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Robotic Surveillance Based on the Meeting Time
of Random Walks

Xiaoming Duan, Mishel George, Rushabh Patel, and Francesco Bullo

Abstract—This paper analyzes the meeting time between a
pair of pursuer and evader performing random walks on
digraphs. The existing bounds on the meeting time usually
work only for certain classes of walks and cannot be used to
formulate optimization problems and design robotic strategies.
First, by analyzing multiple random walks on a common graph
as a single random walk on the Kronecker product graph,
we provide the first closed-form expression for the expected
meeting time in terms of the transition matrices of the moving
agents. This novel expression leads to necessary and sufficient
conditions for the meeting time to be finite and to insightful
graph-theoretic interpretations. Second, based on the closed-
form expression, we setup and study the minimization problem
for the expected capture time for a pursuer/evader pair. We
report theoretical and numerical results on basic case studies
to show the effectiveness of the design.

I. INTRODUCTION

A. Problem description and motivation

In this paper, we examine the meeting time between two
moving agents modeled by discrete-time Markov chains.
This problem is motivated by a pursuer trying to intercept
a moving evader. The meeting time, in the context of this
paper, describes the average time till a first encounter occurs
between the pursuer and the evader given initial positions of
the pursuer and the evader. This notion of two adversarial
mobile agents wherein one of the agents is trying to inter-
cept the other appears under several names: pursuit-evasion
games [30], predator-prey interactions [11], cops and robbers
games [2], [8] and princess-monster games [5]. Our primary
motivation is the design of stochastic surveillance strategies
for quickest detection of the mobile intruder. Single and
multi-agent surveillance strategies appear in environmental
monitoring [28], minimizing emergency vehicle response
times [7], traffic routing and border patrol [24]. More broadly
random walks on networks appear in many areas of research:
they are used to describe effective resistance in electrical net-
works [13], for link-prediction and information propagation
in social networks [6], and in designing search algorithms
on networks [27]. Aside from our proposed application to
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stochastic surveillance, the meeting time has direct appli-
cations to information flow in distributed networks [15],
self-stabilization of tokens [19] and measuring similarity of
objects [20].

B. Literature review
Early interest in meeting times was motivated by applica-

tions to self-stabilizing token management schemes [29]. In a
token management scheme, only one of the many processors
on a distributed network is enabled to change state or perform
a particular task, and this processor is said to possess the
token. If two tokens meet then they collapse into a single
token. Israeli and Jalfon suggest a scheme in which the token
is passed randomly to a neighbor [19]. In a general connected
undirected graph they were able to obtain an exponential
bound for the meeting time of two tokens in terms of the
maximum degree and the diameter of the graph. Coppersmith
et al. [12] improved the bound to be polynomial in the
number of nodes by bounding the meeting time in terms
of the pairwise hitting time from the starting nodes of the
tokens to hidden vertices. Bshouty et al. [9] obtain a bound
on the meeting time of several such tokens in terms of the
meeting time of two tokens. Bounds for meeting times of
two identical independent continuous-time reversible Markov
chains in terms of the pairwise hitting times of the chain are
mentioned in [4].

Several metrics have been used to describe single and
multiple random walks of graphs. One closely related metric
is the hitting time which is the time taken by a single random
walker to travel between nodes of a graph. The hitting time
of a finite irreducible Markov chain first appeared in [21].
Several bounds have been obtained and many closed-form
formulas exist to compute the hitting time for various graph
topologies [18]. The authors in [26] obtain a closed-form
solution for the hitting time of multiple random walkers.
Another related notion is the coalescence time of multiple
random walkers widely studied in the context of voter mod-
els [10]. Two random walks coalesce into one when they
share the same node. Bounds for the coalescence time in
terms of the worst case pairwise hitting times are discussed
in [3]. More recently, Cooper et al. bounded the coalescence
time using the second largest eigenvalue of the transition
matrix [10].

Stochastic vehicle routing strategies have the desirable
property that an intruder cannot predictably plan a path to
avoid surveillance agents. The authors in [25], [16], [14]
use Markov chains to design surveillance strategies. A novel
convex optimization formulation is used to design strategies
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with minimum mean hitting time in [25]. In [1] the mean
hitting time in conjunction with multiple parallel CUSUM
algorithms at various nodes of interest in the graph are used to
describe a policy which ensures quickest average time to the
detection of anomalies. In the strategies mentioned in these
works the intruder/anomaly is assumed to be stationary. The
policies for surveillance derived in this paper are for mobile
intruders modeled by Markov chains.

C. Contributions

Given the above, there are several contributions in this
paper. First, we provide a set of necessary and sufficient
conditions which characterize when the meeting times be-
tween a single pursuer and a single evader is finite for
arbitrary Markov chains. To the best of our knowledge the
bounds in the literature were obtained for meeting times
between ergodic Markov chains where the meeting times
are guaranteed to be finite. We extend the notion to generic
transition matrices as opposed to equal-neighbor models, and
we discuss when the meeting times are finite based on the
existence of walks of equal length to common nodes. Second,
we provide a closed-form solution to the meeting time of
two independent Markov chains by utilizing the Kronecker
product of the transition matrices. Third, we use this closed-
form expression to perform theoretical and simulation studies
and design fast Markov chain strategies for the pursuer to
capture, in minimum expected time, different moving evaders
in different prototypical graphs. In particular, in ring and
complete graphs, we rigourously show a few qualitative
features of the design. For example, being fast for the pursuer
is not always necessary and the mean capture time may be
indifferent to the pursuer’s strategy for certain evaders.

To the best of our knowledge, this paper provides the first
closed-form solutions for the computation of the meeting
time between two agents moving on a graph according to
discrete-time Markov chains. Two closely related references
are as follows: first, a system of equations for computing
meeting times for independent identical random walks on
graphs with irreducible transition matrices, where the tran-
sition matrices are limited to equal-neighbor weights, were
obtained using Laplace transform techniques in [23]. Second,
Kronecker products and vectorization techniques have been
used to compute the Simrank of information networks which
has interpretations in terms of meeting times [22]. In contrast,
we consider absolutely generic transition matrices which
need not be identical.

D. Organization

This paper is organized as follows. In Section II we
introduce notation that is used throughout the paper and
review useful concepts. In Section III we introduce our
formulation for the meeting times of pairs of Markov chains,
and also define sets of pairs of matrices for which finite
meeting times exist. In Section IV we present simulation
results on fast Markov chain strategies for the mobile pursuer.
Finally, we conclude the paper in Section V.

II. NOTATION AND PRELIMINARIES

In this section, we provide an overview of Markov chains
and introduce notation that will be used throughout the paper
to deal with vectors, matrices, and the Kronecker product.

A. Markov chains
A finite-state Markov chain is a sequence of random

variables taking values in the finite set {1, . . . , n} with the
Markov property, i.e., the future state depends only on the
current state.

Let Xt ∈ {1, . . . , n} denote the location of a random
walker at time t ∈ {0, 1, 2, . . . }. A discrete-time Markov
chain is time-homogeneous if P[Xt+1 = j |Xt = i] = pi,j
for all i, j ∈ {1, . . . , n} and t ≥ 0, where P = [pi,j ] ∈ Rn×n

is the transition matrix of the Markov chain. By definition,
each transition matrix P is row-stochastic, i.e., P1n = 1n,
where 1n is a vector of 1’s in dimension n. The period of a
state i is defined as the greatest common divisor of all t in
{t ≥ 1 |P[Xt = i |X0 = i] 6= 0}. A state whose period is
one is referred to as an aperiodic state, and a Markov chain
is aperiodic if all of the states are aperiodic. All states in a
communicating class (defined below) share the same period.
For more details on Markov chains refer [21].

For two states i and j of a Markov chain, state i
communicates with j if P[Xt = j |X0 = i] 6= 0 for
some t > 0. A subset of states X ⊂ {1, . . . , n} forms a
communicating class if for every state i, j ∈ X the states
communicate with each other, i.e., P[Xt = j |X0 = i] 6= 0
and P[Xt′ = i |X0 = j] 6= 0 for some t, t′ ≥ 0. An
absorbing class A of a Markov chain is a communicating
class such that the probability of escaping the set is zero, i.e.,
P[Xt = j |X0 = i] = 0 for all t > 0 for all i ∈ A, j /∈ A. A
communicating class that is not absorbing is a transient class.
In general, a Markov chain will have multiple absorbing
and transient classes. If a Markov chain has only a single
absorbing class then it is referred to as a single absorbing
Markov chain.

If a discrete-time Markov chain with transition matrix P
is single absorbing, then a unique stationary distribution π ∈
Rn
≥0 exists, which satisfies

∑n
i=1 πi = 1 and π>P = π>.

A Markov chain is irreducible if the absorbing class is the
entire set of states {1, . . . , n}. A discrete-time Markov chain
is said to be ergodic if it is irreducible and aperiodic.

B. Kronecher product
For two matrices A ∈ Rn×m and B ∈ Rq×r, the

Kronecker product A⊗B is an nq ×mr matrix given by

A⊗B =


a1,1B . . . a1,mB

...
. . .

...

an,1B
. . . an,mB

 .
A few properties of the Kronecker product and vectorization
of matrices are summarized in the following lemma.

Lemma 1 (Kronecher product and vectorization identities):
Given matrices A,B,C and D of appropriate dimensions, the
following identities hold:
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(i) (A⊗B)(C ⊗D) = (AC)⊗(BD),
(ii) (B>⊗A) vec(C) = vec(ACB).

C. Markov chains on graphs

In this paper, we consider a strongly connected digraph
G = (V, E) with the node set V = {1, . . . , n} and the
edge set E ⊂ V × V . The transition matrix P = [pi,j ] of
a Markov chain on G satisfies that pi,j ≥ 0 if (i, j) ∈ E
and pi,j = 0 otherwise. There exists a walk of length ` from
node i1 to node i`+1 for P if there exists a sequence of nodes
i1, i2, . . . , i`+1 such that pik,ik+1

> 0 for 1 ≤ k ≤ `.
The following lemma shall be used later.
Lemma 2 (Convergence of substochastic matrices [26,

Lemma 2.2]): Let P ∈ Rn×n be a row-substochastic matrix,
then P has spectral radius less than 1 if and only if for every
node with row-sum 1 there exists a walk to a node with
row-sum less than 1.

III. MEETING TIME OF TWO RANDOMLY MOVING AGENTS

In this section, we formulate the meeting time between
a pursuer and an evader moving according to discrete-
time Markov chains. We provide necessary and sufficient
conditions for the finiteness of the meeting times given initial
starting positions of the agents on the graph.

A. The meeting time of two Markov chains

Consider the pursuer and evader performing random walks
on a strongly connected graph G = (V, E) with the node set
V = {1, . . . , n} and E ⊂ V × V . The transition matrices Pp

of the pursuer and Pe of the evader satisfy p
(p)
i,j , p

(e)
i,j ≥ 0 if

(i, j) ∈ E and p(p)
i,j , p

(e)
i,j = 0 if (i, j) /∈ E .

Let X(p)
t , X

(e)
t ∈ {1, . . . , n} be the locations of the two

agents at time t ∈ {0, 1, 2, . . . }, respectively. For any two
starting nodes i and j, the first meeting time from i and j,
denoted by Ti,j , is the first time that two random walkers
meet at a common node when starting from nodes i and j.
Formally,

Ti,j = min{t ≥ 1 | X(p)
t = X

(e)
t , X

(p)
0 = i and X(e)

0 = j}.
Note that the first meeting time can be infinite and it is easy
to construct examples in which the two agents never meet.
Moreover, by definition, if the two agents are at the same
location initially, i.e., i = j, then Ti,j is the first time they
meet again. Let mi,j = E[Ti,j ] be the expected first meeting
time starting from nodes i and j. For the sake of brevity,
we shall refer to the expected first meeting time as just the
meeting time.

Theorem 1 (The meeting time of two Markov chains):
Consider two Markov chains with transition matrices Pp
and Pe defined on a digraph G = (V, E) with the node set
V = {1, . . . , n}. The following statements are equivalent:

(i) for each pair of nodes i, j, the meeting time mi,j from
nodes i and j is finite;

(ii) for each pair of nodes i, j, there exists a node k and a
length ` such that a walk of length ` exists from i to

k for Pp and a walk of length ` exists from j to k for
Pe;

(iii) for each pair of nodes i, j, there exists a walk for
the stochastic matrix Pe⊗Pp from node (i, j) to a
node (k, k) in the Kronecker graph, for some k ∈
{1, . . . , n};

(iv) the sub-stochastic matrix (Pe⊗Pp)E has spectral ra-
dius less than 1 and the vector of meeting times is
given by

vec(M) = (In2 − (Pe⊗Pp)E)−11n2 , (1)

where M = [mi,j ] and E = In2 − diag(vec(In)).

Proof For the nodes i and j, the first meeting time satisfies
the recursive formula

Ti,j =

{
1, w.p.

∑
k p

(p)
i,kp

(e)
j,k,

Tk1,h1 + 1, w.p. p(p)
i,k1

p
(e)
j,h1

, k1 6= h1.

Taking the expectation we have

mi,j =
∑
k

p
(p)
i,kp

(e)
j,k +

∑
k1 6=h1

p
(p)
i,k1

p
(e)
j,h1

(mk1,h1
+ 1),

=
∑
k1

∑
h1

p
(p)
i,k1

p
(e)
j,h1

+
∑

k1 6=h1

p
(p)
i,k1

p
(e)
j,h1

mk1,h1 ,

= 1 +
∑

k1 6=h1

p
(p)
i,k1

p
(e)
j,h1

mk1,h1

= 1 +
∑
k1,h1

p
(p)
i,k1

mk1,h1p
(e)
j,h1
−

n∑
k=1

p
(p)
i,kmk,kp

(e)
j,k.

(2)

We write (2) in matrix form as

M = 1n1>n + Pp(M − diag(M))P>e , (3)

where diag(M) ∈ Rn×n is a diagonal matrix with only the
diagonal elements of M . Rewriting (3) in vector form and
using properties in Lemma 1 gives

vec(M) = 1n2 + (Pe⊗Pp)(vec(M)− vec(diag(M))),

= 1n2 + (Pe⊗Pp)(In2 − diag(vec(In))) vec(M),

= 1n2 + (Pe⊗Pp)E vec(M).

If the matrix In2 − (Pe⊗Pp)E is invertible, then we have a
unique solution to the meeting times.

We shall now show that the finiteness of meeting times as
in (i) is equivalent to the existence of walks of equal length
to common nodes as mentioned in (ii) and in (iii), which
guarantees invertibility of In2 − (Pe⊗Pp)E in (iv).

We first prove that (i) =⇒ (ii) by contrapositive. Suppose
there exists a pair of nodes i and j such that there exists no
walk of equal length to any node in V , then the agents never
meet and thus the meeting time cannot be finite. Therefore,
we have (i) =⇒ (ii).

Next, we show that (ii) ⇐⇒ (iii). The Kronecker product
of the transition matrices gives a joint transition matrix for
the agents over the set of nodes V × V . The entry in the
matrix Pe⊗Pp corresponding to the node (i, j) represents
the states X(p) = i and X(e) = j [31]. The statement (ii)
ensures the existence of a node k for every pair (i, j) which
is reachable by a walk of equal length from i in Pp and j

3



in Pe. This condition is equivalent to the node (k, k) being
reachable from the pair (i, j) on the Kronecker product of
the two Markov chains [17, Proposition 1].

Next, we show that (iii) =⇒ (iv). The stochastic matrix
Pe⊗Pp has a walk from any node (i, j) to some node
(h1, k1) where P[X(e)

1 = k,X
(p)
1 = k |X(e)

0 = h1, X
(p)
0 =

k1] 6= 0 as there exists a walk from (i, j) to (k, k) for some
k. Note that (Pe⊗Pp)E is obtained by setting the columns
of Pe⊗Pp corresponding to nodes of the form (k, k) to 0.
Therefore, the row corresponding to (h1, k1) has row-sum
strictly less than 1. Therefore every node (i, j) has a walk to
a node whose corresponding row-sum of the transition matrix
is less than 1, which implies that the matrix (Pe⊗Pp)E has
spectral radius less than 1 by virtue of Lemma 2. From this
we obtain equation (1) since (iii) guarantees the existence
of (In2 − (Pe⊗Pp)E)−1.

Note that the existence of vec(M) in (iv) gives (iv) =⇒
(i). Thus we have shown that (i) =⇒ (ii) ⇐⇒ (iii) =⇒
(iv) =⇒ (i). Hence the four statements are equivalent.

Remark 1: The finiteness of meeting times is not guaran-
teed even if both Pp and Pe are irreducible, and a simple
example is given in Fig. 1.

1 2

1 2
Pe

Pp

(i)

(ii)

1

Pe

2

Pp

1 2

1,1 2,2

1,2 2,1

Pe ⌦ Pp

Pe ⌦ Pp

1,1 2,2

1,2 2,1

Fig. 1: The pursuer-evader pair in (i) has finite meeting times
as every node has a walk to the common nodes (1, 1) and
(2, 2) in the Kronecker graph. However, in (ii) there exists
no walks to common nodes from (1, 2) and (2, 1).

The necessary and sufficient conditions in Theorem 1 give
the most general set of pairs of matrices for which finite
meeting times exist. Moreover, the closed-form expression
(1) for pairwise meeting times enables one to design the
optimal strategy for the surveillance agent to minimize the
mean meeting time given the strategy of a moving intruder.

B. Mean meeting time and relation to hitting times

In this subsection, we introduce the mean meeting time
of two random walkers. We then show that the mean hitting
time can be treated as a special case of mean meeting time
where a mobile pursuer is faced with a stationary intruder.

Definition 1 (Mean meeting time): Consider two transition
matrices Pp and Pe with the stationary distributions πp and
πe, the mean meeting time M(Pp, Pe) is defined by

M(Pp, Pe) = π>p Mπe = (πe⊗πp)
> vec(M), (4)

where M is meeting time matrix of Pp and Pe .

The mean meeting time (4) can also be written in element-
wise form as follows,

M(Pp, Pe) =
∑
i

∑
j

π(i)
p π(j)

e mi,j ,

where it is clear that the mean meeting time is the weighted
sum of the pairwise meeting times with weights being the
stationary distributions.

Remark 2: In Definition 1, the uniqueness of the stationary
distributions for Pp and Pe is not required. However, in order
to compute the mean meeting time, one has to specify a
stationary distribution consistent with the Markov chain for
Pe and Pp, respectively.

Our next result shows that the hitting times of a Markov
chain are equal to the meeting times of the Markov chain
and a stationary evader.

Corollary 1 (Connections with hitting times and meeting
times with stationary evader): Consider a stationary evader
with distribution πe and a pursuer with an irreducible tran-
sition matrix Pp and stationary distribution πp, then the
following properties hold:

(i) the meeting times between the stationary evader and
the mobile pursuer are equal to the pairwise hitting
times of Pp and are given by

hi,j = mi,j = (ej ⊗ ei)
>(In2 − (In⊗Pp)E)−11n2 ,

(5)
where hi,j is the expected time to travel from node i
to node j for Pp and

(ii) the mean meeting time between the stationary evader
and the pursuer is given by

Mstationary(πe, Pp)

= (πe⊗πp)>(In2 − (In⊗Pp)E)−11n2 . (6)

Proof The conclusion follows by observing that a stationary
evader can be described by the identity transition matrix In.

Remark 3: When the stationary distribution of the evader
πe is equal to the stationary distribution of the pursuer πp,
the expression (6) for the meeting time is also identical to
the mean first passage time, also called Kemeny constant, of
the Markov chain Pp [26, Theorem 2.3(i)].

IV. APPLICATIONS TO ROBOTIC SURVEILLANCE

In this section, we numerically minimize the mean meeting
time for the mobile pursuer given various strategies of the
intruder in various prototypical graphs. The optimization
problem we are interested in is as follows.

Problem 1: (Minimization of the mean meeting time)
Given a strongly connected directed graph G = (V, E), an
irreducible Markov chain Pe and the stationary distributions

4



πe and πp. Find Pp which minimizes the mean meeting time
M(Pp, Pe), i.e., solve the following optimization problem:

minimize
Pp

(πe⊗πp)
> vec(M)

subject to π>p Pp = π>p ,

Pp1n = 1n,

p
(p)
i,j ≥ 0, ∀(i, j) ∈ E,
p
(p)
i,j = 0, ∀(i, j) /∈ E.

The mean meeting time measures in expectation how fast
the pursuer is able to capture the evader when they start
from different initial positions. By minimizing the mean
meeting time, we obtain a fast pursuer given the strategy
of the evader. Problem 1 is a nonconvex optimization prob-
lem with the Kemeny constant minimization problem as a
special case. We conduct the numerical optimization using
the KNITRO/TOMLAB package (with an implementation of
the sequential quadratic programming algorithm), where the
stationary distribution of Pp is set to be the same as that of
Pe, i.e., πp = πe.

A. Evader models
We consider three different strategies for the evader, i.e.,

the random walk (RW), the unpredictable evader modeled by
the Markov chain with maximum entropy rate, and the fast
evader modeled by the Markov chain with minimum Kemeny
constant.

In the random walk model, the evader transitions from
her current location to the neighbors (including the current
location) with the same probability that is equal to the
reciprocal of the out-degrees. The random walk maximizes
the local uncertainty of the movement of the evader.

For the unpredictable evader, given the stationary distribu-
tion πe, the evader solves the following convex optimization
problem.

maximize
Pe

−
n∑

i=1

n∑
j=1

πe(i)p
(e)
i,j log p

(e)
i,j

subject to π>e Pe = π>e ,

Pe1n = 1n,

p
(e)
i,j ≥ 0, ∀(i, j) ∈ E,
p
(e)
i,j = 0, ∀(i, j) /∈ E.

The unpredictable evader uses a Markov chain that has the
maximum entropy rate with a given stationary distribution.
The evader is unpredictable in terms of the sequence of
locations that she visits [16].

For the fast evader, given the stationary distribution πe, the
evader solves the following nonconvex optimization problem.

minimize
Pe

Mstationary(πe, Pe)

subject to π>e Pe = π>e ,

Pe1n = 1n,

p
(e)
i,j ≥ 0, ∀(i, j) ∈ E,
Pe(i, j) = 0, ∀(i, j) /∈ E,

where Mstationary(πe, Pe) is given in (6) with πp = πe. The
fast evader uses a Markov chain that has minimum Kemeny
constant. The evader is fast because the expected hitting time
between pairs of locations on the graph is minimized [25].

B. Analysis and results for different graphs

In this subsection, we consider different graph topology,
i.e., ring, complete and grid, and solve for the best pursuer
strategy Pp numerically. Since Problem 1 is in general
a nonconvex optimization problem, we consider relatively
small graph sizes n = 5 and n = 6 for the ring and
complete, and n = 9 for the grid. In all the computations
where a stationary distribution needs to be specified, we set
the stationary distribution of the agents to be uniform, i.e.,
πp = πe =

1
n1n.

Results for ring graphs: Note that ring graphs possess
Hamiltonian tours, which can be parameterized by Markov
chains as permutation matrices with a uniform stationary
distribution. Therefore, the fast evader on ring graphs follow
Hamiltonian tours. However, depending on the number of
nodes in the graph, the optimal strategies for the pursuer
against the fast evader are different. When n = 5, the
optimal strategy for the pursuer given by the solver is a
Hamiltonian tour in the opposite direction from that of the
evader. This coincides with our intuition because walking in
a different direction for the pursuer should make it faster to
catch the evader. However, it turns out that staying stationary
for the pursuer is equally good as walking in the opposite
direction. This happens because the pursuer may miss the
evader when walking in an opposite direction. We formalize
this observation as follows.

Lemma 3 (Equally good strategies in a ring graph): In
a ring graph with an odd number of nodes, if the evader
adopts a Hamiltonian tour, then staying stationary and the
Hamiltonian tour in the opposite direction are equally good
for a pursuer with uniform stationary distribution.

Proof If the pursuer stays stationary with the distribution
1
n1n, then the mean meeting time is the same as the Kemeny
constant of the chain used by the fast evader, which is equal
to n+1

2 .
On the other hand, suppose the pursuer walks in the

oppositive direction from the evader. By symmetry, we can
fix the initial condition of the evader to be X(e)

0 = 1 and vary
the initial condition of the pursuer X(p)

0 . If X(p)
0 = 1, then

the mean meeting time is n; If X(p)
0 > 1 is odd, then the

mean meeting time is X
(p)
0 −1
2 ; If X(p)

0 is even, then the mean

meeting time is n+X
(p)
0 −1
2 . Therefore, the mean meeting time

can be calculated as

M(Pp, Pe) =
1

n
(

n−1
2∑

i=1

n+ 2i− 1

2
+

n−1
2∑

i=1

i+ n) =
n+ 1

2
,

which is the same as in the case of staying stationary.

When n = 6, the optimal strategy given by the solver is to
stay stationary. Different from the case when the number of
nodes is odd, walking in a different direction from the evader

5



TABLE I: Best Response for Pursuer in Ring Graphs

Number
of nodes

Evader strategy
Fast RW/ Unpredictable

n=5 stationary or P>e Hamiltonian tourn=6 stationary

When the number of nodes is odd, the best strategy for the
pursuer against a fast evader is to either stay stationary or
being fast in the opposite direction; when the number of nodes
is even, staying stationary is the best. When the evader is
unpreditcable/slow, being fast is always good.

is bad because there are certain pairs of initial positions
starting from which the pursuer and the evader never meet,
i.e., the mean meeting time is infinite.

In the ring graph, the RW and unpredictable evader uses
the same chain where the evader moves to the neighbor nodes
of her current position with equal probabilities. The optimal
strategy for the pursuer given by the solver in these cases
is a Hamiltonian tour regardless of the number of nodes in
the graph. We summarize the results for the ring graph in
Table I.

Results for the complete graphs: Same as the ring graphs,
complete graphs also possess Hamiltonian tours, and the fast
evader on complete graphs follow a Hamiltonian tour on the
graph. Therefore, the results for the fast evader in ring graphs
carry over.

On the other hand, in complete graphs, the RW and
unpredictable strategies are the same and equal to 1

n1n1>n .
The following result shows that if the evader adopts RW or
unpredictable strategy in the complete graph, then the mean
meeting time is n regardless of pursuer’s strategy.

Lemma 4 (Strategy insensitivity in a complete graph): If
the evader’s strategy on a complete graph is 1

n1n1>n , then
the mean meeting time between the evader and the pursuer
is always n regardless of pursuer’s strategy.

Proof If Pe =
1
n1n1>n , then by (2) we have

mi,j = 1 +
1

n

n∑
k1=1

p
(p)
i,k1

∑
h1 6=k1

mk1,h1
.

Therefore, the meeting time mi,j does not depend on j. Let
m̃i = mi,j , then we further have

m̃i = 1 +
n− 1

n

n∑
k1=1

p
(p)
i,k1

m̃k1
.

Since the mean meeting time satisfies M(Pp, Pe) =
π>p Mπe = π>p m̃ in this case, we have

M = 1 +
n− 1

n
M.

Therefore we have M = n.

We summarize the results for the complete graph in Table II.
Results for the grid: We plot the optimal strategies for the

pursuer against an RW evader, an unpredictable evader, and
a fast evader in Fig. 2, Fig. 3, and Fig. 4, respectively. In all
these figures, the size of the nodes indicates the magnitude of

TABLE II: Best Response for Pursuer in Complete Graph

Number
of nodes

Evader strategy
Being fast RW/Being unpredictable

n=5 stationary or P>e Arbitraryn=6 stationary
When the evader is fast, similar results as in ring graphs carry over. When

the evader is unpreditcable/slow, any strategy for the purser is optimal.

the stationary distribution, and the transparency of the edges
indicates the magnitude of the transition probability.

From Fig. 2, Fig. 3, we observe that when faced with an
unpredictable and slow evader, the pursuer tends to travel
fast in the graph. Note that the stationary distributions of
the evaders and thus of the pursuers in these two cases
are different (determined by the equal-neighbor model for
RW and 1

n1n for the unpredictable chain). Specifically, the
center node in Fig. 2 has a higher value in the stationary
distribution than that in Fig. 3. Qualitatively, this difference
forces the neighbor nodes of the center node to have positive
transition probabilities to the center in the solution of the
optimal pursuer in Fig. 2, whereas it is not the case in Fig. 3.

(a) RW evader chain (b) Optimal pursuer chain

Fig. 2: Random walk evader and optimal pursuer in grid

(a) Unpredictable evader chain (b) Optimal pursuer chain

Fig. 3: Unpredictable evader and optimal pursuer in grid

In contrast, when the evader moves around fast enough,
the optimal pursuer almost stays stationary and waits to be
hit by the evader as shown in Fig. 4. The above observations
in the grid graph are qualitatively consistent with those in
the ring and complete graphs.

V. CONCLUSIONS

In this paper, we studied the expected meeting time of
a single pursuer and a single evader moving on a graph
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(a) Fast evader chain (b) Optimal pursuer chain

Fig. 4: Fast evader and optimal pursuer in grid

according to discrete-time Markov chains. We presented
novel closed-form expressions for the meeting times and
necessary and sufficient conditions for their finiteness. Then,
we also discussed the connections with the hitting times
of Markov chains. We finally formulated an optimization
problem to obtain the optimal strategy for the pursuer faced
with a mobile evader. Numerical examples were provided to
explain the concepts and illustrate the results.

An interesting extension of the work discussed here would
be to consider walkers moving with travel times similar to
the cases studied in [14] and [25].
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