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Traumatic cervical spinal injuries are common and associat-
ed with high morbidity and mortality rates (1). The inci-

dence of cervical spine injuries is 16.5 per 100 000 individ-
uals (2), and the prevalence is 1.7%–3.7% in patients with 
blunt trauma (3,4). CT is the reference standard modality 
for detection of cervical spine fractures (5), with trauma 
patients often undergoing CT examinations covering their 
entire neuroaxis, chest, abdomen, and pelvis. In busy clin-
ical environments, where radiologists are facing increasing 
workloads, delays between imaging and interpretation can 

potentially lead to adverse outcomes (6). Up to a quarter 
of patients experience progression of their injuries due to 
delays in diagnosis or unwarranted manipulation (7). Early 
immobilization of unstable injuries can prevent neurologic 
deterioration (8), and prompt surgical intervention is associ-
ated with better outcomes (9).

The increasing volume of imaging studies and demand 
for rapid diagnosis have led to the exploration of machine 
learning (ML) to aid the imaging review process. For ex-
ample, ML models can assist radiologists in the detection 

Purpose: To evaluate the performance of the top models from the RSNA 2022 Cervical Spine Fracture Detection challenge on a clinical test dataset of 
both noncontrast and contrast-enhanced CT scans acquired at a level I trauma center.

Materials and Methods: Seven top-performing models in the RSNA 2022 Cervical Spine Fracture Detection challenge were retrospectively evaluated on a 
clinical test set of 1828 CT scans (from 1829 series: 130 positive for fracture, 1699 negative for fracture; 1308 noncontrast, 521 contrast enhanced) from 
1779 patients (mean age, 55.8 years ± 22.1 [SD]; 1154 [64.9%] male patients). Scans were acquired without exclusion criteria over 1 year (January–De-
cember 2022) from the emergency department of a neurosurgical and level I trauma center. Model performance was assessed using area under the receiver 
operating characteristic curve (AUC), sensitivity, and specificity. False-positive and false-negative cases were further analyzed by a neuroradiologist.

Results: Although all seven models showed decreased performance on the clinical test set compared with the challenge dataset, the models maintained 
high performances. On noncontrast CT scans, the models achieved a mean AUC of 0.89 (range: 0.79–0.92), sensitivity of 67.0% (range: 30.9%–80.0%), 
and specificity of 92.9% (range: 82.1%–99.0%). On contrast-enhanced CT scans, the models had a mean AUC of 0.88 (range: 0.76–0.94), sensitivity of 
81.9% (range: 42.7%–100.0%), and specificity of 72.1% (range: 16.4%–92.8%). The models identified 10 fractures missed by radiologists. False-positive 
cases were more common in contrast-enhanced scans and observed in patients with degenerative changes on noncontrast scans, while false-negative cases 
were often associated with degenerative changes and osteopenia.

Conclusion: The winning models from the 2022 RSNA AI Challenge demonstrated a high performance for cervical spine fracture detection on a clinical 
test dataset, warranting further evaluation for their use as clinical support tools.

Supplemental material is available for this article.
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and characterization of abnormalities, such as brain tumors 
(10), wrist fractures (11), and intracranial hemorrhage (12). 
Studies have also explored the use of ML for detection of 
spinal fractures with deep neural network models (13) show-
ing high sensitivities (>95%) (14) and some matching the 
performance of radiologists (15). However, most of these 
studies focused on osteoporotic vertebral fractures, which 
are more likely to be stable and rarely found in the cervical 
spine. To date, there are relatively few studies exploring the 
application of ML models to aid cervical spine fracture de-
tection in the acute trauma setting.

A major factor preventing widespread clinical implemen-
tation of ML models is the limited access to data. Clinical 
data are often fragmented, stored in disparate systems, and 
subject to privacy regulations (16), making it challenging to 
access a sufficiently large and diverse dataset. Even when ac-
cessible, data may have quality issues and biases (16,17). In 
addition, data annotation can be labor intensive and expen-
sive and requires substantial medical expertise and time (16).

Initiatives such as the RSNA artificial intelligence chal-
lenges play a crucial role in mitigating some of these issues 
and have been ongoing for several years (18). Through these 
competitions, the RSNA is able to crowdsource multi-insti-
tutional and multinational datasets, expertise, and insights 
into relevant clinical issues. Top-performing models from 
prior RSNA competitions have been shown to generalize 
well to real-world external testing datasets (19,20). The 
goal of the RSNA 2022 Cervical Spine Fracture Detection 

competition was to develop ML models that detect and lo-
calize fractures in the cervical spine (21) with 1108 global 
competitors participating. Eight participants were awarded 
the gold prize for models that demonstrated exceptional per-
formance on the private test set, with scores and rankings 
available on the competition’s leaderboard (22).

This study examines the performance of the top ML mod-
els from the RSNA 2022 Cervical Spine Fracture Detection 
competition on a clinical validation dataset. Although the 
RSNA competition dataset is based on real-world multi-in-
stitutional data, it was curated with the intention of hosting 
a competition. Each contributing site was requested to pro-
vide an equivalent number of positive and negative cases, 
resulting in a substantially higher fracture prevalence than 
real-world rates. The identification and extraction of data 
were left to the discretion of each site (21), which intro-
duces the potential for selection biases. The data also un-
derwent filtration during curation, removing examinations 
with incomplete coverage of the cervical spine, prior surgery, 
intravenous contrast material, and motion artifacts. The 
clinical validation dataset in this study included all consec-
utive emergent CT scans that were acquired over the course 
of a calendar year at a busy urban neurosurgical and level I 
trauma center. In contrast to the RSNA competition data-
set, this test set includes contrast-enhanced scans, as patients 
often receive contrast material as part of full-body trauma 
imaging at major trauma centers.

Materials and Methods
This retrospective study was approved by the institutional 
review board at Unity Health Toronto with a waiver of in-
formed consent.

RSNA 2022 Competition Dataset
The RSNA 2022 Cervical Spine Fracture Detection compe-
tition took place from July 28 to October 27, 2022. The 
competition dataset, consisting of 3112 cervical spine non-
contrast CT scans from 12 institutions, was used for model 
training and internal testing. The dataset was divided into 
training (2019 scans), public testing (304 scans), and pri-
vate testing (789 scans) sets, with fracture prevalence rates of 
47.6% (961 of 2019), 40.1% (122 of 304), and 45.9% (362 
of 789), respectively, notably higher than typical real-world 
rates of 4%–7% (23,24). Detailed information about the 
dataset can be found in the work by Lin et al (21).

Models
We selected seven of the eight award-winning models based 
on their scores on the RSNA competition’s private dataset 
(25) to rigorously evaluate their ability to generalize. The 
second-place model was excluded from our study as we were 
unable to reproduce its performance on the private compe-
tition test set using the provided source code and technical 
posts. The seven models we examined leveraged state-of-the-
art techniques in computer vision and deep learning. The 
general strategy adopted by these models is a two-stage ap-
proach: segmentation and classification (Fig 1). A detailed 
description of the models is provided in Appendix S2.

Abbreviations
AUC = area under the receiver operating characteristic curve, Grad-
CAM = gradient-weighted class activation mapping, ML = machine 
learning

Summary
Winning machine learning models from the RSNA 2022 Cervical 
Spine Fracture Detection competition demonstrated high perfor-
mance on a large clinical test set of emergency department cervical 
spine CT scans from a level I trauma center.

Key Points
 ■ Seven of the top-performing machine learning models from the 

RSNA 2022 Cervical Spine Fracture Detection artificial intelli-
gence challenge generalized well to the clinical test dataset, with 
mean area under the receiver operating characteristic curve values 
of 0.89 (range: 0.79–0.92) for fracture detection on noncontrast 
CT scans and 0.88 (range: 0.76–0.94) on contrast-enhanced CT 
scans.

 ■ The models achieved a mean sensitivity of 67.0% (range: 30.9%–
80.0%) and mean specificity of 92.9% (range: 82.1%–99.0%) 
on noncontrast CT scans and a mean sensitivity of 81.9% (range: 
42.7%–100.0%) and mean specificity of 72.1% (range: 16.4%–
92.8%) on contrast-enhanced CT scans.

 ■ The machine learning models identified 10 fractures missed by 
reporting radiologists out of 116 cases, and poorer model perfor-
mance was most often attributed to contrast-enhanced scans and 
scans in patients with degenerative changes and osteopenia.

Keywords
Feature Detection, Supervised Learning, Convolutional Neural 
Network (CNN), Genetic Algorithms, CT, Spine, Technology 
Assessment, Head/Neck
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Evaluation of Model Generalizability
Figure 2 displays the general workflow to evaluate model 
performance in the clinical setting. To better understand 
model generalizability, we analyzed model performance on 
a clinical test dataset composed of consecutive cervical spine 
CT scans obtained over the course of 1 year (January 1–De-
cember 31, 2022) for a traumatic indication at a busy urban 
neurosurgical and level I trauma center (St Michael’s Hos-
pital, Unity Health Toronto). Inclusion criteria were scans 
obtained in the emergency department for individuals older 
than age 18, with no exclusion criteria. The dataset included 
both noncontrast scans and contrast-enhanced scans. CT 
scans were downloaded via Philips Vue picture archiving and 
communication system (Philips Healthcare) and filtered for 
axial bone window images of the cervical spine measuring 
1 mm or less in section thickness. Additional details about 
the dataset, including CT scan acquisition parameters, are 
provided in Appendix S1. The noncontrast scans were simi-
lar to the data used to train and evaluate models during the 
competition, while the contrast-enhanced scans allowed for 
the evaluation of model generalizability outside the distri-
bution of the training data. Of note, this test dataset was 
not considered a purely “external” dataset, as our institution 
contributed data to the competition; however, none of those 
patients were represented in this dataset.

Reference Standard Labeling
To obtain reference standard labels, our radiology infor-
mation system (Syngo; Siemens Medical Solutions) was 
searched for reports on emergency department cervical spine 
CT scans performed between January 1 and December 31, 
2022, using mPower (Nuance Communications) in patients 
at least 18 years of age. Reports were classified as positive or 
negative for fracture at the patient and cervical spine seg-
mental levels by a radiologist (M.N., 21 years of experience). 

The reference standard was established for equivocal reports 
by reviewing follow-up imaging examinations and clinical 
records. A random sample of 10% of the radiology reports 
were reviewed by a second radiologist (E.C., 15 years of ex-
perience), with 100% concordance at the segmental level. 
The presence or absence of intravenous contrast material was 
also established for each scan. Additional dataset curation 
details are provided in Appendix S1.

Review of False-Negative and False-Positive Cases
A neuroradiologist (S.M., 6.5 years of neuroradiology expe-
rience) reviewed every examination-level false-negative case 
to help determine the types of fractures missed by the ML 
models. CT scans that were misclassified as false positive at 
the examination level by at least four of the seven models also 
underwent review. This approach was pursued as two mod-
els (Skecherz and Harshit) accounted for a substantial pro-
portion of false-positive cases, whereas many of these were 
correctly classified by the other models. Heat maps from 
gradient-weighted class activation mapping (Grad-CAM) 
(26) were generated based on the averaged model outputs 
for false-positive classifications. Grad-CAM is a visualization 
technique that illuminates areas of an image influencing con-
volutional neural network prediction by highlighting these 
regions with heat maps. To interpret these maps, warmer 
colors (eg, red) indicate areas the model focused on more 
intensely, with brighter colors signifying higher influence on 
the model’s decision. These heat maps allowed the neurora-
diologist to concentrate on identifying commonly occurring 
features that may have misguided the model’s judgment.

Statistical Analysis
The Youden J statistic (27) was used on the competition’s 
public test dataset to determine optimal thresholds to bi-
narize predicted probabilities that maximize the difference 

Figure 1: Graphic displays an example of end-to-end architecture of a cervical spine CT fracture detection machine learning model, showcasing the segmentation stage 
to isolate the cervical spine’s voxels of interest, followed by the classification stage for feature extraction, aggregation, and logits prediction.

http://radiology-ai.rsna.org


Radiology: Artificial Intelligence Volume 6: Number 6—2024 ■ radiology-ai.rsna.org 4

Performance of Models from RSNA Cervical Spine Fracture Detection Competition Hu and Patel et al

between the true-positive rate and the false-positive rate, ef-
fectively capturing the top-left-most point on the receiver 
operating characteristic curve. The thresholds for each of the 
seven models (ThresholdQishen = 0.72, ThresholdDarragh = 0.54, 
ThresholdSelim = 0.57, ThresholdSpeedrun = 0.81, ThresholdSkecherz 
= 0.49, ThresholdQWER = 0.54, ThresholdHarshit = 0.72) were 
then applied to the competition’s private test set to estab-
lish baseline model performance on the competition dataset. 
Reference standard labels for each scan were compared with 
the ML model predictions. Sensitivity, specificity, positive 
predictive value, negative predictive value, accuracy, area un-
der the receiver operating characteristic curve (AUC), and 
F1 score were the primary evaluation metrics.

Mean values and ranges (minimum, maximum) were cal-
culated for each metric across all seven models. Additionally, 
the CIs were estimated separately for each individual model’s 
performance. Specifically, the binomial method was used for 
accuracy, sensitivity, specificity, positive predictive value, and 
negative predictive value (28), while the Takahashi method 
was used for the F1 score (29) and the DeLong method for 
the AUC (30).

Model performances on the competition private test set 
and the clinical test set were compared to identify any differ-
ences or trends. Additional analyses, including those adjust-
ing the clinical test dataset to match the competition data-
set’s prevalence, are detailed in Appendix S1.

Statistical analyses were performed using the Python li-
braries Scikit-learn (version 1.3.2), SciPy (version 1.11.4), 

and Confidenceinterval (version 1.0.4). Statistical signifi-
cance of differences in model performances was not formally 
assessed in this study.

Data and Model Availability
The publicly available RSNA 2022 Cervical Spine Frac-
ture Detection CT dataset and competition award-winning 
models are available at https://www.kaggle.com/competitions/
rsna-2022-cervical-spine-fracture-detection. The competition 
private test and clinical test dataset are not publicly available.

Our analysis and model implementation were conducted 
using Python (version 3.10.13) and torch (version 2.1.0). 
Additionally, we used a suite of Python packages to facilitate 
data analysis and results visualization, including SimpleITK 
(version 2.3.1), nibabel (version 5.2.0), torchvision (version 
0.16.1), NumPy (version 1.26.2), scikit-image (version 0.22.0), 
opencv-python (version 4.8.1), pandas (version 2.1.4), mat-
plotlib (version 3.8.0), and Grad-CAM (version 1.4.8). The 
detailed enumeration of the software and packages used aims 
to enhance the reproducibility and transparency of our study.

Results

Characteristics of the Clinical Test Set
The clinical test set used in this study was composed of 1829 
series from 1828 cervical spine CT studies across 1779 adult 
patients (625 [35.1%] female patients, 1154 [64.9%] male pa-

Figure 2: Flowchart of machine learning (ML) evaluation pipeline for cervical spine fracture detection. (A) The process starts with 3112 CT scans from the RSNA 2022 
competition, divided into training, public test, and private test datasets. Additional CT scans from our institution are used as the clinical test dataset. (B) Each ML model has two 
main stages: segmentation, typically using two-dimensional or three-dimensional U-Net, and classification involving convolutional neural network (CNN) feature extraction, 
feature aggregation, and logits prediction. (C) Each model generates a fracture probability output binarized by applying an optimal threshold identified by the Youden J statistic 
on the public test dataset. Then the model’s performance is assessed using the private test dataset. (D) The final evaluation comprises four subsets of the clinical test dataset: non-
contrast scans, contrast-enhanced scans, bootstrap-sampled noncontrast scans, and bootstrap-sampled contrast-enhanced scans. ROC = receiver operating characteristic.

http://radiology-ai.rsna.org
https://www.kaggle.com/competitions/rsna-2022-cervical-spine-fracture-detection
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tients; age range, 18–101 years; mean age, 55.8 years ± 22.1 
[SD]); a minority of patients had either pre- and postcontrast 
scans or repeat attendances to the emergency department. There 
were 130 scans positive for fracture. The dataset included 1308 
noncontrast and 521 contrast-enhanced scans (Table 1).

Performance of Models on Each Dataset
Figure 3 shows the distribution of performance metrics for 
binary classification by the winning algorithms on different 
datasets. Detailed information regarding other analyses are 
provided in Appendix S1 and Tables S2–S5. 

Competition Private Test Dataset
On the competition private test dataset, the seven top-scoring 
models had a mean AUC of 0.96 (range: 0.95–0.97), with a 
mean accuracy of 91.0% (range: 88.6%–92.6%). The mean 
sensitivity was 87.2% (range: 84.0%–89.8%), the mean spec-
ificity was 94.3% (range: 88.1%–96.7%), the mean positive 
predictive value was 93.0% (range: 86.4%–95.8%), and the 
mean negative predictive value was 89.7% (range: 87.5%–
91.4%). Detailed individual model performances for the com-
petition dataset are shown in Table 2.

Noncontrast and Contrast-enhanced CT Clinical Test 
Datasets
On the clinical test dataset, the models showed reduced AUC 
and accuracy on both subsets of the dataset. Specifically, accu-
racy was reduced in the contrast-enhanced dataset but remained 

high for the noncontrast subset. Due to the lower prevalence, 
model performances on both the noncontrast and contrast-en-
hanced datasets were characterized by a high negative predictive 
value (mean, 98.5% and 96.7%, respectively) and a notable de-
crease in positive predictive value (mean, 35.3% and 41.7%, 
respectively) compared with the competition dataset. In the 
noncontrast dataset with a real-world prevalence of 4.2%, the 
mean AUC across models was 0.89 (range: 0.79–0.92), mean 
accuracy was 91.8% (range: 81.9%–96.1%), mean sensitivity 
was 67.0% (range: 30.9%–80.0%), and mean specificity was 
92.9% (range: 82.1%–99.0%). In the contrast-enhanced data-
set with a real-world prevalence of 14.5%, the mean AUC across 
models was 0.88 (range: 0.76–0.94); mean accuracy was 73.5% 
(range: 28.4%–89.4%); mean sensitivity was 81.9% (range: 
42.7%–100.0%); and mean specificity was 72.1% (range: 
16.4%–92.8%). Individual model performance on the clinical 
test set is presented in Table 3 and Table 4 for noncontrast and 
contrast datasets, respectively.

Analysis of False-Positive and False-Negative Scans
There were 116 false-positive (47 noncontrast, 69 contrast-en-
hanced) and 78 false-negative (35 noncontrast, 43 contrast-en-
hanced) scans. On review, the ML models correctly identified 
10 cases of true fractures that were initially missed by reporting 
radiologists (Fig 4). The most common influential regions iden-
tified on Grad-CAM heat maps for false-positive cases were ves-
sels, present in 43 of 116 (37.1%) false-positive cases and in 39 
of 69 (56.5%) false-positive contrast-enhanced studies. Other 

Table 1: Patient Characteristics and Data Distribution of the Clinical Test Dataset

Attribute Noncontrast CT Scan Contrast-enhanced CT Scan Overall

Total no. of patients 1268 520 1779
 Mean age (y) 58.2 ± 22.3 50.0 ± 20.6 55.8 ± 22.1
 Sex
  Female 481 145 625
  Male 787 375 1154
Total no. of series 1308 521 1829
 Positive 55  75  130  
  C1 5 19  24  
  C2 14  26  40  
  C3 8  10  18  
  C4 7  14  21  
  C5 11  16  27  
  C6 18  22  40   
  C7 17  21  38  
 Negative 1253 446 1699 
Prior cervical spine surgery 14 3 17
 Positive 1  1  2  
 Negative 13  2 15  
Postoperative material 14 2 16
 Positive 1  1  2  
 Negative 13  1  14  

Note.—Data are reported as numbers of patients or scans or mean ± SD. Positive and negative refer to positive or 
negative for a cervical spine fracture. A single CT scan may present with multiple fractures at different cervical 
spine level.

http://radiology-ai.rsna.org
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less-common influential regions contributing to false-positive 
cases were related to chronic changes such as osteophytes, de-
generative cortical irregularities, ligament and soft tissue calcifi-
cation, vascular channels, and artifacts (Fig 5).

On review of the false-negative cases for the seven ML 
models, there were 135 fractures across 78 scans (42 con-
trast-enhanced and 36 noncontrast). There were two cases 
in which no definite fracture was identified, and these were 
reclassified as true-negative cases. In cases of fracture, there 
were 88 underlying factors in the region of injury, possibly 
contributing to missed detection by the ML models. The 
most common were chronic and degenerative changes (53 
of 88), followed by osteopenia (23 of 88), artifact (eight of 
88), healed chronic fracture (two of 88), and osseous lesions 
associated with pathologic fracture (two of 88). The most 
common sites of missed fractures were at the edge of the 
vertebral body end plate (36 of 135), transverse process (35 
of 135), and spinous process (17 of 135). The most common 
levels of missed fractures were at C7 (19.3%; 26 of 135) 
followed by C6 (17.8%; 24 of 135).

Discussion
Award-winning models from the 2022 RSNA competition 
demonstrated strong performance with a mean AUC of 0.96 
and accuracy of 91.0% on the competition test dataset and a 
mean AUC of 0.89 and accuracy of 91.8% for noncontrast 
scans and a mean AUC of 0.88 and accuracy of 73.5% for 
contrast-enhanced scans on the clinical test dataset. The major 
strength of this study is that every cervical spine CT scan per-
formed in adults for a traumatic indication in the emergency 
department over a 1-year period was included in this study 
without exclusion criteria. Importantly, both contrast-enhanced 
and noncontrast CT scans were included in this dataset, as both 
are routinely encountered in clinical practice, despite models 
being trained solely only on noncontrast scans. Although the 
competition dataset used real-world data collected from multi-
ple institutions, the data underwent filtration during curation 
to help optimize it for competition purposes, which may not ac-
curately reflect the clinical setting. Our dataset provides a more 
genuine representation of data encountered in a real-world clin-
ical environment and was analyzed in balanced and unbalanced 

Figure 3: Box and whisker plots showcase the distribution of performance metrics for binary classification by the winning algorithms on different datasets. The metrics are 
the area under the receiver operating characteristic curve (AUC), sensitivity, specificity, accuracy, positive predictive value (PPV), and negative predictive value (NPV). Per-
formance is displayed across the competition private dataset (CP), actual prevalence noncontrast (NC), and actual prevalence contrast (C) datasets. The box represents the 
IQR, the median is indicated by the black line within the box, and the whiskers show the full range excluding outliers, which are depicted as individual points. Data points are 
also shown as jitters for clarity.

http://radiology-ai.rsna.org
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groups, reflecting the matched higher prevalence of fractures in 
the competition test dataset and the lower prevalence of frac-
tures encountered in clinical practice.

Previous studies exploring ML models for cervical spine 
fracture detection have shown varied performance. Zhang 
et al (31) reported an AUC up to 0.87, Salehinejad et al 
(32) achieved a classification accuracy of 71%–79%, and 
Golla et al (33) reached 87% sensitivity at the fracture level. 
BriefCase, a U.S. Food and Drug Administration–approved 

Table 2: Individual Machine Learning Model Performances in Detecting Cervical Spine Fractures on the Competition Pri-
vate Test Dataset (Fracture Prevalence = 45.8%)

Model TP FN TN FP Sen (%) Spec (%) PPV (%) NPV (%) Acc (%) F1 (%) AUC

1. Qishen 318 44 413* 14* 87.8 (84.1, 
90.8)

96.7 (94.6, 
98.0)*

95.8 (93.0, 
97.5)*

90.4 (87.3, 
92.7)

92.6 (90.6, 
94.3)*

91.6 (89.0, 
94.3)*

0.97 (0.96, 
0.98)*

2. RAWE … … … … … … … … … … …
3. Darragh 310 52 412 15 85.6 (81.6, 

88.9)
96.5 (94.3, 

97.9)
95.4 (92.5, 

97.2)
88.8 (85.6, 

91.4)
91.5 (89.4, 

93.3)
90.2 (87.4, 

93.1)
0.97 (0.96, 

0.98)
4. Selim 319 43 404 23 88.1 (84.4, 

91.1)
94.6 (92.0, 

96.4)
93.3 (90.1, 

95.5)
90.4 (87.3, 

92.8)
91.6 (89.5, 

93.4)
90.6 (87.8, 

93.4)
0.95 (0.94, 

0.97)
5. Speedrun 304 58 407 20 84.0 (79.8, 

87.4)
95.3 (92.9, 

96.9)
93.8 (90.7, 

96.0)
87.5 (84.2, 

90.2)
90.1 (87.8, 

92.0)
88.6 (85.6, 

91.6)
0.95 (0.94, 

0.97)
6. Skecherz 323 39 376 51 89.2 (85.6, 

92.0)
88.1 (84.6, 

90.8)
86.4 (82.5, 

89.5)
90.6 (87.4, 

93.0)
88.6 (86.2, 

90.6)
87.8 (84.7, 

90.8)
0.95 (0.94, 

0.97)
7. QWER 325* 37* 395 32 89.8 (86.2, 

92.5)*
92.5 (89.6, 

94.6)
91.0 (87.6, 

93.6)
91.4 (88.4, 

93.7)*
91.3 (89.1, 

93.0)
90.4 (87.6, 

93.2)
0.96 (0.94, 

0.97)
8. Harshit 311 51 411 16 85.9 (81.9, 

89.1)
96.3 (94.0, 

97.7)
95.1 (92.2, 

97.0)
89.0 (85.8, 

91.5)
91.5 (89.4, 

93.3)
90.3 (87.4, 

93.1)
0.95 (0.93, 

0.96)

Note.—Values in parentheses are 95% CIs. A detailed description of the models is provided in Appendix S2. Acc = accuracy, AUC = area 
under the receiver operating characteristic curve, FN = false negative, FP = false positive, NPV = negative predictive value, PPV = positive 
predictive value, sen = sensitivity, spec = specificity, TN = true negative, TP = true positive.
* Best estimated value in the category.

Table 3: Individual Machine Learning Model Performances in Detecting Cervical Spine Fractures on the Noncontrast Sub-
set of our Clinical Test Dataset with a Real-World Prevalence Rate of Fractures (Fracture Prevalence = 4.2%)

Model TP FN TN FP Sen (%) Spec (%) PPV (%) NPV (%) Acc (%) F1 (%) AUC

1. Qishen 36 19 1208 45 65.5 (52.3, 
76.6)

96.4 (95.2, 
97.3)

44.4 (34.1, 
55.3)

98.5 (97.6, 
99.0)

95.1 (93.8, 
96.1)

52.9 (42.8, 
63.1)*

0.91 (0.87, 
0.96)*

2. RAWE … … … … … … … … … … …
3. Darragh 42 13 1182 71 76.4 (63.7, 

85.6)
94.3 (92.9, 

95.5)
37.2 (28.8, 

46.4)
98.9 (98.1, 

99.4)
93.6 (92.1, 

94.8)
50.0 (40.7, 

59.3)
0.90 (0.85, 

0.95)
4. Selim 39 16 1160 93 70.9 (57.9, 

81.2)
92.6 (91.0, 

93.9)
29.5 (22.4, 

37.8)
98.6 (97.8, 

99.2)
91.7 (90.0, 

93.0)
41.7 (32.8, 

50.6)
0.91 (0.86, 

0.95)
5. Speedrun 17 38 1240* 13* 30.9 (20.3, 

44.0)
99.0 (98.2, 

99.4)*
56.7 (39.2, 

72.6)*
97.0 (95.9, 

97.8)
96.1 (94.9, 

97.0)*
40.0 (26.8, 

53.2)
0.79 (0.72, 

0.86)
6. Skecherz 42 13 1029 224 76.4 (63.7, 

85.6)
82.1 (79.9, 

84.1)
15.8 (11.9, 

20.7)
98.8 (97.9, 

99.3)
81.9 (79.7, 

83.9)
26.2 (19.6, 

32.7)
0.87 (0.81, 

0.93)
7. QWER 44* 11* 1175 78 80.0 (67.6, 

88.4)*
93.8 (92.3, 

95.0)
36.1 (28.1, 

44.9)
99.1 (98.3, 

99.5)*
93.2 (91.7, 

94.4)
49.7 (40.7, 

58.7)
0.92 (0.87, 

0.96)
8. Harshit 38 17 1154 99 69.1 (56.0, 

79.7)
92.1 (90.5, 

93.5)
27.7 (20.9, 

35.8)
98.5 (97.7, 

99.1)
91.1 (89.5, 

92.6)
39.6 (30.8, 

48.4)
0.90 (0.85, 

0.95)

Note.—Values in parentheses are 95% CIs. A detailed description of the models is provided in Appendix S2. Acc = accuracy, AUC = area 
under the receiver operating characteristic curve, FN = false negative, FP = false positive, NPV = negative predictive value, PPV = positive 
predictive value, sen = sensitivity, spec = specificity, TN = true negative, TP = true positive.
* Best estimated value in the category.

tool, demonstrated a sensitivity of 91.7% and specificity of 
88.6% in its regulatory submission (34). However, external 
testing by Small et al (35) and Voter et al (36) reported lower 
sensitivities of 76% and 54.9%, respectively. Our results sug-
gest that the top-performing ML models developed by par-
ticipating teams for the RSNA competition have been able 
to achieve better model performance than the previously 
reported results from individual research groups. Although 
the models evaluated still do not match radiologist metrics, 
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Table 4: Individual Machine Learning Model Performances in Detecting Cervical Spine Fractures on the Contrast-enhanced 
Subset of our Clinical Test Dataset with a Real-World Prevalence Rate of Fractures (Fracture Prevalence = 14.5%)

Model TP FN TN FP Sen (%) Spec (%) PPV (%) NPV (%) Acc (%) F1 (%) AUC

1. Qishen 68 7 365 81 90.7 (82.0, 
95.4)

81.8 (78.0, 
85.1)

45.6 (37.8, 
53.6)

98.1 (96.2, 
99.1)

83.1 (79.7, 
86.1)

60.7 (53.2, 
68.2)

0.94 (0.90, 
0.97)*

2. RAWE … … … … … … … … … … …
3. Darragh 63 12 381 65 84.0 (74.1, 

90.6)
85.4 (81.8, 

88.4)
49.2 (40.7, 

57.8)
96.9 (94.7, 

98.2)
85.2 (81.9, 

88.0)
62.1 (54.2, 

69.9)
0.92 (0.87, 

0.96)
4. Selim 56 19 410 36 74.7 (63.8, 

83.1)
91.9 (89.0, 

94.1)
60.9 (50.7, 

70.2)*
95.6 (93.2, 

97.1)
89.4 (86.5, 

91.8)*
67.1 (58.7, 

75.4)*
0.92 (0.89, 

0.96)
5. Speedrun 32 43 414* 32* 42.7 (32.1, 

53.9)
92.8 (90.0, 

94.9)*
50.0 (38.1, 

61.9)
90.6 (87.6, 

92.9)
85.6 (82.3, 

88.4)
46.0 (35.8, 

56.3)
0.76 (0.70, 

0.83)
6. Skecherz 75* 0* 73 373 100.0 (95.1, 

100.0)*
16.4 (13.2, 

20.1)
16.7 (13.6, 

20.5)
100.0 (95.0, 

100.0)*
28.4 (24.7, 

32.4)
28.7 (22.9, 

34.4)
0.87 (0.83, 

0.92)
7. QWER 65 10 362 84 86.7 (77.2, 

92.6)
81.2 (77.3, 

84.5)
43.6 (35.9, 

51.6)
97.3 (95.1, 

98.5)
82.0 (78.4, 

85.0)
58.0 (50.4, 

65.7)
0.91 (0.86, 

0.95)
8. Harshit 71 4 245 201 94.7 (87.1, 

97.9)
54.9 (50.3, 

59.5)
26.1 (21.2, 

31.6)
98.4 (95.9, 

99.4)
60.7 (56.4, 

64.8)
40.9 (34.2, 

47.6)
0.87 (0.83, 

0.91)

Note.—Values in parentheses are 95% CIs. A detailed description of the models is provided in Appendix S2. Acc = accuracy, AUC = area 
under the receiver operating characteristic curve, FN = false negative, FP = false positive, NPV = negative predictive value, PPV = positive 
predictive value, sen = sensitivity, spec = specificity, TN = true negative, TP = true positive.
* Best estimated value in the category.

with the sensitivity and specificity of radiologists to detect 
cervical spine fractures at CT shown to be 88.0%–93.0% 
and 96.0%–99.0%, respectively (35,37), these models hold 
promise as rapid auxiliary tools. In fact, our study showed 
that a small number of fractures missed by radiologists were 
retrospectively identified by the ML models. The models 
generated a cervical spine fracture prediction in just 10–30 
seconds, while typically, it takes between 33 to 43 minutes 
from scan acquisition until a finalized report by radiologists 
(35). Therefore, ML models could be used as rapid triaging 
tools to flag the study to alert the radiologist of a possible 
fracture, some of which may be missed by radiologists.

In examining the performance metrics, it was noted 
that the models faced challenges when applied to the clin-
ical test dataset, particularly with contrast-enhanced scans. 
Higher performance in the noncontrast subset is expected 
given that the training dataset consists of these exclusively. 
Average model sensitivity reductions were 20.2% for non-
contrast scans and 5.2% for contrast-enhanced scans, while 
average specificity reductions were 1.4% for noncontrast 
scans and 22.2% for contrast-enhanced scans. Interestingly, 
accuracy for noncontrast scans slightly improved, with an 
average increase of 0.7%, whereas contrast-enhanced scans 
experienced an accuracy decline of 17.5%, both attributed 
to differences in fracture prevalence. These results under-
score the broader challenge of transitioning from curated 
datasets to real-world clinical applications, as highlighted 
by external testing studies by Voter et al and Small et al, 
where sensitivity decreased from 91.7% to as low as 54.9% 
(35,36). Our study also revealed areas of strength and im-
provement for the models, through a comprehensive review 
of the false-negative and false-positive cases. Intravascular 
contrast material, chronic changes, osseous channels, and 
artifacts can lead to falsely labeling studies as positive for 

fracture. For example, small opacified vessels closely related 
to the cervical spine can mimic the appearance of a fracture 
fragment. In the false-negative cases, certain types of frac-
tures were missed most by the models, including fractures at 
the edge of the vertebral body end plate, transverse process, 
and spinous process locations, consistent with previous re-
search (35,36). The most common cause for models to miss 
fractures were degenerative changes and osteopenia, also ob-
served by Small et al (35), leading to underperformance in 
older patients (36). An understanding of these patterns can 
guide future model refinement by inclusion of greater num-
bers of imaging studies with underrepresented pathologies.

This study had limitations. The use of clinical data from 
a single center may limit the generalizability of our findings. 
Additionally, the training data were exclusively noncontrast 
CT scans focusing on acute fractures, which may not repre-
sent the complexity of cases in the clinical test dataset that 
included patients with previous surgical interventions and 
contrast-enhanced studies; therefore, models could under-
perform on our dataset. Last, although Grad-CAM was used 
for model transparency, its limitations in localizing multiple 
instances and capturing fine details, as noted by Mohamed 
et al (38), might have influenced the interpretability of our 
results, although major issues were not observed in this 
study. Future model enhancements will involve training on 
a more diverse array of scans and integrating feedback from 
real-world applications to boost accuracy and reliability in 
clinical settings.

In conclusion, evaluation of the top-performing ML mod-
els in the 2022 RSNA competition on a clinical test dataset 
demonstrated that the models fell short of their performance 
on the competition dataset. However, the models still per-
formed favorably as compared with previously published 
cervical spine detection algorithms, including U.S. Food and 
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Figure 4: Example cases of fractures identified by the machine learning models but missed by reporting radiologists. Axial CT images of the cervical spine with associated 
gradient-weighted class activation heat maps show the most influential regions in the input image for the prediction. Warmer colors (eg, red) on the heat map indicate areas 
the model focuses on more intensely, with brighter colors signifying higher influence on the model’s decision. The presence of contrast material at CT imaging is labeled in 
the bottom left corner of each image. (A, B) Minimally displaced left transverse process fracture (arrow in A). (C, D) Bilateral lamina fractures (arrows in C), moderately 
displaced on the right and undisplaced on the left. (E, F) Mildly displaced spinous process fracture (arrow in E). (G, H) Undisplaced left articular process and lamina fracture 
(arrow in G). (I, J) Minimally displaced spinous process fracture (arrow in I), and (K, L) minimally displaced left transverse process fracture (arrow in K).

Drug Administration–approved commercial models. The 
models showed potential to generalize to the analysis of con-
trast-enhanced scans and of patients with prior surgical in-
tervention, despite being trained on a dataset that excluded 
these examinations. Addressing false-positive and false-nega-
tive cases through the inclusion of relevant imaging studies 
holds potential for future model refinement. These models 
may serve as valuable supplementary diagnostic tools for cer-
vical spine fracture detection, emphasizing the necessity for 
ongoing improvement efforts and prospective evaluation of 
deployed models.
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Figure 5: Example cases in the false-positive group incorrectly identified as fractures by the machine learning models. The CT images with associated gradient-weighted 
class activation heat maps show the most influential regions in the input image for the prediction. Warmer colors (eg, red) on the heat map indicate areas the model focuses 
on more intensely, with brighter colors signifying higher influence on the model’s decision. The presence of contrast material at CT imaging is labeled in the bottom left corner 
of each image. CT images in G, I, and M are presented in the sagittal plane to better demonstrate pathology; all other images are in the axial plane. (A, B) Calcified ath-
erosclerotic plaque in the left vertebral artery in the left transverse foramen (arrow in A). (C, D) Congenital lack of fusion of the posterior arch of C1 (arrow in C). (E, F) Con-
trast material within a small vessel in the right paraspinal region (arrow in E). (G, H) Chronic multilevel degenerative changes with reduced intervertebral disk spaces, osteo-
phyte formation (arrow in G), and osteopenia. (I, J) Partially calcified pseudomass (arrow in I) posterior to the odontoid process of C2, secondary to calcium pyrophosphate 
dihydrate crystal deposition disease. (K, L) Nutrient vessel within the left lamina (arrow in K). (M, N) Chronic osteophyte arising from the superior-anterior vertebral body of 
C3 (arrow in M). (O, P) Chronic osteophytic changes associated with the right articular process (arrow in O).
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