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Determining which phenotypes underlie a pleiotropic signal

Arunabha Majumdar, Tanushree Haldar, and John S. Witte*

Department of Epidemiology and Biostatistics, University of California, San Francisco

Abstract

Discovering pleiotropic loci is important to understand the biological basis of seemingly distinct 

phenotypes. Most methods for assessing pleiotropy only test for the overall association between 

genetic variants and multiple phenotypes. To determine which specific traits are pleiotropic, we 

evaluate via simulation and application three different strategies. The first is model selection 

techniques based on the inverse regression of genotype on phenotypes. The second is a subset-

based meta-analysis ASSET [Bhattacharjee et al., 2012], which provides an optimal subset of non-

null traits. And the third is a modified Benjamini-Hochberg (B-H) procedure of controlling the 

expected false discovery rate [Benjamini and Hochberg, 1995] in the framework of phenome-wide 

association study. From our simulations we see that an inverse regression based approach 

MultiPhen [O’Reilly et al., 2012] is more powerful than ASSET for detecting overall pleiotropic 

association, except for when all the phenotypes are associated and have genetic effects in the same 

direction. For determining which specific traits are pleiotropic, the modified B-H procedure 

performs consistently better than the other two methods. The inverse regression based selection 

methods perform competitively with the modified B-H procedure only when the phenotypes are 

weakly correlated. The efficiency of ASSET is observed to lie below and in between the efficiency 

of the other two methods when the traits are weakly and strongly correlated, respectively. In our 

application to a large GWAS, we find that the modified B-H procedure also performs well, 

indicating that this may be an optimal approach for determining the traits underlying a pleiotropic 

signal.
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 Introduction

Evaluating the potential pleiotropic impact of genetic variants on multiple traits can improve 

power to detect association and provide important biological insights [Klei et al., 2008; 

O’Reilly et al., 2012; Stephens, 2013; Zhu et al., 2014]. A number of methods exist for 

assessing pleiotropy, and these generally test for overall evidence of pleiotropy across 

multiple traits [Galesloot et al., 2014]. Once pleiotropy is detected, however, few approaches 

can distinguish which specific traits underlie the association. Identifying the optimal subset 
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of traits associated with a particular genetic variant may help uncover shared biological 

mechanisms across traits. If the phenotypes are seemingly heterogeneous, determining the 

subset of non-null traits is crucial to better understand the pleiotropy signal.

For example, the levels of low-density lipoprotein (LDL) cholesterol, high-density 

lipoprotein (HDL) cholesterol, triglycerides, and total cholesterol are important blood lipid 

traits that may impact coronary artery disease. The Global Lipids Genetics Consortium 

[2013] discovered novel pleiotropic loci associated with different subsets of the traits. For 

example, variants in the genes RSPO3, FTO, VEGFA, PEPD were associated with HDL and 

triglycerides, but not with total cholesterol or LDL.

Here we explore three approaches that can be used to determine pleiotropic loci that impact 

subsets of traits: 1) model selection or shrinkage methods; 2) a subset-based meta-analysis 

approach across phenotypes; and 3) a sequential procedure controlling the false discovery 

rate. Model selection or shrinkage methods can be applied in the framework of inverse 

regression of genotype on phenotypes to select an optimal subset of non-null traits 

corresponding to a SNP associated with multiple traits. One can use ASSET [Bhattacharjee 

et al., 2012] to undertake a subset-based meta-analysis to distinguish an optimal subset of 

non-null traits. And finally, one can also use a modified Benjamini-Hochberg (B-H) 

procedure of controlling the expected false discovery rate [Benjamini and Hochberg, 1995] 

in the framework of phenome-wide association studies (PheWAS) that regresses the 

individual phenotypes on the SNP genotypes. We evaluate and compare these three 

approaches via simulation and application.

In the inverse regression framework [O’Reilly et al., 2012; Yan et al., 2013; Wang, 2014; Wu 

and Pankow, 2015; Majumdar et al., 2015], one can use various model selection techniques, 

including Akaike information criterion (AIC) [Akaike, 1992], Bayesian information 

criterion (BIC) [Schwarz et al., 1978], and extended BIC [Chen and Chen, 2008, 2012]. A 

key advantage of inverse regression is that the distribution of the phenotypes can be 

arbitrary, allowing the flexibility of simultaneously including both discrete and continuous 

traits in the analysis. To test for multivariate association, O’Reilly et al. [2012] introduced 

MultiPhen based on proportional odds logistic regression (POLR) of genotype on 

phenotypes.

With the likelihood framework underlying POLR, one can employ a model selection 

criterion that explores all possible subsets of traits to find the set which minimizes the 

expected loss of information penalized by a measure of the model complexity. Under the 

same set-up, one can also implement the least absolute shrinkage and selection operator 

(LASSO) [Tibshirani, 1996] (or the adaptive lasso [Zou, 2006]), which shrinks the 

regression parameters for less important predictors to zero and draws an inference on the 

sparsity (null traits in our context). The adaptive LASSO has superior performance than the 

original LASSO [Tibshirani, 1996]. However, there is limited software for implementing 

LASSO in the POLR framework. One can instead consider the regression of the allelic status 

on phenotypes [Majumdar et al., 2015] which assumes Hardy-Weinberg equilibrium (HWE) 

conditioning on the phenotype values and uses the likelihood of a simple logistic regression 

(LR).
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With ASSET [Bhattacharjee et al., 2012] one constructs a test statistic to evaluate pleiotropic 

association based on maximizing a weighted sum of univariate normalized association 

statistics across all possible subsets of traits in the framework of fixed-effects meta analysis. 

Even though ASSET was primarily designed for multiple studies of distinct case-control 

phenotypes, it can be implemented for multiple traits in a cohort. A key requirement for 

using ASSET is to provide the correlation matrix of the trait-specific association statistics. 

The explicit expression of this matrix may be difficult to obtain for multiple phenotypes of 

different types. Hence, in the methods section we discuss an alternative way of estimating 

the correlation matrix using the approximate relation between the score function and 

maximum likelihood estimate (MLE) of a regression parameter.

To implement the modified B-H procedure at a SNP associated with multiple phenotypes, 

one can first compute the p-value of association for each individual phenotype by regressing 

it on the SNP genotype, and then applying the modified B-H rule on the trait-specific 

univariate p-values. The false discovery rate (FDR) and true discovery rate (TDR) are 

defined as the proportion of null traits and non-null traits among the associated phenotypes, 

respectively. The advantage of the B-H procedure is that it can keep the expectation of FDR 

at a desired level. The accuracy of selection of non-null traits is measured in terms of 

specificity and sensitivity, where specificity is the proportion of null traits discarded from the 

optimal subset and sensitivity is the proportion of non-null traits included in the subset. 

Clearly, higher specificity implies lower FDR, and higher sensitivity implies higher TDR. 

The exact relations between these different notions of true and false selection rates are 

discussed in the Supplementary materials.

An important property of these three approaches for distinguishing a subset of non-null traits 

underlying a pleiotropy signal is their ability to incorporate both categorical and continuous 

phenotypes. Moreover, all of the methods are computationally feasible and suitable to 

adjusting for potential covariates such as estimates of population structure.

In this paper, we first evaluate via simulation the relative power to detect overall pleiotropic 

association using MultiPhen [O’Reilly et al., 2012], BAMP [Majumdar et al., 2015], and 

ASSET. We then compare the accuracy of selection of non-null traits by simulations for the 

three approaches discussed above: model selection and shrinkage methods based on inverse 

regression, ASSET, and a modified B-H procedure in the PheWAS framework. We consider 

a range of simulation scenarios for both multiple continuous and binary traits. Finally we 

apply these methods to the large “Resource for Genetic Epidemiology Research on Adult 

Health and Aging” (GERA) Kaiser cohort [dbGaP Study Accession: phs000674.v1.p1], 

evaluating the potential genome-wide (GW) pleiotropy underlying risk of hypertension, 

Type II diabetes, cardiovascular disease, and cancers.

 Methods

Let Y = (Y1, …, YK) denote a multivariate phenotype vector, where each Yj can be either a 

categorical or a continuous quantitative trait. And let X denote a vector of SNP genotypes at 

the marker locus coded as the number of minor alleles (0, 1, 2). For the ith individual, i = 1,
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…, n, Yi = (Yi1, …, YiK) and Xi are the multivariate phenotype and minor allele count at the 

marker locus, respectively.

 Inverse regression of genotype on phenotypes

Let f(Y, X) denote the joint probability distribution of Y and X. While regressing phenotype 

on genotype, f(Y, X) can be decomposed as f(Y |X)×f(X), where f(Y|X) is the multivariate 

distribution of the phenotypes conditioning on the genotype. However, modeling f(Y|X) may 

be very difficult for correlated traits that have non-normal distributions or different forms 

(e.g., categorical and continuous). A more flexible framework entails inverse regression of 

genotype on phenotypes whereby f(Y, X) is decomposed as f(X|Y)×f(Y). Since, f(X|Y) 

contains the regression parameters that reflect the association between phenotypes and 

genotype, f(Y) need not be specified in a likelihood ratio test (LRT) for association.

 Proportional Odds Regression—One can model f(X|Y) with proportional odds 

logistic regression (POLR) [O’Reilly et al., 2012] as:

Thus, the conditional distribution of the genotypes given Y = y is:

with the restriction that α0 ≥ α1 (in order to ensure P (X = 1|y) is non-negative). Based on 

the POLR, a LRT can be performed to test H0 : β1 = … = βK = 0 versus H1 : at least one βj ≠ 

0, j = 1, …, K. O’Reilly et al. [2012] termed this method MultiPhen.

 Allelic Modification—The conditional distribution of X (the number of minor alleles) 

given Y = y can also be modeled as Binomial with parameters 2 and p(y), where p(y) is the 

logistic link function [Majumdar et al., 2014, 2015] given by:

It follows that p(y) = P (an allele at the marker locus is minor|y). The model implicitly 

assumes that, conditioned on the vector of multivariate phenotype, the marker locus is in 

Hardy-Weinberg Equilibrium (HWE). It considers a single intercept parameter α (instead of 

α0 and α1 in MultiPhen) and is based on the simple likelihood of the logistic regression. The 
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test for association is equivalent to testing H0 : β1 = … = βK = 0 versus H1 : at least one βj ≠ 

0, j = 1,…, K. Under H0, the minor allele frequency (MAF) at the marker locus is 

independent of y and is given by: . This model is an allelic modification of 

MultiPhen termed BAMP (Binomial regression-based Association of Multivariate 

Phenotypes) [Majumdar et al., 2015].

 Model selection criteria

We describe the different model selection criteria that can be implemented based on the 

likelihood framework underlying MultiPhen or BAMP in order to select an optimal subset of 

non-null traits. While defining the criteria, the likelihood in POLR underlying MultiPhen is 

considered. Let Sk be a subset comprising k traits: , where j1,…, jk ∈ {1, …, K}. 

Suppose, . l(Sk) is a function of (k + 2) parameters: 

. Let . While developing the different 

model selection criteria, −2logL(Sk) is considered as the primary loss (incurred due to 

selecting Sk) function which is penalized by a measure of the model (Sk) complexity. The 

subset of traits that attains the minimum value of a model selection criterion is selected as 

the optimal subset of non-null traits.

The AIC [Akaike, 1992] is a decision-theoretic criterion of model selection which was 

derived based on maximum-likelihood theory. In our context, the expression of AIC is given 

by:

The BIC was motivated by a Bayesian approach that assumes a uniform prior over all 

possible models and has the following form:

where n is the sample size. The expressions of AIC and BIC differ only in the factor 

included in the penalty term of the latter. Thus, BIC penalizes a subset with a larger number 

of traits more heavily than AIC. As a consequence, BIC tends to select fewer traits than AIC.

Due to placing a uniform prior across all possible models, the prior probability assigned to 

the space of models, each comprising k traits, increases proportionally with the size of the 

space: . The difference between the prior probabilities assigned to the different spaces 

of models with a fixed number of traits becomes pronounced as K increases. To rectify this 

bias induced by BIC, Chen and Chen [2008] considered a prior that assigns equal prior 

probabilities to each space of models containing a fixed number of traits. This extended 

Bayesian information criterion (extended BIC, also denoted by BICγ), is given by:

Majumdar et al. Page 5

Genet Epidemiol. Author manuscript; available in PMC 2016 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Clearly, for γ = 0, BICγ = BIC. In our context, we consider two choices of γ: 0.5 and 1.

 Adaptive LASSO

LASSO [Tibshirani, 1996] puts an upper bound on the absolute sum of the main regression 

parameters which leads to a shrinkage of the parameters corresponding to less important 

predictors to zero. In our context, LASSO maximizes the penalized log-likelihood: 

 with respect to β1,…,βK, where λ is the tuning parameter 

controlling the amount of shrinkage. Hence, λ = 0 induces no shrinkage, and selects all traits 

due to maximizing the unrestricted likelihood. On the other hand, a sufficiently large value 

of λ will lead to exclusion of all traits.

To induce differential shrinkage across βs, adaptive LASSO (A-LASSO) [Zou, 2006] 

considers a weight  and maximizes the penalized log-likelihood: 

, where βj,free is the maximum likelihood estimate 

(m.l.e.) of βj in the unrestricted likelihood. A-LASSO is widely used because of its superior 

performance over the basic LASSO with respect to selection efficiency.

While implementing A-LASSO, we use the likelihood framework underlying BAMP with 

the R package glmnet [Friedman et al., 2009] to track the entire regularization path. A key 

step is to select an optimal λ among its values along the regularization path. We employ both 

the AIC and BIC in which the number of non-zero βs is treated as the degree of freedom 

[Zou et al., 2007] to select an optimal λ. For a selected λ, the subset of non-null traits is 

constructed by excluding Yj from (Y1, …, YK) if βj is zero, j = 1, …, K.

 ASSET—For analyzing multiple phenotypes, Bhattacharjee et al. [2012] introduced a 

novel method ASSET which simultaneously provides the p-value of pleiotropic association 

and an optimal subset of non-null traits. We briefly describe the theoretical framework 

underlying ASSET which is based on the set-up of regressing phenotypes on genotype. 

While regressing Yk on X by a linear or logistic regression as appropriate, let  be the 

estimates of the association parameter and its standard error, k = 1, …, K.

Adopting the framework of a fixed-effects meta analysis, for a subset of traits S, ASSET 

defines the Z statistic as: , where , and πk(S) is an 

appropriate weight associated with Yk belonging to the subset S. For example, there are K 
separate GWAS for Y1, …, YK with the kth study having a sample size nk. Then, 

. The global association of a SNP with at least one of the traits is 
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measured by the test-statistic: , where  is the space of all possible 

S. In addition to the p-value of global association, ASSET also offers an optimal subset of 

non-null traits that are associated with the SNP, which is essentially the subset of traits that 

constructs Zmax.

Even though ASSET was originally developed for separate case-control studies, it can also 

be used for multiple phenotypes in a cohort study. A key requirement to implement ASSET 

is the correlation matrix of  under the null hypothesis of no global association. 

Bhattacharjee et al. [2012] provide an explicit expression of this matrix for multiple case-

control phenotypes, which is also straightforward to derive for normally distributed traits. 

However, for non-normal correlated traits, including different types of traits (e.g., one 

discrete and one continuous), it may be very difficult to directly obtain the correlation 

matrix. Since, in the majority of the cases,  is the MLE of β, we use the approximate 

relation between the score function and MLE of β in order to estimate the correlation matrix. 

The score function can be computed for a well-defined probability distribution of a 

phenotype conditioned on the genotype, which indicates the general applicability of this 

strategy (described in the Appendix).

 Modified B-H procedure

Benjamini and Hochberg [1995] introduced a sequential procedure that controls the 

expected FDR for multiple hypothesis testing. Suppose, Y1, …,YK are individually 

regressed on X by linear/logistic regression as appropriate, and let P1, …,PK denote the trait-

specific p-values of association. Suppose, P(1), …, P(K) denote the p-values arranged in 

increasing order of magnitude and let  be the actual phenotypes corresponding to 

the ordered p-values. Given that w is the desired level of the expected FDR, the B-H 

procedure states that: if k is the largest l such that , then declare  to 

be associated (non-null).

Since the procedure may conclude that none of the phenotypes is associated even though an 

overall test detected pleiotropy, to ensure that the optimal subset of non-null traits contains at 

least one phenotype, we consider a modified level of the expected FDR as: 

, 0 < w < 1. Now, the optimal subset will always contain the trait with 

the minimum trait-specific univariate p-value.

Benjamini and Hochberg [1995] proved that the sequential procedure controls the expected 

FDR when the test statistics are independent. Later, Benjamini and Yekutieli [2001] proved 

that, for dependent test statistics, which is the case for correlated traits, the same procedure 

controls the expected FDR when the test statistics have positive regression dependency on 

each of the test statistics corresponding to the true null hypotheses [Benjamini and Yekutieli, 

2001]. They also showed that this property is satisfied in the scenario when the test statistics 

are distributed as multivariate normal with a positive definite correlation matrix. In our 

context, the test statistics in the regression of individual phenotype on genotype is normally 

distributed. Hence, under the assumption that the joint distribution of the individual test 
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statistics is multivariate normal with a positive definite correlation matrix, the B-H 

procedure should control the expected FDR at a desired level.

 Simulation study

First we carry out simulations to compare MultiPhen, BAMP, and ASSET with respect to 

the power of detecting overall pleiotropic association. Next, we evaluate the efficiency of the 

above three strategies to determine the subset of non-null traits underlying a signal of 

multivariate association. The accuracy of the selection of non-null traits is measured by 

specificity and sensitivity.

 Simulation models

We assume that a bi-allelic quantitative trait locus (QTL) with alleles A (minor) and a has 

genetic effect on Y. A bi-allelic marker locus with alleles B (minor) and b is considered such 

that the coefficient of linkage disequilibrium between the QTL and the marker locus is δ, 

which is defined as: δ = P(AB)–P(A)P(B). Let the frequencies of the minor alleles A and B 
be denoted by p and m, respectively.

We describe the models to simulate the data on genotypes at the QTL and the marker locus, 

and the vector of multiple phenotypes. HWE is assumed at both of the loci while simulating 

the genotype data. Let G denote the genotype at the QTL. Thus, G = AA, Aa, aa, and under 

HWE, P (AA) = p2, P (Aa) = 2p(1 − p), P (aa) = (1 − p)2. Using the MAF at the marker 

locus (m) and its LD with the QTL (δ), the genotype at the marker locus is generated 

conditioning on the genotype at the QTL.

We use an additive model to simulate the vector of multiple phenotypes following Galesloot 

et al. [2014]. Let g denote the count of minor alleles at the QTL. For a given j ∈ {1, …, K}, 

the following model is assumed: Yj = βj × g + ej, where g = 0, 1, 2. Irrespective of the QTL 

genotype, the random residual ej is distributed as . Thus, E(Yj|AA) = 2βj, E(Yj|Aa) 

= βj, and E(Yj|aa) = 0.

Let the total variance of Yj be denoted by . Of note, V (Yj) = V (E(Yj|G)) + E(V (Yj|G)), 

and under the above model, . Since, , irrespective 

of the QTL genotype . Hence, .

Let  denote the trait-specific heritability of Yj due to the QTL. Hence, 

. Thus, for a given choice of , the residual variance is given by: 

. Since, , for a given choice of , 

.

From the above model, the genetic correlation between a pair of traits Yj and Yk is positive 

or negative depending on the signs of βj and βk. We consider that e1, …, eK follow a 
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multivariate normal distribution with a correlation matrix ((ρe,jk)). For j ≠ k, ρejk is the 

correlation between ej and ek, the random residuals of Yj and Yk excluding the QTL effect. 

Thus, the set of parameters that completely specifies the simulation model for generating 

data on the genotypes and multiple phenotypes is given by: , for j, k ∈ 

{1,…, K}.

To investigate non-normal continuous traits, the random residual ej is assumed to be 

distributed as chi-square with 1 d.f.. We assume , where E1, …, EK follow 

multivariate normal with covariance matrix ((ρE,jk)), so V (Ej) = 1 and Cov(Ej, Ek) = ρE,jk. 

Under this set-up, for a given choice of  and . For simplicity’s 

sake, we consider the same choice of ((ρe,jk)) and ((ρE,jk)) in our simulation study.

 Design

 Power comparison—MultiPhen, BAMP, and ASSET are compared with respect to the 

power of detecting multivariate association with a vector of four (K) phenotypes. We 

implement ASSET with the option of a one-sided search when all  are positive and a two-

sided search when  are both positive and negative. The rate of type-I error and power are 

estimated at the level of significance 0.01 based on a sample of 10K individuals and 5K 
replications.

Various simulation scenarios are explored to study the difference in the power of the three 

methods. The trait-specific heritabilities due to the QTL are considered to have the same – 

and then different – magnitudes, including the special case of oppositely directed QTL 

effects across traits. All choices of the trait-specific heritabilities are listed in Table 1. We 

denote the residual correlation structure among the phenotypes by , where 

denotes the residual correlation between a pair of non-null traits, and  denotes the residual 

correlation between a pair of null traits or one null and one non-null trait. The following 

different choices of rE are considered: (0.05, 0.05), (0.3, 0.3), (0.5, 0.5).

Without loss of generality, the first K1 and last K0 of the total K traits are assumed to be 

associated and non-associated with the pleiotropic locus, respectively. To consider binary 

traits, every trait of the vector of continuous traits is dichotomized above a threshold subject 

to fixing the prevalence of the binary trait at 10%.

A MAF = 0.1 is assumed at both of the marker locus and QTL. Different levels of the 

standardized LD between the QTL and marker locus are considered. LD = zero corresponds 

to the type I error rate for the methods. We investigate the situations in which all – and then 

a subset of the phenotypes are non-null, respectively.

 Selection of non-null traits—The three different strategies (described in the 

“Methods” section) are compared with respect to the accuracy of selecting non-null traits 

underlying a pleiotropic association. We consider various simulation scenarios of 
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phenotypes and trait-specific heritability which are described in Table 3. The following 

different choices of rE are considered: (0.05, 0.05), (0.3, 0.1), (0.3, 0.3), (0.5, 0.3), (0.5, 0.5). 

A high value of the standardized LD (0.95) between the QTL and marker locus is assumed. 

The specificity and sensitivity are estimated based on 500 replications, except for Tables S5, 

S6, S7, S8, where 200 replications were used to reduce computing time.

Since our goal is to determine the most efficient and accurate approach to identifying the 

non-null traits underlying a genome-wide signal of pleiotropic association, we ascertain in 

every replication whether the multivariate association p-value < 5 × 10−8. For continuous 

traits, a sample size of 15K individuals is used while carrying out the simulations. Since the 

dichotomization of continuous traits reduces power, for binary traits a larger sample size of 

30K individuals is used. A MAF = 0.1 is assumed at the QTL and MAFs of 0.1 and 0.2 at 

the marker locus are considered.

We primarily consider four or eight phenotypes. We also consider 20 phenotypes in Table 

S8. With 20 phenotypes, more than 1M possible subsets of traits have to be explored for 

AIC, BIC, and extended BIC. To reduce this number, we minimized these criteria only for 

the sequence of subsets appearing along the entire regularization path of adaptive LASSO. 

This strategy was also adopted in Chen and Chen [2008, 2012]. Note that, LSA, LSB, 

ASSET, or MBHw are computationally feasible for a large number of phenotypes.

 Results

 Power comparison—All three methods maintain appropriate false positive rates (Table 

2), and as expected the power increases as the LD increases between the marker locus and 

the QTL. In general, the power to detect pleiotropy is higher when the QTL effects on the 

associated traits are both positive and negative than when the QTL effects are all positive 

(Figure 1, S1, S2).

Power plots for continuous normal traits are presented in Figure 1, and the power plots for 

binary traits are presented in Figure S1. The power plots for continuous traits distributed as 

chi-square are given in Figure S2. The power curves show that BAMP always produces 

slightly higher power (1%–3%) than MultiPhen. When two of the four traits are associated, 

MultiPhen produces 1%–35% higher power than ASSET for continuous normal traits 

(Scenario 1 in Figure 1) and 1%–15% higher power for binary traits (Scenario 3 in Figure 

S1). When all the four phenotypes are associated and the QTL effects are positive, ASSET 
yields 1%–18% higher power for continuous traits (Scenario 2 (choice 1) and Scenario2 

(choice 2) in Figure 1) and 1%–11% higher power for binary traits (Scenario 4 (choice 1) 

and Scenario 4 (choice 2) in Figure S1); but if the QTL effects are both positive and 

negative, MultiPhen offers 1%–52% higher power for continuous traits (Scenario 2 (choice 

3) in Figure 1) and 1%–22% higher power for binary traits (Scenario 4 (choice 3) in Figure 

S1). For continuous traits distributed as chi-square, the relative performance between 

MultiPhen and ASSET remain similar as for normal traits (Figure S2). Of note, the 

difference in power between the two methods increases with the strength of correlation 

among phenotypes.
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 Selection of traits—For the selection criteria, we desire a balance between a good level 

of both sensitivity (correctly selecting the non-null traits) and specificity (correctly 

excluding null traits). First we discuss the relative performance of BIC, BIC0.5, BIC1, since 

these are variations of BICγ for γ = 0, 0.5, 1, respectively. In most scenarios, BIC performs 

better than BIC0.5 and BIC1 (Tables S1–S12). For example, BIC yields 1%–6% higher 

specificity than BIC0.5 and 1%–14% higher specificity than BIC1. BIC also offers a 

sensitivity increase of 1%–5% and 1%–10% compared to BIC0.5 and BIC1, respectively. 

However, in a few cases for eight phenotypes, BIC0.5 and BIC1 perform marginally better 

than BIC. But overall, BIC appears to be a better alternative than BIC0.5 and BIC1, and so 

we focus on BIC here.

The modified B-H procedure with the level of expected FDR  is denoted by MBHw. In 

the simulation study, we consider three different choices of w: 0.01, 0.05, and 0.1. MBH0.01 

produces higher specificity but marginally lower sensitivity than MBH0.05 and MBH0.1 with 

the latter offering the highest sensitivity as expected (Tables S1 – S12).

The performance of all selection criteria improves substantially when the QTL effects on the 

non-null traits are both positive and negative compared to when the QTL effects are all 

positive (Tables S1 – S12). Hence the plots corresponding to oppositely directed QTL effects 

are excluded from Figure 2 which corresponds to numerical results given in Tables S2 – S4.

The selection criteria based on the inverse regression perform better for weakly correlated 

traits (rE = (0.05, 0.05)) than for traits having stronger correlation structure (Figure 2). The 

specificity decreases as the strength of correlation increases, especially for, AIC and the A-

LASSO using AIC to select an optimal shrinkage parameter (LSA). As expected, the 

specificity is better for rE = (0.3, 0.1) when the null and non-null traits are differentially 

correlated than for rE = (0.3, 0.3) when the null and non-null traits are equally correlated. A 

similar pattern is observed between rE = (0.5, 0.3) and rE = (0.5, 0.5). AIC always produces 

higher sensitivity than BIC at the cost of less specificity (Figure 2). Similarly, LSA offers 

higher sensitivity than the A-LASSO using BIC to select an optimal shrinkage parameter 

(LSB) at the expense of less specificity (Figures 2). For example, in Scenario 7 of Figure 2, 

AIC yields 1%–35% higher sensitivity than BIC at the cost of 1%–56% lower specificity, 

and LSA offers 1%–20% higher sensitivity than LSB at the expense of 1%–42% lower 

specificity.

ASSET offers a moderate level of specificity that remains fairly stable across different 

degrees of correlations among traits. However, its sensitivity decreases as the strength of 

correlation among phenotypes increases (Figure 2). For weakly correlated traits (rE = (0.05, 

0.05)), the inverse regression approach performs better than ASSET. But, ASSET maintains 

better specificity than the inverse regression based criteria for phenotypes with stronger 

correlation.

The modified B-H procedure (MBH0.01) outperforms the other methods with respect to good 

levels of both the specificity and sensitivity, in particular, when the phenotypes have higher 

correlation (Figure 2). The inverse regression approach performs competitively only when 

the phenotypes are weakly correlated (rE = (0.05, 0.05)).
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We also performed simulations encompassing various other scenarios. For example, in Table 

S5, eight continuous traits are distributed as chi-square among which four are non-null. In 

Tables S6 and S7, three and six out of eight normally distributed traits are associated, 

respectively. In these simulations, the relative behavior of the methods considered here were 

similar to that described above. Table S8 gives results for twenty normal traits, of which 

eight are non-null. Here, ASSET performs fairly well across different scenarios, but is 

consistently outperformed by MBHw. In contrast, the selection criteria based on the inverse 

regression of genotype on phenotypes perform very poorly as the phenotypic correlation 

increases (Table S8).

 Application to Cohort Study

To demonstrate the performance of the different methods based on real data, we analyzed the 

large genome-wide association study “Resource for Genetic Epidemiology Research on 

Adult Health and Aging” (GERA) cohort data obtained from dbGaP [dbGaP Study 

Accession: phs000674.v1.p1]. For simplicity’s sake, we restricted our comparison to 62,318 

European-American individuals who constitute more than 75% of the dbGaP data. The data 

include 657,184 SNPs genotyped across 22 autosomal chromosomes. We consider four 

binary phenotypes: hypertension (HYP), Type II diabetes (T2D), cardiovascular disease 

(CVD), and any cancer (CAN). The phenotypes in the GERA cohort were obtained using 

electronic health record (EHR). Note that in the dbGaP GERA cohort data, the cancers were 

collapsed into a single variable (any cancer). Therefore, we could only use an overall cancer 

categorization even though the genetic architecture is likely heterogeneous across different 

cancers.

Before our analysis, we undertook the following QC steps. First, we removed individuals 

with: over 3% of genotypes missing; any missing information on covariates (described 

below); genotype heterozygosity outside six standard deviations; first degree relatives; or 

discordant sex information. This leaves us with 53,809 individuals. Next, we removed SNPs 

with: MAF < 0.01; 10% or more missingness; or deviation from HWE at a level of 

significance 10−5. This leaves 601, 335 SNPs which were tested for pleiotropic association 

by MultiPhen and ASSET. However, MultiPhen failed to converge for 4, 282 SNPs. So 

different methods were finally applied to 597,053 SNPs. We adjust all of the analyses for the 

following covariates: age, gender, smoking status, BMI category, and six principal 

components of ancestry (PCs).

The overall correlation matrix of the four phenotypes estimated based on the individuals 

analyzed here is given in Table 4. As expected, the highest correlation was between 

hypertension and CVD. Also, the pairwise correlations are non-negligible except between 

T2D and any cancer.

The single phenotype association with each of the four phenotypes is tested by a logistic 

regression of the case-control status on genotype incorporating the same set of covariates, 

and the estimated association parameters (βs) are then used for implementing ASSET and 

modified B-H procedure. For every genome wide significant SNP detected by either of the 

methods, all the three strategies for selecting the optimal subset of non-null traits are 
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implemented. The Q-Q plots for the p-values of pleiotropic association obtained by the two 

methods are presented in Figure S4. For MultiPhen, the genomic control inflation factor (λ) 

is estimated as 1.05. However, it is very difficult to estimate λ for ASSET. But the Q-Q plot 

for ASSET as well as for MultiPhen suggest that the results are appropriately adjusted for 

covariates.

 Results

The MANHATTAN plots for the Kaiser cohort application results from ASSET and 

MultiPhen are presented in Figure S3. Since the sets of genome-wide associated SNPs found 

by MultiPhen and ASSET overlap substantially, results for the union of the two sets are 

provided in Tables 5, 7, S13, and S14. We apply the conventional genome wide level of 

statististical significance 5 × 10−8. We also report the SNPs that fall just outside this cut-off 

(5 × 10−8–6 × 10−8) for either of the methods. MultiPhen identifies 50 significant SNPs and 

ASSET detects 56. Each of the sets of SNPs are filtered for pair-wise LD (r2 ≥ 0.2) which 

leaves us with 14 independent SNPs found by MultiPhen and 17 SNPs identified by ASSET 
(Table 5). Two of the SNPs uniquely identified by ASSET are actually detected by 

MultiPhen with p-values just below the significance cut-off, chr3:rs11709077 (p-value: 

5.58×10−8) and chr8:rs13266634 (p-value: 5.59×10−8).

MultiPhen also does not identify the following three SNPs detected by ASSET: 

chr5:rs183671, chr6:rs872071, chr11:rs67279079. And ASSET misses the SNPs detected by 

MultiPhen: chr10:rs7896811 and chr16:rs4408545. ASSET does, however, detect the other 

three SNPs detected by MultiPhen on chromosome 10 (listed in Table 5). Nevertheless, 

when either of the methods fails to detect a SNP identified by other method, it still exhibits 

suggestive evidence of association (a p-value of 10−7 order).

We also map the identified SNPs into genes using the human assembly GRCh37/hg19 in the 

UCSC genome browser. A SNP is assigned to a gene if it is located either within the 

boundaries of the gene or 20 KB upstream or downstream. The name of the mapped genes 

and their known associations with various phenotypes are provided in Table 5. We observe 

from the gene mapping that a substantial proportion of the significant SNPs (13 out of 19) 

map to at least one gene and two SNPs map to multiple genes (Table 5). If a SNP maps to a 

gene but falls outside its boundaries, the SNP’s distance from the nearest of the two 

boundaries of the gene is also provided. Out of 13 SNPs mapped to genes, four SNPs did not 

fall within the boundaries of a gene. Among 9 SNPs which are located within a gene, all 

four SNPs on chromosome 10 mapped to the same gene TCF7L2. Thus these 9 SNPs 

mapped to six distinct genes. These genes are associated with a range of phenotypes 

including T2D, CVD, various cancers, and glycated hemoglobin levels which is associated 

with increased risk of hypertension [Bower et al., 2012]. Of note, rs13266634 is within the 

8q24 chromosomal region, associated with prostate and other cancers [Witte, 2007].

The selection results of traits underlying the significant SNPs are graphically presented in 

Tables 7 and S13. Table 7 contains the significant SNPs at which multiple non-null traits 

were detected by at least two criteria, and Table S13 presents the rest of the results. The 

univariate association p-values for individual phenotypes are also presented in Table S14. 

With respect to selection of traits, BIC and LSB behave conservatively (Tables 7, S13, and 
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S14). BIC selects hypertension and cancers at chr6:rs12203592, but selects one phenotype 

(that has the minimum trait-specific univariate association p-value) at all of the other SNPs. 

For all the SNPs listed in Table S14, LSB selects one trait (that has the minimum univariate 

association p-value). However, LSB selects CVD and cancers at chr9:rs10116277 that is 

listed in Table S14. Of note, BIC also selects CVD and cancers at chr9:rs9632885, 

chr9:rs1333040 which are in strong LD with chr9:rs10116277. AIC and LSA perform 

similarly, and select multiple phenotypes as non-null at 8 of the 19 SNPs. LSA selects an 

additional phenotype compared to AIC at two SNPs: chr8:rs13266634 and chr9:rs10116277.

ASSET selects multiple non-null phenotypes at 12 SNPs (Tables 7, S13, and S14). However, 

the subset of non-null traits selected by AIC and LSA are substantially more consistent with 

the trait-specific univariate association p-values (in terms of phenotypes with smaller trait-

specific p-values being selected as non-null) compared to ASSET (Tables 7, S13, and S14). 

Of note, in the simulation study for four binary traits, AIC and LSA performed better than 

ASSET except for the case rE = (0.5, 0.5) (Figure 2, Tables S2, S10). The correlation matrix 

of the four case-control phenotypes in Table 4 shows that the correlation between different 

pairs of diseases varies in the range 0.05–0.33.

Finally MBH0.01 and MBH0.05 select multiple non-null phenotypes at 4 and 5 SNPs, 

respectively. As expected, MBH0.05 identifies an additional non-null trait compared to 

MBH0.01 at chr3:rs1470580, chr6:rs12203592, and chr9:rs10116277, respectively. MBH0.1 

identified the same traits at the same 5 SNPs as MBH0.05; at chr10:rs12255678 it selected 

cancers in addition to hypertension and T2D identified by MBH0.05.

There may be some scenarios in which AIC, LSA, ASSET can select multiple non-null 

traits, but MBHw will pick up a single phenotype due to a fixed choice of w. For example, 

for chr6:rs872071, AIC, LSA, ASSET selected hypertension and cancers as non-null traits, 

but both MBH0.05 and MBH0.01 picked up only cancers, because the univariate association 

p-value for cancers is the smallest and the p-values for other traits did not pass the modified 

B-H procedure (Table 7). The same scenario is also observed for chr10:rs7079711, where 

AIC, LSA, ASSET picked up T2D and cancers, but MBHw selected only T2D as non-null. 

Whenever a selection criterion included a single trait, that trait had the smallest trait-specific 

univariate association p-value.

We compared these pleiotropy results to the previously published GWAS findings that are in 

LD with our significant SNPs (r2 ≥ 0.2) from the NHGRI-EBI catalog (Tables S15 and S16). 

Since MBH0.01 and MBH0.05 offered the most reliable selection performance in our 

simulation study, the phenotypes identified by these criteria are listed in Tables S15 and S16. 

Sixteen out of 19 SNPs are in LD with at least one known GWAS hit. Among these, every 

SNP at which single phenotype is selected by both MBH0.01 and MBH0.05 is in LD with at 

least one NHGRI-EBI GWAS hit which is associated with either the selected GERA 

phenotype or a closely related phenotype. For example, only cancers was selected at 

chr2:rs3769823 which is in LD with two NHGRI-EBI GWAS hits that are known to be 

associated with chronic lymphocytic leukemia, melanoma, and esophageal squamous cell 

carcinoma. Pleiotropic loci also exhibited such consistency with previous results. For 

example, HYP and T2D were selected by both of the criteria at chr10:rs12255678 and 
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chr10:rs4506565, which are in LD with NHGRI-EBI GWAS hits that are associated with 

T2D and glycated hemoglobin levels – a risk factor for hypertension [Bower et al., 2012]. 

Overall, while there is substantial overlap between the SNPs detected here and known 

associations from NHGRI-EBI GWAS catalog, MBH0.01 showed more overlap compared to 

MBH0.05 (Tables S15 and S16). Moreover, SNPs not exhibiting such overlap were either 

potential eQTLs in disease relevant tissues or in known risk genes (chr10:rs7079711 is in 

TCF7L2, a T2D gene).

 Discussion

Most of the methods for assessing pleiotropic association between a genetic variant and a 

vector of multiple phenotypes evaluate the overall evidence of association, but do not 

explore the subset of underlying non-null phenotypes. Here, we have investigated three 

different strategies to address this objective.

ASSET simultaneously provides a non-null subset of traits along with the global p-value of 

pleiotropic association, but was previously evaluated for multiple case-control association 

studies [Bhattacharjee et al., 2012]. For a cohort study of multiple continuous or binary 

phenotypes, we have compared it with MultiPhen with respect to the power of detecting 

multivariate association. In our simulation study, MultiPhen was more powerful than ASSET 
except for the scenario when all the phenotypes are associated and the QTL effects are in the 

same direction. However, in the application to Kaiser data, ASSET detected a slightly larger 

number of significant signals. BAMP consistently produced slightly higher power than 

MultiPhen, as shown in more details in Majumdar et al. [2015].

The finding that MultiPhen offers higher power than ASSET when two of the four traits are 

null is counter-intuitive, because ASSET was designed to yield higher power in such 

situations as its test statistic is obtained by maximization across different possible subsets of 

traits to separate out the non-null traits. One possible explanation for this is that MultiPhen 
models the individual-level data for multiple phenotypes jointly, and hence is more 

multivariate in nature than ASSET, which combines the univariate association statistics. 

Furthermore, the power and type I error of ASSET decrease as the phenotypic correlation 

increases (rE = (0.3, 0.3), (0.5, 0.5)) (Figures 1, S1, S2, and Table 2). This conservative 

behavior of ASSET may be due to estimating the p-value of overall pleiotropic association 

by using the discrete local maxima (DLM) method [Taylor et al., 2007] to approximate tail 

probabilities of a test statistic that is maximized over a grid.

For the selection of non-null traits, our simulation study shows that the modified B-H 

procedure performs the best across a range of scenarios considered here. The inverse 

regression based criteria perform competitively with the modified B-H procedure only when 

the phenotypes are weakly correlated. The efficiency of ASSET is observed to lie below and 

in between the efficiency of these other two methods when the traits are weakly and strongly 

correlated, respectively. The issue of multi-colinearity may explain the poor performance of 

the inverse regression based criteria for strongly correlated phenotypes. The modified B-H 

procedure offers overall good specificity as it is designed to keep control over the expected 

FDR and lower FDR induces higher specificity.
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In our application, MBH0.01 and MBH0.05 detected multiple non-null traits at fewer SNPs 

compared to AIC, LSA, or ASSET, but this may reflect higher specificity of MBH0.01 and 

MBH0.05 as demonstrated in the simulation study. MBH0.1 selected cancers at 

chr10:rs12255678 in addition to hypertension and T2D; these latter two phenotypes were 

also identified by both of MBH0.05 and MBH0.01. AIC and LSA also selected these three 

phenotypes as non-null. At this SNP, however, the univariate association p-value for cancers 

is 0.058. Thus, since MBH0.1 may be liberal with respect to the false positive rate, this 

pleiotropy signal of cancers is only suggestive. Nevertheless, it is worth noting that 

Michailidou et al. [2013] reported chr10:rs113014168 which is in LD with 

chr10:rs12255678 (r2 = 0.21 based on European population) as significantly associated with 

breast cancer.

We also carried out simulations to compare the methods with respect to power when the 

marker locus MAF = 0.2. The relative performance of the methods remain similar to when 

the MAF = 0.1. While studying the selection efficiency for different methods, we also 

considered a standardized LD of 0.8 between the QTL and marker locus and found the 

relative performance of the methods to be similar to when the LD is 0.95.

A-LASSO was implemented based on the likelihood underlying BAMP that assumes HWE 

conditional on the phenotype vector. A simulation study evaluating the possible effects of 

this assumption on the accuracy of the selection of the non-null traits is included in 

“Supplementary materials” in the section titled “Effects of deviation from HWE on the 

selection accuracy”. The results show that the effect is negligible for weakly correlated 

traits. Otherwise, the assumption may lead to a 1%–5% decrease in the specificity while 

increasing the sensitivity by 1%–4%. In the real application, 5 out of the 19 top hits deviate 

from HWE at a level of significance 0.05; but when increasing the level of significance to 

0.001 none of the 19 hits deviated from HWE (Table 5).

The relative performance of different methods also remain similar regardless of the type and 

distribution of phenotypes, (e.g., continuous traits having normal and chi-square distribution, 

and binary phenotypes as considered in the simulation study). However, it is difficult to 

know in general how a particular method will perform for a non-normal phenotype 

compared to a normally distributed phenotype. For example, Guo et al. [2015] showed that 

MultiPhen loses power when phenotypes have non-normal distribution compared to 

normally distributed traits.

While implementing ASSET for continuous phenotypes, the distribution of the traits needs 

to be ascertained to calculate the correlation between  using the strategy outlined in the 

appendix. One can also apply suitable transformations on the phenotypes to induce 

normality. It is straightforward to employ inverse regression for phenotypes with arbitrary 

distributions since they are treated as regressors. ASSET allows for different directions of 

the genetic effects across non-null traits but assumes the genetic effects in a given direction 

to be the same, whereas, the inverse regression allows for heterogeneous genetic effects. 

However, implementing the inverse regression approach requires individual-level genotype 

and phenotype data. In contrast, ASSET and the modified B-H procedure can be employed 
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using both individual-level and summary statistics data. Hence like ASSET, the modified B-

H procedure can also be applied to separate association studies.

While ASSET is a one-step procedure that offers a p-value of association and non-null 

subset of traits simultaneously, the other two approaches are applied to the significant SNPs 

in the second step. Of note, all three strategies – inverse regression based selection/shrinkage 

methods, ASSET, and modified B-H procedure can be applied to significant SNPs found by 

any other method of testing multivariate association.

Note that, we have used the same data to detect the most significant pleiotropic signals and 

then to identify the optimal non-null traits for a selected SNP. Ideally, to implement MBHw, 

while computing the p-value of association between a phenotype and a selected SNP, one 

should condition on the event: {multivariate association p-value for the selected SNP < 5 × 

10−8}. Due to this conditioning, under the null hypothesis of no association, the conditional 

test statistics would no longer follow a multivariate normal distribution, rather a truncated 

multivariate normal distribution with the truncated region: {multivariate association p-value 

< 5 ×10−8}. Permutation based algorithms have to be employed to compute such a 

conditional p-value as its closed form is analytically intractable. However, to compute such a 

conditional p-value even in the order of 10−4, an average of 2×1011 permutations will be 

required, which can become computationally infeasible for a large data (as in our 

application). For a selected SNP, without conditioning, the  across correlated traits should 

follow multivariate normal, because the fact that this SNP has passed through the genome 

wide level of significance for pleiotropic association is not incorporated while assuming the 

joint distribution of . In our simulation studies, we applied the MBH rule on the 

unconditioned univariate p-values of association only in those replications for which the 

multivariate association p-value was < 5 × 10−8. Along with the specificity and sensitivity, 

we also estimated the FDR and TDR (results not provided for brevity) and observed that 

FDR was controlled at the desired levels (0.01, 0.05, or 0.1). This indeed supports our 

viewpoint that, without conditioning,  for a selected SNP do not deviate from multivariate 

normality leading to the control of the FDR at a desired level under dependence structure.

The evidence that a pleiotropic signal obtained by MBHw is true would be stronger as w in 

MBHw becomes smaller; however, this is at the expense of discovering smaller number of 

signals associated with multiple non-null traits (higher specificity at the expense of lower 

sensitivity). In our simulation study, compared to other criteria, MBH0.01 provided 

consistently better level of specificity and good level of sensitivity across various scenarios 

that supports its usefulness for selection. MBH0.01 also showed substantial overlap between 

the genome wide signal of associations detected in the GERA cohort and known 

associations from NHGRI-EBI GWAS catalog. Instead of implementing the MBH rule 

based on the univariate p-values, we also applied it on two other classes of p-values. First, 

we calculate the p-value for individual phenotypes based on the  jointly estimated while 

maximizing the likelihood underlying MultiPhen. These  are obtained from the regression 

of genotype on all phenotypes simultaneously, and hence a  corresponding to a trait should 

be adjusted for the effects of the other traits. Second, each phenotype is regressed on the 

genotype while adjusting for the remaining set of phenotypes as covariates, and a p-value of 
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genetic association is computed. However, when we applied the MBH rule on these two 

classes of p-values we found that they perform poorly, producing substantially lower 

specificity compared to the MBH rule implemented on the univariate p-values of 

association.

MultiPhen is based on the proportional odds logistic regression, and as implemented in R 

sometimes failed to converge. When this occurred, the non-convergence warning said that 

the fitted probabilities were very close to 0 or 1. Nevertheless, MultiPhen failed to coverage 

for a very small proportion of SNPs (0.7%), so this issue did not compromise our objective 

of evaluating different methods.

Note that another model-based approach for pleiotropy analysis proposed by Stephens 

[2013] is based on the posterior evaluation of partitions of phenotypes distributing into three 

categories: direct, indirect, or no association. But, one major limitation of this method is that 

its implementation is mainly restricted to normally distributed phenotypes. Peterson et al. 

[2016] proposed a hierarchical B-H procedure that can keep control over the FDR first 

across the identified SNPs associated with multiple phenotypes and then across the traits 

within the family of selected SNPs. The procedure is mainly based on the univariate p-

values of association between all possible pairs of SNPs and phenotypes. They have also 

suggested a hierarchical procedure in which SNPs are first tested by a fixed genome wide 

level of significance (e.g., Bonferroni correction) and then the B-H rule is applied to detect 

the non-null traits for a selected SNP using a level of FDR adjusted for the selection in the 

first step. We employed their strategy in our application to the GERA cohort, but found no 

SNP to be associated with two or more phenotypes. On the contrary, MBH0.01 picked up 

four significant SNPs associated with two non-null phenotypes that substantially overlap 

with the known associations from the NHGRI-EBI catalog. Hence their procedure seems to 

be too conservative as our data comprises more than 50K individuals.

Of note, due to the technical adaptability of LASSO in high-dimensional regression, in the 

context of a gene-based association analysis for a complex trait, A-LASSO can be applied 

based on the regression (linear or logistic) of the phenotype on the SNP set/gene in order to 

identify an optimal non-null subset of genetic variants underlying a GW signal of gene-level 

association. Similarly, the modified B-H procedure can also be employed for this purpose.

Our study presents an explicit evaluation via simulation and application of multiple different 

strategies for selecting non-null traits underlying a pleiotropic signal. A limitation of our 

study is that none of the criteria for selecting non-null traits condition on initial testing of 

overall signals within the same data (discussed above). The implications of this deserve 

further investigation. When testing for multivariate association, the true subset of associated 

traits is unknown. Including too many irrelevant phenotypes may lead to loss in power due 

to increased degrees of freedom of the test. Since the modified B-H procedure performs 

well, one might first use this to select the most important phenotypes, and then perform a 

multivariate test of association based on only the selected traits. Such an approach allows for 

simultaneous inference on the non-null subset of traits and evidence of pleiotropic 

association like ASSET, but with higher specificity and sensitivity of the selected non-null 

traits. An open problem here is how to adjust for the selection simultaneously in the testing 
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procedure – computing the p-value of pleiotropic association conditioning on the selection 

of non-null traits – to avoid potential increase in the false positive rate.

In summary, our simulations indicate that MultiPhen is overall more powerful than ASSET 
for assessing pleiotropy. The modified B-H procedure, in particular MBH0.01, provides more 

reliable selection of non-null traits compared to the other criteria considered. This procedure 

is computationally easy to implement, and its application to existing cohort data detected 

pleiotropic signals that agree with previously published results. Nevertheless, trait selection 

approaches that simultaneously model multiple phenotypes and genotype are also promising 

and merit further development.

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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 Appendix: An alternative way of estimating correlations between β^s

To estimate the correlation matrix among SNP association statistics for different traits, it is 

sufficient to know how to calculate a non-diagonal element. Thus, we outline how to 

estimate the correlation between  and  under the null hypothesis of no pleiotropic 

association. Let y1, y2 denote the sampled values of two traits Y1, Y2. Suppose Yj is 

regressed on X (with sampled value x) and the likelihood of Yj considered in the regression 

is denoted by f(yj|x, βj), j = 1, 2.

Let  be the score function for βj, and  be its MLE. Let Ijj(βj) be 

Fisher’s information for βj, which is defined as . If log f(yj|x, βj) is 

differentiable twice with respect to βj, then . In standard 

cases, e.g., when the trait is continuous and distributed as normal, or is binary with a logistic 

distribution, Ijj(βj) becomes free of the values of phenotype, and hence is the same as: 

Majumdar et al. Page 19

Genet Epidemiol. Author manuscript; available in PMC 2016 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Using the Taylor’s series expansion of the score function around the true value of βj = βj0, 

one can obtain: . Since, by the definition of the 

MLE, ,

Under the null hypothesis of no global association: β10 = 0, β20 = 0, and hence,

So, . The variance-covariance matrix for 

Sj(βj0), j=1, 2, can be estimated based on the values of the score functions calculated at βj = 

0 for the individuals in the sample. For separate studies of multiple phenotypes, the 

covariance term can be estimated in similar way only using shared individuals across 

studies.
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Figure 1. 
Power comparison among MultiPhen, BAMP, and ASSET for assessing pleiotropy in 

simulation Scenario 1 and 2 (Table 1). Different colors represent different degree of 

phenotypic correlations. rE denotes the residual correlation structure of the phenotypes.
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Figure 2. 
Sensitivity and specificity of different approaches for determining the subset of traits 

underlying pleiotropic association in simulation Scenario 7, 8, 9, and 10 (Table 3). Different 

colors represent different degree of phenotypic correlations. rE denotes the residual 

correlation structure of the phenotypes.

Majumdar et al. Page 23

Genet Epidemiol. Author manuscript; available in PMC 2016 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Majumdar et al. Page 24

Table 1

Description of simulation scenarios in the study comparing power of BAMP, MultiPhen, and ASSET for 

assessing pleiotropy. K is the total number of traits of which K1 are associated. h2 denotes the trait-specific 

heritabilities for K traits. The direction of QTL effects across traits (βs) is also provided.

Scenario K1/K Results choices of trait-specific heritabilities and direction of effects sizes

1 2/4 Figure 1 Traits are continuous and normally distributed
1: h2 = (0.3%, 0.3%, 0, 0); (β1, β2 > 0); (β1 = β2)
2: h2 = (0.2%, 0.4%, 0, 0); (β1, β2 > 0); (β1 ≠ β2)
3: h2 = (0.3%, −0.3%, 0, 0); (β1 > 0, β2 < 0); (β1 = −β2)

2 4/4 Figure 1 Traits are continuous and normally distributed
1: h2 = (0.3%, 0.3%, 0.3%, 0.3%); (β1, β2, β3, β4 > 0); (β1 = β2 = β3 = β4)
2: h2 = (0.2%, 0.4%, 0.2%, 0.4%); (β1, β2, β3, β4 > 0); (β1 = β3 ≠ β2 = β4)
3: h2 = (0.3%, −0.3%, 0.3%, −0.3%); (β1, β3 > 0; β2, β4 < 0); (β1 = −β2 = β3 = −β4)

3 2/4 Figure S1 same as in Scenario 1 with all the continuous traits dichotomized to binary traits

4 4/4 Figure S1 same as in Scenario 2 with all the continuous traits dichotomized to binary traits

5 2/4 Figure S2 same as in Scenario 1 with all the continuous traits distributed as chi-square

6 4/4 Figure S2 same as in Scenario 2 with all the continuous traits distributed as chi-square
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Table 3

Description of the simulation scenarios for evaluating selection performance across the different methods. K is 

the total number of traits of which K1 are associated. h2 denotes the trait-specific heritabilities for K traits. The 

direction of QTL effects across traits (βs) is also provided.

Scenario K1/K Results choices of the trait-specific heritabilities and direction of the QTL effects

7 2/4 Table S1/Figure 2 Traits are continuous and normally distributed.
1: h2 = (0.3%, 0.3%, 0, 0); (β1, β2 > 0); (β1 = β2)
2: h2 = (0.2%, 0.4%, 0, 0); (β1, β2 > 0); (β1 ≠ β2)
3: h2 = (0.3%, −0.3%, 0, 0); (β1 > 0, β2 < 0); (β1 = −β2)

8 2/4 Table S2/Figure 2 same as in Scenario 7 with all the continuous traits dichotomized to binary traits

9 4/8 Table S3/Figure 2 Traits are continuous and normally distributed.
1: h2 = (0.3%, 0.3%, 0.3%, 0.3%, 0, 0, 0, 0); (β1, β2, β3, β4 > 0); (β1 = β2 = β3 = β4)
2: h2 = (0.2%, 0.4%, 0.2%, 0.4%, 0, 0, 0, 0); (β1, β2, β3, β4 > 0); (β1 = β3 ≠ β2 = β4)
3: h2 = (0.3%, −0.3%, 0.3%, −0.3%, 0, 0, 0, 0); (β1, β3 > 0; β2, β4 < 0); (β1 = −β2 = β3 = −β4)

10 4/8 Table S4/Figure 2 same as in Scenario 9 with all the continuous traits dichotomized to binary traits

11 4/8 Table S5 same as in Scenario 9 with all the continuous traits distributed as chi-square

12 3/8 Table S6 Traits are continuous and normally distributed.
1: h2 = (0.3%, 0.3%, 0.3%, 0, 0, 0, 0, 0), (β1, β2, β3 > 0); (β1 = β2 = β3)
2: h2 = (0.2%, 0.4%, 0.2%, 0, 0, 0, 0, 0); (β1, β2, β3 > 0); (β1 = β3 ≠ β2)
3: h2 = (0.3%, −0.3%, 0.3%, 0, 0, 0, 0, 0); (β1, β3 > 0; β2 < 0); (β1 = −β2 = β3)

13 6/8 Table S7 Traits are continuous and normally distributed.
1: h2 = (0.3%, 0.3%, 0.3%, 0.3%, 0.3%, 0.3%, 0, 0), (β1, β2, β3, β4, β5, β6 > 0); (β1=β2=β3=β4=β5=β6)
2: h2 = (0.2%, 0.4%, 0.2%, 0.4%, 0.2%, 0.4%, 0, 0), (β1, β2, β3, β4, β5, β6 > 0); (β1=β3=β5 ≠ 
β2=β4=β6)
3: h2 = (0.3%,−0.3%, 0.3%, −0.3%, 0.3%, −0.3%, 0, 0), (β1, β3, β5 > 0; β2, β4, β6 < 0); (β1 = −β2 = β3 

= −β4 = β5 = −β6)

14 8/20 Table S8 Traits are continuous and normally distributed.
1: h2 = (0.003, 0.003, 0.003, 0.003, 0.003, 0.003, 0.003, 0.003, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); (β1, 
β2, β3, β4, β5, β6, β7, β8 > 0); (β1 = β2 = β3 = β4 = β5 = β6 = β7 = β8);
2: h2 = (0.002, 0.004, 0.002, 0.004, 0.002, 0.004, 0.002, 0.004, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) (β1, β2, 
β3, β4, β5, β6, β7, β8 > 0); (β1 = β3 = β5 = β7 ≠ β2 = β4 = β6 = β8);
3: h2 = (0.003, −0.003, 0.003, −0.003, 0.003, −0.003, 0.003, −0.003, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); 
(β1, β3, β5, β7 > 0; β2, β4, β6, β8 < 0);(β1 = −β2 = β3 = −β4 = β5 = −β6 = β7 = −β8)

15–18 Table S9, S10, S11, 
S12

Simulations in Table S1, S2, S3, S4 are repeated changing the MAF at the marker locus from 0.1 to 
0.2.
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Table 4

Correlation among the selected four phenotypes in GERA cohort.

HYP T2D CVD CAN

HYP 1.00 – – –

T2D 0.28 1.00 – –

CVD 0.33 0.17 1.00 –

CAN 0.15 0.05 0.16 1.00
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Table 6

Key aspects of the different selection criteria considered here.

Selection criteria Explores all subsets Regression type Multivariate or univariate Brief description

AIC Yes Genotype on phenotypes Multivariate Model selection criterion

BIC Yes Genotype on phenotypes Multivariate Model selection criterion

EBIC Yes Genotype on phenotypes Multivariate Model selection criterion

LSA No Genotype on phenotypes Multivariate Adaptive LASSO + AIC

LSB No Genotype on phenotypes Multivariate Adaptive LASSO + BIC

ASSET Yes Phenotypes on genotype Univariate Subset-based fixed effects meta 
analysis

MBHw No Phenotypes on genotype Univariate B-H procedure with little modification
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