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A B S T R A C T

Machine learning has proven to be a powerful tool for accelerating biofuel development. Although numerous
models are available to predict a range of properties using chemical descriptors, there is a trade-off between
interpretability and performance. Neural networks provide predictive models with high accuracy at the expense
of some interpretability, while simpler models such as linear regression often lack in accuracy. In addition to
model architecture, feature selection is also critical for developing interpretable and accurate predictive models.
We present a method for systematically selecting molecular descriptor features and developing interpretable
machine learning models without sacrificing accuracy. Our method simplifies the process of selecting features
by reducing feature multicollinearity and enables discoveries of new relationships between global properties
and molecular descriptors. To demonstrate our approach, we developed models for predicting melting point,
boiling point, flash point, yield sooting index, and net heat of combustion with the help of the Tree-based
Pipeline Optimization Tool (TPOT). For training, we used publicly available experimental data for up to 8351
molecules. Our models accurately predict various molecular properties for organic molecules (mean absolute
percent error (MAPE) ranges from 3.3% to 10.5%) and provide a set of features that are well-correlated to
the property. This method enables researchers to explore sets of features that significantly contribute to the
prediction of the property, offering new scientific insights. To help accelerate early stage biofuel research and
development, we also integrated the data and models into a open-source, interactive web tool.
1. Introduction

Machine learning can leverage a breadth of experimental data in
the public domain to accelerate fundamental and applied research
for biofuel development. For example, machine learning models can
predict relevant biofuel production pathways, as well as physical and
chemical properties of potential biofuel molecules [1–3]. Preliminary
fuel screening tools based on machine learning have already proven
useful in programs worldwide and help identify promising molecules
early in the fuel development cycle [1–6]. Many of these property
prediction models also use chemical descriptors as features to provide
a mathematical link between physiochemical properties and molec-
ular structure [1–3,7–24]. Additionally, chemical descriptors can be
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easily generated using available software, which provides a feature-
rich resource and simplifies model development [25–28]. Coupling
molecular descriptors with automated machine learning tools, such as
TPOT and Auto-Keras, can further streamline model development by
automatically finding the highest performing model architecture among
thousands of different algorithms and architectures [29–31].

While numerous machine learning models are available to predict a
variety of fuel properties using chemical descriptors, there is a trade-off
between interpretability and performance. Interpretability can enhance
trust in machine learning models, especially when important features
conform to existing knowledge about the target property, justifying
the predictions of the model. Additionally, investigating important
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Nomenclature

FD Fragmental Descriptor.
FGC Functional Group Count Descriptors.
MAE mean absolute error.
MAPE mean absolute percent error.
MD Molecular Descriptors.
MedAE median absolute error.
MLR Multiple Linear Regression.
NI Not included or reported by authors.
PCA Principal Component Analysis.
RFE Recursive Feature Elimination.
RMSE root mean squared error.
SI Supplemental Information.
SMILES simplified molecular input line entry speci-

fication.
TPOT Tree-based Pipeline Optimization Tool.
VEM valence electron mobile.

features in quantitative structure–property relationship models can pro-
vide new information about the property predicted, and lead to better
understanding of the link between physical or chemical properties
and molecular structure [32]. Many predictive models developed for
identifying correlations between descriptors and properties of inter-
est (i.e., interpretability) use multi-linear equations or least-squares
regression [3,7–9,15,17–21]. These models are used because the lin-
ear coefficients directly correlate the descriptors’ contributions to the
prediction. However, the models may lack the predictive performance
of more complex models such as neural networks, especially when
applied to systems that exhibit nonlinear relationships [3,9,18,19]. For
example, Kessler et al. [3] compared the performance of Multiple Linear
Regression (MLR), Artificial neural network, and Graph neural network
models for predicting yield sooting index. The MLR model provided
insights into the structural components of a molecule that contribute
to increasing yield sooting index, but had a mean absolute error (MAE)
about seven times larger than the two neural network models.

In exchange for some interpretability, many researchers have used
neural networks to develop fuel property models with high accu-
racy [2,3,9–11,14,16,18,19]. Although neural networks often perform
better than other model architectures, they do not impose restrictions
on input variables (i.e., features) or data relationships. This lack of
restrictions can lead to combined features and hidden relationships
that are not easily explained, making the models difficult to interpret
from a mechanistic standpoint. For example, a neural network model
may combine several molecular descriptors to create a new feature
that minimizes error but does not directly correlate with a molecule’s
physical characteristics. Also, many neural networks do not show how
correlations between features and the property are made during model
development. As a result, a whole field of research has been dedicated
to understanding their hidden relationships and model structure [33–
36].

Feature selection is also critical for developing interpretable and
accurate predictive models. It can reduce the risk of overfitting and
identify important features with meaningful property relationships in
the data [37]. Feature selection can also reduce multicollinearity in
feature sets (i.e., features that are linearly correlated), which is often
present in molecular descriptors and may promote unstable model coef-
ficients [38]. Commonly used feature selection methods include statis-
tical methods (e.g., using Pearson or Spearman correlation coefficients)
or manually selected features based on experimental observations about
the property of interest. Although these methods are effective at re-
ducing features, they may overlook important features that offer new
scientific insights about the property. For example, using statistical
2

methods that ignore the property of interest may result in a set of
non-correlated features irrelevant for that property. Manually selecting
features could exclude important features that better characterize the
data (e.g., distinguishing between isomers) [1,11,13,14,23,39]. Given
the numerous methods for feature selection with varying drawbacks
and constraints, it may be daunting to select one for developing a
predictive model.

The purpose of this study is to develop a systematic method for
creating accurate and interpretable fuel property prediction models that
use molecular descriptors. Unlike previously published literature, this
approach can be applied to a broad range of properties from physical
to complex, and can be used to support scientific discovery. Specifi-
cally, the method enables researchers to identify, rank, and validate
important property structure relationships that may accelerate fuel de-
velopment. The method focuses on reducing the number of features by
minimizing correlations between chemical descriptors to develop high-
performing models. It also ranks the features based on their importance,
enabling researchers to identify dominant chemical-structure features
that impact property values.

To demonstrate our approach, we created predictive models for
five common jet fuel properties that are considered when certifying
new jet fuels [40]: melting point, boiling point, flash point, yield
sooting index, and net heat of combustion. We selected these properties
because they range from physical to complex, with some having a clear
relationship with molecular structure (e.g., heat of combustion, yield
sooting index) [3,22] and others having ambiguous structure–property
relationships [7,10]. We used automated machine learning (TPOT) to
develop the models, which leverage chemical descriptors from Mor-
dred [28] and experimental property data of organic molecules from
publicly available sources. We validated model accuracy using test
data withheld from training and published literature. To demonstrate
interpretability of our approach, we provide an in-depth discussion of
the important features and how they correlate with properties. The data
and models have been integrated into a user-friendly, interactive web
tool (feedstock-to-function.lbl.gov) and are publicly available to help
accelerate early stage biofuel development research [41,42]. Following
this section, we provide a summary of previously published models.
We then describe our methods for selecting an optimal number of fea-
tures and developing interpretable machine learning models. Next, we
present our results, draw conclusions, and provide recommendations
for future extensions of this work.

2. Previous models

Several researchers have used molecular descriptors, molecular frag-
ments, or functional groups as inputs (or features) for regression,
or classification models to predict molecular properties relevant to
biofuels.

Table 1 provides a summary of their work. Classical machine learn-
ing is based on mathematical algorithms such as linear regression,
decision trees, or support vector machines. Deep learning algorithms
are based on neural networks, and include perceptrons, artificial neural
networks, or adversarial networks. Bayesian methods include Gaussian
process regression, or Bayesian linear regression. Some studies only
reported training or overall errors that averaged training, testing, and
validation (when available) errors [1,2,12,15,39]. As noted by other
researchers, reporting the test error provides a better measure of the
model’s predictive capability because external validation is necessary
for determining the true predictive ability of the model [17].

In general, smaller or molecular family-specific (e.g., alcohols,
alkanes, hydrocarbons, unsaturated hydrocarbons, and heterogeneous
molecules) data sets result in lower errors for the boiling point, flash
point, and yield sooting index models [11,12,16,17]. Melting point
and heat of combustion models, however, have lower errors with the
largest data sets [10,22]. For most of the properties, model type does
not have an obvious impact on model accuracy. For example, most

http://feedstock-to-function.lbl.gov
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Table 1
Published quantitative structure property relationship models for predicting melting point, boiling point, flash point, yield sooting index, and heat of combustion.

Test Train + Test

Property Model type Dataset size Feature type Number of
features

Feature selection
method

MAE RMSE MAPE 𝑅2 MedAE MAE RMSE MAPE 𝑅2 MedAE Reference

Melting point Classical 277 MD 16 Multiple – 44.6 – – – – – – – – [7]
(K) Classical 323 MD 8 Multiple – 42 – 0.789 – – – – – – [8]

Bayesian 1003 FG 42 Manual – – – – – 9.5 15.2 – 0.965 – [1]
Classical 1097 MD & FG 35 Forward

selection
25.9 39.1 11.3% 0.718 – 18.9 30.2 7.6% 0.875 [9]

Deep 4173 MD 26 PCA 38.2 49.3 – 0.658 – – – – – – [10]

Boiling point Deep 134a MD 7 Manual – – 1.19% – – – – – – – [11]
(K) Deep 150b MD 10 Manual – – – – – – – – 0.998 – [12]

Classical 155 MD 8 Forward
selection

– 7.3 – – – – – – – – [13]

Deep 223 MD 16 Multiple – 1.4 0.26% 0.999 – – 2 0.54% 0.999 – [14]
Classical 298 MD 4 Multiple – – – – – – – 2.3% 0.973 – [15]
Deep 1116 MD 6 Manual 11.6 – 4.33% – – – – – – – [16]
Bayesian 1238 FGC 42 Manual – – – – – 10.6 20 – 0.948 – [1]
Deep 7367 Functional Group

Count Descriptors
(FGC)

24 Random Forest – – – – – 5.352 – 0.741 0.991 – [43]

Classical 80b MD 3 Manual – – – 0.999 – – – – – – [17]
Classical 65a MD 3 Manual – – – 0.986 – 1.62 – – – – [17]
Classical 70c MD 3 Manual – – – 0.937 – – – – – – [17]
Deep 17768 MD 44 Forward

selection
– 21 – 0.947 – – 22 – 0.943 – [44]

Flash point Classical 268 MD 9 n/a 9.9 – – 0.9314 – – – – – – [18]
(K) Deep 513 MD 15 n/a – – – – – – 14 – 0.934 – [18]

Multiple 625 MD & FGC 28 Same as [21] 8.4 13.2 2.5% 0.944 – 7.1 10.9 2.2% 0.959 – [19]
Classical 1030 MD 4 Genetic

algorithm-MLR
– – – 0.971 – 10.2 – – 0.967 – [20]

Bayesian 1065 FG 42 Manual – – – – – 6.2 10.1 – 0.980 – [1]
Deep 2934 FGC 24 Random Forest 4.461 5.715 1.325 0.988 – 3.952 5.084 1.158 0.991 – [43]

Yield sooting
index

Deep 297 MD 390 Multiple – – – – – – – – – 3.08 [2]

Bayesian 457 FCG 42 Manual – – – – – 2.7 7.6 – 0.999 – [1]
Deep 567 MD 1800 Multiple – – – – 4.34 – – – – – [3]
Classical 441 FD 66 Manual – – – – – – – – – 2.35–28.6 [39]

Heat of
combustion

Classical 1650 MD 4 Multiple 104.1 163.2 – 0.996 – – – – – – [21]

(kJ/mol) Classical 1714 MD 4 Genetic
algorithm-MLR

104.13 156.9 15.18% 0.996 – 117.8 196.74 11.80% 0.995 – [22]

Multiple 2767 MD & FGC 35 Forward
selection

35.7 62.7 0.80% 0.999 – 32.2 52.4 0.70% 0.999 – [9]

Deep 4590 FGC 142 Manual – 17.23 0.20% 0.999 – – 12.57 0.16% 0.999 – [23]

aHydrocarbons.
bAlkanes.
cAlcohols
Average of test, train, and validation (when available) errors.
Molecular Descriptors (MD); FGC; Fragmental Descriptor (FD); Principal Component Analysis (PCA); MLR;
Not included or reported by authors (NI).
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of the classical melting point models report an root mean squared
error (RMSE) of about 40 K for their test data [7–9], with the neural
network model having the largest RMSE (49 K) with the largest data
set [10]. Boiling point shows a similar trend with the smaller data-set,
classical models having lower errors than the larger data-set, neural
network models. Due to lack of reported test errors, there is not enough
information to determine how model type might impact flash point and
yield sooting index model accuracy.

When comparing feature types, heat of combustion model perfor-
mance was significantly better when functional groups (i.e., group
contribution methods) were used as features instead of molecular de-
scriptors [9,23]. Saldana et al. [9] developed 11 models using both de-
scriptors and functional groups. To achieve the best performing model,
they used a consensus modeling approach, where results from the
best performing (lowest error) descriptor model and functional group
model were averaged to produce the final prediction. For the remaining
properties, there was not enough data to identify any additional trends
with feature types.

Despite the significant advancements for developing models for
predicting properties, a different feature selection method was used
for almost each study. Approaches ranged from manually selecting
features to using varied, and sometimes multiple, statistical methods.
Approximately half of the prior studies we surveyed discussed the
relationship of the model features to the property and most of them
used classical learning models [7,8,13–15,17,20–22]. This is likely
because classical learning models can provide direct information on
how features impact model predictions. For example, two classical
models used to better understand how specific chemical features affect
melting point of potential drugs provided an extensive discussion on the
relationship between individual descriptors and their effect on melting
point [7,8]. When using a deep learning model, obtaining detailed
information to understand the scientific relevance of the models may
be more difficult [3].

3. Methods

3.1. Experimental property data

To train the property prediction model, we aggregated and coa-
lesced experimental property data for organic molecules from publicly
available, published sources [2,4,19,39,45–51]. Property data included
flash point, boiling point, melting point, heat of combustion, and yield
sooting index. While heat of combustion has been linked to molecular
structure, properties such as flash point and yield sooting index also
depend on combustion chemistry. The wide range of these properties il-
lustrates the versatility of this approach, and the potential to be applied
to other properties. For flash point, we only included open-cup data
(i.e., excluded Pensky–Martens, Abel, Tag, and Setaflash methods of
testing flash point) to ensure results were comparable with each other.
Because our models focus on biofuel and bioproduct development, we
only included organic molecules containing carbon, hydrogen, oxygen,
and/or nitrogen and restricted molecules to those with 30 or fewer
carbon atoms. If multiple sources reported experimental data for the
same molecule, we compared measurements and either averaged or re-
moved the data. Specifically, measurements within 15% or five units of
each other were averaged, while measurements differing by more than
15% and five units were considered unreliable, and the molecule was
removed. The final database comprises a variety of chemical classes,
such as alkanes, cycloalkanes, alkenes, cycloalkenes, alkynes, alco-
hols, cycloalcohols, aldehydes, ketones, cyclic ketones, esters, ethers,
and aromatics (see Table S2 in the supplementary material for more
information). Compared to published literature, our dataset has con-
siderably more (up to 30 times) alcohols, cycloalcohols, aldehydes,
ketones, cyclic ketones, esters, ethers, carboxylic acids, and aromatics,
a comparable number of alkanes, cycloalkanes, alkenes, cycloalkenes,
and alkynes to other datasets [1].
4

Using Pandas [52], Scikit-learn [53], and RDKit [54], we retrieved
simplified molecular input line entry specification (SMILES) for each
molecule to index and merge data from different sources. To index the
database by SMILES, two challenges arise. First, isomers need unique
SMILES to be correctly identified. For this reason, we obtained isomeric
SMILES for the molecules with isomers. Second, a single molecule can
have multiple SMILES. To avoid duplicated molecules when merging
data, we standardized the SMILES using the MolToSmiles() and
MolFromSmiles() functions in RDKIT.Chem. These functions map
different SMILES belonging to the same molecule to a single molecule
object in Rdkit, then return a single standardized SMILES. If a published
database did not index molecules by SMILES, such as Co-Optima [4],
we used the names of molecules to find SMILES via PubChem [46].
The complete database used for developing our models can be found at
feedstock-to-function.lbl.gov.

3.2. Feature selection

For our model features, we generated molecular descriptors us-
ing Mordred [28] because it is an open-source library that offers a
wide variety of descriptors. Mordred includes more than 1800 features
grouped by 50 categories called modules. Descriptors are generated
from SMILES and can be two- or three-dimensional. After generating
all descriptors for each molecule, we removed descriptors with non-
numerical values (e.g., containing strings or NA values) and descriptors
with matching values across most (>95%) molecules. We also removed
the Autocorrelation descriptors because they may not directly
correspond to structural or physical properties of the molecule [55].

When reducing the number of features, we used Recursive Fea-
ture Elimination (RFE) with an ensemble model estimator (Random
Forest Regressor) because it was used in other studies, is easy to
implement, and can outperform other approaches [2,56,57]. RFE is a
supervised feature selection method. Fig. 1 shows a flowchart of our
model development process. To effectively use RFE, we first removed
correlations between descriptors by developing correlation matrices for
each descriptor module using the Spearman coefficient [58]. Although
the Pearson coefficient is more commonly used [14,19], the Spearman
coefficient captures not only linear but all monotonic relationships. The
Spearman coefficient is also appropriate for discrete ordinal and con-
tinuous variables, both of which are present in molecular descriptors.

For each descriptor in the module correlation matrix, we counted
the number of descriptors with a correlation coefficient of at least 0.7.
We then ranked the descriptors from highest to lowest by number of
correlated module descriptors. Next, we selected the top descriptor
as a feature descriptor and removed that feature descriptor and its
correlated descriptors from the correlation matrix. Last, we regenerated
the correlation matrix and repeated these steps until all descriptors in
the module were either selected as a feature descriptor or deleted. If de-
scriptors had the same number of correlated descriptors and therefore
the same ranking, they were selected by their order in Mordred. We
repeated this process for individual modules and then a final time after
combining all feature descriptors. This process generated the feature
descriptor set for RFE.

To minimize bias in the model performance, we randomly divided
each property data set into training (80%) and testing (20%) prior to
using RFE. Fig. S2 and Table S1 in the Supplemental Information (SI)
show the distribution of training and testing data and the number of
molecule types (e.g., hydrocarbons, oxygenated hydrocarbons) used for
each model.

Next, we implemented RFE using scikit-learn [53], which
iteratively groups and removes the 10 least important descriptors until
no descriptors remain. The importances of the descriptors are derived
by fitting a random forest estimator at each step and looking at the
accumulation of the impurity decrease within each tree [59]. Upon
changing the random seed 10 times for heat of combustion, 7 out

http://feedstock-to-function.lbl.gov
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Fig. 1. Overview of feature selection and model optimization pipeline.
of the top 10 features were ranked 1st all 10 times, while the other
three were ranked either 1st or 2nd. This shows that the method
produces consistent results when randomizing the estimator. It then
ranks the descriptor groups based on their removal order. For example,
the last remaining descriptors will be ranked 1, while the second-to-last
remaining descriptors will be ranked 2, and so forth. This method has
been shown to be robust and useful for identifying strong predictors in
low dimensional data [60].

We then created multiple feature sets, with the first feature set
including only rank 1 descriptors, by sequentially adding higher ranked
descriptor groups until the last feature set included descriptors of all
ranks. We then trained TPOT on all the generated feature sets.

To evaluate the robustness of this approach, we varied the random
seed ten times, retrained the models, and observed the changes in fea-
ture importances. We found that random seed did not have more than
20% variability in any of the feature importances, with the maximum
change being between 0.48 and 0.6, in the yield sooting index model
(see Fig. S1 in the SI for more information).

3.3. Model development using automated machine learning

TPOT is a tree-based automated machine learning tool that finds
the best model for a given data set by exploring thousands of model
pipelines [29,30]. For our models, we set TPOT to optimize only ensem-
ble models because they can provide prediction intervals with quantile
regression forests or quantile extra trees. This allowed us to estimate
conditional quantiles and evaluate the reliability of the prediction for
each molecule [61]. When training the models, TPOT performed five-
fold cross-validation with each fold comprising 20% of the training
set. TPOT performs the cross-validation internally, using the average
accuracy of all five folds to select the highest performing model ar-
chitecture. Then, it trains the highest performing model architecture
with the entire training set and returns the final model [29,30]. For all
feature sets described in Section 3.2, we used TPOT to develop models
and then compared model performances. Like previous studies [1,3,9],
we selected the final predictive model for the property, and its cor-
responding feature set, with the lowest cross-validation error. Fig. 1
provides a graphical representation of the feature and model selection
process.

3.4. Model performance metrics

To evaluate the prediction performance and accuracy of each model,
we calculated the RMSE, MAE, MAPE, and median absolute error
(MedAE). These metrics do not indicate if the model predictions over-
or under-estimate experimental data. Instead, they measure model
performance and accuracy. They can be used on the train, test, or
validation sets, but the performance on the test or validation sets should
be used to estimate model’s performance on unseen data.
5

The RMSE is frequently used to estimate model error:

RMSE =
√

MSE =

√

√

√

√
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𝑛
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where 𝑛 is the number of samples (or molecules), 𝑦𝑖 is the dependent
variables, with 𝑖 = 1,… , 𝑛, and 𝑦𝑖 is the predicted value of 𝑦𝑖. Due to
the quadratic nature of RMSE, this metric is especially sensitive to large
errors and outliers.

MAE is also a popular performance metric because it is intuitive and
easy to interpret:
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MAE is less sensitive to large errors and outliers than RMSE, which may
be desirable if the data span a large range.

MAPE is similar to MAE and provides a dimensionless (i.e., unit-less)
measure of model accuracy:

MAPE = 100 × 1
𝑛

𝑛
∑

𝑖=1

|

|

|

|

𝑦𝑖 − 𝑦𝑖
𝑦𝑖

|

|

|

|

. (3)

However, MAPE captures errors that may seem large in terms of
magnitude, but are small compared to the overall range of the data.
This metric places more penalty on errors at the lower end of the target
range. For example, MAPE will demonstrate that an error of 20 units
when the expected value is 5 is less accurate than an error of 20 units
when the expected value is 500.

Because MedAE is the median of all the absolute errors, it is robust
to outliers and provides a measure of model performance for the
majority of the data (i.e., excluding outliers):

MedAE = median (|𝐲 − 𝐲̂|) , (4)

where median(𝐱) represents the median value of set 𝐱.

4. Results and discussion

To develop accurate and interpretable machine learning models, we
determined the optimal descriptor sets and created predictive models
for five physiochemical properties using the method described in Sec-
tion 3. We developed models for melting point, boiling point, flash
point, yield sooting index, and heat of combustion. A summary of the
models and their data performance (training and testing) is shown in
Table 2.

Interestingly, the optimal model architecture identified by TPOT for
all properties was ExtraTrees. This algorithm creates a large number
of regression trees each trained on a random subset of features, then
averages the prediction of each tree to come up with a final prediction.
It has been shown to provide near optimal accuracy and good computa-
tional complexity [62]. In addition, variable importances derived from
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Table 2
Property prediction molecules, features, and model test performance using Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Median
Absolute Error (MedianAE), and Mean Absolute Percentage Error (MAPE) for test data.

Melting point Boiling point Flash point Yield sooting index Heat of combustion

MAE 29.2 K 15.7 K 13.4 K 17.32 91.9 kJ/mol
RMSE 39.9 K 28 K 20.4 K 40.54 238.3 kJ/mol
MedianAE 22.6 K 8.7 K 8.3 K 4.08 23.1 kJ/mol
MAPE 8.4% 3.3% 3.8% 10.5% 4.4%
Number of features 73 45 31 15 10
Number of molecules 8351 2431 1130 481 2489
Data range 68–822 K 225–903 K 85–546 K −3.1–1339 1 116.4–17,893 kJ/mol
Model architecture ExtraTrees ExtraTrees ExtraTrees ExtraTrees ExtraTrees
t
a
o
b
i
p
f
h

u
s
d
a
(
A
M
b
b
n
i
g
r
b
i
l
3
a
f
c
g
T
p
p
7

m
a
t
a
m

ensemble models such as ExtraTrees can properly assess the relevance
of a variable [59].

In general, our predictive models demonstrate comparable perfor-
mance to previously published models. Our melting point model uses
two to eight times more data than previous studies and has test errors
comparable to Saldana et al. [9] (about 4 K higher MAE and RMSE)
and lower than Karthikeyan et al. [10] (about 10 K lower MAE and
RMSE). Our boiling point and flash point models have similar errors
to previous models of larger size (greater than 1000 molecules) and
diverse data-sets (i.e., models that were trained using multiple classes
of organic compounds) [16,18,19]. The yield sooting index model also
has errors that match previous studies, but uses only a fraction of the
features (15 for our model versus 390 or 1800 for others), which may
help prevent overfitting [2,3]. Although the heat of combustion model
performed better than linear models that used chemical descriptors
as features (MAE of 91.9 kJ/mol versus 104.1 kJ/mol) [21,22], it did
not perform as well as models that used functional group counts as
inputs [9,23]. For heat of combustion, it seems that using a group
contribution approach compared to molecular descriptors as model
inputs generally produces better model performance [63,64]. This is
likely due to the fact that fuel enthalpy, which is related to heat
of combustion, has been shown to correlate to functional groups. As
shown in Table 1, this may not be consistent for other physiochemical
properties.

In some cases it was difficult to compare performance of our model
to the published literature because they only reported overall errors
that averaged both training and testing errors (i.e., errors for the
testing data were not provided) [1,12,15,17,18,20]. Reporting model
performance using the average of training and testing errors may
be misleading because the model is likely to have lower errors with
training data than testing data. Therefore, the overall error may over-
estimate the predictive capabilities of the model, especially with new
data. As discussed by other researchers, external validation is an indis-
pensable validation method for determining the true predictive ability
of the model, and reporting the test error will provide a better measure
of the model’s predictive capability [17,65,66].

When evaluating model performance for different molecular fam-
ilies (e.g., hydrocarbons, oxygenated hydrocarbons, organic nitrogen
molecules), Fig. 2 shows that most models predict hydrocarbon proper-
ties better than nitrogen- and oxygen-containing compounds. Hydrocar-
bons may be easier to predict because their properties tend to correlate
highly with bond structure and intermolecular connectivity [67]. For
nitrogen- and oxygen-containing compounds, additional intermolecular
forces (such as dipole–dipole moments) and degrees of freedom may
influence properties in ways that are difficult to capture with available
molecular descriptors. Yield sooting index is the only model with higher
errors for hydrocarbons than other molecule families; however, the
yield sooting index range for hydrocarbons is more than 10 times larger
than oxygenated hydrocarbons and organic nitrogen molecules (see
Tables S1 and S3 in the SI). The remaining models have the largest
error among organic nitrogen molecules. For information about RMSE
for these groups, see Table S4.

The following sections discuss in detail the chemical descriptors
used for each model and interpret their relationships to the properties.
Additionally, the SI contains a full list of descriptors, their definition,
and their feature importance values for each model.
6

4.1. Melting point model

To interpret the melting point model features (i.e., descriptors) and
understand which characteristics are captured by the model, Fig. 3
shows the feature importance of the descriptors grouped by module.
Melting point depends on molecule properties and strength of the
crystalline lattice. These are functions of molecular packing in the
crystals (e.g., shape, size, symmetry) and intermolecular forces such as
charge transfer and dipole–dipole interactions in the solid phase [10,
68–70]. Melting point also depends on many entropic parameters such
as oligomerization and other self-organization processes that may not
be captured by chemical descriptors [7,8,10,68,69].

The highest ranked descriptor in the melting point model is piPC3,
defined as the 3-ordered pi-path count (log scale) [28]. piPC3 is
he only descriptor used from the PathCount module and captures
spects of the molecular structure. Specifically, it measures the amount
f branching in the bonded structure of the molecule, where aromatic
onds are weighted more heavily than single bonds [71]. As shown
n Fig. S3, melting point tends to increase as the number of 3-ordered
i-path count (log scale) increases. Additionally, given a fixed value
or piPC3, oxygenated hydrocarbons and organic nitrogen compounds
ave higher melting points than their hydrocarbon counterparts.

The second highest ranked descriptor is MZ, the only descriptor
sed from the Constitutional module. MZ is defined as the con-
titutional mean and does not contain geometric information. It is
etermined by calculating the mean atomic number of the molecule
nd then normalizing the mean by the atomic number of carbon
i.e., 6) [28]. In general, melting point increases with MZ (see Fig. S4).
n organic molecule with a nitrogen or oxygen atom has a greater
Z value than a hydrocarbon with only carbon and hydrogen atoms
ecause nitrogen and oxygen have greater atomic numbers than car-
on. The dipole–dipole interactions between either the lone pairs in
itrogen or oxygen and hydrogen are stronger than the dipole–dipole
nteractions between carbon and hydrogen. This effect is owed to nitro-
en and oxygen having greater electronegativity than carbon, which
esults in stronger intermolecular forces that require more energy to
reak (i.e., a greater melting point). This could explain why MZ is an
mportant predictor of melting point in our model. The module with the
argest aggregated feature importance is MOEType, which comprises
4 descriptors, including those that characterize intermolecular inter-
ctions. The MOEType module collects two-dimensional descriptors
rom the Molecular Operating Environment Software, based on precal-
ulated surface area values (or VSA) derived from a list of functional
roups that approximate van der Waal surface area [72,73]. MOE-
ype descriptors capture many fundamental characteristics needed to
redict melting point, including hydrophobic and hydrophilic effects,
olarizability, electrostatic interactions, and steric effects [7,10,72,74,
5].

Most of the remaining descriptors and modules in our melting point
odel capture additional features that characterize molecular shape,

toms, bond types, functional groups, and polarizability. For example,
opological descriptors count numbers of atoms, bonds, branching,
nd electrons, and can be used to characterize polarizability, dipole
oment, and some steric effects [76]. Polarizability and induced dipole
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Fig. 2. Parity plots showing test set experimental and predicted values of (a) Melting Point, (b) Boiling Point, (c) Flash Point, (d) Yield Sooting Index, and (e) Heat of Combustion
models for hydrocarbons, oxygenated hydrocarbons, and all other organic molecules.
interactions influence intramolecular interactions that are important
determinants of melting point, especially for larger molecules with
electrons that are easier to polarize [8,10].

A key difference between our melting point model and other pub-
lished models is that it can distinguish between isomers because it
includes three-dimensional descriptors. Only two three-dimensional
descriptors are used in the melting point model: Plane of Best Fit
(PBF) and GeometricalShapeIndex. Interestingly, these descrip-
tors have a low feature-importance ranking. Previous research has
7

suggested that melting point models without three-dimensional descrip-
tors perform better than those with both two- and three-dimensional
descriptors [10]. Here, we found that the addition of three-dimensional
descriptors improved accuracy.

Given the diversity of the data used to train the model, common
descriptors between many molecules may be more heavily weighted
than other descriptors, resulting in larger prediction errors. For exam-
ple, more than half of the molecules used for training contain a nitrogen
atom and the third highest ranked descriptor is the number of nitro-
gen atoms (nN) in the AtomCount module. As another example, the
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m

Fig. 3. Melting point descriptor importances grouped by module.

model predicts that 1,2-epoxyhexane (C6H12O) has a low melting point
(171 K) like 1,3-epoxybutane (C4H8O), but its actual melting point is
more than double (367 K). This indicates that some of the highest-
ranked modules, such as Estates, RingCount, and AtomCount,
that characterize the types of atoms and fragments or functional groups
present in the molecules are missing some features, resulting in higher
model predictions. Specifically, the descriptors may not accurately
characterize molecules with stronger intermolecular interactions in the
solid state due to oligomerization or other self-organization processes.
Other researchers have observed similar phenomenon using descriptors
to predict melting point, and indicate that available descriptors may
not be sufficient to accurately predict melting point of molecules with
strong, solid-state intermolecular interactions [7,10,68,69].
8

Fig. 4. Boiling point descriptor importance values grouped by module.

4.2. Boiling point model

To understand which characteristics are captured by the boiling
point model, we compared the importance of individual descriptors
(see Fig. 4). Boiling point depends on physical characteristics such
as branching in the molecular structure, different measures of inter-
molecular connectivity, and the dipole–dipole interactions within the
molecule [13,14,17]. Therefore, it is not surprising that piPC1 is the
highest ranked descriptor for the boiling point model, since it measures
the amount of branching in the molecular structure. piPC1 is defined
as the 1-order pi-path count (log scale) and is the only descriptor used
from the PathCount module [28]. As Fig. S5 shows, boiling point
generally increases with increasing path count values, which agrees
with previous research by Dai et al. [17]. The second-highest ranked
descriptor is VE2_A, from the AdjacencyMatrix module, which
describes intermolecular connectivity and vertex centrality [14,17,28].
Similar to previous studies, Fig. S6 shows that boiling point is inversely
proportional to VE2_A values [14,17]. The nHBDon descriptor, which
represents the number of hydrogen bond donors in the molecule, is
ranked fourth-most important in our boiling model.

The MoRSE module was ranked second highest in the boiling point
odel, after PathCount. This module of descriptors was developed to

encode the three-dimensional structure of a molecule without Cartesian
or internal coordinates. The calculation involves the Euclidean distance
between atoms, the total number of atoms, and different atomic prop-
erties [77]. When unweighted, the descriptors in this module are just
functions of number of atoms in the molecules. These descriptors can
also be weighted by atomic properties such as mass, van der Waals vol-
ume, or Sanderson electronegativity, which will highlight or diminish
the role of certain atoms in the molecule. In the boiling point prediction
model, the descriptors used are unweighted, and weighted by mass,
van der Waal volume, and polarizability. MoRSE three-dimensional
descriptors have been used for predicting boiling point, specifically

weighted by van der Waal volume [14].
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Fig. 5. Flash point descriptor importances grouped by module.

.3. Flash point model

Fig. 5 shows the importance of features used in the flash point
odel. Flash point correlates well with boiling point, and some stud-

es even used one property to predict the other [78,79]. Therefore,
t is not surprising that the top descriptors used in the flash point
odel, as well as their relative importances, mimic those in the boiling
oint model. Specifically, the top ranked descriptors are TpiPC10

in the PathCount module and VE2_A in the AdjacencyMatrix
odule. Figs. S8 and S7 show that VEA_2 may correlate better with
ydrocarbons than TpiPC10. While the PathCount module has been
uccessfully used in previous flash point models, the AdjacencyMa-
rix module has not [18]. However, similar descriptors that capture

he number of bonds and bond strength of a molecule, such as edge
djacency indices, have been used in some models [20].

Like in the boiling point model, the MoRSE module has the highest
ggregated importance in the flash point model and captures three-
imensional structure of the molecules. The nHBDon descriptor also
aptures similar effects, as increasing hydrogen bond donors increases
lash point, and has been used in previous models [23].

.4. Yield sooting index model

Fig. 6 shows the importance of features used in the yield sooting
ndex model. Aromaticity in molecules correlates with higher sooting
endencies (i.e., higher yield sooting indices) [39,80]. As expected, the
ighest ranked descriptor, which has an importance greater than all
ther descriptors combined, is nAromBond in the Aromatic module.
his descriptor counts the number of aromatic bonds [28]. As noted by
revious researchers, molecules with aromatic atoms have significantly
igher yield sooting index than their non-aromatic counterparts [39].
ur model shows a similar trend, with yield sooting index generally

ncreasing with the number of aromatic bonds (see Fig. S9).
Although nAromBond is an important feature in the yield sooting

ndex model, nAromBond does not capture structure of non-aromatic
ortions of the molecule or information about non-aromatic molecules.
s such, the remaining descriptors in the model capture non-aromatic

eatures. For example, the second-highest ranked descriptor was ABC,
efined as the atom-bond connectivity index, and measures branch-
ng [28]. This is the most important descriptor in the heat of combus-
ion model, and details about this descriptor are included in Section 4.5.
9

dditionally, four descriptors come from the BCUT module, which is
Fig. 6. Yield sooting index descriptor importances grouped by module.

Fig. 7. Heat of combustion descriptor importances grouped by module.

calculated from the Burden matrix (a vertex- and edge-weighted adja-
cency matrix) [81]. One of the descriptors that measures the highest
eigenvalue of the burden matrix weighted by polarizability is also used
in the yield sooting index model developed by Kessler et al. [3].

4.5. Heat of combustion model

Fig. 7 shows the importance of features used in the heat of combus-
tion model. The highest ranked descriptor in the heat of combustion
model is the ABC descriptor, with a feature importance of almost
0.5. The ABC descriptor is the Atom-bond Connectivity Index, or ABC
ndex, developed as an improved version of the Randić Connectivity
ndex, which measures branching in saturated hydrocarbons [67,82].
he ABC Index is a degree-based molecular structure descriptor used
o model thermodynamic properties of organic chemical molecules and
dvance nanochemical applications [83]. The ABC Index correlates
ith the stability of linear and branched alkanes as well as the strain
f energy of cycloalkanes. It also correlates with heat of formation
f alkanes and cycloalkanes, and can predict their thermodynamic
roperties [67,84,85].

As shown in Fig. S10, ABC correlates well with heat of combustion,
nd clearly correlates with alkanes and cycloalkanes, agreeing with
revious studies [67,84]. Almost 50% of our data comprise hydro-
arbons (1164 out of 2490 molecules), with 25% being alkanes and
ycloalkanes (498 alkanes and 121 cycloalkanes). This may partially
xplain the high importance of the ABC descriptor in the model.

The second-highest ranked descriptor is ETA_dBeta from the ETA
module. 𝛽 is the valence electron mobile (VEM) count, and sums
contributions from sigma bonds, pi bonds, and a 𝛿 term that measures
resonating lone pair electrons in an aromatic system [83]. ETA_dBeta
s defined as the difference between the contribution from non-sigma
onds (i.e., pi-bonds and 𝛿) and sigma bonds [28]. From Fig. S11, we
an see that this descriptor better-isolates organic nitrogen molecules
han ABC. This suggests that ETA_dBETA may encode structural fea-
ures to better characterize organic nitrogen molecules.

. Conclusions

This research establishes a comprehensive method for developing
nterpretable models that predict multiple molecular properties. The
ethod can be applied to a broad range of properties from physical to
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complex and can help researchers identify, rank, and validate important
property structure relationships that may accelerate biofuel develop-
ment. The method focuses on reducing the number of features by
minimizing correlations between chemical descriptors to develop high-
performing models. It also ranks the features based on their importance,
enabling researchers to identify dominant chemical-structure features
that impact property values.

To demonstrate our method, we developed molecular property pre-
diction models for five common jet fuel properties: melting point,
boiling point, flash point, yield sooting index, and net heat of com-
bustion. The properties range from physical to complex, having known
and unknown relationships with molecular structure or combustion
chemistry. Data used to train the models contain organic molecules
(specifically, carbon atoms attached to hydrogen, oxygen, and/or nitro-
gen atoms) with less than 30 carbon atoms. The numbers of molecules
used to develop the models range from 481 molecules (yield sooting
index) to 8351 molecules (melting point).

The MAPE for the models, based on the test data, range from 3.3%
(boiling point) to 10.5% (yield sooting index), performing similarly to
previously published models. A key advantage to these models is that
they enable users to directly explore the relationships between prop-
erties and the importances of individual descriptors or modules used
by the model. For example, we found that the Atom-bond Connectivity
Index, a measure of molecule branching, well-predicts heat of combus-
tion, especially for alkanes and cycloalkanes. We also observed that the
number of aromatic bonds is a good predictor of yield sooting index,
agreeing with previous research. The consistency of this method was
tested by randomizing different parts of the algorithm and comparing
the results, which are consistent and highlight the same features each
time.

Overall, our method provides a consistent and robust approach
for developing physiochemical property-prediction models. To accel-
erate early biofuel research and development, we integrated the data
and models into a user-friendly, interactive webtool that is publicly
archived and can be found at feedstock-to-function.lbl.gov [41,42].
From this research, we recommend that future models report test errors
in addition to overall errors that combine testing and training errors.
This will improve transparency for model performance, especially with
new or unseen data. Additionally, this method could be used to develop
models for other physiochemical properties (e.g., viscosity, density)
or to reduce multicollinearity of other highly correlated feature sets
similar to chemical descriptors (e.g., gene expression datasets) when
developing models.
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