deployed in an incremental manner on

top of an unmodified operating system without requiring any
changes to intermediate network devices, applications, or the
system kernel.

DIME consists of two key architectural components. First,
StackTrans is a modified form of network address translation
(NAT) between the transport and network layers of the stack,
such that the transport layers and above see unmodified net-
work addresses (i.e., identifiers), yet datagrams are addressed
to the current network address of a host (i.e., locators). Second,
the Internet Host Mobility Protocol (IHMP) is an out-of-band,
end-to-end signaling protocol that updates the address bindings
used by StackTrans as hosts gain and lose network addresses.

Section VI describes a concrete Linux implementation of
DIME and presents detailed comparisons with Mobile IP [1],
Multipath TCP [2], and the Host Identity Protocol [3]. Our
results show that (1) DIME is much more lightweight and
deployable, (2) DIME runs on a wider range of hardware and
software, and (3) DIME is significantly more scalable across
a wide range of metrics.

II. RELATED WORK AND DESIGN REQUIREMENTS

All prior approaches to Internet host mobility can be cat-
egorized based on how the identifier-locator split is handled
in the data plane. We group prior work into approaches that
transmit host identifiers, approaches that transmit host locators,
and approaches that transmit both identifiers and locators.

A. Host-Identifier Approaches
The first proposals for Internet host mobility preserved the

identifier bindings made by higher layers, and approached host
mobility entirely within the network itself - either by updating
a node’s location in routing tables as it moves (e.g., Mobile IP
[1]) or by performing a modified form of NAT in the network
core (e.g., LISP [4]).

The key benefit of these host-identifier approaches is that
by restricting all modifications to the network layer, they are
able to seamlessly maintain the bindings, connections, and
APIs of higher-layer protocols (i.e., TCP and application-
layer protocols) at end hosts without modification. However,
these approaches also create significant problems, including
(1) untenable control signaling and routing-table growth via
indirection; and (2) increased network bandwidth consumption
and latency via triangle-routing.

Most importantly, these approaches also require replacing
existing network infrastructure (i.e., routers) because they alter
network-layer protocols in both the control and data planes.
Such an overhaul is not feasible, and leads us to the following
first requirement.ISBN 978-3-901882-94-4 c© 2017 IFIP



R1: Unmodified Routing Infrastructure: A deployable
identifier-locator split must run over all existing routers and
switches without requiring their modification or replacement.

B. Host-Locator Approaches

In response to the inherent problems with host-identifier
proposals, recent host-locator proposals [5], [2], [6], [7], [8]
split identifiers from locators above the network layer at
end hosts. These approaches propose addressing datagrams
to the current network location of a host (i.e., the locator),
and updating the IP address bindings made by higher layers
(typically at the transport layer) of end hosts by way of
additional signaling or protocol options exercised when a host
experiences mobility.

Host-locator approaches have seen slightly more success
than host-identifier approaches (e.g., MPTCP is actively being
developed on both Apple and Linux) primarily because they
do not require changes to the routing infrastructure, and hence
can be deployed entirely at end hosts in software, as opposed
to hardware. However, these approaches are almost all TCP-
specific and are not backwards compatible with unmodified
applications, operating systems (OS), or NAT boxes. Addition-
ally, these approaches require applications to be rewritten and
significant modifications to kernel code in the network stack,
which in turn requires an untenable amount of independent
development effort and support before any benefits can be
realized.

This non-trivial amount of developer overhead, combined
with the lack of a compelling “killer app,” results in a chicken-
and-egg situation that discourages the development of such
proposals and prohibits an incremental “opt-in” deployment
path. The failure of these host-locator approaches leads us to
our second requirement.

R2: Unmodified OS and Applications. Our solution must
be incrementally deployable and must not require buy-in from
or modifications to applications or the host operating system.

C. Combined Approaches

Many recent approaches to Internet host mobility transmit
identifiers and locators in the data plane, with the intent that
higher layers only use identifiers and the network layer only
uses locators. This is achieved by defining a new host-identity
layer and including this identity layer in one of three ways:
(a) as a part of the IPv6 address space (e.g., ILNP [9]), (b)
between the network and transport layers (e.g., HIP [3] and
many Future Internet proposals [10], [11], [12], [13]) or (c) in
the application layer (e.g., SIP [14] or others [15], [16]).

Critically, all of these proposals require the convergence on,
and standardization of, a new host-identifier namespace to be
inserted into the network stack.1 This represents a massive
adoption hurdle, and would essentially require the redesign
and replacement of network applications, operating systems,
and middleboxes. Second, if adopted, any of these proposals

1While many works propose leveraging the DNS as an existing namespace;
[17] makes a strong argument for why the DNS is fundamentally unable to
support host address mobility.

would “lock in” a new set of endpoint identifiers as part of
the new Internet architecture, which raises significant concerns
about the tenability or evolvability of said approaches.

The improbable adoption of a new host-identifier name
space, combined with the associated concerns regarding iden-
tifier lock-in, leads us to our third requirement.

R3: No New Namespace. For an identifier-locator split
to evolve organically and incrementally, it must not depend
on the development and standardization of a new identifier
namespace.

III. STACKTRANS AND THE DATA PLANE

While many of the proposals in Section II satisfy one
or two of the stated requirements for seamless support of
Internet host mobility, no proposal to date satisfies all three.
To resolve this challenge, we argue that what is needed is
a “drop-in” solution that can be incrementally deployed by
individual users or network operators as necessary. It follows
that a satisfactory solution must: (a) be fully contained at
end hosts, because we cannot rely on changes to network
infrastructure; (b) seamlessly support unmodified applications
and be deployable on top of a stock OS; and (c) be solely based
on existing identifiers (i.e., IPv4 or IPv6 addresses). DIME is
designed specifically to satisfy these three characteristics.

Figure 1 illustrates the main architecture of DIME, which
is comprised of two separate components that work together:
a data-plane readdressing technique called StackTrans, and a
lightweight out-of-band signaling protocol called the Internet
Host Mobility Protocol (IHMP). This section discusses Stack-
Trans, and Section IV discusses IHMP.

The goal of StackTrans is to dynamically readdress data-
grams as they pass between the transport and network layers
of the stack. This way the application and transport layers use
an unchanging IP address for a host (i.e., an identifier) and the
network layer uses the current network address for a host (i.e.,
a locator). StackTrans achieves this split through a two-step
address translation process, illustrated in Figure 2, that first
maps the IP address bound by a socket to an entity called a
Host Identifier (HID), and then maps the HID to its current
network address.

Fig. 1. DIME System Architecture

Fig. 2. StackTrans Packet Readdressing



Fig. 3. Socket and Host Identifier Tables

A. The Socket Table

StackTrans manages the first translation via a Socket Table,
illustrated in Figure 3.a, which maps locally-bound foreign
addresses to HIDs. When a socket sends data to or receives
data from a foreign address faddr the address is looked up
in the HID Table and mapped to an existing HID. If no such
HID exists, a new one is created. Once the HID is obtained
or generated, a {socket, faddr, hid} tuple is stored in the
socket table, and used to ensure that all communication from
the socket to faddr is mapped to the correct HID, and all
communication from the HID to the socket is mapped back to
faddr.

Socket Table mappings must be kept separately for each
socket because it is possible for multiple sockets to use
different network addresses to refer to the same HID. For
example, socket s opens a connection to address a1, the
foreign host moves from a1 to a2, and then socket t opens a
connection to address a2.

Multiplexing {socket, faddr} tuples to a HID, rather than
directly to an address, achieves two key benefits. First, it
enables multiple addresses for a host to be stored and managed
in a unified, centralized, protocol-independent way. Second,
given that multiple {socket, faddr} tuples can bind the same
HID, any updates to the address-set of a HID immediately
affect all connections to that host without additional signaling.

B. The Host Identifier Table

A Host Identifier is an internally-kept value that semanti-
cally refers to a foreign host. While the architectural concept of
a host identifier is not new, all prior works have implemented
such identifiers as a new global namespace and layer in
the network stack. As discussed above, this violates R3 and
represents a significant deployment roadblock. In contrast to
these implementations, the Host Identifiers used by DIME are
simply internal indices into the HID Table: HIDs have no
external value, are not operated on or seen by higher layers,
and are never propagated over the network.

Figure 3.b illustrates that each entry in the HID Table stores
three separate sets of addresses: active addresses, unreachable
addresses, and local addresses. Active addresses are addresses
currently owned by a foreign host that are reachable by the
local host. Unreachable addresses are addresses owned by
the foreign host that the local host is currently unable to
contact, but may become reachable later on. Local addresses
are those addresses owned by the local host that are reachable
by the foreign host; this set is identical to the set of active

addresses in the foreign host’s HID table. Finally, the HID of
a host is also optionally bound to a host key for the host. The
reason for storing active addresses is obvious (i.e., data-plane
communication), and the other address sets are used mainly
for the IHMP signaling protocol described in Section IV.

C. Data-Plane Security

Given that StackTrans modifies datagrams between the
transport and network layers at end hosts, it is completely
orthogonal to all existing approaches to data-plane security.
Such lower-layer security protocols as IPSec encrypt the IP
datagram below the translation, and are therefore oblivious to
the presence of StackTrans. On the other hand, such higher-
layer security protocols as TLS encrypt the datagram above the
translation, using the initially-bound identifiers that are then
recreated at the other end of the connection before any security
checks are made. This contrasts with the mobility protocols in
Section II, which typically include end-to-end security as an
integral component of the protocol itself.

While data-plane security is important, we argue that it is
equally important to separate it from network mobility. The
StackTrans approach enables both types of security protocols
to evolve independently of StackTrans, and also allows mobil-
ity to be deployed without requiring specific security solutions.
This split is important for many different network scenarios,
including (1) resource-constrained devices that cannot support
robust cryptographic operations and (2) physically isolated or
secured networks where data-plane security is unnecessary.
Finally, this orthogonal approach enables the control plane to
be secured separately from the data plane; we discuss this
design further in Section IV-F.

IV. THE INTERNET HOST MOBILITY PROTOCOL

StackTrans enables connections to be dynamically redi-
rected at end hosts without requiring modifications to the
network stack or data plane. In turn, this allows host mobility
signaling to be taken out of the data plane and enacted as
a simple end-to-end signaling protocol, which we call IHMP.
Just like a routing protocol runs out of band with respect to the
forwarding of datagrams, IHMP runs out of band with respect
to the end-to-end protocols in the data plane.

The IHMP daemon listens for network-address events at
the local host (e.g., a network interface going up or down)
and communicates these changes to foreign hosts via IHMP
messages encapsulated in UDP. The choice of running IHMP
on top of UDP was threefold. It keeps IHMP transactions
lightweight, allows IHMP to interpret dropped messages as a
sign that a path may not be sufficiently reliable, and in contrast
to ICMP enables NAT detection and traversal.

When a host receives an IHMP message from a foreign host,
it updates its HID table to reflect the changes stated in the
message, at which point StackTrans immediately incorporates
them into the data path.

Table I lists the different IHMP message types, and Fig-
ure 4 illustrates the IHMP message format. The control field
corresponds to the message type in Table I, and the sequence



Control Code Message Type
0 HELLO
1 PATH PROBE
2 ADDR UP
3 ADDR UP UNREACHABLE
4 ADDR DOWN
5 ADDR DOWN UNREACHABLE
6 HANDOFF
7 HANDOFF UNREACHABLE
8 ACK
9 ROUTER ACK

TABLE I
IHMP MESSAGES

Fig. 4. IHMP Message Format

number is a randomly-seeded 16-bit value incremented with
each message and echoed by every responding ACK. The
sender may elect to append a digital signature to the message,
but must identify itself to the receiver via a local IP address
in the Host ID field.

A. End-To-End Host Identification

The Host ID field in IHMP is a major departure from all
other proposals that use end-to-end updates. Whereas all prior
proposals rely on a separate host identifier namespace (e.g., a
DNS hostname or a host-identity tag) to consistently identify
a host across network address changes, IHMP is specifically
designed not to assume the existence of any such namespace.

Not requiring a specific namespace for hosts makes IHMP
much more lightweight and deployable across a wider range
of networks. However, this also means that the only way for a
receiving host to identify a sender is by the IP address stored
in the Host ID field. The sender populates this field with an IP
address chosen from the set of Local Addresses bound to the
HID of the receiver. This process ensures that the IP address
will multiplex to the correct HID at the receiver, and is the
reason for storing the local addresses reachable by a foreign
host. It is critical to point out that this solution does not require
globally-unique IP addresses! Rather, it only requires that an
IP address uniquely refer to the sender from the perspective
of the receiver - fortunately, this is a valid assumption that
underpins all network-layer protocols and routing.

B. Hello Exchange

When an active host creates a new HID table entry, it must:
(a) query the foreign host for the presence of other network
addresses, and (b) advertise its set of local addresses to the
foreign host. The active host accomplishes this via a simple
two-way HELLO message exchange, which is illustrated in
Steps 1 and 2 of Figure 5. The first HELLO message contains
all the network addresses the active host wishes to advertise

to the foreign host, including the source network address used
to transmit the HELLO message.

When a foreign host receives a HELLO message, it creates
an entry in its HID table for the active host that sent the
message, adds the source address of the message to the set
of active addresses of the HID, the destination address of the
message to the set of local addresses, and every other address
in the HELLO message to the set of unreachable addresses.
Next, it sends an ACK back to the active host at the same
address used to send the HELLO. The ACK also contains all
other addresses the foreign host wishes to advertise to the
active host. Upon receipt of the ACK, the active host adds the
destination address to the set of local addresses, and all other
advertised addresses to the set of unreachable addresses.

In addition to probing for other network addresses, the
HELLO exchange also tests for IHMP support. If no ACK is
received after a timeout, the active host retransmits the HELLO
message two more times before concluding that the foreign
host does not support IHMP, at which case the data-plane
communication falls back to the standard (non-translated) path.

C. Back-path Probing

From the perspective of a foreign host, the other addresses
included in a HELLO message are either: (a) guaranteed reach-
able (e.g., a publicly reachable IP address), (b) guaranteed
unreachable (e.g., in a network that the host cannot reach), or
(c) potentially reachable (e.g., a private network that the host
also has an address in). The foreign host sorts the addresses
in cases (a) and (b) into active and unreachable addresses,
respectively, and manages the addresses in case (c) by sending
a PATH_PROBE message as illustrated in Step 3 of Figure 5.

In our example, the active host initially reaches the for-
eign host over the public Internet, and indicates in its
HELLO message that it also has addresses in networks
192.168.0.0/16 and 10.0.0.0/8. Subsequently, the foreign host
sends PATH_PROBE messages over the 192.168.0.0/16 and
10.0.0.0/8 networks to which it is connected. When the active
host receives a PATH_PROBE message, it updates the set of
active and local addresses for the HID to reflect reachability,
and replies along the same path with an ACK (Step 4 of
Figure 5). The foreign host does the same upon receipt of
the ACK.

D. Address-Up and Address-Down Events

When a host gains a network address, it sends an ADDR_UP
message from this address to the foreign host; this message
explicitly encodes the new address in the IHMP message.2

When the foreign host receives and ADDR_UP message, it
adapts its HID table and responds with an ACK.

If the active host does not receive an ACK in an acceptable
amount of time, it determines that the foreign host is not
reachable from the new network address. In this case, the
active host sends an ADDR_UP_UNREACHABLE message with
the new address to the foreign host on any available network

2This explicit address encoding allows us to detect and mitigate NATs; we
discuss this process further in Section V-D.



Fig. 5. HELLO message exchange Fig. 6. Address-up signaling Fig. 7. Address-down signaling

address. The intent of this address is to ensure that the HID
table of the foreign host is accurately updated; hence, the
foreign host must respond to such a message with an ACK.

When a host loses a network address, it checks the local
address set for each HID to determine if it is still reachable,
and sends an ADDR_DOWN or ADDR_DOWN_UNREACHABLE
message as appropriate. In both cases, the foreign host must
respond with an ACK. If a lost address effectively disconnects
the active host from the foreign host, it can wait for an amount
of time before removing the HID entry and reporting an error
to network applications.

E. Handoffs
Handoff events effectively combine ADDR_UP and

ADDR_DOWN events into one. The network addresses gained
and lost do not have to be bound to the same network
interface, because there is no difference from the perspective
of the network layer and above. As with address-up events,
the active host sends a HANDOFF message from the new
network address to probe reachability, and encodes both the
new and old network addresses in the payload. In the cases
where the foreign host is not reachable by the new network
address, a HANDOFF_UNREACHABLE message is sent in its
place. For clarity and consistency, handoff messages use an
OU (OLDADDR_UNREACHABLE) flag in the options filed to
indicate whether the old address was reachable by the passive
host or not.

F. Control-Plane Security
Spoofed IHMP messages have the potential to disrupt

and redirect communication. To address this, IHMP uses
optional digital signatures to ensure message integrity without
confidentiality. This decision reduces computational overhead
and allows intermediate nodes (i.e., middleboxes) to read the
content of IHMP messages, and generate control messages
signed with their own key without violating the security model.
We discuss these optimizations in Section V-C.

The IHMP daemon signs outgoing messages with its private
key, and can validate inbound messages by binding the correct
public key to a HID. There exist several different methods for
obtaining the public key for a host, just as there exist several
different security policies regarding which keys and messages
a host will accept. However, such topics are outside the scope
of this paper, except to mention that IHMP is compatible with
all public-key solutions, and IHMP explicitly does not depend
on such a solution and is deployable even in network scenarios
that do not require or support security protocols.

V. ADDITIONAL CONSIDERATIONS AND EDGE-CASES

A. Simultaneous Mobility

The lack of rendezvous nodes or integration with a name-
resolution service in DIME poses a problem for simultaneous
mobility cases in which both nodes change network addresses
before the end-to-end signaling of IHMP can converge. We
note that this case is remarkably uncommon in the client-server
communication paradigm that underpins the vast majority of
network communication, but still merits attention. Depending
on the severity of the alteration to the address set, we describe
communication between the hosts as either partially disrupted
or fully disrupted, depending on whether at least one of the
hosts has kept at least one of its network addresses.

DIME automatically recovers from partial disruption and
converges without difficulty. Upon not receiving an ACK, the
fully-mobile host simply re-sends the same mobility message
to the other addresses of the host, until it receives an ACK
from the address that was maintained. The partially-mobile
host then transmits its other network addresses in a subsequent
exchange. DIME is unable to recover from fully disrupted
simultaneous mobility, wherein neither host maintains any
addresses, because both address sets are completely incorrect;
in this case, the client must discover the new IP address of
the server through some other service.

B. Mistaken Identities

Given that DIME does not rely on a unique or separate host
namespace, it is vulnerable to the following mistaken identity
scenario: (1) Host A is using address a1 to communicate with
host X; (2) A moves from a1 to a2 but is unable to tell X;
(3) host B obtains the address a1 of A, and (4) B sends a
message from a1 to host X .

DIME guards against mistaken-identity scenarios by ver-
ifying that the sequence number is correct before pro-
cessing the update, and by sending an ACK with the IS
(INCORRECT_SEQNO) bit set if this is not the case. This
supports end-to-end recovery of dropped packets, but also
allows the non-mobile host (X in the prior example) to create
a new HID entry in the event that a host ungracefully departed.
Note that this approach guards only against accidental scenar-
ios and is clearly vulnerable to replay attacks. Hence, if the
network environment is considered insecure or hostile, digital
signatures should be used.



Fig. 8. Micro-Mobility Signaling

C. Micro-Mobility

While DIME is an end host solution, it is not necessarily
end-to-end. DIME-aware network entities such as middleboxes
and routers are able to intercept IHMP messages that add
a new address (either an ADDR_UP or HANDOFF message)
and respond with a ROUTER_ACK message. Depending on
topology or policy, the middlebox can either enact micro-
mobility by updating or installing a new routing-table entry,
as in Figure 8, or indicate that the update is to be rejected.

Designating a separate ROUTER_ACK message type ac-
knowledges middleboxes and routers as first-class citizens of
the Internet, and provides them with an architectural location
to integrate with DIME. This enables DIME to support micro-
mobility without any end-to-end signaling, and supports proper
security policy by allowing the ROUTER_ACK message to be
signed with a separate key. Finally, by explicitly informing the
mobile host that its update was processed by an intermediate
router and not the end-host, the mobile host knows that the
HID table of the foreign host still contains the old address.
This is illustrated at the bottom of Figure 8, where the host
loses newip but sends an ADDR_DOWN message containing
oldip.

D. NAT Detection and Traversal

While ROUTER_ACK messages support mobility within
subnetworks and behind NATs, they are insufficient to support
mobility into or out of NATs, specifically because NATs
enact a many-to-one address mapping through transport-layer
port renumbering. Given that NATs are so widespread in
the Internet today and expected to be “here to stay” for the
foreseeable future [18], DIME provides a mechanism for NAT
detection and traversal in all cases, even those in which the
NAT is DIME-unaware.

DIME detects NATs by explicitly encoding the source
address in the DIME message body itself, and stores NAT
addresses in the HID table as a nat_addr:host_addr
tuple; this enables correct end-to-end signaling as hosts move
in and out of NATs. NATs that support DIME indicate this by
setting a NS (NAT_SUPPORTED) flag in all IHMP messages
that traverse the NAT; these NATs send a NAT_ENTRY mes-
sage to the public host as they create new port-mappings for
each connection, as illustrated in Figure 9. This mapping is
stored at the end-host and used to map the NATed port back
to the original source port for delivery.

DIME handles legacy NATs that do not support DIME
by setting a ND (NAT_DETECTED) flag in the ACK. Since

Fig. 9. Mobility signaling with NAT

DIME cannot migrate connections into DIME-unaware NATs,
it stores them as unreachable addresses, unless a connection
must be initiated behind a NAT. This case is indicated via a NF
(NAT_FORCED) flag in the initial HELLO exchange, at which
point the HID is marked as such, and no further signaling
occurs (i.e., communication falls-back to normal operation
without StackTrans).3

VI. IMPLEMENTATION AND EVALUATION

We implemented DIME as a user-space daemon and Load-
able Kernel Module (LKM), which satisfies R2 because our
LKM is fully installable on a stock OS. We deployed our code
on two laptops running Ubuntu, the Mobile Host (MH) and
the Corresponding Host (CH), and connected them with a
switch (s1) and two routers (r1 and r2) to create the topology
shown in Figure 10. In the topology, each node has a globally-
reachable address, each router advertises a different subnet,
and we used the netem utility to introduce 60ms of latency
on all traffic that flows across the switch [19], [20].

To evaluate and compare performance, we conducted a
standard mobility experiment in which MH moves from r1
to r2 while conducting a throughput test at CH . To provide
more consistent results and remove variance, we induced
address-up and address-down events programmatically via the
ip command, with a five-second gap between each event.
We conducted each experiment ten times and provide mean
values. We compared DIME against three protocols, Mobile
IP (MIPv6), Multipath TCP (MPTCP), and the Host Identity
Protocol (HIP), which we specifically chose as “flagship”
examples to represent each of the three categories listed in
Section II. We recognize that MPTCP does not specifically
seek to separate identifiers from locators for the sake of
mobility; however, it provides an architecturally similar design
and has a well-developed and accessible codebase.

A. Deployment and Configuration

Our initial and most striking finding was that the different
protocols varied wildly in terms of how much effort it took to
configure even the basic testbed in Figure 10. Table II provides
a rough summary of these protocols, and shows that MIPv6
stands out by far as the most fragile and ossified approach. The

3We acknowledge that there may exist other techniques to mitigate the
identifier-locator split across NATs. For brevity and focus, we omit further
discussion of this topic, and leave it as a topic for future work.



Fig. 10. Testbed topology

Requirement MIPv6 MPTCP HIP DIME
Daemons 4 0 1 1
Config. Files 3 1 2 1
App Mods. X
System Configs X X
Custom Kernel X X
Router Mods. X

TABLE II
DEPLOYMENT REQUIREMENTS

reliance of MIPv6 on deep kernel integration requires a custom
kernel and a user-space daemon at the end hosts. However,
the codebases have been abandoned for several years, do not
support 64-bit architectures, and are no longer compatible with
any current Linux distribution. Additionally, MIPv6 was the
only protocol to require a purely IPv6 testbed as well as
multiple daemons (mip6d, radvd, and hostapd) running
on routers r1 and r2, as well as the end hosts.

Installing and configuring MPTCP and HIP were both
much easier, requiring a custom kernel or user-space daemon,
respectively, at the end hosts. However, in practice, we still
found concerning implementation issues. MPTCP required us
to download, compile, and install a custom Linux kernel,
which is not an easy task for the average user, and it’s
reliance on link selection by source address binding forces an
unorthodox configuration wherein separate routing tables are
maintained for each interface. While this did not impact our
simple testbed, it raises the question of the ability of MPTCP
to support more unorthodox, dynamic, or virtualized network
configurations. HIP configuration relies heavily on manually
encoding static, preconfigured bindings at both end hosts,4 and
the use of the 1.0.0.0/8 block for LSI bindings in HIP raises
questions about support for users that do not want to memorize
IP addresses or applications that insert the address into the
protocol itself (e.g., FTP).

Finally, we found that DIME “simply works.” DIME ex-
ists as a single, standalone user-space daemon, requiring no
configurations or modifications to application binaries or the
underlying OS. The leverage of existing IP address bindings
in DIME enables it to work without the need for specific
namespace bindings or “pseudo” IP addresses, and its use of
translation instead of encapsulation makes it the only approach
that dynamically supports preexisting connections that were
established before the DIME daemon was operational.

B. Handoff Latency

We measured the latency needed to complete a handoff
using two metrics: (a) the time it takes the protocol to identify

4HIP architects have advocated using the DNS to dynamically resolve HIT
bindings; the lack of such support highlights the importance of R3.

Fig. 11. Handoff Signaling Latency

and respond to the network event (i.e., the time elapsed from
the network event to the first transmitted control message),
which we call Control Latency; and (b) the time it takes
the protocol to successfully handoff the connection (i.e., the
duration from the first control message to the first correctly
addressed datagram), which we call Dataplane Latency.

The results in Figure 11 show that in all types of latency,
DIME dramatically outperforms all other approaches. In terms
of control latency, we found that both MPTCP and HIP wait
approximately one second to start the mobility handshake
process. We attribute this delay to the reliance on message
retransmission timeouts and the need to be conservative with
mobility signaling. In contrast, DIME is implemented as a
user-space daemon, has direct integration with network-layer
events, and supports graceful failure. This allows DIME to be
much more aggressive with its network signaling and probing.

Dataplane latency is calculated from the moment the first
message is sent over the network (i.e., the end of control
latency) to the first correctly-addressed datagram; hence, it
is not influenced by control latency. We found that our results
for dataplane latency in Figure 11 very closely tracked the
expected RTTs needed for the mobility signaling protocol to
complete, and highlight the simpler handshake of DIME, as
well as the lack of cryptographic operations needed to migrate
the connection.

The asterisk in Figure 11 indicates that the control latency
of MIPv6 varied dramatically, because the mobility exchange
is triggered by the router (via RA messages) and not the
host. In the interest of providing a competitive comparison,
we provided results collected on the minimum possible RA
interval of one second, but stress that these conditions are
overly optimistic, too chatty, and unlikely to be used in any
actual deployment of MIPv6.

C. Connection-Establishment Latency

We examined the additional latency (if any) required to
establish a mobile connection versus a traditional one. In-
terestingly, we found that in all cases except HIP, the ad-
ditional latency was minimal (<4ms), whereas HIP incurred
dramatic connection establishment latency (400+ms for UDP
and 800+ms for TCP). We attribute this to the fact that HIP
uses a four-way-handshake to establish a HIP communication
session independently of the three-way-handshake of TCP,



Fig. 12. TCP Handoff Goodput

Protocol Messages Sent
IHMP 2 * max(nAddrslocal, nAddrshost)
MPTCP 4 * nAddrslocal * nAddrshost * nConns
HIP 4 * nAddrslocal * nAddrshost
MIPv6 [2 (to HA) + 6 (to CH)] * nAddrslocal

TABLE III
HANDOFF CONTROL MESSAGES

whereas other approaches either conduct mobility signaling
outside of the data plane (MIP and DIME) or integrate it with
the existing TCP handshake procedure (MPTCP).

D. Data Plane Throughput

Figure 12 provides the TCP goodput seen over a fifteen
second throughput test, over both a soft handoff (the new
address-up event happens five seconds before the address-
down event) and hard handoff (the reverse order of operations).
We examine goodput instead of throughput to provide a single
unifying metric that accurately reflects the performance seen
by network applications, and present TCP results in the interest
of comparing against MPTCP. We note that UDP goodput
results collected for DIME, MIPv6, and HIP were all similar
to the TCP results shown.

Figure 12 shows that each protocol provides almost identical
results over a soft handoff. This is because each protocol has
enough time to compete the handover signaling and maintain a
constant data-rate (bound by the physical links) when the first
address is lost, despite the different architectures or handoff
signaling used.

It is intuitive that the maximum possible goodput for the
hard handoff scenario will be approximately 2/3 of the soft
handoff, given that the disconnection lasts five seconds and
the total transfer lasts fifteen. Figure 12 shows that DIME
achieves this value almost exactly, and noticeably outperforms
all other proposals. We attribute this result to a combination
of the faster control message exchange and transparency with
respect to TCP attained in DIME. In contrast, we found that the
performance of MPTCP suffered from the additional latency
studied in Section VI-B, as well as the slow-start algorithm.
MIPv6 mitigates this slow-start by migrating the existing TCP
connection without triggering congestion-control backoff, yet
it suffers from a noticeably longer handoff procedure. Finally,
we found that the large decrease in goodput with HIP appeared
to be the result of “buffer bloat” at the HIP daemon during the
disconnection, which in turn created erratic and unfavorable
interactions with the congestion control algorithms of TCP for
the remainder of the connection.

Fig. 13. Handoff Control Message Scalability

E. Control Message Scalability

We analyzed the number of control messages sent in re-
sponse to a network handoff (soft or hard) and the factors that
affect this number. Table III presents a formula for each proto-
col. The results show that IHMP outperforms its competitors,
but also reveals three key aspects of how IHMP compares
to the other approaches. First, the simplicity of the IHMP
exchange results in a two-message handshake, as opposed
to the four-message exchange used by HIP and MPTCP or
the eight-message exchange of MIPv6 with RO. Second, the
nAddrshost factor illustrates that both MPTCP and HIP do
address-pairwise exchanges, wherein if hosts A and B both
have two addresses, four exchanges are attempted: A1-B1,
A1-B2, A2-B1, and A2-B2. In contrast, since IHMP stores
addresses for a host and identifies reachability via routing-
table information, it is able to accomplish the same example
with two exchanges: A1-B1 and A2-B2.

The presence of nConns in the MPTCP formula (which
represents the number of active connections between the two
hosts) highlights a fundamental drawback of supporting host
mobility at the transport layer: Because the state of each
connection is kept independently, the same procedure must
be undertaken separately for each individual connection. This
is an important consideration, especially because the average
number of connections that a host has at any given point in
time significantly outnumbers the number of separate hosts
with which it is communicating, at a ratio of at least 4 to
1! [8] This has profound implications for the scalability of
transport-layer solutions.

Figure 13 illustrates control message growth for a single
handoff as we vary the number of corresponding hosts from 1
to 100. To be least favorable to DIME, the graph assumes
that both hosts just have a single address, and makes a
conservative estimate of nConns = 4. Even with these
assumptions, we find that DIME significantly outperforms
all existing approaches, and that MPTCP in particular incurs
much more control signaling than the other approaches.

F. Requirements and Feature-Set Comparison

Though our evaluations thus far have focused on perfor-
mance metrics, an equally important consideration is its qual-
itative feature set. In addition to evaluating the requirements
enumerated in Section II, we extensively tested DIME and



Requirement MIPv6 MPTCP HIP DIME
Unmodified Kernel X X
Unmodified Apps X X X
Unmodified Infra. X X X
Existing Namespaces X X X

Other Features MIPv6 MPTCP HIP DIME
IPv4 Support X X X
UDP Support X X X
IPv4/v6 Handover X X
Private/Link Addrs X X
Simultaneous Mob. X X X
Preexisting Conns. X X
NAT Traversal X X *
Micro-mobility X *
Multipath X X
ARM Architecture X

∗with middlebox support
TABLE IV

FEATURESET COMPARISON

the other approaches for support across a wide range of
features, use-cases, and network environments that fall outside
of standard mobility testbeds. Table V contains our results, and
shows that while different proposals support different features,
DIME is clearly the most adaptable and flexible proposal.

While some of these features (e.g., private IP addressing)
may be simple implementation issues, others (e.g., adding
UDP support to MPTCP) represent fundamental architectural
limitations. Specifically, we highlight the inability of any
proposal other than DIME to support ARM-based architec-
tures (i.e., Raspberry Pis) as an important, and surprisingly
fundamental, limitation of all other proposals. The high cost
of porting a complex, deeply-integrated codebase prevents
implementations of MIPv6 or MPTCP from making their
way to the specialized system architectures used by resource-
constrained devices. HIP’s heavy reliance on cryptographic op-
erations renders it completely unusable for such environments.
In contrast, DIME avoids both problems and is completely
out-of-the-box deployable on a stock Raspbian distribution.

VII. CONCLUSIONS AND FUTURE WORK

We introduced DIME, the first seamlessly deployable
identifier-locator split architecture. DIME is based on two
main components, StackTrans in the data plane and IHMP in
the control plane, which work together to enable a lightweight,
flexible, and deployable approach to Internet host mobility.

StackTrans represents a dramatic departure from previous
proposals, in that it enables datagrams to be dynamically
readdressed as a host moves around the Internet without
requiring changes to applications, transport-layer protocols,
the network stack, the network layer, or intermediate nodes.
StackTrans incurs minimal overhead, is deployable on a stock
OS, and enables mobility signaling itself to be enacted out-
of-band via a simple signaling protocol, IHMP. IHMP is
more lightweight by far than existing solutions, scale-free with
respect to the number of connections at a host, and explicitly
does not require an additional host-identifier namespace.

Our evaluation of prior solutions to Internet host mobility
shows that they all suffer from at least one vital weakness.
For example, MPTCP is clearly the current state-of-the-art for
features such as NAT traversal and multipath routing, yet it
cannot support UDP and scales poorly. HIP supports more

application use-cases, but incurs severe performance penalties
and requires a relatively static and brittle configuration at end
hosts. Finally, MIPv6 is by far the least flexible solution and
effectively cannot be deployed on today’s systems. DIME ad-
dresses all these points, and is seamlessly deployable on top of
a wide range of systems. DIME outperforms all other solutions
across a wide range of performance metrics, including latency,
throughput, and scalability. Equally important, DIME supports
a much more robust feature-set.

Building on these experimental results, the true strength of
DIME lies in its fresh approach to the old and fundamental
problem of the identifier-locator split. DIME paves the way
for a rich set of future work in many fields involving the
Internet and protocol stacks in general, including: adapting
existing identity-layer protocols such as HIP to use a Stack-
Trans approach over encapsulation; adapting transport-layer
protocols such as MPTCP to use IHMP to reduce and optimize
control message signaling; and further integrating StackTrans
to support features such as multipath routing.

REFERENCES

[1] C. Perkins and D.B. Johnson. Mobility support in IPv6. Proc. 2nd
International Conference on Mobile Computing and Networking, pages
27–37, 1996.

[2] C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda, F. Duchene,
O. Bonaventure, and M. Handley. How hard can it be? designing and
implementing a deployable multipath TCP. Proc. USENIX NSDI, pages
29–29, 2012.

[3] R. Moskowitz et. al. Host identity protocol. RFC 5201, April 2008.
[4] D. Farinacci, V. Fuller, D. Meyer, and D. Lewis. The Locator/ID

Separation Protocol (LISP). IETF Experimental RFC 6830, 2013.
[5] W.M. Eddy. At what layer does mobility belong? IEEE Communications

Magazine, 42(10):155–159, 2004.
[6] A.C. Snoeren and H. Balakrishnan. An end-to-end approach to host

mobility. Proc. 6th International Conference on Mobile Computing and
Networking, pages 155–166, 2000.

[7] D.A. Maltz and P. Bhagwat. MSOCKS: An architecture for transport
layer mobility. Proc. IEEE INFOCOM, 1998.

[8] S. Sevilla and J.J. Garcia-Luna-Aceves. freeing the IP internet architec-
ture from fixed IP addresses. Proc. IEEE International Conference on
Network Protocols, 2015.

[9] R. Atkinson, S. Bhatti, and S. Hailes. ILNP: mobility, multi-homing,
localised addressing and security through naming. Telecommunication
Systems, 42(3-4):273–291, 2009.

[10] H. Balakrishnan et. al. A Layered Naming Architecture for The Internet.
Proc. ACM SIGCOMM, pages 343–352, 2004.

[11] I. Stoica et al. Internet Indirection Infrastructure. Proc. ACM SIGCOMM,
2002.

[12] E. Nordstrom et al. Serval: An end-host stack for service-centric
networking. Proc. USENIX NSDI, 2012.

[13] D. et al. Han. XIA: Efficient Support for Evolvable Internetworking.
Proc. USENIX NSDI, 2012.

[14] E. Wedlund and H. Schulzrinne. Mobility support using SIP. Proc.
ACM WoWMoM, 1999.

[15] J. Ubillos et al. Name-based sockets architecture. IETF Draft, 2010.
[16] V. Zandy and B. Miller. Reliable network connections. Proc. ACM

MOBICOM, 2002.
[17] A. Sharma, X. Tie, H. Uppal, A. Venkataramani, D. Westbrook, and

A. Yadav. A global name service for a highly mobile internetwork.
Proc. ACM SIGCOMM, 2014.

[18] B. Ford. Directions in Internet transport evolution. IETF Journal, 2007.
[19] D. Phoomikiattisak and S. Bhatti. Mobility as a first class function. Proc.

IEEE International Conference on Wireless and Mobile Computing,
Networking and Communications, 2015.

[20] IP latency statistics. http://www.verizonenterprise.com/about/network/latency/.


