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Abstract: Dimeric porphyrin molecules have demonstrated great potential as donor materials 

for high performance bulk heterojunction organic solar cells (OSCs). Recently reported 

dimeric porphyrins bridged by ethynylenes exhibited power conversion efficiencies more than 

8%. In this study, we design and synthesize a new conjugated dimeric D-A porphyrin 

ZnP2BT-RH, in which the two porphyrin units are linked by an electron accepting 

benzothiadiazole (BT) unit. The introduction of BT unit enhances the electron delocalization, 

resulting in a lower highest occupied molecular orbital (HOMO) energy level and an 

increased molar extinction coefficient at the near-infrared (NIR) region. The bulk 

heterojunction solar cells with ZnP2BT-RH as the donor material exhibit a high power 

conversion efficiency up to 10% with a low energy loss (Eloss) of only 0.56 eV. The 10% PCE 
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is the highest for porphyrin-based OSCs with a conventional structure, and this Eloss is also the 

smallest among the small molecule-based OSCs with a PCE higher than 10% to date. 

 

1. Introduction 

In addition to the bulk heterojunction (BHJ) organic solar cells (OSCs) based on 

polymers,[1-8] those based on small molecules (SMs) have also attracted much attention due to 

advantages such as defined molecular structures, reproducible synthesis and less batch-to-

batch variations in cell performance.[9-10] Furthermore, the shorter molecular lengths of SMs 

also result in lower entropic barriers and eliminate the chain entanglements,[11] thereby 

increasing the molecular packing and aggregation order in solid states, which can improve the 

inter-chain charge transportation. Therefore, power conversion efficiencies (PCEs) 

comparable to polymer solar cells have been reported for SM solar cells.[12-14]  

The PCE of a solar cell is determined by its open circuit voltage (VOC), short circuit 

current (JSC) and fill factor (FF). In order to improve the JSC, one of the strategies is to reduce 

the bandgap (Eg) of an active material to absorb more light in a broader spectrum range. 

However, the reduction of Eg is often accompanied by a decrease of VOC. The energy loss 

(Eloss), defined as Eloss = Eg− eVOC, is thus one of the important parameters to evaluate the 

performance of a solar cell.[15-17] The Eloss values of inorganic crystalline solar cells are 

usually about 0.34−0.48 eV and those of efficient perovskite solar cells are also less than 0.5 

eV.[18-20] However, most OSCs suffer from high energy losses up to 0.7-0.8 eV, and the 

quantum efficiencies often drop dramatically at low Eloss values less than 0.6 eV.[21-24] 

Therefore, in order to achieve high PCEs, donor materials with low energy losses while 

retaining high JSC values are highly desired.  

Inspired by nature’s photosynthesis which utilizes chlorophylls as strong chromophores, 

porphyrin analogues have been explored as the active materials for high performance organic 

solar cells with PCEs up to 9%.[25-40] Notably, some porphyrin-based OSCs show low energy 
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losses with high JSC values. In order to further increase the JSC values and therefore the PCEs 

of porphyrin-based OSCs, we developed a series of porphyrin dimers, in which porphyrin 

units are bridged by electron-rich ethynylene, diethynylene, diethynylenedithiophene or 

diethynylene-phenylene linkers, since extending the molecular conjugation length in 

oligoporphyrins was reported to be effective in increasing the molar coefficient and extending 

the absorption wavelength.[41-46] However, the highest PCE is only 8% for the dimeric 

porphyrin-based OSCs.[47-49]  

Considering that alternating electron donor−acceptor (D-A) units in molecular structures 

can enhance the π electron delocalization and improve the light extinction coefficient due to 

intramolecular charge transfer,[50-54] herein, we incorporate an electron acceptor unit in 

between the two porphyrin units, and design and synthesize an A1-D-A2-D-A1 type dimeric 

porphyrin ZnP2BT-RH by appending 2-methylene-3-ethylrhodanine (RH) end units (A1) via 

ethynylene linkages to two porphyrin donor units (D) bridged by another electron acceptor 

unit (A2) benzothiadiazole (BT) (Scheme 1). ZnP2BT-RH shows an enhanced molar 

extinction coefficient of the NIR absorption peak than the previously reported porphyrin 

dimers without central electron-withdrawing unit. Furthermore, the electron-withdrawing BT 

unit can down-shift the highest occupied molecular orbital energy level (EHOMO), thus 

increasing the gap between the EHOMO of the donor and the lowest unoccupied molecular 

orbital energy level (ELUMO) of PC71BM. A high VOC of 0.845 V, a JSC of 17.66 mA cm-2, a 

FF of 67.15% and a PCE up to 10.02% are achieved for the corresponding devices with a low 

energy loss (Eloss) of only 0.56 eV. The 10% PCE is the highest for porphyrin-based OSCs 

with a conventional structure, and this Eloss is also the smallest among the small molecule-

based OSCs with a PCE higher than 10% to date. 

 

2. Results and discussion 
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 The synthetic route of the dimeric porphyrin small molecule ZnP2BT-RH is shown in 

Scheme 1 and Scheme S1. ZnP2BT-RH is a black solid with good thermal stability and good 

solubility in common organic solvents such as chloroform (CF), tetrahydrofuran (THF) and 

toluene, and its chemical structure was confirmed by NMR spectroscopy (Figure S1) and 

matrix-assisted laser desorption/ionization time-of light (MALDI-TOF) mass spectrometry 

(Figure S2). The ultraviolet-visible-near-infrared (UV-vis-NIR) absorption spectrum of 

ZnP2BT-RH in THF shows two absorption bands (Figure 1a) at 510 (Soret band) and 761 nm 

(Q band) with almost the same molar extinction coefficient (ε) of 2.24×105 M-1 cm-1 (Figure 

S3). Since the Soret band can be ascribed to the π–π* transition of the conjugated backbone 

and the Q band in the region of 700-850 nm is attributable to the intramolecular charge 

transfer (ICT) band,[55] the increased ε of the Q band indicates a more efficient ICT in 

ZnP2BT-RH than that in CS-DP (Scheme 1). [48] 

Compared with the absorption spectrum in solution, that of ZnP2BT-RH film shows 

significantly red-shifted peaks with an onset at 885 nm, from which the optical band gap 

(Eg(opt)) is calculated to be 1.40 eV. In order to estimate the EHOMO and ELUMO, we measured 

the cyclic voltammetry (CV) of ZnP2BT-RH under an inert atmosphere in acetonitrile using 

tetrabutylammonium hexafluorophosphate (Bu4NPF6, 0.10 M) as the supporting electrolyte, a 

glassy carbon working electrode, a platinum wire counter electrode and an Ag/AgCl reference 

electrode. As shown in Table 1 and Figure S4, the onset oxidation potential (Eox) of ZnP2BT-

RH is 0.77 V vs. Fc/Fc+, from which the EHOMO is estimated to be −5.17 eV from EHOMO = − 

(Eox +4.4) eV, and the ELUMO is -3.77 eV according to ELUMO = EHOMO+ Eg(opt). Compared 

with the EHOMO (-4.96 eV) and ELUMO (-3.74 eV) of CS-DP, the EHOMO is notably reduced 

while the ELUMO is quite similar. 

To evaluate the photovoltaic performance of ZnP2BT-RH-based solar cells, solution-

processed BHJ OSCs were fabricated using ZnP2BT-RH as the electron donor and [6,6]-

phenyl C71-butyric acid methyl ester (PC71BM) as the electron acceptor with a conventional 
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device structure of ITO/PEDOT:PSS/active layer/PNDIT-F3N-Br/Al (ITO: indium tin oxide, 

PEDOT:PSS: poly(styrene sulfonate)-doped poly(ethylene-dioxythiophene), PNDIT-F3N-Br: 

poly[(9,9-bis(3’-((N,N-dimethyl)-N-ethylammonium)propyl)-2,7-fluorene)-alt-5,5’-bis(2,2’-

thiophene)-2,6-naphthalene-1,4,5,8-tetracaboxylic-N,N’-di(2-ethylhexyl)imide]dibromide.[56] 

The current density (J)–voltage (V) curves of the ZnP2BT-RH-based OSCs are shown in 

Figure 2a and Figure S5-S6 with the photovoltaic parameters summarized in Table 2 and 

Table S1-S3. The donor-acceptor weight ratio was optimized to be 1:1.5, and the thickness of 

the active layer was ∼115 nm. The solar cells based on as-cast ZnP2BT-RH/PC71BM films 

shows a PCE of 5.23% with a high Voc of 0.91 V. While thermal annealing (TA) treatment of 

the blend films at 135℃ only slightly improved the efficiency to 5.68%, further chloroform 

solvent vapor annealing (SVA) treatment (an overall TA+SVA treatment) dramatically 

enhanced the efficiency to 9.00% with a slightly reduced VOC of 0.84 V but significantly 

increased JSC and FF values to 16.49 mA cm−2 and 63.87%, respectively. Though the FF is 

smaller than that of CS-DP-based ones (69.80%), this PCE is higher than that of CS-DP-based 

ones (8.29%) thanks to the improved JSC and VOC, which could be ascribed to the deeper 

EHOMO and enhanced ICT in ZnP2BT-RH due to the introduction of the electron withdrawing 

BT unit. 

Surprisingly, different from the early reported OSCs based on monomeric porphyrins 

and other small molecules,[57-59] the performance of the devices under only SVA treatment is 

superior to those treated with TA + SVA. Upon chloroform SVA for 240 s, the PCE reaches 

10.02% with a JSC of 17.66 mA cm−2, a VOC of 0.845 V, and a FF of 67.15%. The 10% PCE is 

the highest for porphyrin-based OSCs with a conventional structure to date. Furthermore, the 

device performance is reproducible, and the efficiencies remain above 9% under different 

SVA times varying from 220 to 280 s. However, further TA after SVA treatment (SVA+TA) 

reduced the device performance significantly with a PCE, a JSC and a FF of only 7.60%, 15.79 

mA cm−2 and 55.97%, respectively. It is noted that the VOC values still remain high in the 
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range of 0.84–0.91 V while the JSC and FF values change dramatically under different 

processing conditions. From the optical bandgap and the VOC values, the energy losses of the 

devices are calculated to be 0.49–0.56 eV. The Eloss of 0.56 eV is the smallest for small-

molecule OSCs with PCE higher than 10% [12-14] and also one of the smallest for organic solar 

cells with PCE over 9% (Table S4).[1, 60-65] One of the reasons why the devices based on 

ZnP2BT-RH show such low energy losses can be the relatively high dielectric constant of 

ZnP2BT-RH (4.07 at 10 kHz) compared to that of previously reported porphyrin derivatives 

DPPEZnP-TEH (3.90 at 10 kHz) and those of other well-known OSC donors (Figure S7) 

because higher dielectric constant can facilitate charge separation and contribute to a lower 

energy loss.[23]. 

The external quantum efficiency (EQE) curves were measured to explore the spectral 

response of the devices fabricated with different post-treatments. As shown in Figure 2b, the 

devices can convert photons into electrons efficiently in the wavelength region of 300-800 nm, 

and lower EQEs tailing to 900 nm. While the as-cast devices show EQE peaks at 470 and 800 

nm with high EQE values of 61% and 46%, respectively, TA treatment at 135℃ slightly 

increases the EQE values between 300 and 800 nm with a marginally blue-shifted photo 

response. The EQE peak in NIR region is at ca. 790 nm with an EQE of 50%. In line with the 

significantly enhanced JSC values, the devices with the further SVA treatment (TA+SVA) 

show improved EQE values in the whole region from 300 to 900 nm, and the highest EQEs 

are observed for SVA-only devices with EQEs over 70% between 410 and 540 nm. Further 

TA treatment (SVA+TA) reduces the photo-to-electric response in the whole region 

compared with the SVA-only devices. Though the ELUMO difference of ZnP2BT-RH and 

PC71BM (ΔELUMO) is smaller than the empirical threshold of 0.3 eV (energy level diagram 

was shown in Figure 1b), the high EQE values imply a low binding energy of the charge 

transfer excitons.  
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To investigate the molecular self-aggregation behaviors, the absorption spectra of the 

blend films upon different post-treatments are measured and shown in Figure 2c. While the 

NIR absorption peak of the as-cast blend film is at 788 nm, that of the TA treated ones is 

blue-shifted to 780 nm with a decreased intensity. On the contrary, SVA, TA+SVA and 

SVA+TA post-treatments red-shift the NIR peaks with enhanced absorption intensities. In 

addition, slight yet noticeable blue-shift can be observed for the SVA+TA samples compared 

to the absorption spectrum of SVA samples, which is similar to the absorption changes when 

the as-cast blend is thermally annealed, indicating the different aggregation behaviors induced 

by TA and SVA. 

We measured the current density-voltage characteristics in the dark under reverse and 

forward biases (Figure S8) to investigate the rectification behaviors of the devices without any 

post-treatment and with SVA and SVA+TA treatments. Compared with the as-cast devices, 

the SVA treated ones show higher current density under forward bias but smaller dark current 

density under reverse bias, leading to an enhanced rectification ratio of 5.04×105 versus 

7.54×104 for as-cast devices at ±2 V. Upon further TA treatment (SVA+TA), the forward 

current densities decrease while the reverse ones increase, reducing the diode performance. 

These results suggest that SVA treatment can suppress leakage current and improve the diode 

behavior but further TA has an adverse effect, possibly due to the overgrowth of ZnP2BT-RH 

crystalline phases and the vertical phase separation changes.[66]  

We also investigated the hole mobilities of ZnP2BT-RH:PC71BM blend films under 

different processing conditions using the device structure of ITO/PEDOT:PSS/ZnP2BT-

RH:PC71BM/MoO3/Ag by the SCLC (space-charge limited current) method. As shown in 

Figure S9 and listed in Table S5, the as-cast blend only shows a mobility of 1.21×10−5 cm2 

V−1 s−1, and the TA treated blend shows a similar mobility of 1.43×10−5 cm2 V−1 s−1. However, 

the TA+SVA and SVA treated ZnP2BT-RH:PC71BM blend layers show mobilities up to 

3.40×10−4 and 4.94×10−4 cm2 V−1 s−1, respectively, more than one order of magnitude higher 
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than these without SVA treatment. These values are also higher than that of CS-DP-based 

devices under TA+SVA treatments (1.44 × 10−4 cm2 V−1 s−1), indicating better charge 

transport in ZnP2BT-RH-based devices. In line with the FF changes, further TA treatment of 

the SVA-treated film (SVA+TA) reduced the hole mobility to 1.08×10−4 cm2 V−1 s−1.   

To gain insight into exciton dissociation and charge generation of ZnP2BT-RH based 

solar cells under different processing conditions, we further investigated the relationships 

between the photocurrent density (Jph) and the effective voltage (Veff) of the cells (Figure 2d). 

Jph and Veff are defined by the equations of Jph=JL−JD and Veff=Vo−Va, where JL and JD are the 

current densities under illumination and in the dark, respectively, and Vo is the voltage at Jph= 

0 and Va is the applied voltage.[67] As shown in Figure 2d, Jph values of the devices processed 

with TA+SVA and SVA are markedly higher and almost saturated (Jsat) at relatively lower 

Veff, indicating more efficient exciton dissociation and carrier collection. On the other hand, 

Jph values of the as-cast and TA treated devices are still not saturated even when Veff is up to 5 

V, an indication of severe charge combination. It is generally assumed that all the photo-

generated excitons are dissociated into free charge carriers when the Veff is high enough. 

Therefore, the saturation current (Jsat) only depends on the maximum exciton generation rate 

(Gmax) calculated based on Jsat=qLGmax, where q is the elementary charge and L is the 

thickness of the active layer.[39, 68] The devices processed with SVA show a higher maximum 

exciton Gmax of 1.05 × 1028 m–3 s–1 (Jsat=183.9 A m-2) than that of the devices processed with 

TA+SVA (Gmax is 1.01 × 1028 m–3 s–1 at a Jsat of 178.1 A m-2). The increased Gmax indicates 

the generation of more excitons, which is consistent with the enhanced absorbance as shown 

in Figure 2c. It should be noted that the small Gmax difference cannot fully account for the big 

PCE difference. Another parameter, P(E,T), assessed by the Jph/Jsat ratio under short circuit 

condition, should be taken into consideration to indicate the charge collection probabilities. 

The P(E,T) values for TA+SVA and SVA devices are 92.5% and 95.2%, respectively. The 

larger Gmax and P(E,T) values for SVA devices correlate well with the higher JSC and FF. For 
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SVA+TA devices, although the Jsat is similar to that of SVA devices, the moderate P(E,T) of 

87.3% suggests inefficient charge separation, leading to a poor FF of 56.19% and a moderate 

PCE of 7.83%. All these results reveal that SVA processing is the most efficient to enhance 

the charge separation, which simultaneous improves JSC and FF. 

The recombination process of these devices was investigated by measuring the JSC at 

various light intensities. In principle, JSC shows a power-law dependence on light intensity for 

organic solar cells, which can be expressed as JSC∝(Plight)S (Plight is the light intensity and S is 

the exponential factor).[69] When all free charges are swept out and collected at the electrodes 

prior to recombination, S value should be 1. Figure 3a shows JSC against light intensity 

relationship of the devices under three different processing conditions, and the S values are 

calculated to be 0.931, 0.982 and 0.948 for the as-cast, SVA and SVA+TA devices, 

respectively. The highest S value of the SVA-treated device suggests the most effective 

suppression of bimolecular combination, leading to the highest JSC and FF. VOC values were 

also measured at various light intensities to get a deeper insight into the recombination 

mechanisms.[70] Figure 3b shows the relationships between the VOC and the Plight of the 

devices under three different processing conditions. Generally, a slope of 1 KBT/q implies that 

bimolecular recombination is the dominating mechanism (KB is Boltzmann’s constant, T is 

temperature and q is elementary charge), while a dependence of Voc on light intensity with a 

slope of 2 KBT/q would be observed for trap-assisted or monomolecular recombination.[71-72] 

The slope of 1.20 KBT/q for the ZnP2BT-RH-based devices without any post-treatment 

implies that the bimolecular recombination is dominant, possibly due to the good mixing of 

ZnP2BT-RH with PC71BM, which provide sufficient interfaces for exciton separation but 

non-ideal crystallinity for efficient charge transport, leading to severe bimolecular 

recombination between the holes and electrons. On the other hand, the SVA and SVA+TA 

treated devices show slopes of 1.45 and 1.54 KBT/q, respectively, suggesting that the 
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bimolecular recombination can be significantly suppressed by SVA treatment, commensurate 

with increased trap-assisted recombination in the devices. 

We also investigated the morphology of ZnP2BT-RH:PC71BM active layers under 

different processing conditions, using atomic force microscopy (AFM), grazing incidence X-

ray diffraction (GIXD) and resonant soft X-ray scattering (RSoXS). As shown in Figure S10, 

the root-means-square (RMS) roughness values of the as-cast and SVA treated films are less 

than 1 nm, and the TA+ SVA treated films show a slightly increased RMS of 1.5 nm. GIXD 

spectra of the pure ZnP2BT-RH films and blend films under different processing conditions 

can reveal more details of the intrinsic ordering structures of the components, as shown in 

Figure 4 and Figure S11. For the pure ZnP2BT-RH samples spuncast from pure THF solution, 

a sharp peak at 0.28 A-1 is observed in the low q region, attributable to lamellar stacking in the 

(100) crystalline direction. The crystalline nature of ZnP2BT-RH becomes less remarkable 

when pyridine was added as additive, as supported by the increased peak width, reduced peak 

intensity at 0.28 A-1 and the disappeared peaks at 0.57 A-1 (200) and 0.85 A-1 (300) from the 

out of plane GIXD pattern. For films treated with TA or SVA, higher order peaks at (200) and 

(300) reappeared, indicating that TA and SVA treatments promote the crystallization. 

Compared to the rest of the samples, the d spacing of the (100) peak of the SVA sample 

decreased slightly, in accordance with a tighter lamellar packing that is conducive to carrier 

transport. Furthermore, apparent π-π stacking peaks at 1.86 A-1 are observed after TA or SVA 

treatment. The similar crystallinity of TA, TA+SVA and SVA+TA treated samples is because 

the porphyrin crystallinity could be fixed after TA treatment and is hard to change even 

though with the following SVA treatment. Therefore, the apparent effect of TA treatment on 

crystallization is greater than that of SVA treatment. Subsequent TA treatment to SVA-treated 

film would endow crystallinity similar to TA-only film. For the blend samples, the as-cast 

films show a weak π-π stacking reflection peak in the in-plane direction, indicating a weak 

edge-on crystal orientation. A few diffusive Bragg rods are also observed in the in-plane 
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direction. These features could be ascribed to the self-assembly of ZnP2BT-RH molecules 

that form some thin layers in the donor domains.[48] The films under thermal annealing or 

solvent vapor annealing show quite broad (100) diffraction at 0.28 A-1 (2.24 nm) in all 

azimuthal angles, suggesting no preferred crystal orientation and the transformation of 

crystals from edge-on to face-on. In addition, a broad diffraction from PC71BM is seen at 1.31 

A-1. Importantly, for films treated with TA, TA+SVA, SVA or SVA+TA, obvious π–π 

stacking peak ascribable to ZnP2BT-RH can be seen at 1.86 A-1 (0.34 nm), which can 

correlate with the improved JSCs. In addition, the peak areas of TA+SVA and SVA treated 

films were slightly larger than those of the TA and SVA+TA treated films, suggesting better 

crystallinity in TA+SVA and SVA treated films and are consistent with their better device 

performances. 

The phase separation of these blend films was studied using resonant soft X-ray 

scattering (RSoXS) by taking advantage of the high optical contrast at the carbon K-edge 

photo energy of 284.2 eV. Shown in Figure 5 are the scattering profiles of the five blend films 

under different processing conditions. The as-cast films show very low scattering intensities 

and no obvious scattering peak, suggesting the lack of suitable phase separation. The inferior 

phase separation may be correlated with the good miscibility between the ZnP2BT-RH and 

PC71BM that is mediated by pyridine, similar to previously reported work that strong 

recombination is commonly observed in well-mixed systems.[27, 72] For the TA-treated blend 

film, a plateaued scattering peak appears at 0.022 A-1, corresponding to a domain size of 28.6 

nm. The low scattering intensity indicates a weak extent of phase separation, and thus, the 

devices based on thermally treated films display only slightly improved JSC comparing to the 

as-cast films. Further SVA to the thermal annealing treated film leads to significantly 

enhanced scattering intensity in the whole q region, and an obvious peak is observed at 0.016 

A-1, corresponding to a distance of 39.2 nm. The significantly increased scattering intensity 

suggests the enhanced phase separation, which correlate well with the large improvement of 
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PCE from 5.68% to 9.00%. For the film treated with SVA only, the phase separated domain 

size (44.8 nm) is a little larger than that based on film treated with TA+SVA, which is 

beneficial for more balanced exciton separation and charge transportation. Furthermore, the 

SVA-only film also has better phase purity. These collective morphological features correlate 

well with the champion devices from solvent vapor annealing. However, for the film treated 

with SVA and further TA, a sharp upturn in the scattering in the very low q region is observed, 

which are consistent with the surface roughness and the device performances. Other factors 

like the diffusion of PC71BM to the layer of PEDOT:PSS and vertical phase separation change 

after further TA treatment, which are not observed in current characterization methods, may 

also contribute to the decrease of performance. 

 

3. Conclusion 

In summary, a dimeric porphyrin small molecule ZnP2BT-RH, in which the two 

porphyrin units are linked with an electron withdrawing unit BT, has been developed for 

OSCs. The introduction of BT unit can not only enhance the π electron delocalization to 

improve the intramolecular charge transfer and therefore the molar extinction coefficient at 

the NIR absorption band but also downshift the HOMO energy level, which are beneficial for 

the VOC enhancement without sacrificing the JSC values for ZnP2BT-RH–based OSCs. SVA 

treatment induces obvious π–π stacking and tightens lamellar packing, which would benefit 

for carrier transportation. Furthermore, suitable phase separation and improved phase purity 

of SVA-treated film greatly enhance exciton separation and carrier collection efficiency and 

reduce the recombination. After optimizing the processing conditions, excellent device 

performances with PCEs up to 10.02% are achieved with a low energy loss of only 0.56 eV, 

which is the smallest to date for small molecule-based OSCs with PCEs more than 10%. The 

10% PCE is the highest for porphyrin-based BHJ solar cells and also ranks one of the highest 

for small molecule solar cells. 
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4. Experimental Section  

Materials. All reagents were purchased from commercial sources (Aldrich, Acros, Energy 

chemical or Suna Tech Inc.) and used as received. Tetrahydrofuran (THF) triethylamine 

(Et3N) and toluene were dried over Na/benzophenoneketyl and freshly distilled prior to use. 

 

ZnP2BT-RH: Compound 1 (187mg, 0.10 mmol) was dissolved in THF (20 mL) and 

triethylamine (10 mL) with compound 2 (0.30 mmol). Then Pd(PPh3)4 (12 mg, 0.01mmol) 

and CuI (2 mg, 0.01mmol) were added. After the mixture was stirred at 60 oC for 48 h under 

argon, the reaction was quenched with saturated brine. After the mixture was extracted with 

chloroform, dried with anhydrous Na2SO4 and concentrated. The residue was column 

chromatographed on silica gel using CH2Cl2 as eluent to give a black solid of ZnP2BT-RH. 

(170 mg, 65% yield).  

 

ZnP2BT-RH: 1HNMR (500 MHz, CDCl3) δ/ppm (ppm): 1HNMR (500 MHz, CDCl3) δ/ppm 

(ppm): 10.66-9.60 (m, 16H), 8.58-7.73 (m, 12H), 7.58 (s, 4H), 6.45(s, 2H), 4.36 (s, 12H), 

3.64-3.27 (m, 8H), 2.45-2.15 (m, 4H), 2.15-1.04 (m, 86H), 0.91 (s, 6H). MALDI−TOF Mass 

(m/z): calculated for C142H150N12O6S11Zn2: 2601.73; found: 2602.25. UV-vis (THF), λmax=508 

nm. 

 

Device Fabrication and Characterization: The methods and procedures in details were 

provided in Supporting Information. 

 

Supporting Information 

Supporting Information is available from the Wiley Online Library or from the author. 
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Scheme 1. The synthetic route of ZnP2BT-RH and chemical structure of CS-DP. 
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Figure 1. a) Normalized UV–vis–NIR absorption spectra of ZnP2BT-RH in solution (THF) 

and in film; b) the energy level diagram of ZnP2BT-RH and PC71BM. 

 

 

Figure 2. a) J-V curves, b) EQE curves of ZnP2BT-RH-based solar cells, c) the absorption 

spectra of ZnP2BT-RH/ PC71BM blend films, and d) photocurrent density versus effective 

voltage curves of the ZnP2BT-RH based solar cells under different processing conditions. 
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Figure 3. Dependence of JSC (a) and VOC (b) on light intensity for the ZnP2BT-RH based 

solar cells under three processing conditions. 

 

 

Figure 4. Grazing incidence X-ray diffraction (GIXD) pattern (a), in plane (b) and out of 

plane (c) line-cut profiles of BHJ thin films. 
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Figure 5. Resonant soft X-ray scattering (RSoXS) of BHJ thin films. 

 

Table 1. The optical and electrochemical data of ZnP2BT-RH 

λmax/nm 

(solution) 

λmax/nm 

(film) 

λonset/nm 

(film) 

Eox 

[V] 

EHOMO
a 

[eV] 

ELUMO
b 

[eV] 

Eg(opt)
 

[eV] 

507, 761 535, 792 885 0.77 −5.17 −3.77 1.40 

a EHOMO = −e (Eox +4.4) V; b ELUMO = EHOMO+ Eg(opt). 

 

Table 2. The photovoltaic parameters of ZnP2BT-RH-based solar cells under different 

process conditions. 

Conditions JSC (mA cm-2) VOC (V) FF (%) PCE(%) 

CAST 13.31±0.21 0.91±0.004 42.34±0.65 5.13±0.23b (5.23)a 

TA 14.15±0.33 0.91±0.005 42.85±0.63 5.52±0.28b (5.68)a 

TA+SVA 16.49±0.24 0.84±0.005 63.87±0.47 8.85±0.23b (9.00)a 

SVA 17.49±0.24 0.84±0.005 66.79±0.55 9.81±0.24b (10.02)a 

SVA+TA 15.79±0.31 0.86±0.010 55.97±0.66 7.60±0.37b (7.83)a 

a The best PCE; b average PCE of 20 devices. 
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A novel dimeric porphyrin small molecule ZnP2BT-RH has been developed for OSC, 

and SVA treatment can induce obvious π–π stacking, suitable phase separation and improved 

phase purity. After optimizing the processing conditions, the devices exhibit a high power 

conversion efficiency up to 10% with a low energy loss (Eloss) of only 0.56 eV. 
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Experiment Details: 

Materials: All reagents were purchased from commercial sources (Aldrich, Acros, Energy 

chemical or Suna Tech Inc.) and used as received. Tetrahydrofuran (THF) triethylamine (Et3N) 

and toluene were dried over Na/benzophenoneketyl and freshly distilled prior to use.  

 

Device Fabrication: The solution-processed BHJ solar cells were fabricated with a 

conventional device structure of Indium tin oxide (ITO)/PEDOT:PSS/ZnP2BT-

RH:PC71BM/PNDIT-F3N-Br/Al, and the fabrication details are as follows: ITO coated glass 

substrates were cleaned prior to device fabrication by sonication in acetone, detergent, 

distilled water, and isopropyl alcohol. After treated with an oxygen plasma for 4 min, 40 nm 

thick poly(styrene sulfonate)-doped poly(ethylene-dioxythiophene) (PEDOT:PSS) (Bayer 

Baytron 4083) layer was spin-casted on the ITO-coated glass substrates at 3000 rpm for 30 s, 

the substrates were subsequently dried at 150 ℃ for 10 min in air and then transferred to a N2-

glovebox. The active layers were prepared from ZnP2BT-RH:PC71BM in mixed solvent of 

chlorobenzene/pyridine (100:1 v/v) with an overall concentration of 30 mg/ml. The weight 

ratio of ZnP2BT-RH to PC71BM is varied from 1:1 to 1:2.5. For thermal annealing treatment, 

the active layer was annealed at different temperature for 5 mins. The optimal thermal 

annealing temperature is 135 ℃. For solvent vapor annealing treatment, the active layer was 

put in the petri dish containing 1 milliliter chloroform for different time. The optimal solvent 

vapor annealing time is 240 seconds. The thicknesses of active layers measured by a 

profilometer were to be about 110nm. The ultra-thin conjugated poly[(9,9-bis(3’-((N,N-

dimethyl)-N-ethylammonium)propyl)-2,7-fluorene)-alt-5,5’-bis(2,2’-thiophene)-2,6-

naphthalene-1,4,5,8-tetracaboxylic-N,N’-di(2-ethylhexyl)imide]dibromide (PNDIT-F3N-Br) 

layer was deposited by spin casting from a 0.03% (w/v) solution in methanol (from 2000 rpm 

for 30 s). Finally, Al (~80 nm) was evaporated with a shadow mask as the top electrode. The 

effective area was measured to be 0.16 cm2. 
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Measurements and Instruments: 1H NMR spectra were recorded using a Bruker Ultrashield 

500 Plus NMR spectrometer. High-resolution matrix-assisted laser desorption/ionization time-

off light (MALDI-TOF) mass spectra were obtained with a Bruker Autoflex MALDITOF 

mass spectrometer. UV-vis spectra of dilute solutions of samples in dichloromethane (THF) 

were recorded at room temperature (ca. 25°C) using a Shimadzu UV-3600 spectrophotometer. 

Solid films for UV-vis spectroscopic analysis were obtained by spin-coating the solutions onto 

a quartz substrate. Cyclic voltammetry (CV) was carried out on a CHI660A electrochemical 

workstation with platinum electrodes at a rate of 50 mV s-1 against an Ag/AgCl reference 

electrode with nitrogen-staturated solution of 0.1 M tetrabutylammonium 

hexafluorophosphate (Bu4NPF6) in acetonitrile (CH3CN).  

PCEs were determined from J-V characteristics measured by a Keithley 2400 source-

measurement unit under AM 1.5G spectrum from a solar simulator (Oriel model 91192). 

Masks made from laser beam cutting technology with a well-defined area of 0.16 cm2 were 

attached to define the effective area for accurate measurement. Solar simulator illumination 

intensity was determined using a monocrystal silicon reference cell (Hamamatsu S1133, with 

KG-5 visible color filter) calibrated by the National Renewable Energy Laboratory (NREL). 

The tapping mode atomic force microscopy (AFM) measurements of the blends’ surface 

morphology were conducted on a NanoScope NS3A system (Digital Instrument). External 

quantum efficiency (EQE) values of the encapsulated devices were measured by using an 

integrated system (Enlitech, Taiwan, China) and a lock-in amplifier with a current 

preamplifier under short-circuit conditions. The devices were illuminated by monochromatic 

light from a 75 W xenon lamp. The light intensity was determined by using a calibrated 

silicon photodiode.  

Grazing incidence X-ray diffraction (GIXD) characterization of the thin films was 

performed at beamline 7.3.3 Lawrence Berkeley National Lab. The scattering signal was 
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recorded on a 2-D detector (Pilatus 1M) with a pixel size of 172 μm. The X-ray energy is 10 

keV. The samples were ~15 mm long in the direction of the beam path, and the detector was 

located at a distance of 300 mm from the sample center (distance calibrated using a silver 

behenet standard). The incidence angle of 0.16° was chosen which gave the optimized signal-

to-background ratio. Thin film samples were prepared on PEDOT:PSS covered silicon wafers 

to match the device conditions. The data was processed and analyzed using Nika software 

package. RSoXS was performed at beamline 11.0.1.2 Lawrence Berkeley National Lab. A 

284.2 eV beamline energy at PC61BM k-edge was chosen to enhance the contrast. Thin films 

of device thickness was flowed and transferred onto Si3N4 substrates, which were then 

mounted onto sample plate. 

 

Capacitance-voltage characteristics: We measured the relative dielectric constants of all the 

materials with a device structure of ITO/PEDOT:PSS/small molecule or polymer films/Al. 

Capacitance-voltage (C-V) measurements were performed using a HP 4192A LCR meter by 

sweeping the voltage from -10V to +10V at room temperature, with ramping rate of 0.5 V/s 

and 30 mV of oscillator levels. Figure S7 shows corresponding dielectric constants of small 

molecule or polymer films with respect to frequency (103 to 5×105 HZ). The dielectric 

constant was calculated from the following equation: 

 

𝜀r is the relative dielectric constant of the material, 𝜀0 is the dielectric constant of free 

space, d is the thickness of the active films, A is the capacitor area (0.16 cm2), C is the 

capacitance of the device. 
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Scheme S1. Synthesis routes for porphyrin unit (1): (i)DMF, POCl3; (ii)DCM, TFA, DDQ; 

(iii) NBS, CHCl3; (iv) Zn(OAc)2, CHCl3/MeOH; (v) TIPSA, Pd(PPh3)2Cl2, CuI, THF/Et3N; 

(vi) Pd(PPh3)4, CuI, THF/Et3N; (vii)TBAF, THF. 

 

We synthesized 2-(2-ethylhexyl)-3-methoxythiophene,[1] 5-bromo-10,20-bis[5-(2-

ethylhexyl)-4-methoxythiophene-2-yl]-porphyrin(2)[2] and 4,7-Diethynyl-

benzo[c][1,2,5]thiadiazole[3] according to literature procedures. 
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5-(2-ethylhexyl)-4-methoxythiophene)-2-carbaldehyde (S1): 

To a stirred solution of (2-(2-ethylhexyl)-3-methoxythiophene) (13.6 g, 59.4 mmol) in 

DMF, POCl3 (13.0 g, 180.0 mmol) was added drop-wise at 0 oC, stirring was warmed 

neutralized by NaOH to neutrality. After extraction with CHCl3, the organic phase was dried 

over MgSO4. The crude product was purified by column chromatography on silica gel using 

ethyl acetate/petroleum ether (v/v = 1/4) as the eluent to give 9.49g pure product in 66.8 yield. 

Yellow oil; 1H NMR (500 MHz, CDCl3) δ (ppm): 9.72 (s, 1H), 7.46 (s, 1H), 3.87 (s, 3H), 

2.69 (d, 2H), 1.56-1.67(m, 1H), 1.21-1.37 (m, 8H), 0.84-0.92 (t, 6H). 

 

5,15-Bis-(5-(2-ethylhexyl)-4-methoxythiophene)-2-yl)-porphyrin (S2):  

A solution of 5-(2-(2-ethylhexyl)-3-methoxythiophene)-2-carbaldehyde (4.74g, 18.66 

mmol) and dipyrromethane (2.72g, 18.66 mmol) in CH2Cl2 (1.5L) was purged with nitrogen 

for 30 min, and then trifluoroacetic acid (TFA) (0.22 mL) was added. The mixture was stirred 

for 12h at room temperature, and then 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) 

(6.90g) was added. After the mixture was stirred at room temperature for an additional 1h, the 

reaction was quenched by triethylamine (5 mL). Then the solvent was removed, and the 

residue was purified by flash column chromatography on silica gel using dichloromethane as 

the eluent. Recrystallization from CH2Cl2/methanol gave S2 as a dark red solid (2.26g, 32%). 

1H NMR(500 MHz, CDCl3) δ (ppm): 10.27 (s, 2H), 9.38 (s, 8H), 7.72 (s, 2H), 4.10 (s, 6H), 

3.20 (d, 4H), 1.83-1.93(m, 2H), 1.40-1.69 (m, 16H), 0.97-1.17 (m, 12H), -2.97 (s, 2H). 

 

5-bromo-10,20-bis[5-(2-ethylhexyl)-4-methoxythiophene-2-yl]-porphyrin (S3): 

Porphyrin S2 (1.26 g, 1.66mmol) were dissolved in 600 mL chloroform and pyridine (5 

mL) and then cooled to 0 oC. To the cold solution, N-bromosuccinimide (295 mg, 1.66 mmol) 

was added and the mixture was stirred at 0 °C for 30 min. Then the reaction was quenched by 

acetone, and the mixture was washed with water and dried over anhydrous Na2SO4. After the 
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solvent was removed, the residue was purified by flash column chromatography on silica gel 

using petroleum ether/dichloromethane (2:1) as the eluent. Recrystallization from 

CH2Cl2/methanol gave S3 as a purple solid (0.90 g, 65%). 1H NMR (500 MHz, CDCl3) δ 

10.11 (s, 1H), 9.73 (d, J = 4.8 Hz, 2H), 9.30-9.19 (m, 6H), 7.68 (s, 2H), 4.09 (s, 6H), 3.00 (dd, 

J = 7.0, 1.0 Hz, 4H), 1.92-1.78 (m, 2H), 1.68-1.37 (m, 6H), 1.04 (dt, J = 35.1, 7.2 Hz, 12H), -

2.92 (s, 2H). 13C NMR (126 MHz, CDCl3) δ 153.1, 136.3, 132.6, 131.7, 125.5, 124.3, 112.9, 

106.1, 104.4, 77.2, 59.4, 41.2, 32.8, 29.9, 29.1, 26.1, 23.2, 14.3, 11.1. 

 

5-bromo-10,20-bis[5-(2-ethylhexyl)-4-methoxythiophene-2-yl]-porphinato)zinc (II) (S4):  

Compound S3 (904 mg, 1.08 mmol) was dissolved in a mixture of 200 ml chloroform. A 

solution of zinc acetate dihydrate (1.01 g, 5.4 mmol) in methanol (20 ml) was added, and the 

reaction mixture was stirred at 60 oC for 4 h. After routine procedures, the solvent was 

evaporated, and the residue was chromatographed on silicagel using CHCl3 as the eluent to 

give S4 as a purple solid (953 mg, 98%).1H NMR (500 MHz, CDCl3) δ 9.97 (s, 1H), δ 9.84 (d, 

J = 4.6 Hz, 2H), 9.31 (d, J = 4.6 Hz, 2H), 9.26-9.18 (m, 4H), 7.52 (s, 2H), 3.90 (s, 6H), 2.87 

(d, J = 6.9 Hz, 4H), 1.73-1.85 (m, 2H), 1.64-1.36 (m, 16H), 1.01 (dt, J = 23.4, 7.3 Hz, 12H). 

13C NMR (126 MHz, CDCl3) δ 147.8, 147.7, 146.3, 145.8, 144.8, 132.6, 128.0, 127.6, 127.2, 

126.4, 119.9, 119.01, 109.1, 104.5, 103.0, 54.6, 36.4, 28.0, 24.90, 24.3, 21.3, 18.4, 14.4, 9.5, 

7.2, 6.3. 

 

5-((Triisopropylsilyl)ethynyl)-10,20-bis[5-(2-ethylhexyl)-4-methoxythiophene-2yl]-

porphinato)zinc (II) (S5): 

The mono-bromo compound S4 (920 mg, 1.02 mmol) was dissolved in THF (40 mL), 

and then triethylamine (20 mL) was added. The mixture was purged with argon for 30 min. 

Then Pd(PPh3)2Cl2 (70 mg, 0.10 mmol), CuI (19 mg, 0.10 mmol), and 

(triisopropylsilyl)acetylene (926 mg, 5.1 mmol) were added. After the mixture was stirred at 
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room temperature for 24 h under Ar, the reaction was quenched with brine. Then the mixture 

was extracted with dichloromethane, dried with anhydrous Na2SO4 and concentrated. Finally, 

the residue was purified on column chromatography to afford S5 as a purple solid (940 mg, 

92% yield). 1H NMR (500 MHz, CDCl3) δ9.98 (s, 1H), 9.84 (d, J = 4.6 Hz, 2H), 9.31 (d, J = 

4.6 Hz, 2H), 9.26-9.18 (m, 4H), 7.52 (s, 2H), 3.90 (s, 6H), 2.87 (d, J = 6.9 Hz, 4H), 1.72-1.84 

(m, 2H), 1.64-1.36 (m, 37H), 1.01 (dt, J = 23.4, 7.3 Hz, 12H). 13C NMR (126 MHz, CDCl3) δ 

147.8, 147.7, 146.3, 145.8, 144.8, 132.6, 128.1, 127.6, 127.2, 126.4, 119.9, 119.1, 109.0, 

104.5, 103.0, 96.5, 93.4, 54.6, 36.4, 28.0, 25.4, 24.9, 24.3, 21.3, 18.4, 14.4, 9.5, 7.2, 6.3. 

 

5-bromo-15-((triisopropylsilyl)ethynyl)-10,20-bis[5-(2-ethylhexyl)-4-methoxythiophene-

2yl]-porphinato)zinc (II) (S6): 

Compound S5 (900 mg, 0.89 mmol) was dissolved in 200 ml of chloroform and 2 ml of 

pyridine. After the reaction mixture was cooled to 0 ˚C, N-bromosuccinimide (240 mg, 1.35 

mmol) was added to the reaction mixture and stirred for 30 min. Then the reaction mixture 

was washed with water, dried over Na2SO4, and concentrated. And the residue was purified 

first by column chromatography on silica gel to give S6 as a dark green solid (689 mg, 71% 

yield). 1H NMR (500 MHz, CDCl3) δ 9.73 (d, J = 4.6 Hz, 2H), 9.62 (d, J = 4.6 Hz, 2H), 9.18 

(d, J = 4.6 Hz, 2H), 9.14 (d, J = 4.7 Hz, 2H), 7.43 (s, 2H), 3.82 (s, 6H), 2.81 (d, J = 6.8 Hz, 

4H), 1.79-1.68 (m, 2H), 1.61-1.35 (m, 37H), 1.00 (dt, J = 16.7, 7.3 Hz, 12H). 13C NMR (126 

MHz, CDCl3) δ 153.3, 152.4, 151.5, 150.9, 149.5, 143.0, 137.2, 133.2, 133.0, 132.9, 131.4, 

124.8, 123.9, 114.7, 109.2, 106.7, 101.4, 98.4, 77.2, 65.4, 59.3, 41.1, 32.7, 29.6, 29.0, 26.0, 

23.2, 19.1, 19.0, 14.3, 11.9, 11.0. 

 

4,7-Bis[(15-[(triisopropylsilyl)ethynyl]-10,20-bis[5-(2-ethylhexyl)-4-methoxythiophene-

2yl]-porphinato)zinc(II)-5-ylethyny]benzo[c][1,2,5]thiadiazole (S7): 
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Compound S6 (675mg, 0.62mmol) and 4,7-Diethynyl-benzo[c][1,2,5]thiadiazole (50 mg, 

0.27 mmol) were dissolved in THF (40 mL) with triethylamine (20 mL). Then Pd2dba3 (24 

mg, 0.03 mmol) and P(PPh3)4 (72 mg, 0.06 mmol) were added. The mixture was stirred at 60 

oC for 48 h under argon protection, then the reaction mixture was poured into water and 

extracted with CHCl3 and washed with brine, dried over Na2SO4, and evaporated. The residue 

was chromatographed on silica gel to isolate the desired product, which was then further 

purified via GPC to afford compound S7 (450mg, 76% yield). 1H NMR (500 MHz, CDCl3) δ 

10.07 (d, J = 4.5 Hz, 4H), 9.67 (d, J = 4.5 Hz, 4H), 9.28 (d, J = 4.5 Hz, 4H), 9.16 (d, J = 4.4 

Hz, 4H), 8.27 (s, 2H), 7.65 (s, 4H), 4.06 (s, 12H), 2.98 (d, J = 6.9 Hz, 8H), 1.89-1.78 (m, 4H), 

1.68-1.35 (m, 74H), 1.02 (dt, J = 31.3, 7.3 Hz, 24H). 13C NMR (126 MHz, CDCl3) δ 155.4, 

152.8, 152.5, 151.1, 150.9, 137.9, 132.9, 132.4, 131.4, 131.1, 124.4, 123.7, 117.6, 115.2, 

109.8, 102.7, 102.4, 100.6, 98.11, 93.6, 77.3, 59.4, 41.2, 32.8, 29.8, 29.1, 26.1, 23.2, 19.1, 

14.3, 11.9, 11.1. 

 

4,7-Bis[(15-ethynyl-10,20-bis[5-(2-ethylhexyl)-4-methoxythiophene-2yl]-

porphinato)zinc(II)-5-ylethyny]benzo[c][1,2,5]thiadiazole (1): 

TBAF (1 M in THF, 0.46 mmol) was added to compound S7 (436mg, 0.20 mmol) in 10 

mL of THF at room temperature. After the mixture was stirred for 15 min, the mixture was 

poured into water, extracted with CHCl3 and dried over Na2SO4, it was allowed to pass 

through a short silica gel column and to afford crude 8, which were used directly for the next 

reaction without further purification. 

 

ZnP2BT-RH: Compound 1 (187mg, 0.10 mmol) was dissolved in THF (20 mL) and 

triethylamine (10 mL) with compound 2 (0.30 mmol). Then Pd(PPh3)4 (12 mg, 0.01mmol) 

and CuI (2 mg, 0.01mmol) were added. After the mixture was stirred at 60 oC for 48 h under 

argon, the reaction was quenched with saturated brine. After the mixture was extracted with 
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chloroform, dried with anhydrous Na2SO4 and concentrated. The residue was column 

chromatographed on silica gel using CH2Cl2 as eluent to give a black solid of ZnP2BT-RH. 

(170 mg, 65% yield).  

 

ZnP2BT-RH: 1HNMR (500 MHz, CDCl3) δ/ppm (ppm): 1HNMR (500 MHz, CDCl3) δ/ppm 

(ppm): 10.66-9.60 (m, 16H), 8.58-7.73 (m, 12H), 7.58 (s, 4H), 6.45(s, 2H), 4.36 (s, 12H), 

3.64-3.27 (m, 8H), 2.45-2.15 (m, 4H), 2.15-1.04 (m, 86H), 0.91 (s, 6H). MALDI−TOF Mass 

(m/z): calculated for C142H150N12O6S11Zn2: 2601.73; found: 2602.25; UV-vis (THF), 

λmax=508 nm. 
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Figure S1. The 1H NMR(500 MHz) spectrum of ZnP2BT-RH in Pyridine-d5. 

 

 

Figure S2. The high-resolution matrix-assisted laser desorption/ionization time-off light 

(MALDI-TOF) mass spectra of ZnP2BT-RH. 
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Figure S3. UV–vis–NIR absorption spectrum of ZnP2BT-RH in solution 

 

 

Figure S4. Cyclic voltammograms of ZnP2BT-RH film in acetonitrile containing 0.10 M 

tetrabutylammonium hexafluorophosphate (Bu4NPF6) as the supporting electrolyte and an 

Ag/AgCl electrode as the reference electrode speed of 50 mV s-1. 
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Figure S5. J-V curves of ZnP2BT-RH:PC71BM (w/w= 1:1.5) based solar cells under different 

SVA time. 

 

 

 
Figure S6. J-V curves of ZnP2BT-RH-based solar cells with various ZnP2BT-RH/PC71BM 

ratios under optimal SVA processing condition. 

 

 
Figure S7. Relative dielectric constant (𝜀r) of small molecule or polymer films with respect to 

frequency from 103 to 5×105 HZ. 
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Figure S8. Dark J-V curves of ZnP2BT-RH-based solar cells under different process 

conditions. 

 

 
Figure S9. J-V characteristics in the dark under different processing conditions based on 

device structures of ITO/PEDOT:PSS/ZnP2BT-RH:PC71BM/MoO3/Ag. 

 

 

Figure S10. AFM height images (a-c) and phase images (a’-c’) of blend films based ZnP2BT-

RH:PC71BM. a) cast, b) SVA and c) TA+SVA. 
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Figure S11. Grazing incidence X-ray diffraction (GIXD) pattern (a), in plane (b) and out of 

plane (c) line-cut profiles of pure films. 

 

Table S1. The photovoltaic parameters of ZnP2BT-RH:PC71BM (w/w= 1:1.5) based solar 

cells under different thermal annealing temperature. 

temperature JSC (mA cm-2) VOC (V) FF (%) PCE(%) 

RT 13.31±0.21 0.91±0.004 42.34±0.65 5.13±0.23(5.23) 

120 13.78±0.22 0.91±0.005 42.32±0.55 5.31±0.19(5.23) 

135 14.15±0.33 0.91±0.005 42.85±0.63 5.52±0.28(5.68) 
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150 13.45±0.32 0.90±0.005 40.75±0.53 4.93±0.20(5.05) 

 

Table S2. The photovoltaic parameters of ZnP2BT-RH:PC71BM (w/w= 1:1.5) based solar 

cells under different SVA time. 

SVA time 

(Seconds) 

JSC (mA cm-2) VOC (V) FF (%) PCE(%) 

0 13.31±0.21 0.91±0.004 42.34±0.65 5.13±0.23(5.23) 

100 14.22±0.22 0.88±0.004 51.72±0.55 6.48±0.21(6.67) 

160 16.14±0.22 0.86±0.005 59.04±0.45 8.20±0.18(8.34) 

220 17.08±0.23 0.84±0.005 64.89±0.56 9.31±0.25(9.51) 

240 17.49±0.24 0.84±0.005 66.79±0.55 9.81±0.24(10.02) 

260 17.16±0.24 0.84±0.005 66.45±0.49 9.58±0.23(9.70) 

280 16.05±0.25 0.84±0.005 67.17±0.45 9.06±0.23(9.22) 

 

Table S3. The photovoltaic parameters of ZnP2BT-RH-based solar cells with various 

ZnP2BT-RH:PC71BM ratio under optimal SVA processing condition. 

weight ratio JSC (mA cm-2) VOC (V) FF (%) PCE(%) 

1:1 17.82±0.24 0.84±0.005 63.53±0.55 9.51±0.18(9.61) 

1:1.5 17.49±0.24 0.84±0.005 66.79±0.55 9.81±0.24(10.02) 

1:2 16.02±0.22 0.84±0.005 67.81±0.44 9.12±0.19(9.24) 

1:2.5 15.82±0.20 0.84±0.005 67.47±0.53 8.97±0.21(9.12) 

 

Table S4. Summary of some high performance organic solar cells and with low energy loss. 

Solar cells PCEs 

Material types 

Bandgap (eV) Eloss (eV) Ref 

Molecules Polymers 

DR3TSBDT:PC71BM 9.95% ✓  1.74 0.83 [4] 

BDTSTNTTR:PC71BM 11.53% ✓  1.50 0.67 [5] 

BIT6F:PC71BM 9.09% ✓  1.79 0.90 [6] 

BTID-2F:PC71BM 11.30% ✓  1.68 0.73 [7] 

PTB7-Th: F8IC 10.90%  ✓ 1.27 0.64 [8] 

PNOz4T:PC71BM 8.90%  ✓ 1.52 0.56 [9] 
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J61:ITIC 9.53%  ✓ 1.57 0.68 [10] 

P3TEA:SF-PDI2 9.50%  ✓ 1.72 0.61 [11] 

PffBX-T3:ITIC-Th 7.40%  ✓ 1.60 0.53 [12] 

PBDTT-SF-TT: PC71BM 9.07%  ✓ 1.59 0.59 [13] 

PffBT4T-2DT:IDTBR 10.00%  ✓ 1.62 0.55 [14] 

ZnP2BT-RH:PC71BM 10.02% ✓  1.40 0.56 This work 

 

Table S5. Hole mobility of ZnP2BT-RH:PC71BM based devices. 

conditions CAST TA TA+SVA SVA SVA+TA 

Value (cm2 V−1 s−1) 1.21×10−5 1.43×10−5 3.40×10−4 4.94×10−4 1.08×10−4 
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