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The human muscular system represents nearly 75% of the body mass and 

encompasses two major muscle forms- striated and smooth. Striated muscle, composed 

broadly of myofibers, accompanying membrane systems, cytoskeletal networks 

together with the metabolic and regulatory machinery, have revealed complexities in 

composition, structure and function. A disruption to any component within this complex
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system of interactions lead to disorders of the muscle, typically characterized by muscle 

fiber loss, reduced motor output and in some cases death. Advent of high-throughput 

technologies coupled with elegant approaches to deciphering data using bioinformatics 

and systems biology, are providing new venues for detailed exploration of mammalian 

muscle.  

This dissertation describes the use of publicly available high-throughput data, in 

conjunction with co-expression network methodologies developed for a comprehensive, 

interpretable systems-level perspective on mechanisms underlying associated muscle 

pathologies. This study begins with the exploration of the temporal transcriptional 

response of skeletal muscle to Botulinum Neurotoxin-A (Botox ®) over a 1-year period, 

in the framework of muscle physiology. Next, utilizing co-expression network analysis, 

putative markers associated with recovery of muscle trophicity are identified, 

furthermore providing an unbiased validation of the response documented earlier. These 

studies represent the first attempt at categorically assessing the whole-transcriptomic 

changes associated with BoNT-A treatment in muscle. 

 The latter half of this research focuses on discerning patho-mechanisms of 

human diseases affecting muscle. Particularly, co-expression network statistics are 

leveraged to identify dysregulated pathways and biomarkers of disease progression, 

underlying duchenne muscular dystrophy. Next, a quantitative framework integrating 

transcriptional, protein interaction, and drug-target data is developed to extract 

functional similarities and mechanisms amongst 20 diseases affecting the muscle. 

Lastly, an approach to differential co-expression analysis using signed and weighted co-
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expression networks is described. This approach is subsequently utilized to assess and 

identify differential mechanisms underlying ischemic and idiopathic dilated 

cardiomyopathy. The analysis and results from the aforementioned studies have enabled 

a deeper understanding of the complex interactions underlying muscle pathologies; 

providing opportunities for drug development and personalized medicine.    
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1.1 Introduction 

The human muscular system represents nearly 75% of the body mass and 

encompasses two major muscle forms- striated and smooth. Striated muscle, composed 

broadly of myofibers, accompanying membrane systems, cytoskeletal networks 

together with the metabolic and regulatory machinery, have revealed complexities in 

composition, structure and function. Precisely coordinated activity of each of these 

components is essential for normal functioning with factors intrinsic (such as genetic, 

epigenetic, and developmental) and environmental (such as hormonal, immune) for 

shaping the destiny of muscular health and associated motor activity.  A disruption to 

any component within this complex system of interactions lead to disorders of the 

muscle, typically characterized by muscle fiber loss, reduced motor output and in some 

cases death [1].  

The striated muscular system is composed of two major muscle types- skeletal 

and cardiac.  While the cardiac (heart) muscle functionally represents a set of self-

stimulating, non-fatiguing muscle cells with an intermediate energy requirement, 

skeletal muscle tissue represents a set of innervated muscle cells that exhibit fatigue 

with high energy requirement. Prior to exploring the extant research in the –omics era, 

for deciphering the complex system of interactions in their pathophysiology, we first 

review the structure and function of muscle.  
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1.2 Structure and function of muscle 

A cursory glance of the complex interactions in striated muscle indicate the 

degree to which striated muscle is designed to accomplish the task of generating 

contraction, force and movement. This muscle type is characterized by the presence of 

repeating functional units called sarcomeres. The sarcomeres visually manifest as a 

series of bands along the muscle fibers, leading to the striated appearance under a 

microscope [2]. Since we focus mainly on the pathophysiology of skeletal muscle in the 

course of this dissertation, we provide a basic overview of its structure and function in 

the following sections. 

Skeletal muscle, a type of striated muscle produces force by interaction of two 

primary proteins within the sarcomere, actin and myosin (Figure 1.1).  Sarcomeres are 

joined end to end, in a series, to form myofibrils; with tight bundles of myofibrils 

forming the multinucleated and long myofibers. The plasma membrane (sarcolemma) 

of the myofibers is surrounded by satellite cells and the basal lamina.  The many nuclei 

of the muscle fiber are located at the periphery of the cell, just under the sarcolemma. 

The regenerative capacity of muscle is attributed to this normally quiescent population 

of intrinsic stem (or satellite) cells [3]. The sarcolemma projects long, finger-like 

processes called T- tubules that ring around every sarcomere and interact with the 

sarcoplasmic reticulum (SR, which serves as Ca2+ store within muscle). About 80% of 

the sarcoplasm is occupied by myofibrils surrounded by mitochondria. Bundles of 

muscle fibers form the fascicles; with bundles of fascicles forming the tissue [2].  
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Each of the above mentioned structures within the muscle tissue are 

encapsulated by the extracellular matrix (ECM) [4]. The epimysium is a dense 

connective tissue layer encapsulating the entire muscle. The perimysium derives from 

the epimysium and surrounds the fascicles. The endomysium, a delicate layer of 

reticular fibers surrounds each myofiber. An extensive network of capillaries and 

nerves, flexible enough to adjust to contraction-relaxation changes, utilize the 

connective tissue to reach individual myofibers [5]. Varying composition of the major 

protein isoforms (actin and myosin) within skeletal muscle gives rise to slow and fast 

muscle fibers that cater to varying metabolic and contractile needs [6]. 

Functionally, the muscle is a specialized tissue for contraction, where energy 

from the hydrolysis of adenosine triphosphate (ATP) is transformed into mechanical 

energy [7]. Upon arrival of an electric impulse a sequence of events are set in motion at 

the neuromuscular junction (NMJ), beginning with the opening of voltage-gated 

calcium channels, releasing Ca2+ ions into the presynaptic cytosol. This triggers the 

release of Acetylcholine (ACh), a Ca2+ regulated neurotransmitter from the synaptic 

vesicles into the postsynaptic cleft at the NMJ. The depolarizing effect upon binding of 

ACh at the NMJ, spreads along the post-synaptic membrane and activates voltage-

sensitive sodium channels in muscle. This in turn triggers the transmission of neural 

excitation past the NMJ terminating at a specialized set of voltage sensors within the 

muscle’s T-tubules, called the dihydropyridine receptors (DHPR) [8]. The DHPR are 

mechanically coupled to ryanodine receptors (RYR) in the SR, which release Ca2+ from 

the SR upon arrival of the impulse. Binding of the released Ca2+ to troponin-C within 
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the sarcomere brings about a conformational change in the troponin-tropomyosin 

complex. This results in the exposure of myosin binding sites on the actin filaments [9]. 

Myosin heads bind and crawl along the length of the actin filament bringing about 

hydrolysis of ATP and contraction of the sarcomere and subsequently of the entire 

muscle [10]. 

1.3 Systems biology  

Physiological and biochemical studies have contributed enormously to the 

understanding of mechanisms underlying muscle function and pathology [11,12]. 

Additionally, epidemiological studies have gleaned further insight into individual 

muscle pathologies leading to better strategies for clinical diagnosis and therapy e.g. 

[13,14]. High-throughput studies of the current era have augmented our understanding 

of muscle pathophysiology with goals for personalized medicine e.g. [15,16]. Recent 

advancements in high throughput technologies, and the availability of public 

repositories hosting the high throughput genomic, proteomic, metabolomic, epigenetic 

and related data such as NCBI [17] and Ensemble [18], have led to improved 

understanding of mechanisms and function underlying various muscle pathologies.  

Systems biology is a field of research that is aimed towards integrating various 

forms of biological data for gaining an overall picture of the complex dynamics 

underlying a biological system (Figure 1.2). In contrast to the traditional reductionist 

approach to studying only an aspect of a biological system, systems biology aims to 

gain a more holistic understanding of the system by integrating  the multi-scale 
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interactions that occur between molecular-, cellular-, organ- level entities and 

environmental factors [19,20]. The past decade has been extremely fruitful in the 

development of new technologies to analyze biological systems at various levels of 

magnification. Ever increasing magnitude of data has necessitated extensive use of 

extant mathematical and computational modelling techniques, in addition to 

development of new techniques providing enhanced biological insights [21]. 

A computational approach extensively adopted by systems biology utilizes 

concepts from graph theory and data based network models to model biological 

interaction. This involves the idea of visualizing the biological system as a highly 

interconnected “network” comprising of several interacting groups of components (e.g. 

genes, protein, metabolites, drugs, diseases) e.g [22,23]. Systems biology is being 

increasingly used in skeletal and cardiac muscle research to aid in biomarker discovery 

and reveal mechanistic details on its pathophysiology [24–30]. 

During the course of this thesis, we rely heavily on concepts from co-expression 

network theory to decipher muscle pathophysiology. In this following section, we 

present an introduction to the basic concepts of network theory and in extension to co-

expression network theory. 

1.4 Network theory  

Network theory offers a quantifiable approach to understanding complex, 

dynamic, biological systems. Networks are graphically represented as a collection of 

nodes and edges [31]. Depending on the context of study, nodes define various 
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molecular/biological entities (e.g genes, proteins, metabolites, drugs, diseases) linked 

by edges that describe the relationship between nodes. For example, Sáez et al [32] 

present an interesting use of network theory as a framework to extract information from 

muscle biopsy images in diagnosis of muscular dystrophies and neurogenic atrophies 

where each myofiber within an image serves as nodes and fiber contacts as links.  

Each of the network elements – nodes and edges have associated properties. 

Directionality, sign and weight are attributes most commonly associated with network 

edges.  Networks that exhibit edge directionality (node A influences node B) are called 

directed networks, while undirected networks exhibit no edge directionality (node A is 

associated with node B and vice versa). A network can either be unweighted – where 

edges carry a weight of 1 or 0 (1 if link present 0 otherwise) or weighted- where the 

edges are associated with a strength. Weighted networks can either be signed (edge 

weights in the interval [-1, 1]) or unsigned (edge weight in the interval [0, 1]).  Nodes, 

likewise are associated with degree- the most elementary characteristic, defined as the 

sum of weights of the edges incident upon a node (entering (in-Degree) + exiting (out-

Degree)); nodes with high degree (hubs) often have been found to potential biomarkers. 

Degree centrality takes discrete values for unweighted networks and continuous values 

for weighted networks.   

Most biological systems are described to be scale-free, that is there exist only 

few highly connected hubs within each network [33,34]. Likewise, high node/local 

clustering co-efficient indicates the ability of nodes to cluster together suggesting a 

strong relationship between groups of nodes. Modularity detection algorithms have been 
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extensively used to identify modules- or subnetworks of highly connected nodes that 

are in close graphical (topological) proximity, suggesting functional association. 

Modularity has been suggested as a fundamental property of many complex systems 

[35].  

Network topology combined with data from epigenetics, proteomics, functional 

enrichment, and/or clinical studies have revealed the dynamics underlying multiple 

disease pathologies. For example, Goh et al [36] extracted a “diseaseome”, a network 

of disease nodes connected by links if disease genes were shared between them (from 

OMIM). Wu et al. [37] proposed a computational network CIPHER- that integrated 

human protein–protein interactions (PPIN), disease phenotype similarities, and known 

gene–phenotype associations to capture the complex relationships between diseases; 

more recently, Zhou et al [38] used a large-scale biomedical literature database to 

construct a symptom-based human disease network to investigate the connection 

between clinical manifestations of diseases and their underlying molecular interactions. 

Suthram et al [39], extended co-expression networks further by integrating protein 

interaction to provide a quantitative framework for analysis of disease-related mRNA 

expression across a wide array of unrelated diseases. 

Co-expression networks are a specialized class of undirected, mostly weighted 

networks where the edge weights are calculated as the co-expression (such as 

correlation, cosine similarity) between the nodes represented in the network. In the 

following section we provide a brief introduction to an approach of co-expression 

networks analysis, which is used extensively as part of this dissertation. 
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1.4.1 Co-expression networks 

Co-expression network theory using transcriptional data is based on the premise 

that co-regulated genes are strongly co-expressed.  Several approaches to constructing 

and analyzing co-expression networks have been proposed. One such heavily utilized 

approach is called weighted gene co-expression network analysis (WGCNA) [40], 

which we utilize in the course of this thesis. WGCNA has been repeatedly shown to 

extract meaningful gene associations, revealing interesting aspects of pathologies using 

transcriptional and other forms of high throughput data e.g [41–43]. Figure 1.3 

summarizes the major steps involved in analysis using WGCNA. Briefly, in WGCNA, 

co-expression network generation is based on the scale free network topology - that is, 

WGCNA constructs the network for several thresholds (soft thresholds, β) and selects 

the threshold which leads to a network with scale-free topology [44]. The edge weight 

in this network reflects how significant the co-expression relationship is between two 

nodes and is calculated as the correlation raised to soft power β. Gene modules are 

ascertained using agglomerative (hierarchical) clustering. In contrast to traditional 

distance measures, WGCNA utilizes a measure of network similarity called topological 

overlap measure [35]. Genes that share a large number of neighbors tend to be more 

strongly connected, with maximal similarity between two genes equaling 1 and a 

minimal similarity of 0.  Modules are defined as branches of the hierarchical tree 

determined using the dynamic branch cutting approach [45].  Network parameters are 

computed similar to other weighted networks.  
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1.5 Introduction to the dissertation 

Striated muscle is a versatile tissue, with science devoting many several decades 

to its understanding. Advent of genomic technologies have allowed for a more 

comprehensive evaluation of the pathophysiology of the muscle under various perturbed 

states. Elucidating functional mechanisms underlying various muscle pathologies 

utilizing genomic data while employing techniques from bioinformatics and systems 

biology is the focus of this research.  

Chapter 2 is a modified presentation of the manuscript published in Muscle and 

Nerve, explores the transcriptional response of skeletal muscle to Botulinum 

Neurotoxin-A (BoNT-A, Botox ®), in the framework of muscle physiology [46]. This 

work provided the first document model for global transcriptional changes occurring 

upon neurotransmitter blockade with BoNT-A in mammalian skeletal muscle. Overall, 

gene expression changes correlated with the clinically accepted BoNT-A time course 

and suggested that the direct action of BoNT-A in skeletal muscle is relatively rapid.  

Chapter 3, is a modified presentation of the manuscript submitted for publication 

to BMC Medical Genomics, provided a co-expression network approach to assessing 

changes associated with cross-sectional temporal data obtained in Chapter 1. Grouping 

of network modules revealed a hierarchical functional response to changes occurring 

during the course of BoNT-A-induced paralysis with an early metabolic response and 

later response affecting ECM. Two highly ranked genes Dclk1 and Ostalpha were 

identified to be potentially associated in the recovery of muscle from BoNT-A induced 
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atrophy. Additionally, our results provide an unbiased, data driven validation of the 

response documented in our previous work (Chapter 2).  

Chapter 4 is a modified presentation of the manuscript published in BMC 

research notes, which utilizes network statistics associated with co-expression networks 

to identify and rank differentially co-expressed gene modules associated with duchenne 

muscular dystrophy [47] . Duchenne muscular dystrophy (DMD) is an X-linked 

recessive disorder with its primary insult on skeletal muscle. Severe muscle wasting, 

chronic inflammation and fibrosis characterize dystrophic muscle. This work illustrated 

the use of network “preservation” statistics in identifying dysregulated pathways 

underlying DMD. Out analysis identified highly specific interactions between known 

markers of disease to be differential, in addition to identification of putative markers 

likely associated with the progression of DMD. 

Chapter 5 is a modified presentation of the manuscript being prepared for 

submission, focused on utilizing a systems approach to elucidation of muscle 

pathologies. Majority of the genomic/genetic studies in skeletal muscle research have 

focused extensively on identifying biomarkers associated with individual diseases. Our 

work provided the first attempt at exploring the interactions between 20 diseases 

affecting human skeletal muscle utilizing an integrated network theoretic approach 

incorporating publicly available transcriptomic, protein interaction and drug target data. 

In contrast to current studies, this form of analysis allowed for a synergistic 

identification of functional similarities and mechanisms likely shared among muscle 

diseases, which may or may not share clinical similarities. 
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Chapter 6 is a modified presentation of the manuscript being prepared for 

submission, focused on defining and utilizing a signed differential co-expression 

networks approach to understanding the mechanisms underlying ischemic and 

idiopathic dilated cardiomyopathy. Our analysis confirmed the functional mechanisms 

underlying the pathogenesis of heart failure. Our results also suggested a differential 

regulation of the targets of SP/KLF family of transcriptional factors between idiopathic 

and ischemic dilated cardiomyopathy. This work provides the first attempt at utilizing 

signed and weighted differential co-expression network approach to discerning disease 

pathology. 

Chapter 7 summarizes the major results and their significance in the context of 

muscle systems biology. 

1.6 Summary 

Epidemiological, clinical, physiological and biochemical studies of the past 

several decades have provided invaluable insights into the working of mammalian 

striated muscle. The advent of high-throughput technologies coupled with elegant 

approaches for deciphering data using bioinformatics and systems approach are 

providing new windows of opportunities for detailed exploration of muscle. In 

particular, use of network theory is providing unique opportunities for integrating 

different sources of data such as genetic, epigenetic, proteomic and drug. This form of 

analysis has lent itself to a better understanding of the complex system of interactions 
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underlying muscle pathologies; providing opportunities for accelerated drug 

development and personalized treatments to improve patient outcome.   
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1.8 Figures 

 

 

Figure 1.1: Skeletal muscle physiology 
This image shows the structural aspects of the skeletal muscle at various levels of 
magnification as discussed in section 1.1 of the text. (© Encyclopaedia Britannica, Inc) 
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Figure 1.2: An overview of systems biology 
This figure captures the essence of the different aspects underlying current biological 
research in the context of increased availability of new high throughput technologies 
and subsequently data and the use of bioinformatics and systems approaches to gaining 
new insights. 
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Figure 1.3: Workflow of weighted gene co-expression network analysis (WGCNA) 
The main steps involved in generating a co-expression network using WGCNA are 
presented here. 
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CHAPTER 2- Systems analysis of transcriptional data provides insights into 

muscle’s biological response to botulinum toxin 
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2.1 Abstract 

Introduction: This study provides global transcriptomic profiling and analysis of 

botulinum toxin A (BoNT-A) treated muscle over a one-year period. Methods: 

Microarray analysis was performed on rat tibialis anterior muscles from 4 groups (n= 

4/group) at 1, 4, 12, and 52 weeks after BoNT-A injection compared with saline-injected 

rats at 12 weeks. Results: Dramatic transcriptional adaptation occurred at 1 week with 

a paradoxical increase in expression of slow and immature isoforms, activation of genes 

in competing pathways of repair and atrophy, impaired mitochondrial biogenesis, and 

increased metal ion imbalance. Adaptations of the basal lamina and fibrillar 

extracellular matrix (ECM) occurred by 4 weeks. The muscle transcriptome returned to 

its unperturbed state 12 weeks after injection. Conclusion: Acute transcriptional 

adaptations resemble denervated muscle with some subtle differences but resolved more 

quickly compared to denervation. Overall gene expression, across time, correlates with 

the generally accepted BoNT-A time course and suggests that the direct action of BoNT-

A in skeletal muscle is relatively rapid. 

2.2 Introduction 

Skeletal muscle contraction is controlled by impulses received from the central 

nervous system via the neuromuscular junction (NMJ). In cases where skeletal muscle 

function is impaired due to altered activity of nerve impulses, for instance, in movement 

disorders such as cerebral palsy (CP), it can be advantageous to suppress muscle 

contraction by reducing NMJ activity. Signal reduction can be achieved by physically 
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decoupling the muscle and nerve by selective dorsal rhizotomy [1] or through the use of 

chemical agents such as neurotoxins [2]. One such neurotoxin in common clinical use 

is Botulinum toxin A (BoNT-A), which has applications ranging from decreasing 

spasticity, tics, and tremors, to managing pain and controlling glandular secretions [3].  

 BoNT-A is one of 7 serotypes produced by Clostridium botulinum that functions 

to reversibly paralyze muscle by affecting the NMJ. BoNT-A reduces presynaptic ACh 

release by specifically cleaving a SNARE protein, SNAP25, required for its exocytosis. 

BoNT-A induced neuromuscular block causes physical and physiological changes to 

the NMJ and skeletal muscle fiber [4, 5]. Previously published experimental studies 

have reported that muscle reinnervation via neuronal sprouting begins immediately 

upon injection, with control slowly reverting back to the parent terminal over time [6, 

7]. It has also been observed that, during this time, skeletal muscle is characterized by 

reduced fiber size, paresis and atrophy [8] until it gradually regains functionality. When 

used as a therapeutic agent in disorders such as CP, BoNT-A is administered by 

intramuscular injection repeatedly over extended periods of time. While clinical 

experience demonstrates that the injection effects last between 3-6 months [9], a 

cohesive temporal picture of there is not yet a clear understanding of underlying muscle 

functional and transcriptional regulation. Although the effects of BoNT-A treatments in 

skeletal muscle have been studied extensively experimentally [4, 7, 10], to the best of 

our knowledge, only a single genomic study was published that focused on certain genes 

associated with BoNT-A action in skeletal muscle [11]. In contrast, we now report a 

complete systems analysis of the BoNT-A treated skeletal muscle transcriptome over a 
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period of 1 year, with the goal of understanding the underlying biological response to 

BoNT-A and the relationship between transcriptional and functional changes associated 

with its reversible paralysis. We analyze our results in the context of “physiological 

families” of skeletal muscle as recently published [12, 13]. The primary goals for this 

study were therefore two-fold: 1) to create a documented model for global 

transcriptional changes that occur with neurotransmitter blockade using BoNT-A in 

skeletal muscle, and 2) to gain insights into the biological basis for adaptation and 

recovery of muscle after BoNT-A treatment.  

2.3 Materials and Methods 

2.3.1 Animals 

 All procedures were performed with the approval of the University of 

California, San Diego Institutional Animal Care and Use Committee. Mature male 

Harlan Sprague Dawley rats (age 3 months, 399 ± 3.05 g) were given a single 100 μl 

injection in the tibialis anterior (TA) muscle containing with either saline or saline with 

6U/kg BoNT-A (BOTOX® (onabotulinum toxin A), Allergan, Irvine, CA, USA). At 1, 

4, 12, and 52 weeks after injection, rats were sacrificed by intracardiac pentobarbital 

sodium (0.5 ml of 390 mg/mL solution) injection. Maximum isometric contraction 

strength was measured on all rats prior to sacrifice, as described previously [14]. After 

sacrifice, bilateral TA muscles were excised, weighed, and snap-frozen in isopentane 

cooled by liquid nitrogen (-159°C). All samples were stored at -80°C for further 

analysis.  
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2.3.2 Hydroxyproline assay 

A modified version of hydroxyproline assay [15] was used to determine collagen 

content. Briefly, muscles were hydrolyzed at 110˚C overnight in hydrochloric acid, then 

methyl red was added, and samples were pH adjusted. Chloramine T and p-

diaminobenzaldehyde were added sequentially to samples, which were then incubated 

for 30 min at 60˚C. A standard curve was determined, and samples were read at 550 nm 

and 558 nm. 

2.3.3 RNA preparation 

 Samples were prepared for 5 groups (n=4/group) that include tissue from TAs 

of BoNT-A injected rats at 1, 4, 12, and 52 weeks after injection. Control tissue was 

obtained from the contralateral TA of saline-injected rats sacrificed at 12 weeks. RNA 

was extracted using a Trizol (Invitrogen, Carlsbad, CA, USA) and RNeasy (Qiagen, 

Valencia, CA, USA) method. Briefly, 30 mg of frozen tissue was mixed with 0.5 ml of 

Trizol and homogenized at 4°C in a Bullet Blender (Next Advance, Inc., Averill Park, 

NY, USA). The homogenate was mixed with 100 μl of chloroform, and samples were 

incubated for 2 minutes at room temperature and spun at 4°C for 15 minutes. The 

aqueous portion was removed and mixed with equal amounts of 70% EtOH. The 

solution was then washed through an RNeasy spin column, incubated for 15 minutes 

with RNAse-free DNAse (Qiagen, Inc., Valencia, CA, USA), washed 3 times, and 

eluted according to the manufacturer’s instructions. Absorbance was measured at 260 

nm to determine RNA concentration, and the 260/280 nm absorbance ratio was 

calculated to determine RNA purity. RNA was reverse-transcribed into cDNA using the 
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SuperScript First-Strand Synthesis System (Life Technologies, Grand Island, NY, 

USA). 

2.3.4 Microarray Data Collection 

 Affymetrix microarrays (RG-230 2.0; Affymetrix, Santa Clara, CA) were used 

for microarray analysis of all samples. The UCSD Cancer Center Microarray Shared 

Resource (San Diego, CA) provided RNA processing and quality control using the GS 

FLX System (Roche Diagnostic Corporation, Basel, Switzerland). 

2.3.5 Real time quantitative PCR 

 Real-time quantitative PCR (qPCR) was conducted to validate the expression 

of 8 genes (Chrna1, Myl3, Sln, Myog, Aqp4, Runx1, Scd1, Atp1b4) utilizing cDNA 

prepared from RNA samples used for microarray analysis. We also quantified the 

expression of MuSK (Muscle specific tyrosine kinase receptor) through qPCR as it was 

undetectable at any time point on our gene chip. RNA was reverse-transcribed into 

cDNA using the SuperScript First-Strand Synthesis System (Life Technologies, Grand 

Island, NY, USA). Samples were diluted 1:100, and qPCR was performed using KAPA 

SYBR FAST Master Mix (Kapa Biosystems, Woburn, MA, USA) and the Eppendorf 

Mastercycler system (Eppendorf, Hamburg, Germany). Primers for Chrna1, Sln, Myl3, 

Myog, Aqp4, Runx1, and GAPDH were designed in Oligo 6.8 (Molecular Biology 

Insights, Cascade, CO, USA; Allele Biotechnology, San Diego, CA, USA) while those 

for Scd1, MuSK, and Atp1b4 were ordered premade from Integrated DNA Technologies, 

Coralville, IA, USA. Primer sequences for these genes are listed in Table 2.1.  
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A temperature gradient was used to determine the optimal reaction temperature 

for each primer based on the DNA melting temperature curve and single product 

production on an agarose gel. Samples were run in triplicate using the following 

protocol: samples were heated to 95°C for 2 minutes, then run through 40 cycles of 

heating at 95°C for 15 seconds, cooling to 55°C for 15 seconds, and heating for 20 

seconds to the optimal primer temperature determined by the temperature gradient 

described above. The triplicate results of each gene from qPCR data were normalized 

with respect to the housekeeping gene GAPDH. Fold change was computed in 

accordance with a previous publication [16]. 

2.3.6 Microarray data preprocessing 

  Expression data were preprocessed using packages available through R [17] and 

Bioconductor [18]. Gene Chip Robust Multiarray Average (GCRMA) was employed 

for normalizing expression using the “gcrma” function available through the GCRMA 

package [19]. All raw .CEL files along with GCRMA-normalized data is available 

through Gene expression omnibus (GEO) [20] accession GSE52350. Outlier samples 

were those with average inter-sample correlation <2 standard deviations (SDs) below 

mean. A single array at 1 week (3.4 SDs below mean) was removed. Annotation files 

for RG 230 2.0 (GPL 1355) were downloaded from GEO. Multiple probes were 

accounted for using the “collapseRows” function in R’s WGCNA library [21]. All 

probes with missing ENTREZ gene identifiers were excluded from this study. Based on 

this processing, we obtained a final reduced dataset containing log2 based normalized 

expression values of 13,751 genes across 19 samples. 
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2.3.7 Differential analysis through pairwise comparisons 

Pairwise comparison between every time point BoNT-An injected vs. saline was 

performed using the Cyber-T [22] Bayes regularized analysis for two-sample unpaired 

data, with a confidence interval of 8. This study utilized control tissue from saline-

injected rats 12 weeks after injection for all pairwise comparisons, in contrast to using 

age-matched controls. (Rats from this time were considered adult animals, 

representative of rats from the other time points in the study.) Previous studies showed 

that skeletal muscle glucose uptake [23] and muscle protein expression [24] changes 

little among rats until they reach more than 18 months of age. Since all our rats were 

within this age group, we considered it acceptable to perform pairwise comparison using 

a control from a single time point. Fold change for each gene was computed as the 

difference in mean log based expression between treated and control samples. Genes 

with a log2 based fold of >1 and a Benjamini Hochberg (BH) P-value of < 0.05 were 

identified as being significantly differentially expressed as listed in Table S2.1 online. 

2.3.8 Enrichment analysis 

  DAVID [25] was used to identify enrichment of genes (categories: 

GO_BP_FAT and KEGG_PATHWAYS) in Table S2.2 online.  

2.4 Results 

2.4.1. Differential gene expression over time 

Gene expression changed dramatically during the experimental time period. 

Table 2.2 summarizes the number of genes that were identified as being differentially 
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regulated at each time. Consistent with previous studies, pairwise analysis revealed that 

muscle is transcriptionally hyperactive, with dramatic transcriptional changes at 1 week 

(compared to 4, 12, and 52 weeks). Visual analysis of differentially regulated genes 

suggests that the bulk of regulation occurs at 1 week, with a large fraction of genes 

(1,718/1,989) being exclusively and significantly regulated at this time (Figure 2.1). As 

expected, the genes regulated at 1 week cover a wide spectrum of functions, such as 

stabilizing the NMJ, sarcomeric contraction, and muscle metabolism. Of the 113 genes 

regulated exclusively at 4 weeks, most were associated with extracellular matrix (ECM) 

and collagen fibril organization (Table S2.2). No genes were regulated significantly 

across the entire course of the study.  

2.4.2 Systems analysis of differential expression in skeletal muscle 

 In contrast to using traditional ontology enrichment to analyze transcriptional 

regulation, we systematically categorized and analyzed differentially expressed genes 

in the novel framework of “physiological networks” specifically identified in skeletal 

muscle from 2 previous studies [12, 13]. Yu et al. [13] identified families of genes based 

on 4 major functions occurring in skeletal muscle: mechanical, metabolic, excitation-

contraction coupling, and signaling, while Smith et al [12] characterized the physiology 

of the muscle into 8 distinct “networks” required for its functioning. Taken together, 

these models have identified gene networks that are crucial for normal skeletal muscle 

function and homeostasis.  

Utilizing these models to guide our analyses, we derived a systems view of the 

regulation underlying skeletal muscle after BoNT-A treatment. Based on our data set, 
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transcriptional activity of muscle can be grouped into 7 networks: 1) neuromuscular 

junction, 2) excitation-contraction coupling system, 3) muscle contraction, 4) energy 

metabolism and mitochondrial biogenesis, 5) extracellular matrix, 6) oxidative stress, 

and 7) muscle atrophy and recovery (Figure 2.2, Table S2.3). Each of these networks 

can be considered in their physiological context in light of the genes measured. 

1. Neuromuscular junction (NMJ) 

Expression changes at the NMJ are illustrated graphically in Figure 2.3. 

Consistent with previous experimental studies, BoNT-A injection leads to rapid 

disruption and repair of the NMJ. Genes encoding postsynaptic proteins were 

detected, including the adult nAChr subunits Chrna1, Chrnd, and Chrne as well as 

the developmental subunit Chrng, which is usually only expressed in humans prior 

to the 33rd week of gestation. The co-receptor for Agrin- Lrp4, Emb, and linker 

protein Rapsn were all upregulated. Chrna1 and Emb were upregulated until 4 

weeks. Two immature isoforms of Na2+ and K+ channels, Scn5a and Kcnn3, were 

upregulated significantly at 1 week. Genes selectively involved with the synaptic 

basal lamina including Lama5, Col4a5, and Nid2 were upregulated only at 4 weeks. 

2. Excitation-contraction coupling (ECC)  

Genes involved in ECC and maintenance of calcium homeostasis such as ion 

pumps and ion channels were differentially regulated, especially at 1 week (Figure 

2.4) along with Cacnb1 (an L-type voltage gated Ca2+ channel) and Fkbp1a (an Ryr1 

binding protein). Sustained and significant upregulation of sarcoplasmic 

Ca2+ handler Sarcolipin (Sln) occurred up to 12 weeks. Jph1 and genes required to 
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modulate cytosolic Ca2+ levels including Pde4d, Calm3, and Camk2a were 

downregulated at 1 week.  

Aqp4 was the most strongly downregulated gene, solely at 1 week, along 

with several other K+ ion channels such as Kcnc1, Kcnab1, Kcnj11, and ion pumps 

such as Atp1b1 and Atp1b.  

3. Muscle contraction and activation 

Muscle contraction requires coordinated effort between the contracting 

sarcomeres and cytoskeletal framework. There is a general downregulation of genes 

associated with activating sarcomere contraction in fast fibers, particularly 1 week 

after injection (Figure 2.4). These include tropomyosin (Tpm3, Tpm2), troponins 

(Tnnc1, Tnnt1, and Tnni1), tropomodulin (Tmod1), and genes that encode proteins 

associated with the sarcomeric contractile apparatus, such as myosin light chains 

(Myl2, Myl3), Myl kinases (Mylk2), Mybpc2, and myosin heavy chains (Myh2, 

Myh7). There was a significant downregulation of the M line structural proteins 

including myomesins (Myom1 and Myom2), Z-disk associated proteins such as 

Actn3, Myot, myozenins (Myoz1, Myoz2), and Ldb3. Cytoskeletal proteins Ank1, 

Sgc, and LARGE were downregulated, whereas cytoskeletal proteins required to 

increase sarcolemmal stability were upregulated (Csrp3, Dysf, Dtna, Flnc, and 

Lmna). We also observed strong upregulation of a muscle-specific calcium handling 

protein, Ankrd1, up to 4 weeks. Upregulation of certain cardiac isoforms such as 

Actc1, Myl6b, and Tnnt2, along with immature isoforms normally absent from adult 

muscle (Myh3 and Myh8) was also observed. Consistent with this observation was 
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the appearance of developmental myosin isoforms in 14% of the 1-week and 1-

month injected muscles, but none in control muscle. 

4. Energy metabolism and mitochondrial biogenesis 

Genes involved in energy metabolism, specifically mitochondrial energy 

production from glycolysis and β-oxidation, were downregulated significantly 1 

week after injection (Figure 2.5). The glucose transporter Glut4/SLc2a4 and 

glycolysis intermediates and enzymes Pgm5, Gys, Pygm, and Pfkfb1 were 

downregulated at 1 week. Other enzymes involved in generation of pyruvates acting 

in the cytosol such as Gpi, Pfkm, Pgam2, Eno3, Pkm2, Pdk4, Ldha, and Ldhb were 

downregulated at 1 week. Enzymes involved in each step of the TCA cycle, 

including Cs, Aco2, Idh2, Idha, Idhb, Idhg, Dlst, Dld, Suclg1, Sdha, Sdhb, Sdhc, 

Sdhd, Fh1, Mdh1, and Mdh2 were downregulated. AMP deaminase (Ampd3), 

required for replenishing TCA cycle intermediates, was upregulated strongly.  

Genes associated with β oxidation and lipid metabolism, such as fatty acid 

transporters Cd36 and Fabp3; Lipin-1 (required to break down triacylglycerol to 

free fatty acids (FFA); ATP-dependent enzymes required to convert FFA into long, 

medium, and short acyl-CoA esters (Acadvl, Acsl6, and Acss1) and their transporters 

(Cpt2); Hadh, Echs1, Echdc1, and Echdc2 were all downregulated. Prolonged 

upregulation of stearoyl-Coenzyme A desaturase 1 (Scd1) was observed for most of 

the study.  Genes of the immediate ATP replenishment system of muscle, Ckmt2 

and Ak1, were downregulated. Major energy/ATP availability sensor, AMPK α/β/γ 
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(Prkaa1, Prkag3), was upregulated. Targets of AMPK, the PPAR cofactors 

Ppargc1a and Ppargc1b, were downregulated.  

Downregulation of solute carriers necessary for metabolism, such as several 

members of the mitochondrial phosphate transporter family (Slc25- Slc25a23 in 

particular) and members of the monocarboxylate transporter subfamily (Slc16- 

Slc16a3 in particular) was observed.  

5. Changes to the extracellular matrix 

There was a general upregulation of ECM genes, particularly at 4 weeks after 

injection. Genes encoding proteins of the basal lamina such as Fbn1, and its 

collagens (Col4a1, Col4a2, Col8a1) were upregulated (Figure 2.6). Genes 

associated with the fibrillar ECM, including Col1a1, Col1a2, Co114a1, Col3a1, 

Col5a1, Col5a2, Col5a3, and Col6a3, and other ECM-associated genes such as 

Lum, Ctgf, Bgn, and Postn were upregulated. Enzymes Lox and Loxl1 that are 

involved in collagen crosslinking were also upregulated. S100a4, a biomarker 

correlated with proliferation of fibroblasts, was upregulated through 12 weeks. 

Increased collagen at the protein level in samples from 4 weeks was also detected 

using the hydroxyproline assay (Figure S2.1) 

6. Oxidative stress response 

The most striking change in expression of genes involved in oxidative stress 

was the global activation of chemoprotective and antioxidant genes, especially at 1 

week, such as the isoforms of glutathione-S transferase (Gst), Gstm1 and Gstt2; 
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Gpx3, Hmox, Nqo1, Aldh3a2, Txn1, and metallothioneins (Mt1a, Mt2a). 

Mitochondrial ROS scavenger Sod2 was downregulated at 1 week.  

7. Muscle atrophy and recovery 

After BoNT-A injection, muscle appears to activate conflicting cellular 

programs, showing simultaneous signs of breakdown and repair. Upregulation of 

myogenic regulatory factors (MRFs) Myod1, Myog, and Myf6 at 1 week with a 

concomitant and drastic increase in 2 potent regulators of cell proliferation, Cdkn1a 

and Cdkn1c, was observed. These, in conjunction with activated Pcna, serve as 

markers of satellite cell activation in skeletal muscle. Signaling pathways active in 

BoNT-A treated skeletal muscle are as follows (Figure 2.7). 

TGF-β pathway- Several genes in the TGF-β pathway, including Tgfb2, Fst, 

Myc, Ltbp1, and early response factors downstream, Junb and Fos, were upregulated 

significantly up to 4 weeks. Small GTPases RhoA and RhoC downstream of the 

TGF-β pathway were upregulated at 1 week with the Mstn receptor Acvr2b, Acvr1, 

and a TF, Atf4 downregulated at 1 week. Interestingly, inhibitors of Tgfb1 such as 

Smad7 and Fkbp1a were upregulated at 1week. 

NF-κB signaling: Several genes including Traf2, Nfkb2, Nfkbie, ubiquitin 

ligases downstream of the NF-κB pathway, Atrogin1/ Fbxo32 MuRF1/Trim63, and 

Casp3, were upregulated at 1 week. Positive activators of the NF-κB pathway, such 

as Ascc2 and Litaf were also upregulated at 1 week. 

MAPK signaling: Several members of the MAPK family were upregulated 

at 1 week, including Mapk1, Mapk3, Map3k1, Map3k14, Map4k4, and Mapk1ip1, 
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as well as its downstream targets such as Eif4e2, which initiates protein translation 

and activation of Myod1. 

Insulin signaling: Though we found no significant regulation of Igf1 in our 

study, several genes of this pathway were upregulated at 1 week, including Igf1r, 

Igfbp5, Shc, and downstream Pik3r4 and Akt1. Regulation of Igfbp5 and Igf2 is 

observed at 4 weeks. Glut4/Slc2a4 and Irs1 were downregulated at 1 week. 

ID signaling pathway: Inhibitor of DNA binding proteins Id1, Id2, Id3, and 

Id4 were upregulated up to 4 weeks. This pathway is believed to play a role in 

repairing muscle. 

TP53/ Cell cycle control: Activation of genes that may play a role in satellite 

cell proliferation and activation of apoptosis, including Cdkn1a, Gadd45a, Pcna, 

and Myc, were upregulated at 1 week. 

VEGF pathway: Genes involved in angiogenesis, including Vegfa, Vegfb, 

angiopoetins (Angpt1, Angpt2), Nos3, Rtn4, and Nrp1 were downregulated at 1 

week. 

 Transcriptional regulation of factors required for proteolytic degradation 

such as Ca2+ dependent calpains (Capn2, Capn3) and lysosomal cathepsins (Ctsl1) 

was seen. Runx1, a transcription factor that promotes anti-atrophic programs, was 

upregulated strongly up to 4 weeks. 

2.4.3 Validation of regulated gene expression using qPCR 

To validate the chip-based expression results, we performed qPCR on a subset 

of 8 relevant genes. Some have been highlighted previously as being active in skeletal 
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muscle during atrophy, specifically after BoNT-A treatment, including Myog, Chrna1, 

Sln, and Myl3. Genes that were shown more recently to be active in atrophy/muscle 

recovery from atrophy include Runx1 [26]. Genes that were ranked highly in our 

analyses with a demonstrated role in skeletal muscle include Scd1 and Aqp4, and 1 with 

no known role in skeletal muscle but highly ranked in our differential analysis was 

Atp1b4. The average fold change of all genes was normalized with respect to GAPDH. 

Average fold change was computed with reference to the saline-injected samples. The 

trends seen in qPCR were similar to those computed through microarray differential 

analysis (Figure 2.8). Quantitative correlation between relative gene expression levels 

from microarray data and qPCR (r2) ranged from 0.74 to 0.99.  

2.4.4 Correlation of gene expression with muscle function post injection 

 Because measurement of isometric contraction was made before and after 

BoNT-A injection on the same set of rats used for gene expression analysis, we are able 

to study the correlation over the time course of this experiment. We correlated isometric 

contraction strength post-injection with genes identified as significantly altered for the 

1 and 4 week time periods (Table S2.2). At 1 week, 72 genes were positively correlated 

while 37 genes were negatively correlated (P<0.05) with contraction strength. These 

same 109 genes showed the opposite weak correlation (albeit non-significantly) on 

isometric force prior to injection (Figure 2.9, left), suggesting that expression levels 

might be functionally significant. Positively correlated genes were enriched for skeletal 

muscle contraction and include genes such as Chrna1, Myl2/3, Tnni1, Tnnc1, Lama5, 

Scn5a, Myoz2 and Tpm3. Since a functional contractile apparatus is required for muscle 
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contraction, it is not surprising that increasing expression of related genes might 

improve contraction strength after BoNT-A injection. At 4 weeks, we observed 15 genes 

correlate positively (P<0.05) and 37 correlate negatively with isometric force (P<0.05; 

Figure 2.9, right) after injection. Negatively correlated genes were overrepresented for 

angiogenesis, cell death and ECM (such as Lox, Col1a1). While it has been shown 

previously that fibrosis and ECM remodeling may lead to abnormal muscle function 

[27], the link between angiogenesis and muscle force is less clear. These data may be 

indicative of still-injured muscle undergoing continued repair and regrowth at 4 weeks.  

2.5 Discussion 

This study is a high-throughput analysis of global expression changes in BoNT-

A treated mammalian skeletal muscle over a period of 1 year (Figure 2.2). Albeit with 

some differences, the transcriptional regulation observed in chemodenervated muscle 

after BoNT-A is similar to that seen in denervation models [28] and neuromuscular 

diseases [29, 30], with suppression of metabolism and muscle contraction, activation of 

atrophic pathways, and increased oxidative stress. We discuss the observed regulation 

below, defining the “early” response, which is more complex, and the “late” response 

to neurotoxin.  

2.5.1 Early response to botulinum toxin injection 

1. Alterations in excitation-contraction coupling and sarcomeric contraction 

Reduced availability of ACh due to BoNT-A impaired exocytosis causes 

increased expression of specific nAChRs, Chrnd, Chrne, embryonic Chrng, and 
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especially Chrna. As previously reported, overexpression of Chrng, ordinarily 

undetectable in adult skeletal muscle, is a compensatory mechanism to create greater 

current flow, as it is localized along the entire length of the fiber [31, 32]. Though 

our microarray did not capture MuSK, a crucial protein for nAChR clustering post 

BoNT-A [10] (upregulation confirmed through qPCR, Figure S2.2), Lrp4 (a co-

receptor for Agrin [33]) and Rapsn (required for clustering nAChRs on the 

postsynaptic membrane [34]) were upregulated significantly. The observed 

upregulation of Lrp4 and Emb may serve as a “retrograde signal” to stabilize the 

NMJ, facilitating formation of terminal sprouts and induction of nAChRs [35, 36]. 

Imbalance in ion flux after BoNT-A was reflected in the regulation of adult 

isoforms of K+ gating channels such as Kcnc1, Kcnab1, and inwardly rectifying 

Kcnj11. Interestingly, strong upregulation of 2 non-adult voltage-gated Na2+/K+ ion 

channels, Scn5a (a cardiac isoform recently implicated in the occurrence of 

fibrillation potentials in denervated muscle fibers [37]) and Kcnn3 (a K+ channel 

implicated in fibrillation and hyperpolarization of denervated muscles [38,39]), 

suggests hyper excitability of BoNT-A injected muscle, analogous to denervated 

models. Reduced electrical activity also implies absence of an active need to 

maintain the Na+/K+ gradient, reducing the utility of certain Na+/K+ ion pumps, such 

as Atp1b1 and Atp1b2 [40].  

The transmission of neural excitation past the NMJ terminates at a 

specialized set of voltage sensors within the muscle T-system called the 

dihydropyridine receptors (DHPR), which are coupled mechanically to ryanodine 
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receptors (RYR) in the sarcoplasmic reticulum (SR). Downregulation of docking 

protein Jph1 (which holds the T-system spatially close to the SR) suggests 

instability in the structural and spatial association between the SR and T-tubules at 

1 week. Upregulation of Cacnb1 of the DHPR, Fkbp1a [41] (essential for 

minimizing Ca2+ leakage) in conjunction with the protracted and sustained 

upregulation of Sln (which inhibits the uptake of Ca2+ back into the SR), suggests 

increased availability of cytoplasmic Ca2+, in contrast to denervated muscle [42].  

Genes that affect free Ca2+ dynamics, such as Calm3, calcineurin 

(Ppp3cb/Ppp3ca), and Camk2a were clearly regulated. Aqp4, a water channel 

expressed at the sarcolemma of fast-twitch skeletal muscle, whose expression is 

altered in dystrophy and atrophy, was the single most strongly downregulated gene. 

Although the exact physiological role of Aqp4 in skeletal muscle has yet to be 

defined, recent research on Aqp4-/- mice suggest it has a role in regulating the 

osmotic balance of muscle, affecting Ca2+ handling [43]. Taken together, these 

suggest a lack of calcium homeostasis and impaired Ca2+ handling in BoNT-A 

treated muscle, especially at 1 week after injection. These results are consistent with 

muscle responding to decreased neural activity. 

The transmitted action potential in normal skeletal muscle is ultimately 

converted to mechanical contraction through physical coupling of several proteins 

within the muscle [13]. As expected, we observe suppression of several adult 

sarcomeric proteins of fast muscle. Downregulation of Myoz1, combined with 

upregulation of Csrp3 [28], suggests a shift in fiber composition at 1 week post 



40 
 

 

BoNT-A treatment. This “mixed” state of expression beyond 1 week is further 

compounded by upregulation of genes expressing cardiac immature fiber isoforms 

such as Actc1, Myl6b, and Tnnt2, with the largest increases occurring in the 

expression of Myh3 and Myh8.  

A disrupted state of the sarcolemma at 1 week is evidenced by 

downregulation of Ank1 [44] (necessary to maintain integrity of network SR) along 

with upregulation of several other cytoskeletal proteins, γFilamin, Sgc, Dmd, Dtna, 

and Dysf. Overall, the observed activation of several mixed muscle isoforms points 

to activation of programs not seen in adult skeletal muscle, reinforcing the general 

idea that muscle injected with BoNT-A reverts to a more “immature” state in order 

to recover contractile function. 

2. Reduced metabolism and impaired mitochondrial biogenesis 

With BoNT-A induced paralysis, there is reduced requirement for ATP 

consumption. Akin to denervation models [28], we observed suppression of most 

genes involved in energy metabolism and production (via both oxidation of lipids 

and glycolysis), specifically at 1 week, which resolve by 4 weeks. As described in 

Results and Figure 2.5, there is clear downregulation of enzymes involved in energy 

production via glycolysis, except for hexokinase (Hk6).  

It has been reported previously in atrophy with preferential loss of fast 

muscle fibers that there is dramatic upregulation of Ampd3 [45] (replenishes TCA-

cycle intermediate substrates). Dramatic and prolonged upregulation of Ampd3 in 

our study not only suggests an impaired TCA cycle, but further supports the idea of 
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a shift in fiber composition. Another observation of BoNT-A treated muscle is 

prolonged upregulation of Scd1 (also validated using qPCR). Deficiency in Scd1, a 

rate-limiting enzyme that catalyzes the synthesis of monounsaturated fatty acid, has 

been correlated with increased oxygen consumption and subsequent β-oxidation in 

skeletal muscle [46,47].Conversely, overexpression studies have shown decreased 

fatty acid oxidation, increased TAG synthesis, monosaturation of muscle fatty acids 

and impaired glucose uptake and insulin signaling pathway [48]. The fact that it is 

upregulated until 12 weeks after injection leads us to speculate that Scd1 may play 

a significant role in reduced energy production (via β-oxidation) in addition to 

playing a role in reducing glucose uptake post BoNT-A injection.  

Suppression of Ckmt2 (outer mitochondrial membrane enzyme required for 

generating ATP from phosphocreatine and ADP) and Ak1 (cytoplasmic enzyme that 

catalyzes generation of ATP from ADP) also point to reduced ATP turnover in 

injected muscle.  

Upregulation of major energy/ATP availability sensors, AMPK α/β/γ 

(Prkaa1, Prkag3), point to reduced availability of ATP at 1 week. However, the 

targets of AMPK, the PPAR cofactors- Ppargc1a and Ppargc1b, known biomarkers 

of mitochondrial biogenesis in skeletal muscle, were downregulated suggesting 

possible stress-induced impairment of mitochondrial biogenesis [49-51].  

3. Increased oxidative stress and metal ion imbalance 

Denervation and immobilization studies have demonstrated repeatedly that 

1 of the causes of atrophy is increased accumulation of reactive oxygen species 
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(ROS) and trace metals in skeletal muscle [52-54]. In that same vein, we observed 

transcriptional activation of several oxidative stress markers implicated in atrophy, 

such as the metallothioneins (Mt1a, Mt2a) [45, 55]. Most striking however, was the 

increase in the various isoforms of glutathione-S transferase including Gstm1 and 

Gstt2 as a compensatory response to increased production of ROS or oxidative 

stress [56]. Interestingly, however, the mitochondrial ROS scavenger superoxide 

dismutase 2 (Sod2) was downregulated and may have been confounded by 

mitochondrial dysfunction.  

 Imbalance of metal ion concentration has been reported previously in 

studies of immobilization and disuse [57]. Zinc ion homeostasis has been linked 

closely to a redox state of cells in various tissues [58]. We observe significant 

upregulation of zinc solute carriers (Slc30a2 and Slc30a4), which are suggested to 

confer a cytoprotective effort by preventing cells from free Zn ion toxicity [59]. 

While the exact physiological role of Zn ion toxicity in chemodenervated muscle is 

not understood fully, we hypothesize that the observed upregulation of these 

transporters in conjunction with increased expression of metallothioneins suggests 

a metal ion imbalance that may contribute to BoNT-A induced atrophy of muscle.  

4. Competing pathways contributing to concomitant atrophy and recovery of 

skeletal muscle 

Atrophy and consequent muscle loss in skeletal muscle can occur through 

activation of the NF-κB signaling pathway (Traf2, Nfkb2, and Nfkbie and positive 

activators Ascc2 and Litaf) along with activation of TGF-β pathway [60]. Loss of 
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muscle mass has been attributed to accelerated proteolytic degradation of the 

contractile apparatus through deployment of factors such as Capn2, Ctsl1, and 

Casp3 [61] and eventual degradation of the fragmented actin-myosin complexes 

through the ubiquitin-proteasomal system. Similar to denervation studies, but in 

contrast to neuromuscular diseases [29, 30] activation of atrophy markers-

Atrogin1/MAFbx (Fbxo32) and Trim63 (MuRF1), 2 muscle-specific ubiquitin 

ligases downstream of the NF-κB pathway is observed following BoNT-A treatment 

[11, 62].   

Several studies have demonstrated the role of TGF-β signaling in atrophying 

skeletal muscle and the powerful role of TGF-β family growth factors such as 

myostatin (Mstn) in regulating muscle size [63]. Though differential regulation of 

Mstn was not observed in our study, follistatin (Fst) [64], a myostatin inhibitor was 

upregulated significantly. This, taken along with the repression of Acvr2b, a 

transmembrane activin receptor of Mstn, points to inhibition of the pro-atrophic 

action of Mstn in injected muscle. Upregulation of early response genes downstream 

of Tgfb1, including Junb and Fos, along with small GTPases RhoA and RhoC and 

its inhibitors (Smad7 and Fkbp1a), further emphasizes the conflicting signaling of 

muscle treated with BoNT-A. In contrast to ATPases such as Atp1b1 or Atp1b2, 

Atp1b4 has been shown to localize to intracellular stores, predominantly the inner 

myonuclear membrane, in perinatal skeletal muscle of placental mammals and to 

regulate TGF- β signaling in skeletal muscle. Though no direct evidence of its 

localization patterns exists, we hypothesize that prolonged upregulation of Atp1b4 
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(validated via qPCR) may be contributing to similar functions in BoNT-A treated 

muscle. 

Insulin-like growth factors (IGFs) and their role in upregulation of nAChRs, 

muscle growth [69, 70], and their metabolic effects, have been studied extensively. 

The observed regulation of IGF binding proteins, such as Igfbp5 (inhibits action of 

Igf1 by sequestering it to ECM [67] and suppresses nerve sprouting [7]) is consistent 

with previous studies of BoNT-A treatment [11].  Though we found no significant 

regulation of Igf1, upregulation of its receptor, Igf1r, may compensate for the 

decreased availability of Igf1. Activation of Igf1r results in phosphorylation of 

insulin receptor substrates (Irs1) and regulation of several downstream players such 

as Akt1, Pik3 (Pik3r4), and the energy/ATP availability sensor-AMPK α/β/γ. The 

observed spike in Igf2 at 4 weeks correlates with studies that have shown a 

preferential spike in Igf2 nearly 20 days post-denervation/nerve injury [65]. 

Although the exact role of myogenic regulatory factors (MRFs) in 

differentiated post-mitotic skeletal muscle is not understood fully [68], the observed 

upregulation of MyoD, Myog, and Mrf4/Myf6 may reflect satellite cell activation 

[69]. These factors may be necessary for activating transcriptional programs 

required for recovery of muscle function, such as Ankrd1. Concomitant with 

activation of MRFs, there is upregulation of several cell-cycle control genes known 

to play a role in satellite cell proliferation, such as Tp53, Pcna, Myc, cyclin-

dependent kinase inhibitors Cdkn1a (suggested to confer a protective, anti-apoptotic 

effect [70]), and Cdkn1c. Gadd45a, a marker for atrophy also involved in cell cycle 



45 
 

 

control has been identified repeatedly as being overexpressed in models of 

denervation/chemodenervation [10, 11, 28]. Recent reports have indicated that the 

pro-atrophy transcription factor Atf4 may induce expression of Gadd45a in muscles 

subject to 3 distinct skeletal muscle stresses: fasting, immobilization, and 

denervation [71]. Its expression was shown to be necessary but not sufficient for 

expression of Gadd45a. However, we observe a conflicting program of regulation 

in our data with Atf4 being downregulated, suggesting alternate roles for Atf4 and 

regulation of Gadd45a in BoNT-A treated muscle at 1 week.  

Further regulatory conflicts occur through upregulation at 1 week of 4 

inhibitors of DNA binding genes (Id1, Id2, Id3, and Id4), which have been shown 

to inhibit muscle growth and differentiation [72]. Reduced contractile activity leads 

to a reduction in signaling that promotes muscle growth but inhibits complete fiber 

death (autophagy) triggered through pathways such as Pik3/Akt [73] and activation 

of runt transcription factor (Runx1). Runx1 has been shown to sustain muscle under 

atrophic conditions by inducing expression of genes required for muscle growth and 

function (Myh2, Scn5a, Rrad, Myh3, and Chrng) and repressing atrophy genes 

(Gadd45a  and Aqp4) [26].   

2.5.2 Later response to botulinum toxin injection 

 Importantly, we found that, by 4 weeks, the transcriptional events leading to 

muscle atrophy and weakness were essentially completed. Although the functional 

properties of muscle are highly impaired at this time point, the transcriptional response 

is essentially complete and is in the process of recovering.  This is seen clearly seen by 
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the fact that, of the 1,989 genes regulated after injection, only 231 were actually still 

changing after 4 weeks. 

1. Recovering NMJ, sustained oxidative stress, and lack of Ca2+ homeostasis 

Though the muscle slows down transcriptionally, the expression of certain 

pathways is still significant at 4 weeks. In contrast to other genes of the NMJ, Emb 

and Chrna1 were still upregulated up to 12 weeks, with significant remodeling of 

the synaptic basal lamina (Lama5, Col4a5, and Nid2 were all upregulated) at 4 

weeks. Nid2 is involved in synapse maintenance [74] and is associated selectively 

with the synaptic basal lamina at the NMJ. Taken together, these suggest 

reinnervation and continuing effort by muscle for stabilization of the NMJ at 4 

weeks. 

Upregulation of the SR calcium sequestering protein Casq2 suggests an 

effort by muscle to maintain Ca2+ within the SR, possibly counteracting continued 

over-activation of Sln. Interestingly, we found strong upregulation of a calmodulin-

like protein called Calml3 beginning at 4 weeks. Though its exact function is not yet 

determined in skeletal muscle, it is known to compete with calmodulin in other 

tissues, further suggesting alterations in the Ca2+ handling properties of muscle [75]. 

Upregulation of certain transcription regulators of atrophy and growth such as 

Myod1, Id1, Id3, Runx1, Gadd45a, Cdkn1a, and Cdkn1c were observed until 4 

weeks. 
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2. ECM remodeling and fibrosis 

The most pronounced effect at 4 weeks was active remodeling of the ECM 

and possibly even fibrosis. ECM production is regulated in part by activation of 

several targets of TGF-β, including Ctgf and Ltbp1. Upregulation of early growth 

response (Egr-1), a zinc-finger transcription factor known to regulate collagen 

expression (particularly Col1a2) in response to TGF-β [76] and act downstream of 

multiple pro-fibrotic agents to regulate transcription, was observed. The persistent 

activation of these genes in conjunction with dramatic upregulation of ECM genes 

beyond 1 week (see Results and Figure S2.1) leads us to propose activation of 

similar fibrotic programs by 4 weeks after BoNT-A injection, resulting in fibrosis 

of injected tissue.  This also emphasizes the possibility of a multi-faceted role of 

Igfbp5 following BoNT-A injection [77-79]. 

Significant regulation of Scd1, Sln, Cdkn1a, Cdkn1c, and S100a4 beyond 4 

weeks suggested incomplete recovery of muscle even 4 weeks after treatment. 

Importantly, we observed no biologically significant changes, at least 

transcriptionally, in skeletal muscle treated with BoNT-A at 52 weeks after 

injection. 

2.6 Conclusion 

In conclusion, this analysis provides a global assessment of changes occurring 

in BoNT-A treated muscle over a period of 1 year. By utilizing previously described 

physiological networks of muscle, we provided a systems-level analysis that 
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categorically assesses expression changes after BoNT-A treatment. Dramatic 

transcriptional regulation in several of these networks was evident at week 1 leading to 

derangement of the ECM and fibrillar components by week 4. The shift toward 

expression of slow and immature isoforms emulating “immature” muscle possibly aids 

in muscle recovery. It should be noted that, while this is a transcriptional expression 

study, the data have clinical relevance. Specifically, they indicate that, at the molecular 

level, the effects of BoNT-A are relatively rapid, since most transcripts returned to 

control level within 4 weeks. This is consistent with the use of the term “reversible 

chemodenervation” often used with reference to the action of BoNT-A. It is also 

interesting to note that, in spite of the relatively fast transcriptional response, the 

structural and functional response lags somewhat. This is probably a function of the 

length of time required for a neuromuscular unit to recover from a period of denervation-

induced atrophy and fibrosis. Transcriptional regulation associated with atrophy and 

fibrosis suggests the possibility of transient extracellular effects after BoNT-A injection. 

Though no long-term transcriptional abnormalities were observed, further studies are 

necessary to determine optimal intervals for BoNT-A treatment from both a biological 

and physiological point-of-view. 
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2.8 Tables 

Table 2.1: List of forward and reverse strand primer sequences that were utilized for 
validation of gene expression using qPCR. 
 
Gene Forward Sequence Reverse Sequence 

Chrna1 TACTTGAATCCTTTCGCGCT CTTAACCGCTGAGCCATCTC 

Sln TGGTGTGCACTCAGAAGTCC TGAGGAGCACAGTGATCAGG 

Myl3 AATCCTACCCAGGCAGAGGT CATATGTGCCCGTGTCTTTG 

Myog ACCAGGAGCCCCACTTCTAT TTACACACCTTACACGCCCA 

Aqp4 GCATGTGATCGACATTGACC GTGAAACAAGAAACCCGCAT 

Runx1 TAACCCTGCCTGGGTGTAAG GGACTCGGATCTTCTGCAAG 

GAPDH AGACAGCCGCATCTTCTTGT TGATGGCAACAATGTCCACT 
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Table 2.2: Summary of differentially regulated genes identified at each time (with 
respect to saline injected muscle, BH<0.05).  
 

Time 

(in weeks) 

Differentially 

Expressed 

Upregulated Downregulated 

1 1989 1183 806 

4 372 303 69 

12 32 19 13 

52 32 19 13 
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2.9 Figures 

 

 

 

Figure 2.1: A 4-way Venn diagram depicting the distribution of differentially expressed 
gene across all pairwise comparisons  
Additionally, the figure also provides counts of overlapping genes between multiple 
pairwise comparisons. The count within each shaded area represents the number of 
differentially expressed genes identified in common between time points. For example, 
231 genes were differentially expressed at both 1 and 4 weeks. 
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Figure 2.2: Overview of transcriptional changes occurring in adult skeletal muscle after 
BoNT-A treatment.  
Functional changes represented in blue boxes show associated gene expression until 4 
weeks after injection. Genes in yellow boxes exhibit upregulation, and blue boxes 
exhibit downregulation. Genes identified with an * represent immature muscle 
isoforms. Signaling pathways are indicated with red text. Dotted lines indicate 
association, and arrows indicate a cause-effect relationship.  
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Figure 2.3: Expression of genes involved in the neuromuscular junction over time.  
Each box has 4 partitions representing the time points at which samples were obtained. 
Each box represents the fold changes observed and is colored according to the legend. 
Genes that are not represented in the microarray or identified as differentially expressed 
are presented in grey. Solid lines indicate either an interaction among genes or an 
association between genes. 
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Figure 2.4: Expression of genes involved in excitation-contraction coupling and muscle 
contraction after BoNT-A injection.  
Cellular localization as well as expression levels are depicted as described in Figure 2.3. 
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Figure 2.5: Expression of genes involved in mitochondrial metabolism after BoNT-A  
Cellular localization as well as expression levels are depicted as described in Figure 2.3. 
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Figure 2.6: Expression of genes involved in the basal lamina and fibrillar ECM. 
Cellular localization as well as expression levels are depicted as described in Figure 2.3. 
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Figure 2.7: Illustration of a representative set of active transcription factors and 
signaling pathways involved in atrophy and muscle recovering from BoNT-A injection. 
A detailed list of genes is provided in the Table S2.3. Cellular localization as well as 
expression levels (fold changes) are depicted as described in Figure 2.3. 
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Figure 2.8: Fold changes observed based on the qPCR assay compared to the microarray 
data. Each plot provides a comparison between the genes’s calculated average fold 
change (log2 based) with respect to control using qPCR and microarray analysis 
computed for each time point. 
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Figure 2.9: Heatmap showing the correlation between differentially expressed genes  
With isometric contractile strength at a) 1 week (left) and (b) 4 weeks after injection 
(right).Green represents negative correlation and red represents positive correlation.  
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Figure S2.1: Hydroxyproline assay in BoNT-A injected muscle  
The assay was performed to estimate collagen content with respect to the contralateral 
muscle. 
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Figure S2.2: Musk expression as established through RT-PCR.  
Expression of MuSK was not identified using our gene chip. 
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3.1 Abstract  

Background- Botulinum Neurotoxin A (BoNT-A) is a potent neurotoxin, which 

causes temporary paralysis of striated muscle and consequently is used for clinical 

applications such as pain management and movement disorders. While physiological 

effects of treatment with BoNT-A in muscle have been studied extensively, mechanistic 

understanding of its temporal transcriptional response is less understood. The primary 

objective of this study was to utilize a systems approach to decipher temporal 

transcriptional response of muscle to BoNT-A; and better assess its functional recovery. 

Methods- We systematically analyzed data containing transcriptional measurements 

from adult rat muscle treated with BoNT-A (t= 1, 4, 12 and 52 weeks after treatment). 

A ranked list of genes, varying across time was calculated using previously published 

Bayesian statistic. Top 2000 from the ranked list was used as seed set for analysis. 

Weighted gene co-expression network analysis (WGCNA) was used for generation and 

analysis of the co-expression network derived from the seed set. Results- 19 co-

expressed modules were detected in our network and were re-clustered into groups 

(n=5). Quantifying average expression and co-expression patterns across these groups 

revealed temporal aspects of muscle’s response to BoNT-A. Our results indicated an 

association of groups 1 and 5 with week 1, and groups 2 and 3 with week 4 samples. 

Functional analysis revealed enrichment of group 1 with metabolism; group 5 with 

contradictory functions of atrophy and cellular recovery; and groups 2 and 3 with 

extracellular matrix (ECM) and non-fast fiber isoforms. Topological positioning of two 

highest ranked genes- Dclk1 and Ostalpha within group 5, in conjunction with their 
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significant expression suggested possible mechanistic role in recovery from BoNT-A 

induced atrophy. Phenotypic correlations of groups with titin and myosin protein 

content further emphasized the effect on the sarcomeric contraction machinery in the 

early phase of chemodenervation. Conclusion- This study provides a network approach 

to assessing changes associated with cross-sectional temporal data. Grouping of 

modules revealed a hierarchical functional response to changes occurring during the 

course of BoNT-A-induced paralysis with an early metabolic response and later 

response affecting ECM. Additionally, our results provide an unbiased validation of the 

response documented in our previous work.  

3.2 Introduction 

Botulinum neurotoxin type A (BoNT-A) is a potent neurotoxin that functions to 

temporarily paralyze striated muscle by inhibiting exocytosis of acetylcholine (ACh), a 

neurotransmitter. This inhibition causes a series of downstream events leading to the 

absence of an action potential at the neuromuscular junction necessary for muscle 

excitation and contraction [1]. The ability of BoNT-A to cause a prolonged, albeit 

temporary paralysis has made it a useful therapeutic agent in addressing diseases with 

neurological and neuro-muscular consequences e.g. [2–5]. The physiological changes 

associated with muscle after treatment with BoNT-A have been studied extensively, in 

both human and murine models, at single and multiple time points e.g. [6–11]. Such 

studies have been crucial in determining the dose response and efficacy of BoNT-A, for 

varied therapeutic use. However, only a handful of studies have focused on deciphering 
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transcriptional control of BoNT-A in striated muscle [12], and much fewer in assessing 

the transcriptional changes over the course of time [13]. It is imperative to gain a 

comprehensive understanding of BoNT-A action for better use clinically. As a first step, 

we utilize genomic approaches to deciphering transcriptional regulation occurring after 

BoNT-A treatment in murine models over a period of 1 year. We recently analyzed the 

functional changes associated with mammalian skeletal muscle after BoNT-A treatment 

via differential analysis of genes, and interpreted our results using the framework of 

established physiological muscle networks [14]. The data was acquired over a period of 

1 year with measurements made at 1, 4, 12, and 52 weeks after BoNT-A injection. In 

contrast to our previous study, here we utilize a data driven, co-expression networks 

approach to analyzing the cross-sectional, temporal data. The basic premise of co-

expression studies is that genes that are functionally related tend to be highly correlated 

and hence often co-expressed in cells. Such studies focus less on differentially expressed 

genes, but more on groups of genes that tend to be strongly “co-expressed” [15, 16]. We 

hypothesized that such an approach would provide comprehensive insights into hitherto 

uncharacterized mechanistic changes and biomarkers underlying the muscle’s response 

to BoNT-A treatment, additionally instantiating functional pathways previously 

implicated in changes associated with BoNT-A treatment [14]. 

 We utilized an approach called Weighted Gene Co-expression Network 

Analysis (WGCNA) that elucidates gene relationships based on their co-expression 

profiles, integrated into a higher order network structure [17]. Modules identified 

through this approach have been shown to be functionally cohesive (even at low sample 
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sizes) in single [18–20] and multiple time point studies [21].  We elucidated module 

“groups” that were differentially correlated across samples from different time points, 

suggesting that by employing WGCNA on our time course data, we were able to extract 

modules that exhibited a temporal component to their regulation. We also identified 

genes not previously associated with chemodenervated muscle and speculated on their 

putative roles in muscle by analyzing their network topology and transcriptional factor 

binding sites. Finally, we evaluated the influence of gene modules on selected 

phenotypic traits such as isometric contraction force, myosin and titin content by 

correlating their measurements with the transcriptional changes (Figure S3.1).  

3.3 Methods 

3.3.1 Data acquisition 

The data utilized in this study is publicly available through the Gene Expression 

Omnibus accession GSE52350. A detailed description of data generation and pre-

processing is available in the original publication [14]. In brief, samples were obtained 

for 5 sets of rats (n=4/set) that included the Tibialis anterior (TA) muscle of BoNT-A 

injected rats at 1, 4, 12 and 52 weeks after injection and control tissue from the 

contralateral TA of saline injected rats sacrificed at 12 weeks. Minimal changes with 

muscle protein expression [22] and skeletal muscle glucose uptake [23] in rats until an 

age of >18 months prompted the use of a single control time point in the original study. 

Gene expression measurements were made using Affymetrix Rat Genome 230 2.0 

arrays (GPL1355). 31099 probes from these 20 were GCRMA normalized (log2 based 
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expression) and outliers removed resulting in a reduced dataset comprising of 13751 

genes across 19 arrays. This reduced dataset of the original publication was utilized for 

analysis and served as the input data for our current analysis.  

3.3.2 Real time quantitative PCR 

Real-time quantitative PCR (qPCR) was carried out utilizing cDNA prepared 

from RNA samples used for microarray analysis, to validate the expression of Dclk1 

and Ostalpha. RNA was reverse-transcribed into cDNA using the SuperScript First-

Strand Synthesis System (Life Technologies, Grand Island, NY, USA). Samples were 

diluted 1:100 and qPCR was performed using KAPA SYBR FAST Master Mix (Kapa 

Biosystems, Woburn, MA, USA) and the Eppendorf Mastercycler system (Eppendorf, 

Hamburg, Germany). Primers for GAPDH (forward sequence: 

AGACAGCCGCATCTTCTTGT and reverse sequence: TGATGGCAACAATGTCCACT) 

was designed in Oligo 6.8 (Molecular Biology Insights, Cascade, CO, USA; Allele 

Biotechnology, San Diego, CA, USA) while Dclk1 and Ostalpha were ordered premade 

(Integrated DNA Technologies, Coralville, IA, USA). A temperature gradient was used 

to determine the optimal reaction temperature for each primer based on the DNA 

melting temperature curve and single product production on an agarose gel. Samples 

were run in triplicate using the following protocol: samples were heated to 95°C for 2 

minutes, then run through 40 cycles of heating at 95°C for 15 seconds, cooling to 55°C 

for 15 seconds, and heating for 20 seconds to the optimal primer temperature a 

determined by the temperature gradient described above. The triplicate results of each 
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gene from qPCR data were normalized with respect to the housekeeping gene GAPDH. 

Fold change was computed in accordance with reference [24]. 

3.3.3 Description of Phenotypic Measurements  

Phenotypic measurements were made on the same 15 adult rats prior to sacrifice 

[25] after treatment with BoNT-A. The phenotypic traits measured were 1.Isometric 

contraction force measured in the injected leg before and after injection (ISO Pre and 

ISO Post). 2. Titin (isoforms 1 and 2) and 3.mysoin chains (I/IIA/IIB/IIX). Quantitation 

for titin and myosin was performed on both the injected and contralateral legs of BoNT-

A treated rats. Missing measurements were treated as NA for any computation. 

3.3.4 Multivariate empirical Bayes statistic  

Tai and Speed [26] described a method to rank genes for cross-sectional 

replicated developmental microarray time course studies utilizing a multi-sample 

multivariate empirical Bayes model with structured means. Briefly, a linear model was 

fit to each condition separately and the temporal profile of each sample was compared 

using the regression coefficients. A ranking was generated using a structured mean 

design. The interested reader is directed to the original paper for detailed statistics [22].  

A second set of control measurements were obtained by duplicating the first set and 

varying it very slightly, to allow for 2 degrees of freedom within the design matrix. . 

This was based on the premise that we would observe very minimal difference in gene 

expression of control samples over time [14]. Of the 13751 genes that were ranked, a 

small subset containing 2000 highly ranked genes, representing ~15% of the total gene 

set was utilized as the seed set to build our co-expression network.   
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3.3.5 Co-expression network generation and modularity detection  

 We utilized an open source, R/Bioconductor package called WGCNA [27] for 

analysis. Since we were particularly interested in exploring the association amongst 

genes under the treatment condition; we chose to work with the top 2000 genes across 

15 BoNT-A treated samples rather than pooled data. The correlation was computed 

using biweight mid-correlation, a robust correlation metric that works beneficially at 

lower sample sizes. A soft power β was suitably chosen as outlined in [17]. Dissimilarity 

computed using the topological overlap matrix (TOM) served as input to hierarchical 

clustering. The hybrid algorithm with a dynamic cut height, part of the WGCNA library 

was used for modularity detection. Genes that didn’t fall into a module were excluded 

from our analysis. The 1st principal component (“eigen gene”) that captured maximum 

variance for each module was computed. Clustering of module eigen genes resulted in 

groups of highly correlated modules. Correlating eigen genes with phenotypic traits 

identified module groups that were strongly correlated with a particular phenotype. For 

each module, the module membership measure (kME) and intramodular connectivity 

(kWithin) were computed to identify gene hubs (with normalized kWithin and kME 

>0.95).  

3.3.6 Protein interaction network 

Protein interactions with combined score >0.2, for all genes within module M3 

(group 5) were extracted from STRING [28] and imported into Cytoscape [29]. A low 

confidence threshold ensured that all possible interactions for relatively less annotated 

genes such as Dclk1 and Ostalpha were included. We extracted the immediate 
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interaction partners and partners of partners (2-step neighborhood) for Dclk1. No 

interactions were found among genes in M3 for Ostalpha. 

3.3.7 Visualization and Functional enrichment analysis 

Network modules generated using WGCNA were exported and visualized in 

Cytoscape [29]  an open source network visualization software. In order to constrain the 

number of edges for ease of visualization, we exported the top 25 percentile of edges 

from each module to Cytoscape.   ClueGO [30], a plug-in available through Cytoscape 

was utilized to annotate gene functions and identify functional enrichment of modules 

using the latest updates of Gene Ontology (Biological process) and KEGG pathways.  

Heatmaps were generated in R, using functions from gplots and WGCNA libraries. 

3.3.8 Identifying Transcription factor binding sites 

MotifDB, a library in R, was utilized to extract promoter sequences 1000bp 

(1kb) upstream of genes using rat build rn5 as reference [31]. Sequence based motif 

searches were also performed using the same package. 

3.4 Results and Discussion  

 In the current study, we have used microarray data previously generated by our 

group, from skeletal muscle of rats treated with BoNT-A extracted at 4 time points (t= 

1, 4, 12, 52 weeks) after treatment [14], in combination with functional properties of the 

muscles measured over the same time period [25]. The expression data consisted of 

transcript levels for 31,099 microarray probes, representing 13,751 genes across 15 

samples (see Methods).  
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3.4.1 Ranking time varying genes using the empirical Bayes statistic 

Given the complexity of interpreting and deriving a robust co-expression 

network from the entire set of 13,571 genes, we chose to work with a smaller subset of 

genes that could comprehensively capture the changes in BoNT-A muscle, across time. 

We utilized the empirical Bayes statistic [26] to rank our list of 13,751 genes (see 

Methods) and chose the top ~15% (2,000) highly ranked genes as our “seed set” for 

network reconstruction.  

To ascertain that the genes contained in the seed set indeed played a role in 

treated muscle, we compared our seed set with the significantly differential genes (at 

any time point) from our previous study [14]. We identified an overlap of 61% which 

included several markers of BoNT-A treatment such as the cholinergic receptors- 

Chrna1, Chrnd, Chrng, Chrne; transcription factors and atrophy markers such as 

Cdkn1a, Runx1, Gadd45a; Calcium handling proteins- Sln; Immature myosin isoforms- 

Myh3, Myh8; Oxidative stress markers- Mgst2, Mt1a, Mt2a, among others. However, a 

lower fraction of genes associated with mitochondrial metabolism were identified in our 

seed set, indicative of a fairly quick stabilization of mitochondrial metabolism gene 

expression across the time course. Interestingly, the two highest-ranking genes in our 

seed set were Ostalpha and Dclk1 with no currently evidenced role in skeletal muscle 

function (expression validated using qPCR, Figure 3.1).     

3.4.2 Reconstructing the BoNT-A transcriptional network 

Using WGCNA [27], we reconstructed the BoNT-A transcriptional network. 

The initial adjacency matrix was first computed by raising the gene-by-gene correlation 
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matrix to a power ß in order to eliminate spurious/weak correlations. ß was chosen at 8 

(R2 = 0.92). Clustering of the dissimilarity matrix resulted in 19 co-expressed modules 

(Figure 3.2A) with each module ranging in size between 20 - 360 genes (Figure 3.2B). 

76 genes that did not belong to any module were excluded from further analysis for the 

purposes of this study (Figure 3.2A, shown in light grey). The modules were re-clustered 

into five groups (Figure 3.2C) based on their module eigen gene correlation (see 

Methods).  

 3.4.3 Systems elucidation of BoNT-A treatment in muscle 

Prior to performing a systematic analysis of the groups identified we attempted 

to understand the overarching role of the groups across time. To this extent, we 

computed the module eigen-gene correlations (see Methods), which provided insight 

into the collective behavior of the modules within groups. We observed strong intra-

group correlation (along the diagonal, Figure 3.3A) while the inter-group correlation 

was fairly non-significant except for a strong anti-correlation between groups 1 and 5. 

 Additionally we computed the average expression, which captures the 

collective behavior of all co-expressed genes within a module (Figure 3.3B). Average 

expression patterns in conjunction with eigen-gene correlations allowed us to gain a 

broad view of the temporal distribution of groups. We observed that the grouping of 

modules corresponded broadly with the time points of the study. For instance, groups 1 

and 5 showed opposing average expression patterns in the samples from week 1 while 

reversing expression trends at all other time points. This suggested an activation of 

genes within group 1 and an inhibition of genes regulated within group 5, at week 1.  
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Average expression patterns along with the eigen-gene correlations suggested genes 

with contrasting functions were captured in groups 1 and 5 and were strongly associated 

with samples from week 1 after injection. In the following sections we provide a detailed 

analysis of the functions captured by each of the groups that further justify the observed 

correlation patterns. 

1. Group 1 

An enrichment analysis of repressed modules from group 1(M5, M7 and 

M19) revealed functions associated specifically with metabolism and cellular 

homeostasis, which is consistent with the expected reduction in energy requirement 

due to, reduced muscle activity. For instance, module M19 was enriched for several 

genes associated with metabolism (p<0.05) particularly glucose, carbohydrate and 

phosphate metabolism such as Acls5, Acsm5, Acss1, St8sia5, Pde4b, Pde4d, Gpt2, 

Irs1, Fbp2, Prkcz, Phkg1, Ppp1r3c, Ppp1r3d, Eif4e. Aqp4, Gpd1, Fbp2, Pde4a, 

Slc16a3 and Ppp1r3c.  The strong co-expression of Aqp4 (hub, see Methods) [32] 

with other metabolic genes within this module suggested a role for Aqp4 in 

influencing metabolic activity of the chemodenervated muscle. Likewise, M5 was 

particularly enriched for several genes associated with ion homeostasis necessary 

for maintenance of action potential (such as Cav3, Ank3, Ptpn3, and Kcna5) and 

metabolism. Regulation of  ion homeostasis and metabolism are tightly coupled in 

skeletal muscle under most conditions [33]. The presence of functionally associated 

modules (such as M19 and M5) within a single group further reinforces the ability 

of our approach to identify functionally cohesive groups from time course studies.  
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2. Group 5 

Modules of group 5 (M2, M3, M6, M8 and M18) accounted for 50% of the 

seed set and were broadly associated with contradictory functions of atrophy and 

cellular recovery after chemodenervation.  Relevant gene ontology categories 

(p<0.05) such as regulation of cell death; wound healing, skeletal muscle 

development, neuron differentiation, response to organic substance and oxidative 

stress was identified within this group. Table S3.1 lists the enrichment identified for 

relevant modules in groups 1 and 5.  

For instance, module M18, showed an enrichment for markers associated 

with oxidative stress and metal ion imbalance such as metallothioneins (Mt1a, 

Mt2a) [34–36] while module M3 showed significant enrichment for contrasting 

functions of atrophy and recovery. M3 contained genes associated with the NMJ, 

for example, Chrna1 and Chrnd1 (ACh receptor subunits) were found to be strongly 

co-expressed with genes implicated in the recovery of the neuromuscular junction - 

Lrp4, Emb and Casp3 [37–39]. Absence of Casp3 has been shown to protect muscle 

from denervation induced atrophy [39] while Emb and Lrp4 may serve as retrograde 

signals for the recovery of NMJ. Other pro-growth markers such as the Myogenic 

regulatory factors (MRFs)- Myog and Myod1 [40], Runx1 (sustains muscle under 

atrophic conditions [41]) and inhibitors associated with TGF β pathway, Ltbp1 and 

Postn. Though the exact role of MRFs in post mitotic muscle is yet to be clearly 

understood, their co-expression with factors necessary for maintaining the trophicity 

of muscle suggests their role in activating the necessary programs after 
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chemodenervation. Sln , a marker for BoNT-A treatment [13], involved in Ca2+ 

handling across the sarcoplasmic reticulum was identified to be strongly co-

expressed in this module. In addition to these markers of muscle recovery we 

identified several markers of atrophy within M3 including genes of the TGF- β 

pathway such as Tgfb2, Fst, Rhoa, Rhoc and Cdkn1a, Gadd45a [35, 42].  

A further advantage of co-expression network analysis over pairwise 

analysis of differential expression is that it allows one to decipher the functional role 

of genes based on their topology [16]. As mentioned earlier, two highly ranked 

genes Dclk1 and Ostalpha, with no evidenced role in treated or normal skeletal 

muscle, exhibited significant expression in our samples (Figure 3.1). These genes 

were identified as being strongly co-expressed within M3. Dclk1 is known to 

catalyze protein-protein interactions associated with neurogenesis and maintenance 

of the nervous system both peri and postnatally [43, 44]. There is little evidence for 

the function of Dclk1 in mature skeletal muscle, however, one prior publication has 

pointed to a spike in expression of Dclk1 from activated satellite cell populations of 

adult murine skeletal muscle [45]. However, no prior evidence exists for the role of 

Ostalpha (a known bile transporter [46]) in skeletal muscle function. Immediate 

neighbors of Dclk1 and Ostalpha (hub) in module M3 included several biomarkers 

of skeletal muscle function, cell cycle markers- Gadd45a [47], Cdkn1a [13] and 

genes associated with the NMJ- Emb, Chrnd, and Chrna (Figure 3.4). Casp3 for 

which Dclk1 is a substrate in apoptotic neural cells [48], was also co-expressed in 

M3. 
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 With little to no evidence for the role of these genes in skeletal muscle, we 

assessed if either Dclk1 or Ostalpha contained putative transcription factor (TF) 

binding sites for TFs co-expressed in M3. We identified a total of 16 TFs in the 

module M3 including Egr1, Egr2, Id1/2/3/4, Myc, Myog, Myod1, Nfkb2, Runx1, 

Zfp810, Stat3 and Sox4 [49]. Several of these TFs are known to be active in skeletal 

muscle with an important role in atrophying skeletal muscle [35]. Interestingly, we 

observed that Dclk1 contained binding sites for muscle relevant TFs Myod1, Runx1 

and Stat3 [50, 51] on the promoter sequence 1kb upstream while Ostalpha  

contained binding sites for Myc [52] and Myod1. We also mapped the genes of 

module M3 onto protein interactions networks to identify known protein 

interactions between proteins encoded [28]. Dclk1 displayed several genes 

associated with skeletal muscle in its 2-step neighborhood including TFs identified 

above. (Figure 3.5). Interaction partners for Dclk1 revealed enrichment for processes 

associated mainly with recovery of skeletal muscle/muscle adaptation (Table S3.2).  

Based on these results, we believe that further exploration for the roles of 

Ostalpha and specifically Dclk1, in skeletal muscle recovery, particularly within the 

early period (1-4 weeks) after chemodenervation is warranted.  

Grouping of modules such as M3 and M18 together further asserts the 

“regulatory” role of this group in the maintenance and recovery of muscle trophicity 

after BoNT-A treatment.  
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3. Groups 2 and 3 

Among the remaining groups, group 2 (M4, M10, M13, M16) and to an 

extent group 3 (M1, M9, M11, M14, M15) - exhibit higher expression in samples 

from 4 weeks (Figure 3.3B). Correlation between M10 (group 2) and M1, M11 and 

M15 (group 3) suggested a possible functional link between them. Interestingly 

enough, each of these modules was enriched for genes associated with the 

extracellular matrix (ECM). The ECM is a carbohydrate rich connective tissue 

surrounding the skeletal muscle providing a structural support to the muscle 

(fibrillar ECM) protecting each muscle fiber (basal lamina). M10 contained 

collagens of the basal lamina Col4a1, Col4a2, that were strongly co-expressed with 

Fbn1, Loxl2, and fibrillar collagens such as Col5a1, Col14a1 while M11 contained 

genes such as S100a4, Loxl1, Col1a1, and Col1a2 that affect ECM dynamics. 

Reduced contractile activity triggers the onset of muscular atrophy, an 

adaptive response by the muscle with an associated shift in isoform composition of 

fast muscle towards a more mixed state, including cardiac and slow fiber types in 

most cases. Analysis of the remaining group 3 modules, showed an 

overrepresentation of genes associated with sarcomeric contraction. Interestingly, 

M14 was associated with several non-fast fiber isoforms involved in contraction 

including Tpm3, Myoz2, Myl2, Myh7, Myh10, Tnnc1, Tnnt1 and Tnni1.  Atp2a2 [53] 

and Casq2 [54], two genes specifically involved in Ca2+ ion regulation for cardiac 

contraction were also identified in this module along with stretch responsive Ankrd2 

associated with muscle remodeling [55]. Onset of contraction requires the 
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mechanical coupling of the dihydropyridine receptors with the ryanodine receptors 

(RYRs).  This module contains an embryonic isoform of the RYR –Ryr3 that is 

strongly co-expressed with the sarcomeric genes Myoz2, Myh10, Tnnt1, Tnnc1 and 

Tnni1. Ryr3 has been suggested to function as a potent source of voltage independent 

excitation contraction coupling and known to be expressed primarily in 

developing/perinatal skeletal muscle [39].  It can be inferred that this increased 

expression of isoforms normally less expressed in adult skeletal tissue indicates a 

progression of the muscle towards a “hybrid” state, which is more pronounced by 

week 4. 

 No significant groups were identified as being particularly associated with 

either 12 or 52 weeks. However, we would like to point out that group 1 modules 

appear to reverse trends and show an increased average expression at later time 

points (specially 52 weeks) suggesting the recovery of metabolism in the muscle 

after 1week. 

3.4.4 Assessment of phenotype to module correlation  

Correlation analysis was performed with an aim to understand the effects of 

transcriptional changes at the phenotypic level. The following sections provide a 

discussion of the correlation identified between each phenotype measure and the 

modules identified in our network. 

1. Isometric Contraction 

Modules of group 5 correlated positively with isometric contraction before 

injection (ISO Pre, Figure 3.6A) while being significantly negatively correlated 
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(p<0.05) with isometric contraction measured after injection (ISO Post, Figure 

3.6A) with opposing patterns exhibited by group 1 genes. This suggests active and 

opposing roles for genes associated with groups 1 and 5 in the impaired contractility, 

particularly at 1 week after injection. Of note, module M11 that was enriched for 

genes associated with several non-fast fiber isoforms of contractile genes was also 

strongly anti-correlated (p<0.0001) with contraction strength after treatment 

suggesting that expression of these isoforms impedes muscle contraction after 

chemodenervation (Figure S3.2). 

2. Titin 

 Titin is a fairly large protein (~3MDa) that links myosin to the Z-disk via 

the M-line and is involved in a variety of functions such as defining the length and 

organization of the myosin and actin filaments, maintaining the stability of the 

sarcomere and subsequently controlling the mechanical activity of the muscle [57]. 

Correlation of two titin isoforms revealed that most modules from group 5 were anti-

correlated (p<0.05) while group 1 modules were positively correlated with titin 

(Figure 3. 6A). Though no changes in correlations between the injected and 

contralateral legs were found, the patterns of correlation suggested a differential 

influence of genes within these groups on titin turnover [58]. Additionally again, 

M11 containing the slow muscle isoforms was anti-correlated (p <0.05) with 

isoforms titin1 and titin2 suggesting a debilitating effect of expression of slow 

isoforms on titin protein dynamics.  
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3. Myosin heavy chain 

 Several modules from group 3 were anti-correlated (albeit p>0.05) with 

Myosin IIB while being significantly correlated with Myosin IIA, in injected muscle 

(Figure 3.6B). The correlation patterns for both Myosin IIA and IIB appear to be 

reversed, in measurements made on the contralateral leg suggesting a positive 

change in the dynamics of Myosin IIA turnover over Myosin IIB, particularly at 4 

weeks after BoNT-A treatment in the injected muscle. This is consistent with the 

observed change in MHC quantification (specifically Myosin IIA/IIB) being the 

largest at 4 weeks after treatment between contralateral and injected muscle in rats 

treated with BoNT-A (Figure S3.3). 

3.5 Conclusion 

The physiological response of a system to a stimulus like BoNT-A stems from 

the underlying transcriptional and epigenetic changes associated with the system. In this 

study, we analyzed the transcriptional response of skeletal muscle secondary to the 

insult of BoNT-A at the neuromuscular junction. Utilizing a network theoretic approach, 

we assessed the response of the skeletal muscle to an injection of BoNT-A over a period 

of 1 year. Clustering of the co-expression network on a seed set of 2000 genes resulted 

in modules that were subsequently clustered into 5 groups.  Expression patterns revealed 

dramatic regulation of - metabolism (group 1) and processes associated with muscle 

trophicity (group 5) in samples from week 1. A reduced energy requirement combined 
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with the onset of atrophy due to reduced muscle contractility after chemodenervation 

was reflected in the strong anti-correlation of expression from groups 1 and 5. Strong 

co-expression of transcription factors Myod1, and Runx1 and highly expressed genes 

Dclk1 and Ostalpha with putative binding sites for these transcription factors further 

emphasized a potential role for these genes in skeletal muscle recovery, warranting 

further investigations. The increased expression of modules associated with ECM and 

slow/non skeletal isoforms of sarcomeric proteins at 4 weeks suggested a change to the 

physical composition of muscle starting at 4 weeks after treatment [14]. The muscle 

recovers transcriptionally to the pre-treatment state in samples beyond 12 weeks. 

Correlation of phenotypic data (titin and myosin protein content) with the groups 

provided insight into the dynamics of the contractile proteins over time. Our analysis of 

transcriptional response to BoNT-A treatment of skeletal muscle, not only identified 

mechanisms of response consistent with our previous work, but also identified putative 

markers, setting the stage for further experiments with implications for clinical use of 

BoNT-A.  
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3.7 Figures 

 

 
 
Figure 3.1:  Comparison of quantitative real-time PCR data with microarray expression 
data. 
Expression fold changes from GCRMA normalized data is shown in comparison with 
the real time PCR fold changes measured. The fold change was measured with respect 
saline injected rat control samples. 
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Figure 3.2: Identifying differential co-expressed modules from BoNT-A co-expression 
network. 
A- Hierarchical clustering of 2000 genes from BoNT-A treated samples: The upper 
panel shows the clustering dendrogram with the middle and lower panels indicating the 
modules and their corresponding groups (designated by blue, white, dark blue, orange 
and tan colors) respectively. B- Size distribution of the modules identified where each 
color in the bar plot corresponds to the “modules” panel of Figure 3.2A and is identified 
by a letter. C: Hierarchical clustering of co-expressed modules: groups were identified 
by clustering module eigen genes. This corresponds with the lower panel of Figure 3.2A.  
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Figure 3.3: Eigen gene correlation and average expression of modules in BoNT-A co-
expression network 
 A- Correlation heatmap of the module eigen genes where each tile in the heatmap 
represents the scaled correlation between the module eigen genes (colored as per legend 
with red –correlated and green- anti-correlated). Groups are represented in black squares 
along the diagonal. High intra-group correlation is observed.  B- Average expression 
heatmap for all modules identified in our network (colored as per legend with red –
correlated and green- anti-correlated) 
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Figure 3.4: The Ostalpha co-expression sub-network 
A- Immediate neighbors of Ostalpha identified as being co-expressed in module M3. 
Nodes that have been previously referenced in muscle literature have been shown in 
blue. B- The bar chart represents the relevant gene ontologies categories for this sub 
network identified through the ClueGO plugin with p-values and number of 
genes/category indicated. 
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Figure 3.5:  Protein interaction map for Dclk1 
Select protein interaction partners of Dclk1within M3 are shown here. Thickness and 
color of edges indicate the combined score for the interaction from STRING database. 
Nodes in pink are the 1-step neighbors for Dclk1 and nodes in green are its 2-step 
neighbors. Square nodes indicate genes previously referenced in muscle literature.  
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Figure 3.6: Correlation of modules with phenotypic measurements  
 Each row in the table corresponds to a module, and each column to a phenotypic 
measurement. The phenotypic measurements include 6A (left) - Isometric contraction 
strength measured before and after injection on the BoNT-A injected leg (ISO Pre, ISO 
Post) in two groups- group 1 and group 5. 6A (right) - Titin isoforms 1 and 2, measured 
in the injected muscle of treated rats (Titin 1Rx, Titin 2 Rx) and their contralateral leg 
(Titin 1 Contra, Titin 2 Contra) in two groups- group 1 an group 5. 6B- Myosin chains 
(IIA/IIB) measured in the injected and contralateral muscle of treated rats. Numbers in 
the table report the correlations of the corresponding module eigen genes with the 
measure phenotypes with the corresponding p-values printed below in brackets. The 
table is color coded by correlation red- correlated, green-anti correlated. Intensity of the 
color represents strength of correlation. 
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Figure S3.1: A simplified workflow outlining the steps taken in our analysis.  
Co-expression network generation using WGCNA was performed using their standard 
workflows. 
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Figure S3.2: Isometric contraction strength before and after BoNT-A 
The isometric contraction strength was measured in injected TA of all samples before 
(ISO_PRE_100) and after (ISO_POST_100) BoNT-A injection across time (1 year 
period). 
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Figure S3.3: Myosin content before and after BoNT-A. 
Content of myosin isoforms were measured for samples in both the injected (Rx) and 
contralateral (contra) TA across time (1 year period). 
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Chapter 4- Dysregulated Mechanisms Underlying Duchenne Muscular 
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4.1 Abstract  

Background: Duchenne Muscular Dystrophy (DMD) is an X-linked recessive 

disorder with its primary insult on the skeletal muscle. Severe muscle wasting, chronic 

inflammation and fibrosis characterize dystrophic muscle. Here we identify 

dysregulated pathways in DMD utilizing a co-expression network approach as 

described in Weighted Gene Co-expression Network Analysis (WGCNA). Specifically, 

we utilize WGCNA’s “preservation” statistics to identify gene modules that exhibit a 

weak conservation of network topology within healthy and dystrophic networks. 

Preservation statistics rank modules based on their topological metrics such as node 

density, connectivity and separability between networks. Methods: Raw data for DMD 

was downloaded from Gene Expression Omnibus (GSE6011) and suitably 

preprocessed. Co-expression networks for each condition (healthy and dystrophic) were 

generated using the WGCNA library in R. Preservation of healthy network edges was 

evaluated with respect to dystrophic muscle and vice versa using WGCNA. Highly 

exclusive gene pairs for each of the low preserved modules within both networks were 

also determined using a specificity measure. Results: A total of 11 and 10 co-expressed 

modules were identified in the networks generated from 13 healthy and 23 dystrophic 

samples respectively. 5 out of the 11, and 4 out of the 10 modules were identified as 

exhibiting none-to-weak preservation. Functional enrichment analysis identified that 

these weakly preserved modules were highly relevant to the condition under study. For 

instance, weakly preserved dystrophic module D2 exhibited the highest fraction of 

genes exclusive to DMD. The highly specific gene pairs identified within these modules 
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were enriched for genes activated in response to wounding and affect the extracellular 

matrix including several markers such as SPP1, MMP9 and ITGB2. Conclusion: The 

proposed approach allowed us to identify clusters of genes that are non-randomly 

associated with the disease. Furthermore, highly specific gene pairs pointed to 

interactions between known markers of disease and identification of putative markers 

likely associated with disease. The analysis also helped identify putative novel 

interactions associated with the progression of DMD. 

4.2 Introduction 

Duchenne muscular dystrophy (DMD), is a lethal form of dystrophinopathy 

characterized by marked deficiency or absence of subsarcolemmal cytoskeletal protein- 

dystrophin. Absence of this protein is caused due to frame shift mutations of the 

dystrophin gene [1]. Dystrophin, part of the dystroglycan complex plays a crucial role 

in maintaining the integrity of the muscle fiber. Absence of dystrophin causes uneven 

mechanical force transmissions leading to sarcolemmal ruptures and subsequent 

atrophy. Clinical manifestations of DMD occur by second year of birth and 

progressively degrade with time. The first decade of life is marked by developmental 

delays, and steady decreases in the strength of the limbs and torso with subsequent loss 

of ambulation. Respiratory and cardiac complications arise by the second decade of life 

leading to death [2]. Here we utilize a co-expression networks approach to gain insights 

into molecular interactions dysregulated in dystrophic skeletal muscle with respect to 

healthy muscle. 
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Co-expression networks are being increasingly used for deciphering disease 

mechanisms and providing systems level views of dysregulated pathways [3, 4]. The 

basic premise of co-expression analysis is that strongly correlated genes are likely to be 

functionally associated. Weighted Gene Co-expression Network Analysis (WGCNA) is 

an open source tool that performs co-expression analysis using a network theoretic 

approach. WGCNA integrates expression differences across samples into a higher order 

network structure, elucidating relationships among genes based on their co-expression 

profiles [5, 6]. 

Here, we propose to utilize a set of statistics implemented in WGCNA, called 

preservation statistics, to elucidate global differences in mechanisms underlying the 

early phase of DMD [7]. Traditionally, these statistics have been utilized to identify 

modules of genes that are topologically preserved between two networks. In contrast to 

this approach, we propose to utilize these statistics to identify modules that do not 

exhibit a preservation of topology between networks. This is based on the premise that 

such modules would represent a cohort of gene interactions that are vastly different 

between conditions and point to dysfunctional pathways and interactions.  

In our current study we utilize a previously published dataset on DMD 

containing a cohort of healthy and affected individuals (mostly children) - representing 

the early phase of DMD development [8]. Briefly, we evaluated differential mechanisms 

between dystrophic and healthy skeletal muscle using the following approach; first, co-

expression networks were generated independently for healthy and dystrophic samples; 

second, clustering each of the co-expression networks resulted in several groups of 
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biologically relevant genes (modules) for each condition; and finally, preservation of 

modular topology from one condition was detected with respect to the second condition, 

allowing us to identify differences in gene connectivity patterns between conditions.  

The results of our differential analysis reveal convergent molecular mechanisms 

consistent with published studies in addition to providing us novel hypothesis on gene 

interactions associated with the early phase of DMD. 

4.3 Methods  

4.3.1 Data Acquisition 

 The raw (.CEL) files for GSE6011 was downloaded from GEO [30]. This data 

consists of 37 Affymetrix HG-U133A microarrays with 24 juvenile DMD samples, 

between ages 1.5-61 months, and 13 age matched controls [8].    

4.3.2 Data processing 

 The data set was preprocessed using Bioconductor/R packages affy and 

WGCNA. Data was MAS 5.0 normalized using functions in affy and any array with an 

average inter sample correlation <2 SDs (σ) below the mean was removed [9]. This 

resulted in the removal of a single array - GSM139506.CEL (2.54 σ below mean) from 

the study. All probes with missing Entrez gene identifiers were excluded from this 

study, resulting in a data set comprising of the expression values for 11101 probes. 

Multiple probes were collapsed into a gene based on variance resulting in a final reduced 

expression data set comprising of 7996 genes and 36 samples. A subset of 4000 most 

varying genes was used to construct the co-expression networks, in an effort to minimize 
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computational complexity and eliminate low varying genes that may contribute 

minimally to the co-expression matrix. The number 4000 was chosen as it represents 

roughly half the total number of genes (7996 genes) identified after pre-processing. This 

method of gene list selection is agnostic to their pathophysiological role in the muscle. 

4.3.3 Co-expression network generation and modularity detection 

The topological overlap measure (TOM) in WGCNA between genes i and j is 

defined as 

𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 =
∑ 𝐴𝐴𝑖𝑖,𝑘𝑘. 𝐴𝐴𝑘𝑘,𝑗𝑗 +  𝐴𝐴𝑖𝑖,𝑗𝑗𝑁𝑁
𝑘𝑘=1

𝑚𝑚𝑚𝑚𝑚𝑚�𝑘𝑘𝑖𝑖  ,𝑘𝑘𝑗𝑗 � + 1 − 𝐴𝐴𝑖𝑖,𝑗𝑗
 

Where A is the weighted adjacency matrix given by 𝐴𝐴𝑖𝑖𝑖𝑖 = �𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥𝑖𝑖,𝑥𝑥𝑗𝑗)�
𝛽𝛽

 and 

β ≥ 1 is the soft thresholding power. TOM takes continuous values between 0 and 1, 

where 0 for a gene pair indicates no similarity between the genes while 1 indicates a 

direct link. The soft thresholding power β for each dataset in our study was ascertained 

as prescribed in the original publication [5].  

Co-expression networks from the adjacency matrices of healthy and dystrophic 

samples were generated using the “TOMsimilarity” function available via WGCNA. 

Hierarchical clustering on the topological dissimilarity (1-TOM) was performed using 

the function “flashClust”. The tree cut height was dynamically determined using the 

function “cutreeDynamic” in WGCNA, for identifying modules in each of our 

networks. Additional files 4 and 5 provide a list of all genes identified in each of the 

networks (healthy and dystrophic respectively) and their corresponding module 

assignments.  
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4.3.4 Preservation of modules 

 “Module preservation” or preservation statistics implemented in WGCNA 

allows us to detect the conservation of gene pairs between two networks (test and 

reference) [7]. Briefly, three types of network based module preservation statistics have 

been identified by this method, namely 

Density based preservation statistics:  determine if nodes remain highly 

connected in the test network. Four independent measures account for this statistic.   

Connectivity based preservation statistics determine the extent to which 

connectivity patterns between nodes in the reference network are similar to the test 

network. Three independent measures of the network account for this statistic. 

Separability based preservation statistics determine if network modules remain 

distinct from one another in the test network.  

Network based statistics employed by WGCNA do not require identification of 

modules within the test network to ascertain the conservation of reference network 

modules within the test network. This is in contrast to several existing methods that 

ascertain module preservation as discussed in the original publication. The authors of 

the original publication have shown that using this method it is possible to identify sets 

of preserved co-expression across species. 

As these statistics measure distinct aspects of module preservation, two 

composite measures have been defined  

Median rank: A composite measure that is based on observed preservation 

values and is less dependent on module sizes. It is defined as the mean of median ranks 
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computed for connectivity and density measures of each module (0.5 

(medianRankconnectivity+medianRankdensity). 

Zsummary:  A permutation based composite Z statistic that is used to assess the 

significance of observed statistics and is defined as the mean of Z scores computed for 

density and connectivity measures (0.5(Zdenstiy + Zconnectivity)).  An associated empirical 

p-value is also calculated by the algorithm. 

We utilize median rank to identify module preservation and Zsummary to assess 

significance of module preservation via permutation testing. Based on the number of 

modules within each of our networks, a median rank of 8 was chosen as a cutoff to 

detect weak preservation. Permutation was performed 200 times given the 

computational complexity involved for our network sizes. Based on the thresholds 

prescribed in [7], modules with a Zsummary score >10 indicate preservation, 2 to 10 

indicate weak to moderate preservation and <2 indicate no preservation in the 

permutations. 

4.3.5 Network specific gene pairs 

Condition specific interactions for a given pair of genes i and j was defined as 

[17]:  

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1  =  
𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1)

𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1) +  𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2)
  

Where, TOMij (cond)  is the normalized TO for the gene pairs i-j in the given 

condition (healthy or disease). We considered gene pairs to be condition specific, if the 

specificity was >0.95 and were in the top 1% of the gene pairs ranked on TOM similarity 

in any given module. Number of edges in an undirected network is computed as n (n-
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1)/2, where n is the number of nodes. Considering the top 1% allowed us to focus only 

on the strongest co-expression patterns within the module, rather than noise. 

4.3.6 Enrichment Analysis and visualization 

The results presented correspond to the top term identified in the highest-ranking 

cluster (as of this analysis) using the annotation clustering feature available in DAVID 

[31], with Gene Ontology’s Biological process functional annotations. Additional files 

6 and 7 provide the top 3 functional annotation clusters identified for each of the 

modules within the healthy and dystrophic networks respectively. Cytoscape [32] and 

Bioconductor [33] were utilized for generating the figures in this paper.  

4.4 Results and Discussion 

4.4.1 Network construction and modularity detection 

WGCNA was utilized to construct unsigned weighted co-expression networks 

from 13 healthy and 23 DMD muscle samples across 4000 most varying genes (see 

Methods). Briefly, unsigned network adjacency matrices were obtained by raising the 

Pearson correlation matrices to a power β =5 for each condition [5]. The adjacencies 

were transformed to similarity matrices for subsequent clustering. When represented as 

networks, each entry of the similarity matrix ij corresponds to weight on the edge 

between genes ij. The strength of similarity between two genes depends not only on the 

correlation but also on their shared network neighborhood [5]. Clustering based on such 

a similarity allowed for identification of gene groups that were biologically relevant. 
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 Hierarchical clustering of the two weighted networks resulted in eleven 

modules for the network from healthy samples (N1-N11, see Methods) and ten modules 

from the network derived from dystrophic samples (D1-D10, see Methods). Figure S4.1 

shows the clustering dendrograms and corresponding modules identified in both 

networks.  Genes that did not cluster were excluded from further analysis for the 

purposes of this study.  

4.4.2. Functional characterization of modules identified in healthy and dystrophic 

networks 

Modules identified using WGCNA have been repeatedly shown to be biological 

relevant to the condition under study [4, 9]. We utilized functional enrichment analysis 

as a method to assess the functional coherence of modules identified within each of the 

networks.  

1. Characterizing modules of the healthy network 

Enrichment of modules from the healthy network revealed several functions 

routinely associated with healthy skeletal muscle such as striated muscle 

contraction, energy generation and extracellular matrix organization (Table 4.1).  

Skeletal muscle contraction occurs via the coordinated movement of several 

proteins particularly the actin-myosin complex within the sarcomere, incident upon 

a changing Ca2+ flux. Several genes encoding the sarcomeric proteins such as 

MYH2, MYH6, MYH7, MYBPC2 TPM1, TPM3, TNNC1/2, TNNI1, TNNT1, 

MYOM2, MYOZ1, MYOZ2, and MYOZ3 were identified in modules N1 and N8 

[10]. The extracellular matrix (ECM) surrounding the skeletal muscle plays an 
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important role in force transmission and affects the mechanical properties of the 

skeletal muscle. Several genes associated with the ECM and focal adhesion such as 

COL4A1, COL4A2, COL5A2, COL6A1, COL6A2, ITGA6, ITGB1, CAV1, 

CTNNB1, ACTB and LAMN4 were identified in modules N1 and N8 [11]. Muscle 

contraction and relaxation depend primarily upon energy derived from hydrolysis 

of adenosine triphosphate (ATP) within the mitochondria. Glycogen/glucose and 

lipid metabolism serve as major sources of ATP within muscle. Several genes 

associated with such metabolism were identified within modules N6 and N9 with 

genes such as NDUFB3, NDUFB5, FABP4, AACS, ADIPOQ, SDHA, SDHB and 

SCD. 

2. Characterizing modules of the dystrophic network 

Though the same 4000 genes were used to const ruct the co-expression 

network in each case, modules cluster differently based on their co-expression. 

Subsequent enrichment of modules from the dystrophic network revealed functions 

particularly associated with dystrophic muscle such as response to wounding (Table 

4.2).  

For instance, module D2 contained several genes associated with wounding 

and inflammatory response, including several cathepsins and MHC class II antigen 

processing and presentation genes such as HLA-DPA1, HLA-DMA, HLA-DPB1, 

HLA-DQA1, HLA-DRA, and HLA-DRB1 [12]. Chronic inflammatory processes 

are known to initiate fibrosis within dystrophic muscle [13]. Concurrently, ECM 

adapts dramatically altering both the manifestation and function within dystrophic 
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muscle. We observe the co-expression of ECM markers affecting fibrosis such as 

fibronectin (FN1) (a fibroblast marker) and lumican (LUM) - both known to 

influence collagen expression within this module [14].   

Modules D4 and D5 were associated with apoptosis and proteolytic 

processes within the muscle - more specifically ubiquitin-proteosome system [15] 

with genes such as genes of the 23s proteasome (PSMA2/3, PSMD9/12, PSME2/4), 

ubiquitin conjugating enzymes (UBE2B, UBE2D1), ubiquitin ligases (UBE3A, 

UBE3C), ubiquitin peptidases (USP11, USP6) co-expressed with cullins (CUL4A 

and CUL5) that serve as scaffolds for ubiquitin ligases.   

4.4.3. Identifying functional differences between healthy and dystrophic muscle- a 

systems approach 

The functional annotation clustering results above suggested a mutual 

exclusivity of certain functions between dystrophic and healthy muscle implying a 

difference in the topology of connections for genes within these networks. 

 In order to systematically assess and quantify differential gene co-expression, 

we performed a “preservation” analysis. This allowed us to identify modules that were 

fairly unique in terms of their gene co-expression within a given network compared to 

another. We utilized a method implemented in WGCNA called “modulePreservation” 

[7]. In contrast to the idea of the original paper which aimed at identifying modules 

preserved between conditions, we aimed to identify modules “weakly preserved” across 

conditions (see Methods).  We hypothesized that modules that were either weakly 
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preserved or non-preserved in either condition might point to dysregulated pathways in 

disease that were either acquired or lost with respect to a healthy skeletal muscle.  

1. Assessing differential co-expression in healthy muscle with respect to 

dystrophy 

In order to evaluate how the topology of the healthy network differed from 

the dystrophic network, we computed the preservation (density, connectivity and 

separability statistics) of modules from the healthy network (reference network) as 

compared to the dystrophic network (test network). Lower preservation statistics 

suggested a loss of co-expression structure between these gene pairs in the 

dystrophic network. 

Based on the median preservation score, we identified a total of 5 interesting 

modules. Two modules N1 and N8 from the healthy network were non-preserved in 

the dystrophic network while three other modules N2, N3 and particularly N7 

exhibited weak preservation (Figure 4.1A). Zsummary, a permutation statistic (see 

Methods) defined for assessing significance of the observed preservation also 

revealed a low preservation of these modules (Table 4.3).   Broadly, loss of healthy 

muscle function and weakened contractility in dystrophic muscle triggers the 

activation of atrophic pathways leading to severe muscle wasting, changes to the 

extracellular matrix, fibrosis and necrosis over time [16]. Accordingly, unpreserved 

modules N1 and N8 were associated with genes necessary for striated muscle 

contraction, while the weakly preserved modules (N2, N3 and N7) were associated 

with ECM and cytoskeletal framework of the skeletal muscle.   
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We utilized a co-expression specificity measure [17] (see Methods) to 

elucidate co-expressed genes pairs (edges) from these 5 modules. We observed that 

modules exhibiting none-to-low preservation in the healthy network consistently 

had a higher fraction of gene pairs exclusive to the healthy network than their 

preserved counterparts (Table 4.4). For instance, ~35% of the gene pairs considered 

(599/1738) within N1 were specific to the healthy network (Figure 4.1B). Several 

of the genes involved are known markers influencing skeletal muscle contraction 

such as ANKRD2, TNNC2, SMAD3, HSPB1, CRYAB, SDC4, and MYOD1.   

It was interesting to observe however that a majority of the genes identified 

as being part of these interactions were ion- binding as per GO’s molecular function 

ontology (zinc and copper, p<10-4). A visual inspection of subset of the exclusive 

genes pairs identified reveals strong co-expression between several zinc binding 

genes such as metallothioneins (MT1E/F/H/X), ZNF593, and genes affecting 

muscle contraction (ANKRD1, MYOD1, SMAD3, HSPB1). Metallothioneins have 

been postulated to be associated with a host of functions ranging from chaperones 

for synthesis of metalloproteins, to reservoirs of essential metals (Zn and Cu) in 

healthy tissue [18]. Specifically, metallothioneins (MTs) exhibit specific redox 

properties and have been speculated to selectively control release and uptake of Zinc 

[18]. However, it is interesting to note that MTs were co-expressed with genes 

affecting muscle contraction only within the healthy network, suggesting a link 

between zinc homeostasis, and muscle contraction in healthy muscle. The 
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exclusivity of connections to the healthy network further emphasizes the possibility 

of an aberration in zinc homeostasis and its effect on contraction in DMD.  

2. Assessing differential co-expression in dystrophic muscle with respect to 

healthy tissue 

A similar analysis with dystrophic network as the reference network, 

allowed us to identify gene pairs that were not conserved in healthy tissue. As 

proposed earlier, we speculated that identifying non/weakly preserved modules in 

the dystrophic network could point to gene associations that are gained in dystrophy. 

We identified two modules- D1 and D8 that exhibited no preservation in the healthy 

network while two other modules D3 and to a greater extent D2 were weakly 

preserved (Figure 4.2A). The Zsummary scores (see Methods) likewise revealed a low 

preservation of these modules via permutation testing (Table 4.5). 

Juvenile dystrophic muscle, in general, exhibits atrophy and is pre-necrotic, 

with pathways associated with wounding and inflammation being subsequently 

activated. The functional enrichment identified within these four modules (Table 

4.2) corroborated our approach, highlighting functions that are more pronounced in 

dystrophic muscle compared to healthy tissue. 

These modules also exhibited higher specificity of connections to the 

dystrophic network than their preserved counterparts (Table 4.6). For instance, the 

highest specificity was observed for module D2 with nearly 45% of its gene pairs as 

being specific to dystrophy (specificity> 0.95). Interestingly, the dystrophic-specific 

gene interactions identified in module D2 corresponded with interactions 
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categorized as a part of the inflammatory and tissue repair/remodeling repertoire of 

genes, as witnessed in models of  skeletal muscle injury, particularly dystrophy 

(Figure 4.2B).  

For instance, expression of SPP1, a multifunctional cytokine (also called 

early T-cell activation-1 (Eta-1), osteopontin), is linked with macrophage 

infiltration, resulting in a chronic inflammatory response observed in dystrophic 

muscle [13,19].  VSIG4, a regulator of T-cell activation expressed mostly in 

macrophages is strongly co-expressed within D2[19]. Though the exact mechanisms 

by which skeletal muscle attracts and allows entry of neutrophils and macrophages 

in dystrophic muscle are not well understood, there is evidence suggesting that 

ITGB2 is required to control the functional activities of neutrophils and 

macrophages within muscle [20]. Fibrosis observed in DMD, is largely activated in 

response to chronic inflammatory processes initiated within dystrophic muscle [13] 

and broadly refers to the accumulation of excess connective tissue (ECM)[11]. SPP1 

which is also expressed in fibrotic lesions is considered a marker for disease severity 

in DMD [21]. SPP1 is required for differentiation of myofibroblasts [22], an 

important class of fibroblastic cells required for wound healing, present abundantly 

within dystrophic muscle. Fibronectin (FN1) serves as a marker for fibroblast 

activation in muscle [23] 

SPP1, in addition to modulating fibrotic responses, promotes cell-cell and 

cell-matrix adhesions through its interaction with integrins, and CD44 [24]. Mature 

focal adhesion complexes containing genes such as ACTN1, fail to form in the 
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absence of SPP1 (SPP1-/-) within myofibroblast cultures [22] suggesting similar 

pathways for adhesion in dystrophy. Interestingly, within this module we also 

identify MMP9- a matrix metalloproteinase whose increased expression, 

particularly in the pathology of DMD, is associated with breakdown of 

cytoskeleton-ECM components leading to sarcolemmal damage and fiber necrosis 

[25, 26] Additionally, MMP9 is also suggested to act as an inflammatory stimulus 

for mediating neutrophil and macrophage infiltration within the dystrophic skeletal 

muscle [27, 28].  

SPP1 is subject to extensive posttranslational modification via 

glycosylation, phosphorylation and sulphation. Specific posttranslational 

modifications have been associated with altered properties and function of SPP1 

[29]. Interestingly, ACP5, a phosphatase required for mineralization of cartilage and 

bone matrix resorption [28] was recently demonstrated to be responsible for 

phosphorylation of SPP1 in endometrial tissue. Though no evidence for role of 

ACP5 or post-translation modification of SPP1 in dystrophic muscle exists, the co-

expression of ACP5 with SPP1 suggests a possible role in dystrophy warranting 

further investigation. 

Additionally, SPP1 shows high specificity interactions with certain ECM 

markers including CTSK, LUM, VCAN and VIM (Figure 4.2B). Though there is no 

direct evidence for the interaction of these markers with SPP1, the extant 

understanding of the ECM markers combined with the high specificity of co-
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expression observed in our network module suggest  possible associations with 

SPP1 in dystrophic muscle.  

Overall, our results indicate that the modules exhibiting low preservation 

statistics contain several gene pairs that are likely to be associated with the disease 

progression. Though it is conceivable that not all the genes identified within these 

less-preserved modules play a role in disease, several high specificity gene pairs 

identified were noted and hypothesized to play a significant role in pathogenesis of 

DMD.  

4.5 Conclusion 

An analysis of modules exhibiting a low preservation between dystrophic and 

healthy conditions showed that these modules showed a higher specificity among gene 

pairs pertinent to the condition under study. We illustrated the application of using 

preservation statistics to detecting modules functionally associated with dysregulated 

pathways in disease, as exemplified by the inflammatory module D2. This approach 

enabled identifying putative biomarkers, such as ACP5 identified within module D2, 

likely to be associated with the disease. 

In summary, our method provided a simple approach to identifying differences 

between conditions, which can be utilized for exploratory analysis of dysregulated 

pathways in disease using a published set of statistics.  
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4.7 Tables  

Table 4.1: Enrichment of modules identified in the healthy network 
This table represents the top functional enrichment term from the highest ranking 
annotation cluster identified for each module of the healthy network. The annotation 
clusters were ranked and identified using DAVID’s annotation clustering tool [31].  
 
Module  #Nodes Top Term p value 
N1 590 striated muscle contraction 7.59E-07 
N2 323 extracellular structure organization 2.90E-08 
N3 109 actin cytoskeleton organization 1.50E-02 
N4 598 modification-dependent macromolecule 

catabolic process 
2.36E-04 

N5 349 intracellular protein transport 7.69E-06 
N6 93 generation of precursor metabolites and energy 8.27E-39 
N7 215 chromatin assembly or disassembly 8.06E-04 
N8 125 muscle organ development 3.74E-03 
N9 171 fatty acid metabolic process 3.85E-05 
N10 1102 intracellular protein transport 5.12E-05 
N11 319 ribosomal small subunit biogenesis 4.28E-05 
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Table 4.2: Enrichment of modules identified in the dystrophic network 
This table represents the top functional enrichment from the highest ranking annotation 
cluster identified for each module of the diseased network. The annotation clusters were 
ranked and identified using DAVID’s annotation clustering tool [31] 
 

Module #Nodes Top Term p-value 
D1 247 cytoskeleton organization  1.89E-04 
D2 156 response to wounding 5.09E-07 
D3 121 blood vessel development 5.07E-03 
D4 377 modification-dependent macromolecule catabolic 

process 
1.56E-03 

D5 540 ubiquitin-dependent protein catabolic process  5.24E-04 
D6 874 generation of precursor metabolites and energy 7.03E-30 
D7 180 muscle system process 2.67E-04 
D8 301 RNA splicing 3.52E-10 
D9 75 extracellular matrix organization 1.22E-05 

 
D10 1089 positive regulation of ligase activity 9.73E-05 
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Table 4.3: Permutation based Zsummary  
This table reports the composite measure Zsummary and its associated p-value obtained 
by permuting modules labels in the dystrophic (test) network to assess preservation of 
modules in the healthy network. Median rank based on the observed statistics are also 
reported here. 
 

Module Size Median 
rank 

Z 
summary 

log p values 
(Z 
summary)  

N1 590 12 6.03 -13.80 
N2 323 8 9.66 -29.99 
N3 109 8 5.25 -8.66 
N4 598 4 23.84 -139.55 
N5 349 6 15.97 -71.44 
N6 93 2 10.69 -27.93 
N7 215 9 5.53 -9.57 
N8 125 12 2.33 -2.69 
N9 171 5 10.26 -28.77 
N10 1102 1 51.15 -581.53 
N11 319 3 18.85 -91.87 
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Table 4.4: Healthy network specificity 
This table represents the fraction of edges identified as being exclusive to the healthy 
modules as compared to the dystrophic network. #Gene pairs represent the top 1% of 
the edges calculated as 0.01*(n (n-1)/2) 
 

Module 
Name 

#Genes (n) #Gene pairs 
considered 

Gene pair 
specificity 
(%) 

N1 590 1738 34.46 
N2 323 520 15.00 
N3 109 59 16.95 
N4 598 1785 3.08 
N5 349 607 2.31 
N6 93 43 6.98 
N7 215 230 16.09 
N8 125 78 16.67 
N9 171 145 4.83 
N10 1102 6067 0.12 
N11 319 507 2.37 
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Table 4.5: Permutation based Zsummary  
 This table reports the composite measure Zsummary and its associated p-value obtained 
by permuting modules labels in the healthy (test) network to assess preservation of 
modules in the dystrophic network. Median rank based on the observed statistics are 
also reported here. 

 
Module Size Median 

rank 
Z 
summary 

log p values 
(Z 
summary)  

D1 247 11 2.50 -3.03 
D2 156 9 2.35 -2.78 
D3 121 8 7.36 -17.83 
D4 377 2 16.89 -73.04 
D5 540 4 20.28 -113.58 
D6 874 7 18.91 -120.35 
D7 180 5 9.60 -28.01 
D8 301 11 5.36 -12.79 
D9 75 5 4.80 -6.16 
D10 1089 1 50.95 -568.57 
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Table 4.6: Edges exclusive to the dystrophic modules. 
This table lists the fraction of edges identified as being exclusive to the dystrophic 
modules with respect to the healthy network. #Gene pairs represent the top 1% of the 
edges calculated as 0.01*(n (n-1)/2) 
 

Module 
Name 

#Genes #Gene pairs  Specificity 
(%) 

D1 247 304 20.39 
D2 156 121 45.45 
D3 121 73 4.11 
D4 377 709 2.12 
D5 540 1455 4.60 
D6 874 3815 3.96 
D7 180 161 3.11 
D8 301 452 3.32 
D9 75 28 0.00 
D10 1089 5924 0.20 
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4.8 Figures 

 
 
  
Figure 4.1: Module preservation between test (dystrophic) and reference (healthy) 
network. 
A- Scatter plot identifying the median rank of module preservation between test 
(dystrophic) and reference (healthy) networks. B- Co-expression between genes 
identified in module N1- The co-expression patterns for a subset of genes identified 
within module N1 are shown here. All interactions have a specificity of >0.95. Darker 
the line, stronger is the strength of co-expression between the gene pairs. 
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Figure 4.2: Module preservation between test (healthy) and reference (dystrophic) 
network. 
A- Scatter plot identifying the median rank of module preservation between test 
(healthy) and reference (dystrophic) networks. B- Pearson correlation between a subset 
of genes identified in module D2 from the dystrophic network- For the same set of genes 
from module D2, we also identify correlation patterns in the healthy network (left). The 
size of the node is proportional to the sum of all correlation strengths at the node in the 
network shown. Red lines indicate positive correlation and blue indicate negative 
correlation. 
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Figure S4.1: Hierarchical clustering results for a) Healthy and b) Dystrophic networks 
The upper section represents the cluster dendrogram of the differentially expressed 
genes identified for a) and b). The lower section (bar charts) indicates the modules 
identified and their respective sizes after hierarchical clustering. Each module is 
represented by the same colors in the dendrogram for ease of visualization. 
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Chapter 5- Functional relationships amongst diseases affecting skeletal muscle: a 

network theoretic approach 
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5.1 Abstract 

The use of systems biology in skeletal muscle research is fairly recent and so 

far, has largely focused on identifying disease marker genes and functional relationships 

from a handful of related diseases. Consequently limiting the discovery of new and 

unknown disease relationships. Here we utilize a quantitative framework to extract 

functional similarities between 20 diseases affecting the muscle. Using this framework 

we first identified 7 disease clusters via hierarchical clustering of the disease co-

expression network, with permutation testing identifying 20 network associations to be 

significant (p<0.05). We next explored the whole spectrum of muscle diseases by 

mapping the network onto the human protein-protein interaction network. A common 

protein signature underlying more than half the muscle diseases was identified using 

this approach. Functional enrichment analysis of 23 modules identified as part of this 

signature indicated a statistically non-random dysregulation of muscle bioenergetic 

pathways and calcium homeostasis.  Next, the mechanistic similarities between the 20 

significant disease associations was assessed using previously defined “functional 

modules” of the muscle. In particular, a detailed analysis of the functional similarity 

between two significantly associated diseases ALS and CP revealed dramatic adaptation 

of the Ca2+ machinery, albeit with a few differences, in both ALS and CP muscle. Lastly, 

a significant over-representation of drugs targets within the disease clusters highlighted 

prime therapeutic opportunities. 

 
 



138 
 

 

5.2 Introduction 

Human skeletal muscle is a versatile tissue, with science devoting many several 

decades to its understanding. Muscle, along with its metabolic and regulatory machinery 

has revealed complexities in composition, structure and function [1]. Precisely 

coordinated activity of each of its components is essential for normal functioning with 

factors intrinsic (such as genetic, epigenetic, and developmental) and environmental 

(such as hormonal, immune), shaping the destiny of muscular health and associated 

motor activity.  A disruption of any component within this complex system of 

interactions lead to disorders of the muscle, typically characterized by muscle fiber loss, 

reduced motor output and possibly death. Epidemiological, clinical, and physiological 

studies have contributed immensely to understanding the pathogenesis and 

manifestation of individual muscle diseases, revealing information about similarities 

amongst  them [2,3].  

 Recent advancements in genomic technologies have enabled newer 

opportunities for extracting disease similarities. Bioinformatics is being increasingly 

used in muscle research to gain a more comprehensive understanding of muscle 

dynamics, particularly in biomarker discovery [4–7]. Only a few studies however have 

capitalized on computational techniques for extracting similarities underlying highly 

similar muscle diseases, on a much larger scale. . For instance, Blandin et al [8] utilized 

the yeast-two hybrid (Y2H) system high throughput technology combined with co-

expression networks to generate a muscular LGMD-centered interaction network  

(LGMD- Limb girdle muscular dystrophy) identifying a total of 1018 proteins 
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connected by 1492 direct binary interactions particularly enriched for the cytoskeleton 

and extracellular matrix.. In our current study we utilize a quantitative framework to 

assess relationships between 20 diverse diseases affecting the muscle, categorized 

broadly into 5 categories, based on their pathological/clinical presentation (Table 5.1, 

see Methods) [9]. 

Briefly, the diseases considered here included the emery dreifuss muscular 

dystrophy (EDMD), limb girdle muscular dystrophy (LGMDs) – caused due to mutation 

in muscle structural genes; dystrophinopathies caused due to frame-shift (duchenne 

muscular dystrophy, DMD) or in-frame mutation (becker muscular dystrophy, BMD) 

of the DMD gene- all characterized by progressive weakening and wasting of skeletal 

muscle. Mitochondrial myopathies caused due to mutation of mitochondrial DNA (MT-

TL1 gene) such as progressive external opthalmoplegia (PEO) and mitochondrial 

encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS). Other 

idiopathic metabolic diseases such as acute quadriplegic myopathy (AQM) and chronic 

fatigue syndrome (CFS), characterized by preferential loss of thick filaments and in-

excitability of muscle were also considered for this study. Additionally, host of 

heterogeneous diseases called inflammatory myopathies (Polymyositis-PM, 

Dermatomyositis-DM, Inclusion body myopathies IBM and hereditary inclusion body 

myositis – HIBM) caused due to infiltration of immune cells into muscle were included 

here. Other diseases that affect muscle composition and function secondary to 

neurodegeneration such as amyotrophic lateral sclerosis (ALS), spastic paraplegia (SP) 

and cerebral palsy (CP) were also part of the current study. 
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In spite of the observable physiological similarities between diseases identified 

under the same category, diseases exhibit considerable heterogeneity in intensity, 

etiology, phenotypic manifestation and gene expression. For instance, though muscle in 

both inclusion body myopathies (HIBM and IBM) exhibits chronic inflammation with 

visible vacuoles, IBM is mostly idiopathic, while mutations in GNE and MYH2 cause 

HIBM[10].  

Given the heterogeneity associated with these diseases, we utilized techniques 

from systems biology, to assess the functional relationship amongst them, by integrating 

various sources of publicly available data - transcriptomic, protein, and drug. 

Particularly, we first generated an association network using the co-expression between 

genes based on available transcriptional data and identified 7 disease clusters, with 20 

significant inter-disease associations. We quantitatively assessed gene modules 

regulated across diseases. The gene modules were defined using two approaches- from 

the human protein-protein interaction network (PPIN) [11] and based on muscle 

function [12]. Using the protein interaction network we discovered a protein “signature” 

underlying more than half the diseases considered here mainly associated with deficient 

bioenergetics, and calcium dysregulation. We also utilized previously published muscle 

functional modules to compare the mechanistic changes associated with less explored 

disease associations such as ALS and CP.  Overrepresentation of druggable targets with 

known drugs, was assessed in the disease signature modules. Additionally, drug 

information was used to extract a smaller subset of drugs uniquely associated with 3 

disease clusters further highlighting their importance as therapeutic opportunities. Thus, 
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this analysis allowed for a synergistic identification of mechanisms shared among 

muscle diseases, which may or may not share clinical similarities. 

5.3 Methods  

5.3.1 Data acquisition and processing 

The list of diseases available under the Medical Subject Headings (MeSH) terms 

“neuromuscular”, “musculoskeletal” and “muscular” diseases as a guideline for 

identifying muscular diseases of interest [13].  

All available (RNAseq + microarray platforms) information was downloaded 

from GEO [14], and was manually surveyed for maximum coverage of muscle diseases 

in the MeSH headings identified above.  A single platform GPL96 (Affymetrix HG-

U133A offered the highest coverage of muscle diseases surveyed.  Choosing studies 

from one platform alone (GPL96) allowed us to limit possible noise arising due to 

platform differences. Additionally, we selected studies that had at least two disease and 

two control samples. We also eliminated studies on muscle diseases where blood 

plasma, derived cells or connective tissue was sample tissue. Filtering the data for 

accuracy, and experimental context using our constraints, we had microarrays for 19 

human diseases characterized under the MeSH headings described above. In addition to 

these 19 diseases we included a study on “Cerebral Palsy”, a movement disorder 

characterized by contractures of the muscle, though it was not available under MeSH 

terms, giving a total of 20 disease included in our analysis. 
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We RMA normalized the gene expression data (disease and control) in each 

microarray study for which raw .CEL files were available. Studies with series matrix 

files were downloaded as is. ComBat cross-array normalization was performed on 

diseases, which had more than one associated GSE (3 diseases -LGMD2A, DMD and 

JDM, Table 5.1), to remove study artifacts upon combining data [15]. Multiple probes 

were accounted for using the “collapseRows” function of WGCNA library in R [16]. 

All probes with missing ENTREZ gene identifiers were excluded from his study. 

Reduced data sets containing log2-based normalized expression values of 12789 genes 

for each disease state was subsequently obtained. The normalized expression values 

were then z transformed thus allowing for comparison of gene expression values across 

various microarray studies and disease types.  

5.3.2 Identifying disease similarity 

 The T-statistic provides insight into the difference in mean expression of a gene 

across conditions, and was used as a measure of gene’s differential activity (differential 

gene activity, DGA) in each disease state. The T-test was performed on the z-

transformed expression values using Cyber-T’s regularized t-test [17]. In contrast to 

student t-test, Cyber-T implements a Bayesian framework to compute a regularized 

variance of the measurements associated with each gene under each condition. The 

partial pearson correlation of the DGA scores was used to quantify disease similarity 

based on expression profiles. The use of the partial spearman correlation coefficient has 

been previously shown to be effective in factoring out dependencies such as variation 

in tissue types and experimental conditions [18]. 
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Disease clusters were identified using hierarchical clustering of the partial 

pearson correlation between DGA scores. The complete method of clustering, with 1-

partial correlation was used as the distance metric for clustering.  

5.3.3 Disease-gene based disease overlap 

A comprehensive list of genetic factors affecting the 20 muscle diseases was 

downloaded from various resources such as OMIM[19], PheGenI [20] and ClinVar [21] 

in addition, to a publicly available database- DisGeNET (that integrates information on 

gene-disease associations from several public data sources and the literature [22]. The 

statistical overlap between diseases based on the disease-gene list was identified using 

the basic hypergeometric model with a null that disease- associated genes are randomly 

drawn from the space of all genes considered.  

5.3.4 Muscle “functional modules” and functional module activity score  

A recently published [12] list of functional modules within muscle was 

appended and utilized in this study (Table 5.3). The genes identified in each “functional 

module” represent a group of biomarkers significantly associated with a functional 

subfamily that falls under the broad functional pathway associated with muscle (Table 

S5.1) as per previously published research [12]. It is acknowledged that several of the 

genes represented under these categories are multi-functional; yet, we place them in 

functional modules that are most relevant with respect to muscle. Functional module 

activity (FMA) score associated with each functional module i in disease k was 

calculated as the mean of DGA scores, of its component genes, with the scores reflecting 

the state of the module in a particular disease. Specifically, a negative FMA values 
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reflects on a general downregulation of the module in disease with respect to controls 

and vice versa for positive FMA values.  Significant functional modules associated with 

each disease were identified via permutation testing.  

5.3.5 Human protein interaction network and protein module activity score 

The human PPIN was downloaded from the STRING database (v9.1), 

containing both direct (physical) and indirect (functionally derived) protein interactions 

[11]. Limiting the interactions to cutoff of >0.85 ensured only high quality interactions 

among proteins to be retained in our network.  A total of 148030 unique interactions 

among 10341 proteins were identified at this cutoff.  Clustering of the PPIN was 

performed using MCL clustering (plugin available in Cytoscape), which has been 

shown to be highly robust in clustering PPIN [23,24]. 278/10341 proteins were 

unclustered, with the remaining being clustered into 1766 protein modules, with module 

sizes ranging from 2 to 256 genes/proteins. 1025/1766 modules (total of 8581 proteins) 

with at least 3 genes/module were considered for further analysis. 

Analogous to Suthram et al [18], the protein module activity score was 

calculated for each protein module i in a disease k as the mean of DGA scores, of its 

component genes. In the end, we obtained a vector of protein module activity (PMAik) 

scores for each disease representing the activity level of each protein module in each 

disease state (see Methods).  Significance testing identified protein modules with a 

p<0.05 associated with each disease. Threshold for module differential expression was 

identified as the 90th percentile of |mean PMA| scores from significant modules across 
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diseases or disease clusters and was considered as the cutoff for identifying significantly 

differential expression for the given group of diseases.  

5.3.6 Significance testing  

To assign significance to the observed disease correlations, we created a 

background distribution of disease correlations expected at random. First we shuffled 

the disease and the control sample labels and calculated DGA values associated with 

each gene, for each disease state using the randomized data. We then computed the 

corresponding disease correlations. Finally, we repeated the whole process 100 times to 

create a background distribution of disease correlations (test statistic) which was utilized 

to determine a permutation based p-value by ascertaining the number of the times the 

permuted statistic exceeded the observed statistic. A similar approach was adopted for 

generating background distributions for PMA and FMA scores. 

5.3.7 Network visualization and functional enrichment  

All network visualization was performed using Cytoscape software [25]. All 

data processing steps and pipelines implemented in this analysis were written in R (v 

3.2.2)/ Bioconductor. Enrichment was identified using ClueGO a functional enrichment 

analysis plugin available via cytoscape [26].  

5.3.8 Drug data 

The drug gene interaction database (DGIdb) [27] was utilized to identify the list 

of all expert-curated list of proteins/genes that serve as druggable targets in our study. 

A list of currently approved drugs from the FDA was obtained from Drugbank [28], 
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while drugs treating the disease clusters considered here was obtained from Medscape 

(http://www.medscape.com/).  

5.4 Results and Discussion 

5.4.1 Clustering muscle diseases based on differential gene activity identifies both 

well and less characterized disease associations.  

Expression data for the 20 muscle diseases was downloaded from GEO, and 

suitably processed (see Methods). The role of a gene, in each disease state was 

quantified as the associated T-statistic of z-normalized expression values between case 

and controls (see methods, Figure 5.1A) and is referred to as the differential gene 

activity (DGA) score. Subsequently, each of the 12789 genes had an associated DGA 

score for each disease state. The partial correlation of DGA scores was computed to 

quantify disease similarity. Hierarchical clustering of diseases based on the partial 

correlations provided 7 clusters, with several of them consistent with known disease 

similarities (Figure 5.1B, Table 5.1).   For instance, disease clusters identified included 

muscular dystrophies (BMD, DMD, LGMD2I and LGMD2A) mitochondrial disorders 

(MELAS and PEO) while others are less characterized in muscle literature such cluster 

containing CP, ALS and AQM. 20 (~10%) of the 190 possible disease interactions were 

identified as being highly significant (p<0.05) through significance testing (see 

Methods) with several of them not captured via clustering such as between DMD and 

JDM (Figure 5.1C). A few of the associations marginally missed the significance 
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threshold and were not captured for instance the association between LGMD2B and 

DMD, BMD and DMD. 

We next ascertained if the observed significant disease correlations (based on 

DGA scores) shared known genetic associations. List of genes associated with the 20 

diseases was compiled from publicly available databases (see Methods). A pair of 

diseases was considered to significantly share disease-genes if the hypergeometric p-

value of overlap was less than 0.05. 26 of 190 possible disease interactions were 

identified to share a significant genetic basis. 6/26 interactions overlapped with our 20 

significant DGA based associations (Table 5.2A), A one-sided fisher’s exact test p-

value of 0.036 (Table 5.2B), implied that the genetic disease similarity was significantly 

captured by DGA based correlations in this study. It is to be noted that relatively low 

albeit significant p-value of fisher’s exact test reflects the possibility that certain disease 

associations did not pass our significance threshold or were not captured using disease-

gene lists, as certain diseases are better studied than others. For example, genes 

associated with ALS (895 genes) where far greater than those associated with AQM (26 

genes).  

In the following sections we utilize two approaches to exploring muscle diseases 

using the computed DGA scores as a basis for disease similarity- First, we explore the 

whole spectrum of muscle diseases by mapping it onto the human PPIN. Next, we 

mechanistically compare significant pairwise disease associations, by mapping them 

onto previously published functional modules of the muscle.  
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5.4.2 Deficient bioenergetics and calcium homeostasis form the common protein 

signature underlying diseases affecting the muscle 

It is often argued that proteins encoded by expressed genes give a more 

deterministic view of changes occurring in pathophysiology. The protein modules 

represent a group of strongly interacting proteins identified within a human-PPIN, as 

detected through modularity detection algorithms [23,24]. With this is mind, we sought 

to answer if certain protein modules were commonly regulated in the diseases 

considered and refer to them as the protein signature modules underlying diseases 

affecting the muscle. 

To this end, a catalog of 1025 protein modules were first generated by querying 

a large-scale human PPIN available through STRING [11] (see Methods) with module 

sizes varying from 4 – 256 proteins. A protein module activity (PMA) score was 

calculated for each protein module, defined as the mean of the DGA scores for 

proteins/genes in each module, for each disease state. Signature protein modules were 

identified utilizing a two-fold approach- first, all modules, which had their absolute 

PMA values significantly higher than random (p<0.05) in more than half the diseases 

(n>10) were extracted. 45 modules passed this selection criterion. Next, using a 

threshold for module differential expression (see Methods), 23/45 modules were 

identify to exceed the threshold and were defined as the underlying protein signature.  

A complete list of signature modules identified and their top enrichment term is 

provided in Table S5.2). 
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The functional enrichment for the 23 signature modules indicated several 

modules being associated with mitochondrial function (e.g. modules 41, 168, 271, 355, 

656), mitochondrial structure (e.g. 537), metabolism (e.g. 426, 632), calcium 

homeostasis in muscle (e.g. 334), and the extracellular matrix (e.g. 153, 416) (Figure 

5.2).  

Early research on mitochondrial morphology and its abnormalities in muscle 

disorders suggested that the widespread occurrence of mitochondrial anomalies 

observed did not necessarily imply a primary deficiency in efficacy of mitochondrial 

function, with muscle meeting its energy requirements [29]. However, more recent 

research has repeatedly suggested deficient bioenergetics underlie the pathology of 

several muscular and neuromuscular diseases in mammalian models [30–33]. Pathology 

of neuromuscular diseases such as ALS exhibits mitochondrial dysfunction as a major 

event in its progression [34,35]. Reduced efficiency in the action of the tricarboxylic 

acid (TCA) cycle has been also assessed in diseased muscle associated with 

inflammatory myopathies [36], dystrophy [37] and its well documented effects on 

mitochondrial diseases such as MELAS, PEO [38].  Mounting evidence suggests that 

the pathological muscle wasting observed in dystrophies (e.g. DMD) might be due to 

reduced ATP availability required for maintenance of Ca2+ homeostasis and fiber 

regeneration [39]. Bioenergetic pathway enzymes have recently shown to be relevant 

biomarkers of muscular and neuromuscular disease progression [40]. 

Ca2+ homeostasis in muscle largely determines its contraction and relaxation 

properties. This is tightly regulated by the Ca2+ signaling apparatus within muscle 
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comprising of the ryanodine receptors, sarcoplasmic endoplasmic reticulum calcium 

pumps (SERCA), troponin complex, calsequestrin; in addition to Ca2+ binding proteins 

such as parvalbumin, sarcolipin, phospholamban and calpains. Ca2+ signaling and 

handling molecules have been shown to be altered in various diseases such the strong 

dysregulation of proteins ATP2A1 (SERCA pump), sarcolipin (SLN, which inhibits 

SERCA) and calsequestrin (CASQ, restrains Ca2+ to the sarcoplasmic reticulum), are 

strongly dysregulated in ALS and DMD [41]. Likewise, regulation of ASPH (regulator 

of ryanodine receptors) and SLN have also been observed in muscle from diseases such 

as CP [42]. Figure 5.3 provides a representative sample of 4/23 signature modules and 

their enrichment (Ai–iv, and respective enrichment in Bi-iv).   

Although existing research on several muscle diseases (such as ALS, DMD, 

BMD, and CP) has shown varying extents of mitochondrial dysfunction and calcium 

dysregulation in their pathomechanism, our approach points to widespread, statistically 

non-random dysregulation of mitochondrial function and calcium homeostasis 

associated with most muscle diseases including the relatively less characterized disease 

such as AQM and CFS.  Further, the absence of modules associated with structural 

sarcomeric proteins (myosins, actins, z – disc, dystroglycan) at our significance 

threshold emphasizes the vital role of muscle bioenergetics and calcium signaling and 

homeostasis pathways in the pathogenesis of diseases affecting muscle. 

5.4.3 Muscle specific mechanistic changes underlying pairwise disease associations 

The above approach using protein modules from the human PPIN allowed us to 

infer a common program of functional changes underlying majority of the muscle 
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diseases. Subsequently, we sought to elucidate mechanistic similarities among 

significant pairwise disease associations identified, in a more muscle specific context. 

Utilizing a modified set of previously published muscle functional networks [12], we 

defined a set of 23 “functional modules” to capture key biomarkers associated with 

major pathways/specific functions within muscle, as per extant understanding (Table 

5.3, Table S5.1). A functional module activity (FMA) score was calculated for each 

disease state as the mean of the DGA scores for genes associated with each functional 

module. The FMA score reflect the collective behavior of genes in each functional 

module in a given disease state. An associated p-value for each functional module was 

also associated via permutation testing. Functional mechanisms shared amongst the 20 

significant disease-pairs were assessed by identifying functional modules (with p<0.05) 

shared between them. Table 5.4 presents a subset of significant disease-pairs, which 

shared four, or more significant functional modules shared between them. 

 For instance, JDM and DMD had 15/23 functional modules (FM) 

overrepresented in both DMD and JDM (p<0.05). The shared functional modules 

included atrophy, inflammation, ECM and cytoskeleton, all members of the excitation 

contraction coupling family (FM IDs- 3,4,5), members of contraction (7,8), 

mitochondrial energy metabolism (11,12,13,14,15), inflammation, and fiber type 

maintenance (19 and 21). Both DMD and JDM represent myopathies, where the primary 

insult of the disease is on the skeletal muscle however, JDM is a systemic autoimmune 

vasculopathy characterized by weakness of proximal muscles and skin rashes with its 

histopathology showing evidence for necrosis, fiber size variation, and a muscle 
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degeneration/regeneration phenotype [43].  It has been previously suggested to share 

many pathologic similarities muscle of children affected with DMD. A comparison of 

the expression profiles of children with DMD and JDM have revealed similarities in 

gene cascades involving muscular atrophy, deficits in mitochondrial metabolism and 

contraction, along with upregulation of extracellular matrix and cytoskeletal cascades 

[44] consistent with the functional overlap observed using our method.  

Finding relevant functional modules consistent with the current understanding 

of similarities between JDM and DMD further justifies the efficacy of the adopted 

approach in identifying functional modules affected in more than one diseases state, in 

a context specific manner. To further elucidate disease associations much less explored, 

we focused on two diseases ALS and CP and their overlapping functional modules and 

associated FMA scores.  

5.4.4 Calcium dysregulation in patients with ALS and CP  

ALS and CP both represent neurological diseases with their primary insult on 

upper and/or lower motor neurons. While ALS is a neurologically progressive disease, 

CP is not, with both disorders exhibiting progressive musculoskeletal weakness and 

increased spasticity. While ALS muscle is additionally characterized by denervation 

atrophy and spasticity, there is distinctive shortening and subsequent weakness of CP 

muscle [45,46]. We identified 6 functional modules as being significantly dysregulated 

in both ALS and CP (Table 5.4). The associated FMA scores reflect the state of the 

functional module in the disease, specifically a negative FMA scores reflects a general 

downregulation of genes associated with the functional module in the particular disease.  
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We observed that 5/6 functional modules identified above are similarly 

regulated in both ALS and CP (Table 5.5), particularly functional modules associated 

with mitochondrial metabolism (FM IDs 12-15). There is abundant evidence in 

literature for mitochondrial dysfunction particularly electron transport chain 

dysregulation and its role in ALS [47,48], albeit in neurons. Our results indicate similar 

programs of mitochondrial dysregulation to be associated with muscle in patients with 

ALS and CP. Though no detailed studies in muscle exist to corroborate mitochondrial 

dysfunction in CP, Smith et al [42,49] also show a general downregulation of 

mitochondrial transcripts. Comparison of the expression values for genes associated 

with these functional modules showed an R2 of 0.9. 

Interestingly, the FMA scores associated with calcium dynamics/homeostasis 

reflected differential regulation between ALS and CP (Table 5.5). While, cellular Ca2+ 

dysregulation in ALS has been reported within affected neurons, characterized by 

endoplasmic reticulum Ca2+ depletion and mitochondrial Ca2+ overload [50]; dramatic 

Ca2+ dysregulation within muscle from CP patients has also been suggested to occur 

[42,49]. We observed a few notable differences between ALS and CP functional 

modules. ATP2A1 and ATP2A2, two-muscle specific, fast fiber sarco (endo) plasmic 

reticulum Ca2+ ATPase (SERCA pumps) were very strongly downregulated in ALS.  

The energy demanding fast isoform SERCA pumps serve to rapidly replenish the 

sarcoplasmic reticulum (SR) Ca2+ store by pumping the cytosolic calcium back to the 

SR, bringing about muscle relaxation [51]. The reduced need for regulation of the 

SERCA pumps is reflected in the downregulation of its two strong regulators- SLN and 
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PLN. Upregulation of voltage independent neuronal/smooth muscle isoform of the 

ryanodine receptor (RYR3) further emphasizes leakage of SR Ca2+ into the cytosol [52]. 

Activation of non-skeletal muscle isoforms further emphasizes a shift in the fibers 

towards slower/more mixed phenotype in ALS. In CP, increase in Ca2+ can be inferred 

by the massive upregulation of PVALB, which selectively binds to free Ca2+ to reduce 

the quantity of free intracellular Ca2+  (subsequently, bringing about muscle relaxation). 

Though no significant changes are observed with respect the SERCA pumps or 

ryanodine receptors, FKBP1A and PDE4D that prevent channel leaking were 

significantly downregulated and PLN that controls the Ca2+ intake by the SERCA pumps 

was significantly upregulated in CP. On the other hand, upregulation of ASPH, TRDN 

and CASQ1 indicate that muscle actively trying to sequester intracellular Ca2+ to the 

stores. Figure 5.4 represents associated fold changes for select genes from the calcium 

homeostasis functional module.  

Taken together this indicates increased cytosolic Ca2+ in both diseases, however, 

in ALS- the Ca2+ homeostasis machinery associated with SR appears to be severely 

challenged by the disease with increased leakage of Ca2+ from the intracellular stores 

and a constrained uptake of Ca2+ back into SR. In contrast to this, CP displays a use-

dependent decrease in capacity of the SR albeit muscle’s efforts to actively recover its 

Ca2+ stores. This dramatic adaptation in both ALS and CP muscle might additionally 

lead to altered muscle contractile properties and mitochondrial functions.  
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5.4.5 Drug targets are overrepresented in disease associated protein modules 

In spite of the current advancements in understanding of 

muscular/neuromuscular disease pathophysiology, several of the diseases discussed 

here are as yet untreatable with high rates of morbidity and mortality with limited 

therapeutic options. Given the lack of drug/therapeutic availability for muscle diseases, 

we aimed to identify if therapeutic opportunities could be inferred from our quantitative 

framework in two contexts.  

1. We ascertained if there was an overrepresentation of druggable targets in the 

common protein signature to support the hypothesis that common drug targets and 

subsequently drugs can treat a variety of muscle diseases. 47/134 proteins in the disease 

signature modules belonged to at least one druggable category (as categorized in the 

drug gene interaction database [27], hypergeometric p-value of overlap <0.05) targeted 

by at least one drug. 30 of these proteins were further identified as targets for 34 FDA 

approved drugs, treating a variety of other diseases providing avenues for exploration 

of therapeutic options (Figure 5.3A, Table S5.3). The absence of appropriate drugs for 

treating diseases of the muscle, with several of current treatment offering only 

symptomatic relief; and the presence of drug target over-representation within our 

network prompted us to explore if there are unique drugs shared by disease clusters.  

2. We next hypothesized that protein modules uniquely regulated in each of the 

disease clusters may be enriched for drug targets uniquely regulating the disease cluster. 

For instance, the protein modules associated with 3 disease clusters explored are shown 

in Figure 5.5A (DM/JDM cluster, IBM/PM cluster and DMD/BMD/LGMD cluster), 
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with the numbers identifying shared and uniquely regulated protein modules identified 

in the human PPIN, within the 3 disease clusters.  FDA approved drugs targeting the 

proteins in uniquely regulated protein modules were identified. We identified a total of 

50 FDA approved drugs to be targeting proteins in the uniquely regulated modules 

within the IBM/PM cluster, 30 drugs targeting proteins within the DMD/BMD/LGMD 

cluster and 182 for the DM_JDM cluster (Figure 5.5B, Table S5.4). Several drugs such 

as methotrexate and cyclosporine – immunosuppresents currently used in symptomatic 

relief in DM, JDM were identified associated with the relevant cluster. Interestingly, 

Sirolimus a FDA approved drug for prophylaxis against organ rejection is currently 

suggested for symptomatic relief in patients with DM. Our analysis showed that 

Sirolimus targets genes in the IBM/PM clusters suggesting therapeutic opportunities for 

Sirolimus in IBM/PM (Figure 5.5B). These provide evidence for further exploration of 

opportunities for drug repurposing for diseases affecting the muscle, as primary or 

secondary treatment. 

5.5 Conclusion 

In summary, this study demonstrates the value of an integrated approach in 

revealing disease relationships and highlights opportunities for therapeutic 

advancements for treating muscle diseases. Integrating protein information into the 

diseases similarity network allowed for identification of common dysregulation 

pathways across a variety of muscle diseases. Likewise, the knowledge of how diseases 

functionally relate to each other using muscle functional modules provide invaluable 
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insight into mechanistic differences in muscle, as witnessed through the differences 

identified in ALS and CP. Incorporating drug data into our quantitative framework 

allowed us to infer opportunities for exploring drug repurposing as option for treating 

diseases of the muscle. We aim to further incorporate more gene expression data from 

GEO and other similar repositories in the future, expanding the set of diseases affecting 

muscle for the disease-similarity network. 
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5.7 Tables  

Table 5.1: Diseases affecting muscle.  
This table represents the 20 muscle diseases considered in the current study along with 
the major disease category, current evidence for genetic association and the Gene 
Expression Omnibus (GEO) accession of the studies corresponding to muscle diseases 
used in our study. Sarcopenia was not included in any major disease category as it is a 
age related loss of muscle tissue. 
 
Major disease 
category 

Disease Extant evidence 
for genetic 
association 

GEO series 

Muscular 
Dystrophy 

Becker muscular 
dystrophy (BMD) 

DMD  GSE3307 

 Duchenne muscular 
dystrophy (DMD) 

DMD  GSE3307, 
GSE6011 

 Emery Dreifuss muscular 
dystrophy (EDMD) 

STA (EDMD1), 
LMNA (EDMD2) 

GSE3307 

 Facioscapulohumeral 
muscular dystrophy 
(FSHD) 

FSHMD1A, region 
4q35 

GSE9397, 
GSE10760 

 Limb-Girdle muscular 
dystrophies (LGMD) 
Type 2A 

CAPN3 GSE3307, 
GSE11681 

 LGMD Type 2B  DYSF GSE3307 
 LGMD Type 2I FKRP GSE3307 
Inflammatory 
Myopathies 

Juvenile dermatomyositis 
(JDM) 

 
Mostly 
idiopathic 
with evidence 
for 
association 
with HLA 
alleles 

 

GSE3112 

 Dermatomyositis (DM) GSE5370 
 Polymyositis (PM) GSE3307, 

GSE11971 
Inclusion body 
Myopathies 

Inclusion body myositis 
(IBM)  

GSE3112 

 Hereditary inclusion 
body myopathy (HIBM) 

GNE, MYH2  GSE12648 

Age related loss Sarcopenia Idiopathic GSE1428 
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Table 5.1: Diseases affecting muscle, continued 
 
 
Metabolic 
disorders 
affecting muscle 

Mitochondrial 
encephalopathy, lactic 
acidosis, and stroke-like 
episodes (MELAS)  

MT-TL1 GSE1462 

 Acute quadriplegic 
myopathy (AQM) 

Idiopathic GSE1017 

 Chronic fatigues 
syndrome (CFS) 

Idiopathic CSE14577 

 Progressive external 
ophthalmoplegia (PEO) 

MT-TL1 and/or  
POLG, SLC25A4, 
and C10orf2 

GSE1017 

Neural diseases 
affecting muscle 

Amyotrophic lateral 
sclerosis (ALS) 

C9orf72,SOD1, 
TARDBP, FUS, 
ANG, ALS2, 
SETX,  VAPB 
(familial); 80-90% 
are idiopathic 
(sporadic) 

GSE3307 

 Hereditary spastic 
paraplegia (SP)  

ATL1, SPG4, 
SPG20, SPG7 

GSE3307 

 Cerebral Palsy (CP) Mostly idiopathic GSE11686 
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Table 5.2: Disease association overlap.  
A. This table provides associations that overlap between associations calculated based 
on the DGA scores and associations that share a genetic basis (disease-gene list based). 
Hypergeometric p-values of the overlap are also presented. B. Contingency table to 
evaluate the hypothesis that significant disease associations also significantly shared 
disease genes. 
 
A. 

 
 
 
 
 
 
 
 
 
 
 

B. 
 Correlations based on DGA scores 

  Significant Not 
Significant 

Totals 

Correlations 
based on known 
disease genes  

Significant 6 20 26 
Not 
Significant 

14 150 164 

 Totals 20 170 190 
 
 
 
 
 
 
 
 
 
 
 
 

Disease 1 Disease 2 Hypergeometric 
p-value  

DM JDM 3.54E-12 
DMD JDM 2.08E-02 
DMD LGMD2A 9.09E-03 
BMD LGMD2I 5.38E-03 
MELAS PEO 6.95E-04 
IBM PM 7.26E-10 
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Table 5.3: Functional modules in muscle 
This table represents the modified set of previously published functional modules 
associated with muscle. 23 subfamilies were identified as belonging to 14 main 
functional pathways associated with muscle.  

 
Family Subfamily  ID Family Subfamily  ID 

Neuromuscul
ar Junction 
(NMJ) 

Components of 
NMJ 

1 Mitochondrial 
energy 
metabolism 

Mitochondrial 
electron 
transporters 

13 

Synaptic basal 
lamina 

2 Small molecule 
transporters 

14 

Excitation 
Contraction 
coupling 
(ECC) 

Ion Channels of 
post synaptic 
muscle 

3 Members of outer 
& inner 
mitochondrial 
membrane 

15 

Ion transporters 
pumps/exchangers) 

4 Associated 
signaling 

16 

Calcium 
dynamics/homeost
asis required for 
ECC 

5 Hypertrophy Hypertrophy 17 

Contraction Sarcomeric thin 
filament associated 

6 Atrophy Atrophy 18 

Sarcomeric thick 
filament associated 

7 Inflammation Inflammation 19 

Sarcomeric z-disc 
associated 

8 Regulators Myogenic and cell 
cycle regulators 

20 

Cytoskeleton Cytoskeleton 9 Fiber type 
maintenance 

Fiber type 
maintenance 

21 

Extracellular 
Matrix (ECM) 

Components of 
ECM 

10 Vasculogenesis Angiogenic 
processes 

22 

Mitochondrial 
energy 
metabolism 

Glycolytic 
metabolism 

11 Oxidative stress Oxidative stress 23 

Oxidative 
metabolism 

12    
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Table 5.4: A representative set of functional modules shared between significant disease 
pairs  
This table represents the functional modules identified as overlapping (p<0.05) between 
the significant diseases associations identified on the left. The overlapping functional 
modules are identified using the IDs presented in Table 5.3. 
 
Significant disease 
association 

Overlapping functional modules  

ALS-CP 2,5,12,13,14,15 
DMD-BMD 5,7,10,12 
DM-JDM 5,6,7,8,9,11,12,13,14,15,19,21 
EDMD-FSHD 5,6,11,13 
IBM-PM 5,9,10,11,12,15,16,21,23 
JDM-DMD 3,4,5,7,8,9,10,11,12,13,14,15,18,19,21 
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Table 5.5: Overlapping functional modules between ALS and CP  
This table provides a list of functional modules that were identified as being 
significantly shared between two diseases ALS and CP along with their computed 
functional activity scores. 
 
ID Functional module ALS  

FMA 
score 

CP 
FMA 
score 

2 Synaptic basal lamina 1.42 1.53 
5 Calcium 

dynamics/homeostasis 
required for ECC 

-2.02 1.72 

12 Oxidative metabolism -2.62 -2.09 
13 Mitochondrial electron 

transporters 
-3.17 -2.14 

14 Small molecule transporters -2.99 -1.94 
15 Members of outer & inner 

mitochondrial membrane 
-1.18 -1.34 
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5.8 Figures 

 
 
Figure 5.1: Extracting significant disease similarities from 20 diseases affecting muscle 
 A- Shows the workflow involved in calculating the differential gene activity (DGA) 
score and hierarchical clustering of the scores to extract disease clusters based on DGA 
B- Shows the hierarchical clustering dendrogram (method- complete) of disease 
correlations. Tree cut height (red line) corresponds to a p-value of 0.05 and disease 
clusters identified below this line were identified to be significantly correlated. C- This 
network represent the 190 possible associations between the 20 diseases. Edges 
highlighted in red indicate the associations identified as being highly significant through 
permutation testing. The various node colors indicate the clusters the diseases belong to 
as identified through hierarchical clustering. The nodes colored in grey were not 
clustered. 
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Figure 5.2: Combined functional enrichment of protein signature underlying diseases 
affecting the muscle 
This provides a graphical representation of the top enrichment terms identified in the 23 
protein modules (combined) that were commonly identified as underlying a majority of 
the diseases considered in this study. 
 
 
 
 
 
 
 
 
 
 
 
 
 



166 
 

 

   
 
Figure 5.3: Representative set of the protein signature modules underlying diseases 
affecting the muscle 
 A (i-iv) - Represent 4/23 protein signature modules are indicated here with brown nodes 
representing proteins that belong to at least one druggable category as defined in the 
Drug-gene interaction database (DGIdb). Number shown in braces represent the number 
of FDA approved drugs targeting the proteins. B (i-iv) represents the corresponding top 
terms in the functional enrichment as identified using Gene Ontology’s -Biological 
Process category and KEGG pathways in ClueGO- a cystoscope plugin. 
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Figure 5.4: The Ca2+ homeostasis associated functional module in ALS and CP 
This figure captures the fold changes associated with select genes of the Ca2+ 
homeostasis functional module with the left half indicating the fold change associated 
with ALS and the right half indicating the fold change associated with CP.  
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Figure 5.5: Drug disease network for 3 disease clusters 
A- Shows the number of protein modules associated with each disease cluster 
considered e.g 13 protein modules were shared among all clusters, 20 modules were 
uniquely regulated in the DMD/BMD/LGMD cluster, 43 in the IBM/PM cluster and 63 
in the DM/JDM cluster. B. Represents the FDA approved drugs (Table S5.3) associated 
with the protein modules uniquely regulated in each disease cluster. Nodes in yellow 
are the drugs currently utilized for treatment in the disease associated with the cluster.  
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Chapter 6- Mechanisms underlying ischemic and idiopathic dilated 

cardiomyopathy utilizing signed differential co-expression network 
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6.1 Abstract 

Differential co-expression networks allow us to identify groups of genes that are 

differentially co-regulated between conditions. The goal of this study was two-fold- 

First, we describe an approach to identifying differential co-expression from signed, 

weighted co-expression network from two condition data. Next, we utilize the defined 

approach to discern mechanisms underlying ischemic (ICM) and idiopathic dilated 

cardiomyopathy (IDCM) - two leading causes of human heart failure.  

Briefly, the expression correlation matrix for each condition was converted to z-

scores using Fisher’s r to z transform. A signed scalar matrix of difference (δ) was 

obtained from the two transformed correlation matrices. A distance metric that takes 

into account the sign of difference was utilized during hierarchical clustering of the 

adjacency matrix derived from δ. Dynamic tree cut algorithms were employed to 

identify differentially co-expressed modules from this network. Signed network 

parameters including signed node connectivity and signed module centrality were 

defined in the process.  

Functional analysis of differentially co-expressed modules generated using the 

above approach corresponded well with current understanding of aberrant processes 

underlying dilated cardiomyopathy (DCM). Topological assessment of the hubs 

identified within these modules point to strong associations with known markers of 

disease. These hubs were also enriched for variants in cis-eQTL within the heart left 

ventricle. Our analysis identified differential co-regulation of targets of SP/KLF family 

of transcriptional factors in ICM and IDCM. Further research is however needed to 



176 
 

 

delineate the precise differences in the mechanisms involving SP/KLF family of 

transcription factors. 

6.2 Introduction 

Dilated cardiomyopathy (DCM) is a progressive, largely irreversible complex 

disease of the heart characterized by left ventricular chamber enlargement and systolic 

dysfunction. Historically, the prevalence of DCM is documented to be 1: 2500 making 

it one of the leading causes of heart failure, often requiring heart transplantation [1]. 

However, recent genomic studies have estimated a much higher prevalence of 1:250 

making it more widespread in the population than previously believed [2].   

In addition to heritable causes of DCM, ischemia, toxic and metabolic insults, 

immune dysregulation, virus-mediated and valvular defects are known to be causative 

of DCM [1, 3]. Recent estimates suggest that nearly half the DCM population are non-

ischemic in origin, with more than 70% of the non-ischemic cases being categorized as 

idiopathic (idiopathic DCM, IDCM), that is, no underlying cause can be identified [4]. 

Though both ischemic cardiomyopathy (ICM) and IDCM are clinically characterized 

by ventricular dilatation and impaired contractility of left ventricle, ICM exhibits 

ischemia of the heart (reduced blood flow due to arterial blockage causing a fibrotic 

phenotype with contractile dysfunction) leading to congestive heart failure. Utilizing 

clinical, pathological and echocardiographic measurements, studies have shown 

differential characteristics in treatment and prognosis for ICM and IDCM [5, 6]. 
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Studies in cardiovascular genetics have adopted several expression and systems 

based approaches to understanding cardiac muscle activity particularly in the context of 

DCM and its various etiologies [7]. These studies have focused extensively on 

identifying biomarkers and genetic variants associated with DCM; identifying the effect 

of their expressivity and penetrance within the DCM population, across various 

etiologies.  Studies have also identified several SNPs contributing to DCM [8,9]; and 

have implicated 42 genes – that affect structure of cardiac muscle - the sarcomere, the 

nuclear envelope and the sarcolemma and processes associated with muscle such as 

adhesion and inflammation [10]. Additionally, a recent systematic meta-analysis has 

added a putative list of 68 genes with possible roles in DCM [11].  

Despite the steadily increasing deluge of high throughput data from studies on 

DCM, a comprehensive and systematic understanding of the genomic differences 

between ICM and IDCM is in its early stages. For example, studies that aimed at 

identifying differences between ICM and IDCM at an “omic” level in humans have 

largely focused on differential expression [12, 6].  A systems level understanding of the 

difference in the nucleoplasmic network between ICM and IDCM was recently 

published [13]. However, an overall understanding of the complex dynamics of 

interactions in ICM and IDCM is lacking. To this extent, we utilize a module based, 

differential co-expression approach to further the understanding of ICM and IDCM. 

In contrast to differential expression studies that normally provide a static view 

of transcriptional regulation, co-expression networks allow us to explore the dynamics 

of gene-gene interactions across conditions [14]. Differential co-expression networks 
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allow us to identify groups of genes that are differentially co-regulated between 

conditions [15] where the genes necessarily need not be all differentially expressed. 

Differential network biology has adopted several approaches to identifying differential 

co-regulation such as DiffCoEx [16] and DICER [17]. With the caveat that correlation 

does not imply causation, these approaches have allowed us to infer differential 

transcriptional regulation by identifying gene modules that change concomitantly across 

conditions.  

In this study, we construct a signed, weighted, differential co-expression 

network and utilize it in the analysis of transcriptomic data from end stage heart failure 

due to IDCM and ICM. While most studies have rarely focused on influence of “signed” 

edges on clustering, studies in social network analysis have shown observable 

difference in properties of signed and unsigned networks and their subsequent clustering 

[18].  

The goal of our study is two-fold - First, we construct an approach to differential 

co-expression network analysis using signed co-expression networks. In the process, 

defining network parameters for signed and weighted networks such as node 

connectivity and signed module centrality. Next, we utilize the defined approach to 

identify a cohort of differentially co-expressed modules regulated in ICM and IDCM. 

The goal of our approach is to not delineate the differences between ICM and IDCM, 

but to find a set of gene modules that are differentially co-regulated across diseases, 

which can provide a starting point for further scientific endeavors in identifying the 

differences in etiology and pathogenesis of these two most common types of DCM. 
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6.3 Methods  

6.3.1 Method for identifying signed differential co-expression from two class 

studies.  

1. Generating the signed differential co-expression network  

The correlation matrix using a suitable metric (e.g. spearman rank 

correlation) is first constructed for all ‘n’ genes across ‘p’ samples from each 

condition (say, condition 1 and 2). The correlation matrix ‘ρ’ for each condition is 

transformed using the Fisher’s r-z transform [19]. 

𝜁𝜁 = 0.5[log(1 + 𝜌𝜌) log (⁄ 1 − 𝜌𝜌)]         Eq.1 

This transformation ensured the correlations to be normally distributed (the 

variance of ζ was approximately constant for all values ρ) allowing us to compute a 

scalar matrix of difference in correlation between conditions 1 and 2 as 

𝛿𝛿 = |𝜁𝜁1 | − |𝜁𝜁2|          Eq. 2 

Thus, each entry of the difference matrix δ, is a scalar, which captures the 

difference between condition 1 and 2. When represented as a differential co-

expression network, each entry of the matrix δij, is the edge weight between the two 

genes i and j. A positive δij represents higher magnitude of correlation in condition 

1 while negative δij represents a higher magnitude of correlation in condition 2, with 

the magnitude of δij capturing the difference. 

2. Clustering the signed differential co-expression network 

 Drawing on knowledge from analysis of weighted co-expression networks 

[14], we utilized a published dissimilarity measure called the topological overlap 
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measure to cluster our difference matrix. We define our adjacency matrix as a scaled 

δ matrix such that {-1<A<1}.  

𝐴𝐴 = 𝛿𝛿
max (abs(𝛿𝛿))

          Eq.3  

 The dissimilarity for clustering was used as 0.5(1+A) to account for both 

positive and negative edge weights.  

 
3.  Defining the network parameters 

Signed node connectivity- Degree, is a node level parameter and has been 

previously defined for unweighted, signed networks as the difference of the total 

number positive edges to the total negative edges incident upon a node. We extend 

this definition to weighted and signed networks, with edge weights [-1, 1] and 

define- signed connectivity (kTotals) for each node u as 

𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑠𝑠(𝑢𝑢)  =  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐+(𝑢𝑢)  − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐−(𝑢𝑢)    Eq. 4 

Where, conn+(u) is the sum all positive edge weights incident at node u from 

all nodes within network N and conn−(u) is the sum of all its negative edge weights. 

Within module connectivity was similarly defined such that 

𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘ℎ𝑖𝑖𝑖𝑖 𝑠𝑠(𝑢𝑢)  =  𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑠𝑠 (𝑢𝑢)  ∀ 𝑢𝑢 ∈ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑀𝑀        Eq.5 

𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 𝑠𝑠  =  𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑠𝑠 (𝑢𝑢) − 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘ℎ𝑖𝑖𝑖𝑖 𝑠𝑠(𝑢𝑢) ∀ 𝑢𝑢 ∈ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑀𝑀  Eq. 6 

kOuts was defined as the connectivity of the node u to all other nodes not 

within module M. Module hubs were defined as genes with kWithins in the upper 

and lower 5% quantile for each module. 
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Signed module centrality- We next define a module level parameter, which 

measures the centrality of a “module”. Analogous to the definition of group degree 

centrality defined for unweighted, unsigned networks [52], we utilize connectivities 

to define a normalized signed module centrality (SMC) as follows 

𝑆𝑆𝑆𝑆𝑆𝑆 =  |∑ 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘(𝑢𝑢)𝑢𝑢∈𝑀𝑀 |
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑀𝑀)

       Eq. 7 

The SMC defined above describes the sum of absolute signed connectivity 

of connections of nodes within module M to the nodes outside module M, 

normalized to the size; higher SMC values indicate highly cohesive modules. SMC 

was subsequently used as the ranking criteria to find the most interesting modules 

and as the statistic for assessing module statistical significance. 

4. Assessing statistical significance of differentially co-expressed modules 

Statistical significance of the differentially co-expressed modules was 

assessed by generating a background distribution of correlation differences expected 

at random and the observed test statistic. In our case, we chose SMC as the statistic 

of interest as it represented tightly co-expressed modules. We randomized the labels 

of class and controls and obtained a randomized, signed and weighted difference 

network using our approach. Modules in the random networks were identified 

containing the same set of genes as in the original DCN. 

This process was repeated for n permutations. The significance p-value was 

assessed by computing the SIC (for each module) and performing a permutation test 

against our background distribution. That is, a module was defined to be 

significantly differentially co-expressed if the number of times the observed 



182 
 

 

parameter (SIC) for a given module, exceeded the permuted SIC* from the n 

randomized runs was less than 0.05. 

𝑝𝑝 = 1 −
1
𝑛𝑛
� 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(

𝑛𝑛

1
𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖∗ <   𝑆𝑆𝑆𝑆𝑆𝑆 ) 

6.3.2 Data acquisition and processing 

The abundance of expression data on heart failure on GEO motivated our 

analysis to be based on publicly available data. Search terms with keywords 

“cardiomyopathy”, “heart failure” and “homo sapiens” rendered 20 results for 

“expression profiling by array” from the Gene Expression Omnibus. We chose two large 

expression studies with accession (GSE5406 and GSE57338) where the samples 

comprised of left- ventricular tissue from patients with ICM, IDCM and non-failing 

controls. The pipeline followed for processing and obtaining the final reduced data sets 

for our analysis is outlined in Figure S6.1. Briefly raw .CEL files for GSE7338 were 

downloaded and preprocessed using library “Oligo” in Bioconductor/R. The pooled data 

was RMA normalized where present/absent calls were only made on probe sets with 

“main” annotation.  Transcripts were retained if at least 50% of the probe sets were 

significant and present in at least 75% of the pooled samples (234/313 samples). All 

probes with missing entrez gene identifiers were excluded from this study. Similarly, 

the series matrix file of RMA normalized data was extracted for GSE5406 due to the 

non-availability of raw .CEL files. Multiple probes in each normalized dataset were 

accounted for using the “collapseRows” function in R’s WGCNA library. ComBat [21] 

was used for cross-array normalization. Outlier samples were detected from each 

disease type as samples with average inter-sample correlation <2.5SDs below mean. 
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The following was performed to meaningfully downsize the list of 9464 for co-

expression network analysis to limit network size. First, a Cyber-T test [22] identified 

genes with significant p-value between each condition and non-failing control. Genes 

in common between the two lists were retained as the set of genes to be extracted. The 

final resulting data used in our analysis contained 4363 genes across 166 ICM samples, 

149 IDCM samples. 

6.3.3 Enrichment Analysis, protein network interactions and visualization 

Enrichment analysis was performed using ClueGO [23], a cystoscope plug-in 

using the most recent updates from Gene Ontology’s biological process. Cytoscape [24] 

was utilized for all network visualization. String database [25] was used to extract the 

protein-protein interactions mentioned in Table 6.1.  

6.3.4 Over-represented transcription factors and single tissue eQTLs 

Pscan [57], an open source software for identification of over-represented 

transcription factor binding sites in co-expressed genes was utilized in our analysis. We 

retained default regions (-450+50) bp of the transcription start site using the Jaspar 2016 

database for analysis.  Transcription factors were considered to be over-represented if 

the associated p-value <0.01. All data for significant single tissue eQTL data for heart 

left ventricle tissue was downloaded via the GTeX consortium webpage [27]. 
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6.4 Results and Discussion 

6.4.1 Identifying differentially co-expressed modules between ischemic and 

idiopathic dilated cardiomyopathy 

The approach described in this study attempts to identify modules from two 

condition data in an unsupervised and unbiased manner (Figure 6.1, detailed description 

presented in Methods). In contrast to existing differential co-expression methods, our 

treatment for clustering of signed networks allowed us to assimilate the influence of 

both positive and negative differences prior to clustering [18].  

In the course of this analysis, we applied the above approach to identifying 

differentially co-expressed modules from ICM and IDCM. The gene expression data for 

ICM and IDCM samples was suitably processed (see Methods, Figure S6.1), resulting 

in two gene expression matrices containing 4363 genes across 166 ICM and 149 IDCM 

samples respectively. The differential co-expression network was generated by first 

computing the pearson correlation for each condition- ICM and IDCM (Eq. 1, see 

Methods). The correlation identified for each condition type was transformed to Fisher’s 

z-score using equation 1 (see Methods). The difference in co-expression was computed 

as in Eq. 2 as follows 

𝛿𝛿 = |𝜁𝜁𝐼𝐼𝐼𝐼𝐼𝐼 | − |𝜁𝜁𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼| 
 

The magnitude of correlation differences between the two conditions is captured 

via the scalar matrix δ, with a positive sign indicating a higher magnitude of correlation 

in ICM and vice versa for a negative sign. The adjacency matrix (A) was obtained my 

normalizing δ to the maximum. Hierarchical clustering on the dissimilarity matrix 
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(0.5(1+A)) with dynamic cut height [28] resulted in 28 modules with module sizes 

varying between 44 and 477 genes.  

6.4.2 Gene module prioritization  

Modularity detection within biological networks and its interpretation are often 

subjective, where not all modules extracted from a network are biologically meaningful.  

In order to prioritize the 28 modules identified for further analysis, we utilized a measure 

of module network topology- signed module centrality (SMC, Eq. 7). SMC provides an 

estimate of module cohesiveness (see Methods), allowing us to identify strongly co-

expressed gene modules. Using permutation-based significance testing 11/28 modules 

had a higher than random SMC value (p<0.05) and were considered significant. 

Assessing the significance of the differentially co-expressed modules based on SMC 

(p<0.05) while utilizing signed edges allowed us to identify modules, which may be 

functionally more relevant in one condition relative to another. 

For all modules, we assessed node level connectivity parameters kTotals (Eq. 4) 

and kWithins (Eq. 5). Connectivity provides insight into the behavior of individual 

nodes within a signed differential co-expression network. It is important to realize that 

our connectivity is defined on a difference network, that is, the edge weights offer 

insight to differences in correlation between two networks and hence, a node with a high 

negative connectivity indicates stronger correlations in condition 2 between itself and 

its neighbors and vice versa for positive connectivity nodes (from Eq.2).  Interestingly, 

all of the eleven modules also exhibited a negative size normalized kWithin (sum of 
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kWithins of all genes within the module normalized to module size) suggesting a higher 

fraction of genes with strong negative edges. 

6.4.3 Differentially co-expressed modules recapitulate aspects of disease 

pathogenesis 

The basic premise of all co-expression studies is that co-expressed genes are 

likely co-regulated and changes in correlation structure captured via differential co-

expression might be attributable to changes in the roles of certain genes within pathways 

across conditions. For instance, differential activation patterns for transcription factors 

and their downstream targets in healthy and disease tissue. We hypothesized that a 

functional enrichment analysis of the significant modules would reveal functional 

pathways that might be differentially regulated in patients with ICM and IDCM. 

Functional enrichment, in general, identifies over represented categories of 

annotated genes in given gene set (modules) and is not specific to the condition under 

study. It is essential to interpret enrichment in the context of study. Table 6.1 outlines 

the top 5/11 modules, which exhibited functional categories highly relevant to cardiac 

muscle. For instance, module M21 was particularly enriched for processes associated 

with immune response such as lymphocyte activation, response to cytokine stimulus. 

Abnormalities in cellular and humoral immunomodulation have been previously 

recognized as being associated with IDCM; however, whether they are a cause or a 

consequence of the disease are uncertain. IDCM has been hypothesized to be an immune 

disorder; the presence of HLA class II antigens (such HLA-A, HLA-DRA, HLA-DRB4) 

[29].   
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Additionally, this module also contained genes associated with T-cell activation 

and aggregation such as CD3E/3G/48/74, SOD2, RHOH, RELB, NOD2, and 

EGR1.This activation might be a result of either interaction with foreign antigens or 

altered expression of HLA antigens in myocytes. A direct correlation between an 

increased activation of T-cells and the severity of both IDCM and ICM has been 

previously reported. However, the specificity of activation has been found to be 

different between the two pathologies [30].  

Likewise, M4 was enriched for genes that are associated with control of the 

arterial blood pressure in the heart, particularly via angiotensin, and included genes such 

as ACE and CMA1. Angiotensin, a peptide hormone, part of the renin-angiotensin 

system is necessary for vasoconstriction and a subsequent positive regulation of blood 

pressure. It has been shown that CMA1, rather than angiotensin converting enzyme 

(ACE), is largely responsible for converting angiotensin I to the vasoactive peptide 

angiotensin II in the heart and vasculature [31]. DD gene variant of ACE has been 

suggested to contribute to the pathogenesis both types of cardiomyopathy [32]. It is 

interesting to observe that these genes were co-expressed with other cardiac markers 

known to be influenced by the angiotensin system such as   ECE1 expressed in the 

endocardium and myocardium, serving as a potential regulatory site for the production 

of the active vasoconstrictor peptide Endothelin [33]; the cardiac ion channels KCNA5 

and transporters ATP1A1 implicated in atrial fibrillation [34,35]; major insulin substrate 

of the heart IRS2 [36] implicated in an association between insulin resistance, 

hypertension, and cardiovascular disease and SERPINE-1/PAI-1 [37]. Other genes in 
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this module included known (cardiac) muscle markers such as CDKN1A, RYR3, 

FKBP5, SPP1 and MYC, whose presence in the module may point to the effect of the 

renin-angiotensin system on these markers in IDCM and ICM. 

We further extracted the PPI [25] for the top 5 modules, as proteins interactions 

are often argued to offer a more deterministic view of the physical interactions occurring 

at a molecular level. Interestingly, all 5 modules (Table 6.1) exhibited a higher than 

random number of PPI (p<<0.05). This suggests a statistically non-random interaction 

between genes within each of the differentially co-expressed module at a protein level.  

 Thus, the relevant enrichment in the modules identified further supports the 

hypothesis that these co-expressed modules represent a group of genes that might be 

differentially co-regulated in ICM and IDCM.  

6.4.4 Module hubs are strongly associated with known markers of heart failure 

due to DCM 

Module hubs represent genes with high connectivity to other nodes within a 

module. In our study, we defined genes that have a kWithin in the upper and lower 5% 

quantile, as hubs (see Methods). 152 hub genes were identified in the 11 significant 

modules, with 100 of them being in the top 5 modules. The general notion is that the 

hub nodes represent genes that have significant roles to play in physiology. We 

hypothesized that since our modules capture differential co-expression between ICM 

and IDCM, the hubs might capture a gene set that is not particularly enriched for known 

markers associated with DCM, but a gene set that might be differentially co-regulated 

between ICM and IDCM.  
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A recent systematic meta-analysis of extant literature identified a list of 110 

markers genes associated with heart failure after DCM (and not etiology of DCM per 

say) [11]. Of the 32 genes from this list present in our entire gene list, we identified 6 

(~19%) genes in the top 5 modules including genes such as MYH6, TMEM43 and 

TXNRD2. Consistent with our hypothesis, we observed that these known markers were 

not identified as networks hubs but were strongly co-expressed with network hubs 

(Figure 6.2A). Several of the hubs identified among the significant modules represent 

genes that have been identified to be directly correlated with DCM and subsequent heart 

failure such as VCAM1 [38], IRS2 [36], SERPINE1/PAI-1 [37], BMP6 and ACVRL1 

[39] (Table S6.1) .  

We next asked the question if the hub genes contained variants in cis-eQTL 

within cardiac muscle, suggesting a possible role for these variants in dilated 

cardiomyopathy (ICM or IDCM).  Expression quantitative trait loci (eQTL) analysis 

allows us to investigate how gene expression levels are affected by DNA variants with 

possible roles in disease. Utilizing publicly available data from heart left ventricle, we 

identified all genes in eQTL with known SNPs. Specifically, using the GTeX 

consortium’s single tissue (heart left ventricle) significant eQTL data, we extracted 

SNPs that are in cis-eQTL with genes in the top 5 modules. We identified 15% of the 

hubs to have at least 1 SNP in eQTL (p<<0.01) in contrast to 13% of the genes that were 

not hubs having SNPs in eQTL (Figure 6.2B, Table 6.2). For instance, 3/8 hub genes 

identified in M18 (MTRR, CLEC4A and RPS27L) have SNPs that are in significant cis-
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eQTL, within the heart left-ventricle. Of the total 7/179 significant cis-eQTL SNPs 

identified are either synonymous, missense or within the UTR (Table S6.2).  

6.4.5 Over-representation of transcription factor in differentially co-expressed 

modules 

Next, we hypothesized that identifying the overrepresentation of transcription 

factors associated with the top 5 modules would point to a discrete set of transcription 

factors differentially influencing the pathogenesis of heart failure in DCM. -450+50bp 

of the transcription start site was used to identify over-represented transcription factors 

with an associated p-value of <0.01 for genes identified within the differentially co-

expressed modules.  

Previous studies have identified several transcription factors to be associated 

with heart failure arising from ICM and IDCM [40–43].. For instance, TFs associated 

with innate immune response such as STAT1, IRF family of transcription factors (IRF1, 

IRF2), NFATC2, NFKB1, and CREB1 to be over-represented in at least one 

differentially co-expressed module identified here. Additionally, EGR1 was identified 

as a transcription factor significantly over-represented in 3/5 modules with a mean z-

score of 4.1 (Figure 6.3). EGR1 is a transcription factor containing zinc finger DNA-

binding motifs and domains to both activate and repress transcription induced under 

various conditions (stress, inflammatory response etc.) to bring about transcriptional 

regulation of various signaling cascades vital to growth, differentiation and apoptosis. 

Studies have shown that the sustained overexpression of EGR1 induces rapid induction 

of apoptosis associated with the activation of caspases and collapse of the mitochondrial 
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membrane potential in DCM [44,45]. Interestingly, two other members of the early 

growth factor TF family - EGR2 and EGR3 that are posited to negatively regulate T-

cell activation [46], were also identified as being over-represented in these modules. 

However, the exact roles of these master regulators in cardiac failure are yet to be 

realized.   

It has been previously suggested that the cardiac muscle reverts to a 

developmental/fetal gene profile in DC [42,47]. Consistent with this observation, it was 

interesting to note that a majority of the modules also showed an over-representation of 

SP/KLF family of TFs (such as SP1, SP2, SP3, SP4, KLF4, KLF5, KLF14, KLF16), 

known to critically regulate a host of fundamental cell differentiation and developmental 

processes [48,49]. Kruppel-like factors (KLF) family of zinc-finger TFs are being 

increasingly investigated in human health, particularly in cardiovascular biology 

[50,51]. For instance, KLF5 has been previously suggested to modulate myocardial 

remodeling in cardiac fibroblasts, induced by angiotensin [52].  KLF15 on the other 

hand has been suggested to potently inhibit the transcriptional activity of activators 

MEF2 and GATA4 in cardiomyocyte hypertrophy [51], suggestive of its role in anti-

hypertrophy of the heart. MEF2 and GATA4 TFs have been previously implicated in 

DCM [53,54]. Of the KLFs which repress transcription, ECE1 rapidly downregulates 

the  expression of KLF 3/5/11 [55].  

While the precise roles for each of the specificity proteins SP 1/2/3/4, are yet to 

be elucidated in cardiac research, the SP family of TFs are known to affect a variety of 

cardiac functions within the adult heart. For instance, SP1 is involved in the regulation 
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of IGF1 in cardiac muscle cells [56], SP1 binding sites have also been identified on the 

human cardiac alpha-actin promoter sites[57]. The presence of several SP-1 binding 

sites on the collagen-1 promoter have suggested a preferential role for SP-1 in collagen 

1 activation in DCM [58]. 

Thus dynamic regulation of expression by multiple members of the SP/KLF in 

cardiac myocytes suggests that, as a family, they are actively involved in regulating 

hypertrophy and apoptosis, further implying a potential for further research in 

delineating their roles in ICM and IDCM. 

6.5 Conclusion 

This study describes an approach to differential co-expression analysis using 

signed co-expression networks, subsequently applied to discerning mechanisms 

underlying ischemic and idiopathic dilated cardiomyopathy - two leading causes of 

human heart failure. Functional analysis of the differentially co-expressed modules, 

identified utilizing the defined approach, corresponded well with current understanding 

of aberrant processes underlying disease pathogenesis. Topological assessment of the 

hubs identified within these modules point to a strong association with known markers 

of disease. Additionally, these hubs were also identified to be enriched for variants in 

cis-eQTL within the heart left ventricle. Our analysis confirmed the action of previously 

implicated transcription factors such as STAT1, CREB1 in the pathogenesis of heart 

failure after DC. Our results also suggest a differential regulation of the targets of 

SP/KLF family of transcriptional factors in ICM and IDCM. Further research is 
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however needed to assess the precise role and differences in regulation by these 

transcription factors in the pathogenesis of ICM and IDCM. 

In summary, we provide a scalable and unsupervised approach to identifying 

differential co-regulation from case-control studies using signed co-expression 

networks. Our results not only corroborate existing mechanisms underlying 

pathogenesis of dilated cardiomyopathy, but also provide insight into probable 

mechanistic differences.   

6.6 Acknowledgements 

The content of chapter 6 is a modified presentation of material being prepared 

for submission, currently titled “Mechanisms underlying ischemic and idiopathic 

dilated cardiomyopathy utilizing signed differential co-expression network.” by 

Mukund K, Subramaniam S. The dissertation author is the primary author for this 

material. 

 

 

 

 

 

 

 

 



194 
 

 

6.7 Tables  

Table 6.1:  Functional enrichment of differentially co-expressed module between ICM 
and IDCM 
This table provides the functional enrichment of five modules with significant SMC 
(p<0.05) and high enrichment p-values (p<0.05), identified as being differentially co-
expressed between ICM and IDCM. The observed and expected number of protein-
protein interactions (PPI) as identified in the String v10.1 database is also provided 
along with their associated p-value.  
 

Modul
e name 

Module 
size 

Top enrichment terms p-
value 

Observ
ed PPI 

Expecte
d PPI 

p-
value 

M21 244 defense response, cellular 
response to cytokine 
stimulus 

<E-17 456 237 0 

M19 192 blood circulation, 
circulatory system process 

<E-08 119 90 2.10E-
03 

M4 112 regulation of angiotensin, 
membrane 
hyperpolarization 

<E-04 50 33 4.57E-
03 

M3 328 regulation of 
vasoconstriction, organic 
anion transport 

<E-05 327 244 2.54E-
07 

M18 68 serine family amino acid 
metabolic process, 
selenocysteine metabolic 
process 

<E-11 79 26 0 
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Table 6.2: Hubs identified in top 5 modules with variants in cis-eQTL 
This table represents the number of hub genes and variants that are in cis-eQTL as 
extracted from the GTeX consortium’s cis-eQTL data for heart left ventricle with 
p<<0.0. A detailed list of SNPs and hubs are presented in Table S6.1 
 
 Module size # of hubs # of hubs 

with 
variants in 
cis-eQTL 

#of 
associated 
SNPs 

M21 244 26 2 209 
M18 68 8 3 178 
M19 192 20 2 144 
M3 328 34 7 334 
M4 112 12 1 25 
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6.8 Figures 

 
 
Figure 6.1: Workflow for clustering signed differential –co-expression network 
The workflow presented here identifies the main steps involved in performing a 
differential co-expression analysis while retaining the sign of difference. Signed 
network parameters at node (connectivity) and module (signed module centrality) are 
also identified as part of this workflow. 
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Figure 6.2: A. One of the top 5 modules is represented here (M18).  
The size of the node is proportional to kWithin for the module. The orange nodes 
identified in this module are hubs, with the blue node indicating the node from the 
marker list of genes that are strongly associated with hub nodes as witnessed through 
the topological proximity of this node to the hub nodes. The number below the hubs in 
red indicate the number of SNPs in eQTL with the hub genes as identified through the 
GTeX project single tissue eQTL data for heart left ventricle. B. A radial graph giving 
the percentage of genes in the top 5 modules that are hubs (inner circle) and not hubs 
(outer circle) containing genes in eQTL.   
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Figure 6.3: Z-scores of over- represented transcription factors in 5 top modules  
The average z-score of select over-represented transcription factors extracted for the top 
5 modules using the Pscan algorithm are presented here.    
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Figure S6.1: A detailed workflow for processing expression data from GEO 
This workflow was adopted to extract and process data corresponding to ICM and 
IDCM samples from GEO prior to analysis. 
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7.1 Summary of findings 

Systems biology, as outlined in Chapter 1 is extensively utilized to discern 

mechanisms of disease, and increasingly so in muscle research. The methods described 

through the course of this dissertation illustrated the power of systems biology, 

particularly co-expression network theory, to meaningfully extract functional 

mechanisms in striated muscle under various conditions. 

The analysis in Chapter 2 provided the first global and categorical assessment 

of transcriptional changes occurring across 1 year in mammalian skeletal muscle after 

treatment with Botulinum neurotoxin A (BoNT-A). Utilizing previously described 

physiological networks of muscle, systems-level analysis of mechanistic changes 

associated with treatment revealed dramatic regulation of several functional pathways 

at 1 week post-treatment. Muscle reverting to activation of fetal/immature isoforms 

indicated a possible role in muscle recovery. Transcriptional regulation associated with 

atrophy and fibrosis suggested transient extracellular effects in the early time points 

after BoNT-A injection. Derangement of ECM and fibrillar components was witnessed 

to occur by 4 weeks post- treatment. 

Utilizing a data driven, network theoretic approach, we reassessed the effects of 

BoNT-A in Chapter 3. Clustering and re-grouping of co-regulated gene modules 

revealed dramatic regulation of metabolism and processes associated with muscle 

trophicity in samples from 1 week after treatment. Two putative marker genes Dclk1 

and Ostalpha with potential role in skeletal muscle recovery, were identified. Consistent 

with findings of chapter 2, transcriptional recovery of muscle to the pre-treatment state 
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was witnessed beyond 12 weeks. Phenotypic correlation analysis in both chapters 

provided insight into the lag between transcriptional and structural response; probably 

a function of the length of time required for a neuromuscular unit to recover from a 

period of denervation-induced atrophy and fibrosis. 

Chapters 4, 5 and 6 focused on deciphering the functional changes associated 

with human diseases affecting muscle.  Particularly, in chapter 4, we illustrated the 

application of using preservation statistics to detecting modules functionally associated 

with dysregulated pathways in duchenne muscular dystrophy (DMD), as exemplified 

by the inflammatory module D2. This approach enabled identifying putative 

biomarkers, such as ACP5 identified within module D2, to be likely associated with the 

progression of DMD.   

The quantitative framework proposed in chapter 5 for disease similarity used in 

conjunction with protein interaction data allowed for identification of commonly 

dysregulated pathways across a variety of muscle diseases. Likewise, the knowledge of 

how diseases functionally relate to each other using muscle functional modules provided 

invaluable insight into mechanistic differences in muscle, as witnessed through the 

differences identified in ALS and CP. Incorporating drug data into our quantitative 

framework allowed us to infer opportunities for exploring drug repurposing as option 

for treating diseases of the muscle.  

In chapter 6, we described an approach to signed differential co-expression 

network analysis allowing us to identify groups of genes that are differentially co-

regulated between conditions. In addition to the approach of identifying differential co-
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regulation using signed networks, this chapter focused on utilizing the approach to 

discern mechanisms underlying ischemic (ICM) and idiopathic dilated cardiomyopathy 

(IDCM) - two leading causes of human heart failure. Our results not only corroborate 

existing mechanisms underlying pathogenesis of dilated cardiomyopathy, but also 

provide insight into probable mechanistic differences. The results of our analysis 

revealed possible differential action of SP/KLF family of transcription factors on targets 

regulated in ischemic and idiopathic dilated cardiomyopathy.   

7.2 Significance of findings and future directions 

During the course of this dissertation, we efficiently utilized and integrated 

publicly available high-throughput data from muscle, while harnessing the power of 

several existing tools from bioinformatics and systems biology. Furthermore, this thesis 

focused on designing and employing approaches to co-expression network analysis in 

an effort to elucidate the complex interactions underlying muscle pathologies. 

Specifically, our results from chapters 2 and 3 indicated that at a molecular level, 

the effects of BoNT-A on muscle were relatively rapid, with most transcripts returning 

to control level by 12 weeks after treatment. This is consistent with use of the term 

“reversible chemodenervation”, with reference to the action of BoNT-A. Though no 

long-term transcriptional abnormalities were observed, our analysis of atrophy and 

fibrotic pathways suggested that further studies are necessary to determine optimal 

intervals for BoNT-A treatment from both a biological and physiological point-of-view.  
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The co-expression theoretic approaches adopted here enabled identification of 

putative biomarkers associated with muscle pathology. For instance, Dclk1 and 

Ostalpha were hypothesized to affect recovery of skeletal muscle after treatment with 

BoNT-A (chapter 3); while ACP5 was identified as a biomarker for progression of 

Duchenne muscular dystrophy (chapter 4) - setting the stage for further experiments for 

investigating the role of these biomarkers in the respective patho-mechanisms. 

The methods described in chapters 4 and 6 provide a scalable and unsupervised 

approach to identifying differential co-regulation from two condition studies enabling 

the identification of probable mechanistic differences between conditions. The methods 

described in these two chapters can be utilized for exploratory analysis of dysregulated 

mechanisms as identified through case-control studies.  

Chapter 5 demonstrated the value of an integrated approach with data obtained 

from various high-throughput sources (transcriptomic, protein interaction and drug-

target) for synergistic identification of mechanisms shared among muscle diseases, 

which may or may not share clinical similarities. Furthermore, this study highlighted 

opportunities for therapeutic advancements for treating muscle diseases. Future studies 

incorporating various other forms of high-throughput data including epigenetic markers 

and genome wide association studies will reveal deeper insights into the disease 

associations and therapeutic opportunities. 

In summary, the techniques and approaches developed as part of this 

dissertation, have lent themselves to delineating the complex system of interactions 
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underlying muscle pathologies; providing opportunities for drug development and 

personalized treatments to improve patient outcome.    
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