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Abstract

Group communication systems are powerful building blocks that facilitate the de-

velopment of fault-tolerant distributed applications. Such systems generally run in

an asynchronous fault-prone environment, and provide semantics (called Virtual Syn-

chrony) that mask the asynchrony and unreliability of the environment. In order to

implement Virtual Synchrony semantics, group communication systems typically im-

pose blocking periods during which applications are not allowed to send messages.

This paper presents a novel form of group communication, Optimistic Virtual Syn-

chrony (OVS). OVS allows applications to send messages during periods in which ex-

isting group communication services block, by making optimistic assumptions on the

network connectivity. Optimistic Virtual Synchrony allows applications to determine

the policy as to when messages sent optimistically should be delivered and when they

should be discarded. Thus, OVS gives applications �ne-grain control over the speci�c

semantics they require, and does not impose costs for enforcing any semantics that

they do not require. At the same time, OVS provides a single easy-to-use interface for

all applications. The paper presents several examples of applications that may exploit

OVS and empirical results that show the performance bene�ts of using OVS.

1 Introduction

Group communication systems [1, 36] are powerful building blocks that facilitate the devel-

opment of fault-tolerant distributed applications. Group communication systems provide the

notion of group abstraction, which allows processes to be easily organized in multicast groups.

Group communication systems typically integrate two types of services: group membership

and reliable group multicast. The membership service maintains a listing of the currently

active and connected group members and delivers this information to its clients whenever it

changes. The output of the membership service is called a view. Reliable multicast services

deliver messages to the current view members. Such communication services complement

the membership service.
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Group communication systems generally provide some variant of virtual synchrony seman-

tics. Virtual synchrony semantics synchronize views with regular messages and thus simulate

a \benign" world in which message delivery is reliable within the set of connected processes.

Many variants of virtual synchrony semantics have been suggested [30, 20, 36, 13, 33, 19, 25].

Such semantics are especially useful for constructing fault-tolerant applications that maintain

consistent replicated state of some sort (e.g., [3, 6, 24, 19, 35, 9, 28]).

The key aspect of virtual synchrony is the interleaving of message send and delivery events

with view events. To discuss such interleaving, we associate message send and delivery events

with views: we say that an event e occurs at a process p in view v if v was the last view

delivered to p before e. If no such view was delivered before e, then we say that e occurs in a

default initial view v

p

. A useful property speci�ed by nearly all variants of virtual synchrony

is, for all processes moving together from a view v to another view v

0

, the agreement on the

set of messages delivered in v. This property has been called View Synchrony [36, 11].

All variants of virtual synchrony specify that every message m be delivered in the same

view v by all processes that deliverm. This provides a simple but strong consistency property.

In addition, many variants (e.g. [12, 20, 30, 25, 23, 19, 16, 17]) strengthen this property to

require that the view in which a message is delivered be the same view in which it was sent.

This property has been called group awareness [34] and Sending View Delivery [36]. For the

remainder of this paper, we use the term group awareness.

Group awareness is exploited by applications to minimize the amount of context infor-

mation sent with each message and the amount of computation time needed to process a

message. For example, there are cases in which applications only process messages that ar-

rive in the view in which they were sent. This is usually the case with state transfer messages

sent when new views are delivered (see [4]). By relying on group awareness, such applications

need not tag each state transfer message with the view in which it is sent. Group awareness

is also useful for applications that send vectors of data corresponding to view members. Such

an application can send the vector without annotations, relying on the fact that the ith entry

in the vector corresponds to the ith member in the current view (see [20]). Another example

of the power of group awareness is illustrated in [35] which identi�es a tradeo� between

totally ordered multicast and group awareness.

Group awareness is a costly property. Friedman and van Renesse [20] prove that providing

group awareness requires that the application be periodically blocked from sending messages,

or else other useful properties such as View Synchrony (as described above) and Self-delivery

(which requires processes to deliver their own messages) cannot be implemented. Therefore,

in order to provide group awareness, most group communication systems block processes

from sending messages from the time that the need for a view change is recognized until the

view is delivered to the application. Such blocking can cause an expensive waste of valuable

computation and network resources.

In this paper, we address this waste of resource using an optimistic approach. We present

Optimistic Virtual Synchrony (OVS), a novel form of group communication that provides

the power of group awareness without the performance penalty of blocking. In Optimistic

Virtual Synchrony, each view event is preceded by an optimistic view event, which provides

the application with an estimate of the next view. After this event, applications may op-

timistically send messages that will provisionally be delivered in the next view. If some
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application de�ned property about the next view holds, then the messages will be delivered.

Otherwise, the messages are rolled back, i.e. they are discarded, and the sending application

is informed. Thus, the application speci�es the policy for optimistic message delivery, and

OVS provides the mechanism for implementing any application-speci�ed policy.

We have observed that applications seldom require that the new view be identical to

the optimistic one; typical group aware applications are satis�ed by weaker constraints.

Examples of applications that bene�t from Optimistic Virtual Synchrony appear in Section 3.

We built a version of OVS on top of an existing group communication service, Transis [18].

In its original form, Transis does not provide group awareness to the processes. However,

there is a group aware communication mechanism in Transis which is only used internally

by the Transis servers. We used this mechanism in implementing OVS on top of Transis.

As expected, our performance measurements show that introducing optimism signi�cantly

reduces the message delivery latency during view changes. Furthermore, we show that the

overhead induced by OVS is very small. We describe the implementation and present our

performance measurements in Section 4.

1.1 Evaluating Optimistic Virtual Synchrony

Optimism does not provide additional capabilities for the application programmer. Rather,

optimism allows processes to make progress in situations where they would otherwise be

forced to block. The utility of optimism can be measured in three ways:

1. By illustrating applications that can make reasonable progress under optimism during

periods in which they would otherwise be forced to block. In Section 3, we provide

examples of applications that bene�t from the optimism provided by OVS.

2. By demonstrating that the additional overhead associated with supporting the opti-

mistic execution is not too great. In Section 4 we measure this by comparing the

implementation of OVS on top of Transis with the non-optimistic version of Transis.

3. By demonstrating that the actions performed optimistically are rolled back infrequently

enough that the cost of rolling back actions is masked by the gain from optimism. With

OVS, the frequency at which optimistic messages will be dropped depends on two

factors: the environment and the application-speci�ed policy. An optimistic message

is dropped only if new changes of connectivity occur in the environment while a view

change is taking place, and these changes are not allowed by the application-de�ned

policy. Modeling the frequency of changes in the environment is not in the scope of this

paper. However, we note that since OVS allows the application to specify the message

constraint, the fraction of optimistic messages that are dropped is highly application

dependent. In fact, in Section 3 we show that there are examples of applications that

never drop optimistic messages.

Furthermore, the cost of rolling back the messages is very small, as these messages

are sent when the available bandwidth would otherwise not be utilized, and they are

merely dropped. In Section 4 we show that a very small amount of computation is
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needed to determine if an optimistic message is to be delivered or not. Therefore, the

cost of rolling back is easily masked by the gain from optimism.

2 The Optimistic Virtual Synchrony ProgrammingModel

Group communication services interact with their applications via an interface consisting of

at least three types of events: send, receive, and view. A send event is sent by the application

to the group communication service to send a message. A receive event is sent by the group

communication service to the application to deliver the message. A view event is sent by the

group communication service to notify the application that the view is changing. A view is

a pair, consisting of a set of processes and a unique identi�er.

Group aware group communication services require applications to refrain from sending

messages while view changes are taking place. To this end, block and 
ush events are added

to this interface. The group aware service sends a block event to the application to inform it

that a view change is under way. The application responds with a 
ush event, acknowledging

the block event. The 
ush event must follow all of the messages sent by the application in

the current view. The application then refrains from sending messages until it receives a

new view from the group communication service. Such services use the blocking mechanism

to ensure group awareness, i.e., that every message is delivered in the view in which it was

sent (see [20, 25]).

With OVS, the block event is replaced by an optimistic view event, optView which con-

tains a set of members. This set is an estimate of what the set of members in the next view

will be. Group membership algorithms (e.g., [26, 5]) can usually provide an optimistic view

which is accurate unless further changes in the system connectivity occur during the view

change. When the application receives the optView event, it sends a 
ush event and enters

optimistic mode. In this mode, the application still receives messages that were sent in the

view that it is leaving, but at the same time, the application may optimistically send mes-

sages to be provisionally delivered in the next view. The messages sent in optimistic mode

are called optimistic messages. When the group communication service delivers a new view

to the application, the application returns to normal mode and sends a viewAck event to the

group communication service to denote the end of the optimistic mode. In the normal mode,

the application sends regular messages to be delivered in the same view. This program 
ow

is depicted in Figure 1.

When the new view is delivered, the group communication service checks whether the

optimistic messages should be delivered in the new view or not. This is checked by applying

an application-provided predicate, MessageCondition, to each optimistic message. If the

predicate is evaluated to true, the message is delivered. Otherwise, the message is discarded

at all locations except for the sender. The sender is informed of any non-delivered optimistic

messages via the discardedMessages event.

The parameters of theMessageCondition predicate include the set of members of the new

view and the optimistic view in which the message was sent, as well as the message for which

the condition is being checked. Group communication services that supplement views with

information regarding previous views of other members, (e.g., [15, 10], or the transitional
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send flush
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Figure 1: Process modes in Optimistic Virtual Synchrony.

view/set of [30, 4, 36, 25]) can provide this information as a parameter to the predicate as

well. Examples of message conditions are discussed in Section 3 below.

Note that, in particular, in order to evaluate the MessageCondition predicate, each pro-

cess needs to learn of every other view members' optimistic views. This does not require

additional messages to be sent since after sending out the optimistic views, in order to agree

on the next view the group communication service processes must exchange information.

The OVS group communication service can provide the optimistic view information to any

application that is interested in it. We give an example of such an application in Section 3.4.

3 Example Applications of Optimistic Virtual Synchrony

In this section we present several di�erent applications that bene�t from Optimistic Virtual

Synchrony. These applications are meant to be illustrative of the power of OVS, but are by

no means exhaustive. Another example of an application that exploits OVS is the Bancomat

resource allocation algorithm of [35] (see [34] for details). In addition to these examples,

OVS can be used by applications that do not require group awareness (e.g., [14, 3, 9]) by

always evaluating the MessageCondition predicate to true.

3.1 Primary Views

Applications that maintain globally consistent shared state (for example, [21, 24, 6, 19,

28, 32, 22, 27, 2]) usually avoid inconsistencies by allowing only members of one view (the

primary view) to update the shared state at a given time. Di�erent primary views can be

de�ned for di�erent replicated objects. Such applications use group awareness: messages

that update an object are sent only in this object's primary view, query messages are sent

in all views.

Consider, for example, an application in which each object has a designated master

site such that the object is updated only in a view containing that site. The optimistic

MessageCondition predicate for such an application might be:

boolean MessageCondition( set newView, optView, char *m )

return ( m.type = query _ masterCopyOf(m.object) 2 newView )

5



Likewise, if there is no designated master site, then the predicate can check if the new view

contains a majority (or quorum) of m.object's copies. When a message is rolled back, the

sender stores the request until the view changes to a primary one.

Note that the format of a message m can be used in the MessageCondition predicate

although the OVS service does not know this format. This is one bene�t of the application

specifying the predicate.

3.2 State Transfer

Typical applications of group communication services, (e.g., [4, 35, 23, 21, 4, 2, 24, 6, 28, 37]),

engage in state transfer whenever a new view is delivered. State transfer messages are usually

utilized only if they are fresh, i.e., they pertain to the current view. Therefore, applications

that send state transfer messages usually require group awareness, or impose group awareness

by tagging each state transfer message with the view in which it was sent and discarding

messages pertaining to old views (see [4]).

Note that state transfer messages cannot be sent optimistically for all applications. While

the application is in optimistic mode, messages from the previous view may arrive. If such

a message can cause the application to change its state, then a state transfer message sent

optimistically before the message arrives will not re
ect the updated state. However, we

identify two cases in which state transfer messages may be sent optimistically:

1. When the application state is too large to be sent in a single message, for example,

when a replica is being added in a replicated �le (or database) server (e.g., [24, 21, 6, 2]).

Using OVS, the application can begin to send the state while in optimistic mode, and

send only the last part of the state (re
ecting the latest changes) when the new view

is delivered.

2. When the application state changes only following view changes. For example, in a

service that uses dynamic voting to determine the primary view [37], when a new view

is delivered all of the applications exchange information about past primary views and

use the state transfer messages to determine the state of the current view. This state

does not undergo further changes during the same view. Thus, the state can be sent

in optimistic mode.

Note that the applications identi�ed above do not need any guarantees about the ensuing

view for the state transfer message to be correct. Thus, the MessageCondition predicate for

state transfer messages is always evaluated to true. The only guarantee needed is a fresh

delivery property: that the message will be delivered in the next view, not in some view

further in the future. This points out one of the strengths of OVS: group awareness as

speci�ed in [20, 30, 19, 23, 16, 17, 25] and provided by group communication services such

as [12, 7, 20] provides a much more costly abstraction than is needed for this application.

On the other hand, group communication services such as [18] that are not group aware do

not provide this fresh delivery property.
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3.3 Waiting for State Transfer to Complete

Many applications that exchange state transfer messages when a new view is delivered

(e.g., [21, 24, 6, 19, 28, 2]) refrain from sending messages until all state transfer messages

are received. Thus such applications extend the blocking period imposed by a group aware

service until the state transfer is complete. However, many applications need not engage in

state transfer upon receipt of every new view. Several group communication services pro-

vide applications with a set of processes that are known to have retained agreement on the

sequence of delivered views. Such a set is called the transitional view/set in [30, 4, 36, 25].

If the transitional set is a superset of the new view, then such applications need not engage

in state transfer (see [4, 36]).

Such applications can bene�t from OVS by sending messages optimistically, and deliv-

ering these messages only if the new view is a subset of the transitional set, i.e., if no state

transfer is necessary. The MessageCondition predicate for such an application might be:

boolean MessageCondition( set newView, optView, char *m, set transitional )

return ( newView � transitional )

If the optimistic assumption is false and state transfer is needed, the messages sent opti-

mistically will be rolled back, and the application can re-send the information after the state

transfer has been completed.

3.4 Data Vectors

Group awareness is useful for applications that send vectors of data corresponding to pro-

cesses: group awareness allows such applications to send the vector without annotations,

relying on the fact that the ith entry in the vector corresponds to the ith member in the

current view. This reduces the amount of context information sent with each message and

the amount of computation time for processing messages (see [20]).

Using OVS, such applications may also send optimistic messages containing data without

annotations while they are in the optimistic mode. When the view is delivered, the applica-

tion may request the OVS service for the optimistic views of all of the view members. These

can be used to create conversion tables which convert an index in each sender's optimistic

view to a corresponding index in the new view, and to remove entries in the vector which

correspond to members that are not in the new view. The MessageCondition predicate in

this case is always evaluated to true.

This technique induces some processing overhead, but only on the processing of optimistic

messages. In normal mode, the application can continue to bene�t from group awareness

with no additional overhead.

3.5 Causal Multicast

An example of an application that sends vectors of data corresponding to processes is an

implementation of causal multicast [29] using vector clocks. Causal multicast ensures that

by the time a process p receives a multicast message m sent by a process q, p has also

received all of the messages that q received before sending m. A vector clock is a vector of
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integers, indexed by the set of processes in the system. The value of the vector clock of p

for some process q represents the sequence number of the last message multicast by q that p

has received. When a message m is multicast by a process q, m includes a copy of the vector

clock at q. If p receives m from q and the vector clock value in m for some other process s

is greater than the vector clock value of p for s, then p knows that there is a message from s

that causally precedes m that p has not yet received and p cannot deliver m yet (see [29]).

This technique is used for implementing causal group multicast in the ISIS and Horus

group communication systems. In a group based programming environment, the overhead

associated with causal multicast can be greatly reduced. In each view, view members receive

messages only from other members of the same view. Therefore, if the processes in the

new view agree on the messages received before the view change, then only the vector clock

values for the processes in the view need to be included in further messages. A group aware

environment nicely supports this implementation.

As explained in Section 3.4 above, using OVS the application can continue to send vectors

without annotations while in the optimistic mode. However, in order to preserve causality,

the vector has to include indices corresponding to all the members of the view. Therefore,

optimistic messages sent with a partial vector that does not include all of the members of

the new view should be discarded.

This implementation of causal multicast was a main in
uence on the design of the Weak

Virtual Synchrony (WVS) programming model of Horus [20]. When a view change is taking

place, WVS provides applications with suggested views and guarantees that the ensuing view

will be an ordered superset of the suggested view. Processes may send messages during the

suggested view, and these messages will be delivered in the ensuing view (see Section 5).

Friedman and van Renesse exploit Weak Virtual Synchrony for causal vectors as follows: in

suggested views, processes send vectors which include entries for all of the members of the

suggested view. When the message is delivered in the ensuing view, the entries in the vector

pertaining to processes that left the view are �ltered out. OVS can be used in the same

manner: processes can send vectors vectors which include entries for all of the members of

the optimistic view. If the ensuing view is indeed a superset of the optimistic view, the

messages can be processed as with Weak Virtual Synchrony. Otherwise, they should be

rolled back. The message condition is as follows:

boolean MessageCondition( set newView, optView, char *m )

return ( newView / optView 6= f g )

When a message is rolled back, the sender re-sends the information with the appropriate

vector clock.

4 Implementation and Performance Results

We have implemented Optimistic Virtual Synchrony on top of the Transis group communi-

cation service [18]. We chose Transis because it has two di�erent modes of group commu-

nication: it provides the application processes with non-blocking delivery which does not

provide group aware semantics, and it internally uses blocking delivery which does provide

group aware semantics. We had two goals for this implementation:
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1. To understand what extra support would be needed to provide OVS on top of an

existing group aware group communication service.

2. To compare the performance of Optimistic Virtual Synchrony with that of a group

aware group communication service as well as with the performance of a non-group

aware one. By implementing OVS on top of the two versions of Transis, we could

better ensure that such a comparison be fair.

In Section 4.1 we describe how we met the �rst goal. The second goal is discussed in

Section 4.2.

4.1 Implementing Optimistic Virtual Synchrony in Transis

The Transis group communication service is structured around a group of servers. The Tran-

sis servers communicate with each other using reliable fifo links. When the need for a view

change is recognized by some server, this server sends synchronization messages to the other

servers to denote the end of the current view. If a server receives a synchronization message

without having detected the need for a view change itself, it treats the synchronization mes-

sage as a detection and also engages in the view change algorithm. Each server refrains from

sending new messages after sending the synchronization message and until the new view is

delivered. Thus, group awareness is supported among the Transis servers.

With OVS, optimistic messages can be sent during this time period. The synchronization

messages together with the fifo order guarantee that when an optimistic message reaches a

Transis server, this server is either also in the optimistic mode for the same view, or in the

subsequent regular view, as illustrated in Figure 2.

send m


View v


P


Q


View v


OptView v

Q


OptView v

P


OptView v'

Q


Figure 2: Possible arrival times of optimistic messages at Transis servers.

In order to implement Optimistic Virtual Synchrony in Transis, we added code in the

following places:

1. When the need for a view change is recognized by a Transis server. An optView is sent

to the application processes. Once an application responds with a 
ush, it enters the

optimistic mode (see Figure 1 above). The mode of the application (optimistic or

normal) is saved in the OVS process.

2. When a message is sent by a process. If the sending application is in optimistic mode

then the message is marked as optimistic before sending it to the members of the

optimistic view.
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3. When a message is received by a process (including loop-back receipt of a message by

its sender). If the message is not marked as optimistic, it is not handled by OVS code

but is rather passed to the regular Transis code as usual. Otherwise, there are two

cases handled di�erently in OVS:

(a) If a view change is under way, then the optimistic message is enqueued in a bu�er

for optimistic messages, and its receipt is masked from the Transis code.

(b) If a view change is not under way, then, as explained above, the optimistic message

must have been sent during the optimistic mode preceding the current view. In

this case, the MessageCondition is applied to the message in order to determine

whether the message should be delivered or not.

4. When a new view is delivered to a process by Transis. Each message in the optimistic

message bu�er is checked to see if the sender is a member of the new view, and then the

MessageCondition for the message is checked. Depending on the result, the message is

either delivered or dropped, and the process is noti�ed via a discardedMessages event

that a message that it sent will not be delivered.

In addition, if the new view contains members which are not members of the opti-

mistic view, then the optimistic messages will not have been sent to these new view

members. These messages are forwarded to the new members. However, a selective

sending mechanism does not exist in Transis. Instead, we used the Transis retrans-

mission mechanism which re-sends the message to the entire view. Those that had

not previously received the message would therefore receive it, and those that had

previously received it simply ignore it.

When the application responds with a viewAck, its mode is changed to normal in the

OVS code.

4.2 Performance Measurements

In this section we describe the measured performance of OVS implemented on top of Transis.

The tests described below were run on three Sun UltraSparc 5/10s, each of which was running

at 333 Megahertz. All three machines were running SunOS version 5.6. The three machines

were connected via 100MBit/sec Ethernet. The machines were not being used by any other

users during these tests. In each test, no fewer than 40,000 messages were sent. All messages

in the tests were about 1 kilobyte long, a batch of 15 messages was sent every 15 milliseconds.

Each test was repeated at least three times to ensure that the results were not spurious.

We sought to measure two di�erent aspects of OVS. The �rst measurement was of the

overhead associated with processing of messages in OVS. The second measurement was

a comparison of the average time to deliver messages after a view change in OVS versus

the average time to deliver messages after a view change in Transis. We describe the two

measurements in greater detail below.
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4.2.1 The overhead of OVS

The life-cycle of a message in Transis can be roughly described as consisting of three stages:

pre-send processing, wire time and pre-delivery processing. When a message is sent by an

application process in Transis, the Transis process associated with the sender performs some

pre-send processing (e.g., marshaling of header information) before sending it on the commu-

nication stratum or handing it o� to its own reception handler. When a message is received

by a Transis server, pre-delivery processing (e.g., demarshaling, ensuring that it meets de-

livery semantics) is performed. When this processing has been completed, the message can

be delivered to the application process.

As expected, our measurements show that the wire time is the most signi�cant component

in the message life-cycle. This is illustrated in Figure 3 (a): The average pre-send processing

time was consistently around 90 microseconds for all of the tests we ran. The average wire

time was around 1000 microseconds, and the average pre-delivery processing time on the

server side was consistently around 40 microseconds for all of the tests.

The main performance gain of using OVS instead of a group aware group communi-

cation service is the masking of the pre-send processing time and wire time for optimistic

messages. This results from messages being sent during the time that a group aware group

communication service would block. In our experiments, we wanted to demonstrate that

this performance gain is signi�cantly larger than any overhead induced by OVS in the pre-

delivery processing time

1

. We compared the pre-delivery processing time of OVS to that of

regular messages in Transis. The results are shown in Figure 3 (b).
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(a) Message life-cycle in Transis.
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(b) Transis and OVS pre-delivery processing times.

Figure 3: Transis processing times.

When measuring the pre-delivery processing time of OVS, we distinguish between two

1

During the pre-send processing, OVS only adds one bit of information to the message header denoting

that it is an optimistic one, therefore, the overhead OVS induces on the pre-send processing time is negligible,

and the overhead of using OVS a�ects mainly the pre-delivery processing time.
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cases: (1) the new view contains only members that were in the optimistic view, hence no

message retransmission (or forwarding) is needed; and (2) the new view does contain new

members and retransmission is needed. In the latter case the pre-delivery processing time is

larger since it includes the time required to retransmit the message. We measured the pre-

delivery processing time both at the sender side and at the receiver side. As expected, when

no retransmissions were needed the processing time was only slightly larger with OVS: around

50 microseconds at the sender side and around 60 at the receiver. When retransmissions

are necessary, the sender side pre-delivery processing time grows to almost 125 microseconds

per message, and the receiver side grows to slightly over 70 microseconds per message.

Retransmissions slow down the sender which has to engage in retransmitting them; they also

slow down the receiver since in Transis messages are retransmitted to all of the processes,

and therefore the receiver receives duplicates of these messages.

All in all, we observe that the overhead induced by OVS is smaller by an order of mag-

nitude that the performance gain from masking the pre-send processing and the wire times.

To further understand the overhead associated with the optimistic message processing,

we divided the pre-delivery processing into time spent evaluating the message condition

and time spent iterating over the optimistic message bu�er and handling the messages. In

Figure 4 we show this breakdown. In all cases, about 8 microseconds per message are spent in

the message condition evaluation. We experimented with several simple message conditions,

and there was no measured di�erence. The remaining di�erence between the pre-delivery

processing of optimistic and non-optimistic messages, which is quite small on the server side

and a bit larger on the receiver side, can be attributed to overhead in iterating over the

bu�er and changing the �elds of the message where necessary. In the case of retransmission,

most of the overhead on the sender side is in the actual retransmission of the message.

Receiver, with retransmit


8.62


63.10


Receiver, no retransmit


7.48


51.29


Sender, no retransmit


7.30


40.38


Sender, with retransmit


7.71


51.92


65.27
Message

condition


Message

handler


Retransmission


Figure 4: Breakdown of pre-delivery processing time for optimistic messages (microseconds).
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4.2.2 Latency of optimistic messages

The direct bene�t of Optimistic Virtual Synchrony over a group aware group communication

service is that OVS allows messages to be sent during the view change while still provid-

ing group aware semantics. Transis normally provides applications with non-group aware

semantics, which allows applications to send messages during view changes. In this case the

messages are bu�ered by the Transis server at the sender side during the view change, as

opposed to being bu�ered at the receiver side with OVS and not being sent at all with a

group aware service. Thus, the latency associated with the communication should be masked

by Optimistic Virtual Synchrony. We sought to measure this bene�t.

To do so, we formulated the following function f : Consider a run in which a single

process p sends a stream of messages, and during which the view changes exactly once.

De�ne deliver

q

(m) to be the time that a message m of this stream is delivered by a process

q. Let m

0

be the last message sent by p before p is noti�ed that a view change is beginning.

Number the messages following m

0

as m

1

, m

2

, etc. Thus, m

1

is the �rst message that is

a�ected by the view change: i.e., in Optimistic Virtual Synchrony, it is the �rst optimistic

message; in the group aware Transis it is the �rst message sent after blocking; and in the

normal Transis, it is the �rst message bu�ered during the view change. Now, we de�ne the

function f as:

f(q; k)

def

= (deliver

q

(m

k

)� deliver

q

(m

0

))=k

Function f gives the average time it takes to deliver a message at a process after a view

change has begun. The same function, outside of a view change, would be the inverse of the

throughput of the system. That is, f is the frequency with which messages are delivered.

We measured the values of f for four di�erent communication modes:

1. the regular non-group aware mode provided by Transis;

2. a group aware version of Transis;

3. Optimistic Virtual Synchrony without the need for retransmission; and

4. Optimistic Virtual Synchrony with the need for retransmission.

Figure 5 shows the measured f(p; k) in logarithmic scale for these four communication

modes for one of the tests. Since p is the sender in these tests, this graph shows the function

for the local delivery of messages and is not a�ected by the communication latency. The

receiver side for this test showed similar behavior, as did the other tests that were run. Due

to the scale of these measurements relative to the di�erences in the values, the three modes

other than the group aware version of Transis cannot be seen separately. For further details,

see [34].

We observe that although Optimistic Virtual Synchrony can provide an application with

group awareness, it still allows for communication speeds comparable to the non-group aware

mode of Transis, and signi�cantly superior to those of the group aware version of Transis.

For completeness, we also compared the average time to deliver messages outside of view

changes in Transis with the average time to deliver non-optimistic messages in the version

of Transis which supports OVS. As expected, these times were equal, i.e., OVS induces no

delay on the delivery of non-optimistic messages.
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Figure 5: f(p; k) for sender delivery (in logarithmic scale).

5 Related Work

We are not the �rst to consider the use of optimism to support group communication.

In [31], optimistic assumptions are made about the order in which messages are received in

order to quickly provide total ordering on the message delivery. In our approach, optimistic

assumptions are made about the view, in order to allow message sending during periods of

instability. The optimism of [31] is orthogonal to our use, and the two approaches could be

combined.

Optimistic Virtual Synchrony allows applications to send messages during periods in

which group aware group communication systems block. Two other (non-optimistic) ap-

proaches to eliminate the blocking imposed by group aware group communication services

have been suggested: light-weight groups and Weak Virtual Synchrony.

Light-weight groups are used in systems that are built around a small number of servers

that provide group communication services to numerous application clients (for example

Transis [18] and Spread [8]). In these systems, client membership is implemented as a light-

weight layer that communicates with a heavy-weight group aware layer asynchronously using

a fifo bu�er. The asynchrony may cause messages to arrive in later views than the ones in

which they were sent. However, since the asynchronous bu�er preserves the order of receive

and view events, messages are delivered in the same view at all destinations. The semantics

provided by light-weight group membership services, which are not group aware, are too

weak for many applications as illustrated in Section 3 above.
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In order to eliminate the need for blocking while still providing support for a certain type

of group aware applications, Friedman and van Renesse [20] introduce the Weak Virtual

Synchrony programming model. In WVS, every view v is preceded by at least one suggested

view event. The membership of the suggested view is guaranteed to be an ordered superset

of v. Group awareness is replaced by the weaker requirement that every message sent in the

suggested view is delivered in the next regular view. This allows processes to send messages

while the view change is taking place. The processes that use Weak Virtual Synchrony

maintain translation tables that map process ranks in the suggested view to process ranks

in the new view. Thus, although messages are no longer guaranteed to be delivered in the

view in which they were sent, an application may still send vectors of data corresponding to

processes without annotations.

One shortcoming of Weak Virtual Synchrony is that it is useful only for group aware

applications that are satis�ed with knowledge of a superset of the actual view, and does not

su�ce for other group aware applications that have di�erent requirements about the ensuing

view (see examples in Section 3 above). In contrast, Optimistic Virtual Synchrony provides

applications with the 
exibility to determine the policy as to what the ensuing view must

be for the messages to be processed. In particular, applications designed to work with WVS

can exploit OVS by requiring the ensuing view to be a subset or the optimistic view (see

Section 3.4 above).

A second shortcoming of the Weak Virtual Synchrony model is that once a suggested view

is delivered, new processes are not allowed to join the next regular view. If a new process

joins while a view change is taking place, a protocol implementingWVS is forced to deliver an

obsolete view, and then immediately start a new view change to add the joiner. Furthermore,

WVS requires processes that continue together to the same new view to deliver each other's

suggested views. Therefore, if two connected processes deliver con
icting suggested views,

then they are forced to deliver views excluding each other before they can deliver a common

view again. This imposes severe limitations on the membership service's choice of the next

view and forces the membership service to deliver obsolete views. In contrast, Optimistic

Virtual Synchrony does not impose any limitations on the membership service's choice of the

next view, hence OVS does not require the membership service to deliver obsolete views. We

believe that obsolete views should be avoided since they cause extra overhead for applications

to process and increase network congestion by withholding information from applications

that might allow them to avoid sending messages that will be discarded (see [26]).

6 Conclusions

We have presented Optimistic Virtual Synchrony, a novel form of group communication

which provides the power of group awareness without the execution penalty of blocking.

Optimistic Virtual Synchrony provides applications with the 
exibility to determine the

policy (message condition) as to when optimistic messages should be delivered and when

they should be discarded (rolled back). We have described several di�erent applications that

can bene�t from OVS. Our examples illustrate how di�erent applications can use OVS with

di�erent message conditions. In particular, we have observed that applications seldom require

that the new view be identical to the optimistic one; typical group aware applications are
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in fact satis�ed by weaker constraints. We believe that the 
exibility to specify the message

condition is important, as it gives applications �ne-grain control over the speci�c semantics

they require, and does not impose costs for enforcing any semantics that they do not require.

At the same time, OVS provides a single easy-to-use interface suitable for all applications.

We have shown that the overhead induced by OVS on the processing of optimistic mes-

sages is smaller by an order of magnitude than the performance bene�t gained from sending

messages while a group aware service would block. We have shown that the latency of

optimistic messages sent using OVS is similar to the latency of messages sent during view

changes using a non-group aware group communication service. This latency is signi�cantly

smaller than the latency imposed by the blocking period in a group aware service.
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