
UCLA
UCLA Electronic Theses and Dissertations

Title
Efficient Machine Learning Acceleration at the Edge

Permalink
https://escholarship.org/uc/item/26z3s4qf

Author
Romaszkan, Wojciech

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/26z3s4qf
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Efficient Machine Learning

Acceleration at the Edge

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Electrical and Computer Engineering

by

Wojciech Piotr Romaszkan

2023

© Copyright by

Wojciech Piotr Romaszkan

2023

ABSTRACT OF THE DISSERTATION

Efficient Machine Learning

Acceleration at the Edge

by

Wojciech Piotr Romaszkan

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Los Angeles, 2023

Professor Puneet Gupta, Chair

My thesis is a result of a confluence of several trends that have emerged in recent years. First,

the rapid proliferation of deep learning across the application and hardware landscapes is

creating an immense demand for computing power. Second, the waning of Moore’s Law

is paving the way for domain-specific acceleration as a means of delivering performance

improvements. Third, deep learning’s inherent error tolerance is reviving long-forgotten

approximate computing paradigms. Fourth, latency, energy, and privacy considerations are

increasingly pushing deep learning towards edge inference, with its stringent deployment

constraints. All of the above have created a unique, once-in-a-generation opportunity for

accelerated widespread adoption of new classes of hardware and algorithms, provided they

can deliver fast, efficient, and accurate deep learning inference within a tight area and energy

envelope.

One approach towards efficient machine learning acceleration that I have explored at-

tempts to push a neural network model size to its absolute minimum. 3PXNet - Pruned,

Permuted, Packed XNOR Networks combines two widely used model compression techniques:

ii

binarization and sparsity to deliver usable models with a size down to single kilobytes. It uses

an innovative combination of weight permutation and packing to create structured sparsity

that can be implemented efficiently in both software and hardware. 3PXNet has been de-

ployed as an open-source library targeting microcontroller-class devices with various software

optimizations, further improving runtime and storage requirements.

The second line of work I have pursued is the application of stochastic computing (SC).

It is an approximate, stream-based computing paradigm enabling extremely area-efficient

implementations of basic arithmetic operations such as multiplication and addition. SC has

been enjoying a renaissance over the past few years due to its unique synergy with deep

learning. On the one hand, SC makes it possible to implement extremely dense multiply-

accumulate (MAC) computational fabric well suited towards computing large linear algebra

kernels, which are the bread-and-butter of deep neural networks. On the other hand, those

neural networks exhibit immense approximation tolerance levels, making SC a viable imple-

mentation candidate.

However, several issues need to be solved to make the SC acceleration of neural networks

feasible. The area efficiency comes at the cost of long stream processing latency. The conver-

sion cost between fixed-point and stochastic representations can cancel out the gains from

computation efficiency if not managed correctly. The above issues lead to a question on how

to design an accelerator architecture that best takes advantage of SC’s benefits and minimizes

its shortcomings. To address this, I proposed the ACOUSTIC (Accelerating Convolutional

Neural Networks through Or-Unipolar Skipped Stochastic Computing) architecture and its

extension - GEO (Generation and Execution Optimized Stochastic Computing Accelerator

for Neural Networks). ACOUSTIC is an architecture that tries to maximize SC’s compute

density to amortize conversion costs and memory accesses, delivering system-level reduction

in inference energy and latency. It has taped out and demonstrated in silicon, using a 14nm

fabrication process. GEO addresses some of the shortcomings of ACOUSTIC. Through the

introduction of near-memory computation fabric, GEO enables a more flexible selection of

iii

dataflows. Novel progressive buffering scheme unique to SC lowers the reliance on high

memory bandwidth. Overall, my work tries to approach accelerator design from the sys-

tems perspective, making it stand apart from most recent SC publications targeting point

improvements in the computation itself.

As an extension to the above line of work, I have explored the combination of SC and spar-

sity, to apply it to new classes of applications, and enable further benefits. I have proposed

the first SC accelerator that supports weight sparsity - SASCHA (Sparsity-Aware Stochastic

Computing Hardware Architecture for Neural Network Acceleration), which can improve

performance on pruned neural networks, while maintaining the throughput when processing

dense ones. SASCHA solves a series of unique, non-trivial challenges of combining SC with

sparsity. On the other hand, I have also designed an architecture for accelerating event-

based camera object tracking - SCIMITAR. Event-based cameras are relatively new imaging

devices which only transmit information about pixels that have changed in brightness, re-

sulting in very high input sparsity. SCIMITAR combines SC with computing-in-memory

(CIM), and, through a series of architectural optimizations, is able to take advantage of this

new data format to deliver low-latency object detection for tracking applications.

iv

The dissertation of Wojciech Piotr Romaszkan is approved.

Mani B. Srivastava

Sudhakar Pamarti

Anthony J. Nowatzki

Puneet Gupta, Committee Chair

University of California, Los Angeles

2023

v

To Camila.

vi

TABLE OF CONTENTS

1 Introduction . 1

1.1 Model Compression: Better, Faster, Smaller 2

1.1.1 Fewer Bits - Quantization & Binarization 2

1.1.2 Alternate Number Representations 3

1.1.3 Fewer Values - Sparsity & Pruning 4

1.1.4 Edge Models & Libraries . 6

1.2 Stochastic Computing - Processing with Random Streams 6

1.2.1 Number Representation . 7

1.2.2 Multiplication and Accumulation . 8

1.2.3 Stochastic Neural Network Functions 10

1.3 Domain-Specific Acceleration - Breaking the Shackles of Generality 11

1.4 Dissertation Outline . 12

2 3PXNet - Fewer Bits, More Zeros . 14

2.1 A Case for Sparse XNOR Networks . 15

2.2 The 3PXNet Approach . 17

2.2.1 Challenges in pruning XNOR networks 17

2.2.2 Pruning a packed XNOR network . 19

2.2.3 Training 3PXNets . 21

2.3 Implementing 3PXNet . 24

2.3.1 Fully-Connected Layers . 25

2.3.2 Convolutional Layers . 28

vii

2.3.3 Fused kernels . 32

2.3.4 ARM NEON Support . 33

2.3.5 Binarization of the First Layer . 34

2.4 Experimental Setup . 34

2.4.1 Platforms . 35

2.4.2 Benchmarks . 35

2.4.3 Baseline . 36

2.5 Results and Discussion . 36

2.5.1 Accuracy & Model Size . 36

2.5.2 Performance & Energy . 39

2.6 Distinction between 3PXNet and Ternary Networks 42

2.7 Conclusion . 42

3 ACOUSTIC - Accelerator Built on Randomness 44

3.1 Introduction . 45

3.2 ACOUSTIC Optimizations for DNNs . 48

3.2.1 Split-Unipolar Representation . 48

3.2.2 OR-based Scaling-Free Accumulation 49

3.2.3 Computation Skipping using Stochastic Average Pooling 51

3.3 ACOUSTIC Architecture . 51

3.3.1 Understanding SC Benefits . 52

3.3.2 Accelerator Architecture . 55

3.3.3 Control . 65

3.3.4 Evaluated ACOUSTIC Architectures 67

viii

3.4 Evaluation & Results . 69

3.4.1 Evaluation Methodology . 69

3.4.2 ACOUSTIC Accuracy . 70

3.4.3 Runtime Configurable Precision . 71

3.4.4 Area & Power Breakdown . 71

3.4.5 Performance Comparisons . 73

3.5 FPGA Evaluation . 75

3.6 Demonstration Chip . 76

3.6.1 Architecture . 77

3.6.2 SC Computation . 80

3.6.3 Computation Mapping . 80

3.6.4 Evaluation & Results . 83

3.7 Related Work . 86

3.7.1 Deep Learning using Stochastic Computing 86

3.7.2 Approximate and Programmable Precision Accelerators 88

3.8 Conclusion . 89

4 GEO - Pushing Stochastic Computing Further 91

4.1 Introduction . 92

4.2 Stochastic Stream Generation Optimizations 94

4.2.1 Co-optimized Shared Generation and Training 94

4.2.2 Progressive Stochastic Stream Generation 95

4.3 Stochastic Computing Execution Optimizations 97

4.3.1 GEO Architecture . 97

ix

4.3.2 Partial Binary Accumulation . 99

4.3.3 Near-Memory Computation . 101

4.3.4 Pipeline Optimizations . 102

4.4 Evaluation & Results . 103

4.4.1 Evaluation Methodology . 103

4.4.2 GEO Accuracy Comparisons . 105

4.4.3 Performance Impact of GEO Enhancements 105

4.4.4 GEO Performance Compared . 107

4.5 Conclusion . 108

5 SASCHA - Combining Randomness with Sparsity 110

5.1 Introduction . 111

5.2 Motivation . 112

5.3 SASCHA Sparse SC PE . 114

5.3.1 Sparse PE Design Objectives . 114

5.3.2 G:C Sparse PE . 115

5.3.3 Multi-Group Sparse SC PE . 119

5.3.4 SASCHA PE Analytical Model . 122

5.3.5 Parallel Stream Processing . 124

5.4 SASCHA Architecture . 127

5.4.1 SASCHA Accelerator . 127

5.4.2 SASCHA Asynchronous Scheduler . 130

5.4.3 Memory Organization . 133

5.5 Bit-Slicing Weights . 134

x

5.6 Evaluation & Results . 139

5.6.1 SASCHA Accuracy . 139

5.6.2 Performance Results . 141

5.7 Related Work . 146

5.7.1 Sparse Accelerators. 146

5.7.2 Stochastic Computing Accelerators. 147

5.8 Conclusion . 147

6 SCIMITAR: Event-Based Tracking with Stochastic Compute-In-Memory149

6.1 Introduction . 150

6.2 Motivation . 152

6.2.1 Event-Based Cameras . 152

6.2.2 Event-Based Data Processing . 154

6.2.3 Stochastic Computing In-Memory . 159

6.3 SCIMITAR Implementation . 161

6.3.1 Stochastic Compute-in-Memory Macro with In-Situ SNG 161

6.3.2 In-Situ Stochastic Number Generator 162

6.3.3 In-Memory Stochastic MAC Unit . 164

6.3.4 Event-Based SCIM Accelerator Architecture 166

6.3.5 Multi-Level Early Termination . 175

6.4 Evaluation . 178

6.4.1 Accuracy . 178

6.4.2 Hardware Evaluation . 179

6.5 Conclusion . 182

xi

7 Conclusion . 183

7.1 Overview of Contributions . 183

7.1.1 3PXNet . 183

7.1.2 ACOUSTIC & GEO . 184

7.1.3 SASCHA . 185

7.1.4 SCIMITAR . 186

7.2 Directions for Future Work . 186

7.2.1 Exploration of Stochastic Computing Accelerators 186

7.2.2 Analog Stochastic Computing . 187

7.2.3 Extending 3PXNet . 188

References . 189

xii

LIST OF FIGURES

1.1 Examples of unipolar (a) and bipolar (b) SC representation, and a unipolar

Stochastic Number Generator Circuit (SNG) with an AND gate SC multipli-

cation (c). 7

1.2 RMS error of the bit stream representation for a given value a), and area [µm2]

comparison between different SC MACs, depending on the number of inputs b). 9

2.1 Storage requirements for Dense, NP and NPP XNOR ”small” MNIST MLP for

varying levels of sparsity. 19

2.2 Pruning with packing constraint of 4 bits a) without permutation, b) with per-

mutation . 21

2.3 Comparison of training results with and without permutation for different sparsities. 22

2.4 A schematic view of a fully-connected layer with NI inputs and NO kernels. . . 24

2.5 A schematic view of a padded convolutional layer followed by pooling operation. 25

2.6 256x4 fully-connected layer weight and index storage with 75% sparsity (NP=2x

32-bit packs per output). 28

2.7 3x3x32 kernel packed into depth-first binarized vectors. 29

2.8 Dense and 3PXNet (93.75% sparsity) speedups for kernel as an outer (K-YX) and

inner (YX-K) loop for different VGG-16D [1] layers, normalized to dense K-YX. 30

2.9 3x3x32 Convolution kernel weight packs and indices with KL=3 active packs. . 31

2.10 Convolution splitting into padded and non-padded regions for efficient computa-

tion. 33

2.11 A 2x2 fused Max Pooling followed by threshold Batch Normalization. 34

2.12 Accuracy vs. Memory tradeoff compared to eBNN and dense XNOR. 37

xiii

2.13 Accuracy comparison between sparse 8-bit network and 3PXNet, for MNIST (a)

and CIFAR-10 (b). 40

3.1 Circuit level support for unipolar, temporal split-unipolar, and spatial split-

unipolar representations (a) and an example of 2-wide split-unipolar MAC temporarily-

(b) and spatially-unrolled c). 49

3.2 Accuracy comparison between MUX and OR a) and comparison of approximation

methods for OR accumulation b). 50

3.3 Normalized MAC energy (a) and area (b) for 8-bit fixed-point and 256-long,

unipolar SC implementations in TSMC 28nm node with 200MHz clock, with

different data reuse patterns. Normalized MAC energy for 256-wide MAC when

intermediate results are converted to binary (c). 53

3.4 Block diagram of the proposed ACOUSTIC accelerator (a), and the hierarchical

organization of the compute engine with parts of the kernel and activation tensors

covered by each level of hierarchy (b). 56

3.5 Convolving a 1x128x32 input slice with a 1x3x32 kernel to compute a 1x16x1

partial output slice a). Extension across multiple arrays to compute a 1x128x1

output slice b). Configuration for a 1x64x64 input tensor. 59

3.6 Processing two successive output rows sequentially (a), processing multiple ker-

nels at the same time, with output transposition (b). 61

3.7 Extending kernel size up to 6x6 by coupling adjacent rows (a), enabling padding

through row scheduling for height (b) and configurable shifting fabric before array

inputs for width (c). 62

xiv

3.8 Latency of processing a convolutional layer with 16x16x512 inputs and 512 3x3x512

kernels and pre-loading 512 3x3x512 kernels for the subsequent layers using differ-

ent clock frequency and external memory interfaces, using temporarily-unrolled

256-long split-unipolar streams. 68

3.9 Accuracy and performance at different stream lengths for the CIFAR-10 CNN on

ACOUSTIC ULP. Labeled points are pareto points with the numbers representing

stream lengths in 1st layer, 2nd & 3rd layer, and 4th layer. 72

3.10 Area breakdown for ACOUSTIC LP (a) and ULP (b) and power breakdown for

ACOUSTIC LP (c) and ULP (d). 72

3.11 Overall accelerator architecture. 78

3.12 SC split-unipolar MAC and stochastic average pooling (top). Precision-latency

trade-off using different stream lengths (bottom). 79

3.13 Mapping of convolutional layers in MAC rows, and memory/stream generation

amortization through data reuse. Shift-register organization emulating sliding

window (left), MAC block with input/weight reuse and padding support (center),

block organization implementing different levels of reduction (right). 81

3.14 Normalized ratio of MAC to memory accesses and stream generations compared

to fixed-point designs. Accelerator area scaled to 14nm is included. 81

3.15 Model deployment pipeline. 83

3.16 Die shot and specifications. 84

3.17 Accuracy, latency (left), and energy (right) on the MNIST (top), SVHN and

CIFAR-10 (bottom) datasets. 85

3.18 Area (left) and power (right) breakdown, compared to [2, 3, 4]. 86

3.19 Peak energy efficiency at different stream lengths. 86

4.1 Accuracy vs. sharing for TRNG and LFSR-based random number generation. . 95

xv

4.2 Accuracy comparison between normal generation and progressive generation per-

forming a multiplication of two uniformly sampled inputs. RMS Error is multi-

plication error compared to an 8-bit integer. 96

4.3 Normal SNG (a) and progressive stream generation (b). 97

4.4 Overall SC accelerator architecture block diagram. with breakdowns of the MAC

row (left) and output converter (right) modules (a). Fixed 8-bit maximum length

LFSR (b), and configurable 8- or 7-bit maximum length LFSR (c). 98

4.5 Area comparison for different hardware implementations of SC-based MAC units

for different kernel sizes and different levels of partial binary accumulation. . . . 100

4.6 Area, energy and latency for different GEO configurations (normalized to Base-

128,128). 107

5.1 Sparse PE with group size G and capacity C (a). Decomposing 3 arbitrary

parameter groups of size G = 4, into groups satisfying the capacity requirement

of C ≤ 2 (b). 116

5.2 Sparse GEO-style SC PE with group size G and capacity C (a). Split-Unipolar

[5] logic is omitted case for readability. Area breakdown of fixed-point (left) and

GEO SC (right) sparse PEs with G=4, and C=2 (b). 118

5.3 Area of sparse and dense SC PEs, given different group sizes and capacities, for

GEO (a), GEO with full binary accumulation (b), and uGEMM (c) style SC. . . 120

5.4 Ideal ratio of dense to sparse storage cost for different PE group sizes, and sparsity

levels. Gray line shows the break-even point between sparse and dense storage. . 121

5.5 Single-group sparse PE with a group size G, capacity C and dot product width

K (a), and a throughput-equivalent multi-group sparse PE with L groups. . . . 122

xvi

5.6 Multi-group K = 16 sparse SC PE iteration overheads normalized to dense PE

area (GEO-style), for different group size G and capacity C, at different sparsity

levels, estimated using the analytical model (a). Gray line shows the latency

break-even point with a dense PE. Iteration overhead difference between the

model and an ideal scheduler described in Section 5.4 on the CIFAR-10 TinyConv

network, for a PE with G = 4 (b). 125

5.7 Sparse SC PE with group size G, capacity C = 1, and P = 2 parallel streams.

Split-unipolar accumulation fabric is omitted for readability. 126

5.8 Total area of a 32x32 array of K = 32 GEO (a), GEO+ (b) and uGEMM (c)

PEs, dense and sparse, with different stream parallelism factors. C = 1 for all

sparse configurations. 127

5.9 SASCHA accelerator architecture block diagram. Partial sum output connections

were omitted for readability. 129

5.10 Three schedules of 5 partial filters, with K = G = 4 and C = 1, on an architecture

with M = 4 rows: dense synchronous (a), sparse synchronous (b) and sparse

asynchronous (c). Crossed out boxed indicate compute underutilization. 131

5.11 Iteration overhead using different sparse scheduling methods (a) and different

group sizes and capacity using the sparse asynchronous scheduler (b). 133

5.12 Number of memory accesses in bytes for the convolutional layers of CIFAR-10

TinyConv network at 90% sparsity, depending on the choice of scheduling and

dataflow. All results for M = 32, N = 32, and K = 32. Sparse results for

G = 8, C = 1, and P = 8. 135

5.13 Overall, MSB and LSB sparsity for (a) and reduction in sliced multiplication area

x delay cost relative to non-sliced cost for SC and fixed-point (b), at different

pruning levels for CIFAR-10 TinyConv. 136

5.14 SC unipolar multiplication a), and sliced multiplication b). 137

xvii

5.15 Accuracy of CIFAR-10 VGG-11 with different sparsity levels. 0% sparsity means

no sparsity constraint. 139

5.16 SASCHA CIFAR-10 Top-1 accuracy with dense and sparse networks. 140

5.17 SASCHA ImageNet Top-5 accuracy with dense and sparse networks. 141

5.18 Area (a) and power (b) breakdown of SASCHA GEO 8/1/8. 143

6.1 Spinning Marker. This image shows event data generated from tossing a spinning

whiteboard marker into the air with a cluttered background. The stationary

background has disappeared so it is easy to see the moving objects. The white

events are positive events indicating an increase in brightness and the blue events

signal a decrease in brightness. 153

6.2 Analytical model parameters, for frame- (top), ROI- (middle), and event-based

(bottom) processing. 156

6.3 Input (top) and output (middle) memory accesses, and MAC count (bottom),

with varying event count. 157

6.4 Input memory accesses (top), and MAC count (bottom), with varying ROI count. 158

6.5 256-wide SCIM MAC structure. 160

6.6 SCIM Macro architecture. 161

6.7 Split-unipolar stochastic representation (top) and in-situ stochastic number gen-

erator (SNG) circuit (bottom). 163

6.8 Interleaved Signed SC MAC unit. 165

6.9 SCIM Unit with 32 MAC reuse and SCIM slice 166

6.10 SCIMITAR architecture block diagram. 167

6.11 Transposed memory layout for 6-bit (top) and 1-bit (bottom) input data. 169

6.12 ROI memory requirements for different compression schemes. 170

xviii

6.13 Channel load skipping and half-row multiplexing using partitioned input SRAM. 171

6.14 Deserializing staging buffers with zero bit indicator. 172

6.15 Time channel overlap support using circular staging buffers. 174

6.16 Impact of proposed optimizations on computational energy efficiency of the SCIM-

ITAR architecture. Efficiency calculated on 99% sparse input data assuming

64-bit long SC streams. 175

6.17 Schematic implementation of 3-level early termination. 177

6.18 SCIM Macro timing (top), and energy breakdown (bottom). 180

6.19 Energy breakdown of the SCIMITAR components for dense (outer circle), 90%

sparse (middle circle), and 99% sparse (inner circle) workloads. Energy is calcu-

lated using 64-long stochastic streams. 181

xix

LIST OF TABLES

2.1 Hardware platforms used for the runtime experiments. 15

2.2 Weight storage requirements of different networks depending on precision. . . . 16

2.3 Benchmark models and datasets . 20

2.4 Accuracy and network size (KB, in brackets) comparison. 38

2.5 Runtime (ms) and energy (mJ, in brackets) for MNIST networks. A dash indi-

cates a given model could not fit in memory. 41

2.6 Runtime (ms) and energy (mJ, in brackets) for CIFAR-10/SVHN/Speech net-

works. A dash indicates a given model could not fit in memory. 42

3.1 Accuracy comparison between different pooling methods. 52

3.2 ACOUSTIC control modules and their respective instructions. 66

3.3 Accuracy comparisons. 70

3.4 Performance comparison between ACOUSTIC LP and other fixed-point and stochas-

tic accelerators. 74

3.5 Performance comparison between ACOUSTIC ULP, MDL CNN [6] and Conv-

RAM [7] on convolutional layers of LeNet-5 and CIFAR-10 CNN. 75

3.6 FPGA utilization and performance comparison between ACOUSTIC ULP and

other convolutional neural network accelerators. ACOUSTIC performance is for

stream lengths in range of 32 to 256-bits. 77

3.7 Datasets and models used in evaluation. Model sizes are limited by available

on-chip memory. 84

3.8 Comparison table. 87

4.1 Accuracy comparison with fixed-point, other SC implementations and so on. . . 106

xx

4.2 Comparison between GEO ULP and fixed-point and neuromorphic implementa-

tions. Numbers are scaled to 28nm. 108

4.3 Comparison between GEO LP and fixed-point and SC implementations. Numbers

are scaled to 28nm. 109

5.1 RMSE of unipolar multiplication with and without bit-slicing, w.r.t. floating-

point precision, for different stream lengths (1000 trials). LSB stream length is

8. 138

5.2 Area [mm2], power [mW], throughput [Fr/s] and energy-efficiency [Fr/J] for dif-

ferent accelerators, models and datasets, and sparsity. 144

5.3 Weight compression ratio for different SASCHA configurations, networks, and

sparsity levels. 146

6.1 Analytical event-based tracking performance model. Event, frame, and ROI refer

to event-, frame-, and ROI-based processing, respectively. 156

6.2 Average ROI processing latency in cycles, with and without early termination for

different stream leangths. 178

6.3 Accuracy metrics of approximate computation in tracking applications using Ga-

bor filters. 179

xxi

ACKNOWLEDGMENTS

As with anything worth doing in life, this dissertation is a result of years of hard work

involving successes and moments of profound satisfaction but also struggles and disappoint-

ments. Most importantly, it is not a result of an individual toiling in isolation - I owe so

much to so many people, it would be impossible to list them all here. Nevertheless, I will

try my best, and I apologize to anyone who was omitted.

First and foremost, I want to thank my advisor, Professor Puneet Gupta. He showed

faith in me by accepting me into his group, gave me all the support and resources I needed,

and pushed me to accomplish my best. The volume and quality of the work presented here

would not have been possible without his drive for excellence. Professor Gupta consistently

shows the highest level of curiosity and tenacity when approaching any new topic or problem,

something I aspire to emulate. Thanks to him, I have been exposed to a vast breadth of

subjects that has expanded my horizons as a researcher, engineer, and technology enthusiast.

I am truly grateful for his guidance and the opportunity to work with him.

I would also like to thank the other members of my doctoral committee: Professor Sud-

hakar Pamarti, Professor Mani Srivastava, and Professor Tony Nowatzki, for both teaching

and research guidance. In particular, Professor Pamarti has been involved in the vast ma-

jority of the work presented here. He provided invaluable guidance on topics such as analog

design, signal processing, and probability, without which this dissertation would hot have

been possible. Professor Srivastava facilitated many productive discussions with the mem-

bers of his group, and Professor Nowatzki introduced me to many new topics in computer

architecture.

I would like to thank my internship managers, mentors, and coworkers. At Amazon’s

Annapurna Labs, I worked under the guidance of Patricio Kaplan and Paul Meyer, who

introduced me to the world of cloud machine learning acceleration. At Facebook (now

Meta), I had the pleasure of working with Rudy Tan and Piyush Agarwal, who exposed

xxii

me to the intricacies and challenges of designing AR/VR devices. Both internships were

extremely rewarding and expanded my professional horizons. I would also like to thank

my undergraduate and master’s theses advisors: the late Dr. Jerzy Kasperek, and Dr.

Pawe l Rajda at the AGH University of Science and Technology. They introduced me to

the field of research and gave me a chance to work on fascinating projects. I also want to

thank my former mentors and coworkers, in particular Dilip Bansal (now with Intel) and

Ali Rabbani (now with Apple) at Imagination Technologies, Dr. Toshiyuki Ikeda at NEC

Corporation, and Dr. Marcin Szczurkowski at Elsta Elektronika. Learning from them has

laid the foundations that made me ready to undertake doctoral studies.

Next, I would like to thank my collaborators, NanoCAD labmates, and fellow students:

Tianmu Li, Dr. Saptadeep Pal, Dr. Irina Alam, Dr. Mark Gottscho, Dr. Wei-Che Wang,

Shurui Li, Alexander Graening, Rhesa M. Ramadhan, Jiyue Yang, Vinod Kurian Jacob,

Albert Lee, Yoo-Jin Chae, Dr. Steven Moran, Dr. Sumeet Singh, Professor Ankur Mehta,

Swapnil Saha, Dr. Sandeep Singh, Rahul Garg, Trevor Black, Erin Askounis, Brian Zutter,

and many more. They have all made my time at UCLA much more fulfilling and enjoyable.

I also want to acknowledge my mentees: Tristan Melton, Feiqian Zhu, Siddharth Nandy, and

Ravit Sharma. I might not have been the best mentor, but you all taught me a lot, and I

hope I made a positive contribution to your career trajectories. My enormous gratitude goes

out to UCLA Electrical and Computer Engineering staff, especially the irreplaceable Deeona

Columbia, but also Jose Cano, Tricia Senate, and many others. Their efforts and dedication

have been invaluable to this department, and me personally.

I could not have gotten here without the love, support, and encouragement of my parents,

sister, and my maternal grandparents. Through good or bad, you made sure I was able to

pursue my interests and made me the person I am today. My thanks also go to my friends,

especially the ones I sometimes do not see for years, and then pick up exactly where we left

off: Ewa Gadocha-Cios, Mateusz Tarnawa, and George Hawkins.

Finally, and most importantly, I would like to thank Dr. Camila Cendra, my wonderful

xxiii

partner, who has been through it all with me. From being strangers in a strange land,

through the highs and lows, the long distance, the longer distance, the pandemic, the two

PhDs, across three continents, for over nine years, you have been my rock, my best friend,

my soulmate.

Copyrights and Re-use of Published Material

This dissertation contains significant material that has been previously published or is in-

tended to be published in the future. Chapter 2 (3PXNet) contains material that was

published in [8]. Chapter 3 (ACOUSTIC) includes material published in [5, 9]. Chapter 4

(GEO) appeared in [10]. Chapter 5 (SASCHA) appeared in [11]. Chapter 6 (SCIMITAR) is

part of a paper which is under submission.

The copyrights on published research that re-appears in this dissertation is with either

the IEEE and/or the ACM where appropriate. The respective copyright agreements allow

for derivative works by the author with attribution, so no explicit permission was required

for inclusion of material in this dissertation. The titles of each chapter have been changed

somewhat to differentiate them from the published versions of the respective manuscripts

where applicable.

Work explored in Chapters 2, 3, 4, and 5 has been done jointly with my labmate Tianmu

Li, who has focused on the accuracy and training side, while I worked on architecture and

implementation. Rahul Garg, Tristan Melton, and Jiyue Yang have contributed to the chip

tapeout described in Chapter 3. Work described in Chapter 6 has been co-authored with

Jiyue Yang, Vinod Kurian Jacob, and Alexander Graening. The former two focused on the

analog circuit implementation, while the latter on the application side of tracking. Professor

Puneet Gupta has contributed as a principal investigator (PI) to all of the work in this thesis,

while Professor Sudhakar Pamarti served as a co-PI for the work described in Chapters 3,

4, 6.

xxiv

Some of the work in my PhD that was conducted in collaboration with other individuals

(where I contributed, but did not lead) are not included in the body of this dissertation.

Work presented in chapters 3, 4, 5, and 6 has been sponsored by the Air Force Re-

search Laboratory (AFRL) and Defense Advanced Research Projects Agency (DARPA) un-

der agreement number FA8650-18-27867. The U.S. Government is authorized to reproduce

and distribute reprints for Governmental purposes notwithstanding any copyright notation

authors and should not be interpreted as necessarily representing the official policies or

endorsements, either expressed or implied, of Air Force Research Laboratory (AFRL) and

Defense Advance Research Projects Agency (DARPA) or the U.S. Government. Part of my

PhD has been sponsored by the Fulbright Program under a Graduate Student Award, as

well as through fellowships granted by the Electrical and Computer Engineering Department

at UCLA.

xxv

VITA

2012 B.Eng. (Electronics and Telecommunication), AGH University of Science

and Technology, Kraków, Poland.

2013 M.Eng., Honors (Electronics and Telecommunication), AGH University of

Science and Technology, Kraków, Poland.

2013-2014 Vulcanus in Japan Fellowship

2014-2017 Hardware Engineer, Imagination Technologies Ltd.

2017 Fulbright Graduate Student Award

2017 Ph.D. Departmental Fellowship, ECE Department, UCLA

2018 Ph.D. Preliminary Examination Fellowship, ECE Department, UCLA

2020 Digital Design Intern, Facebook Inc. (now Meta Platforms Inc.)

2022 ASIC Design Intern, Amazon Web Services Inc.

PUBLICATIONS

Wojciech Romaszkan, Tianmu Li, and Puneet Gupta, ”3PXNet: Pruned-Permuted-

Packed XNOR Networks for Edge Machine Learning,” in ACM Transactions on Embedded

Computing Systems (TECS) 19, no. 1, pp. 1-23, 2020.

xxvi

Wojciech Romaszkan, Tianmu Li, Tristan Melton, Sudhakar Pamarti, and Puneet Gupta,

”ACOUSTIC: accelerating convolutional neural networks through or-unipolar skipped stochas-

tic computing,” in 2020 Design, Automation & Test in Europe Conference & Exhibition

(DATE), Lausanne, Switzerland, pp. 768-773, 2020.

Tianmu Li, Wojciech Romaszkan, Sudhakar Pamarti, and Puneet Gupta, ”GEO: Gener-

ation and Execution Optimized Stochastic Computing Accelerator for Neural Networks,” in

2021 Design, Automation & Test in Europe Conference & Exhibition (DATE), Lausanne,

Switzerland, pp. 1-6, 2021.

Shurui Li, Wojciech Romaszkan, Alexander Graening, and Puneet Gupta, ”SWIS - Shared

Weight bIt Sparsity for Efficient Neural Network Acceleration,” in First International Re-

search Symposium on Tiny Machine Learning (tinyML), Burlingame, USA, pp. 1-8, 2021.

Wojciech Romaszkan, Tianmu Li, Rahul Garg, Jiyue Yang, Sudhakar Pamarti, and

Puneet Gupta, ”A 4.4-75-TOPS/W 14-nm Programmable, Performance-and Precision-Tunable

All-Digital Stochastic Computing Neural Network Inference Accelerator,” in IEEE Solid-

State Circuits Letters 5, pp. 206-209, 2022

Wojciech Romaszkan, Tianmu Li, and Puneet Gupta, ”SASCHA—Sparsity-Aware Stochas-

tic Computing Hardware Architecture for Neural Network Acceleration,” in IEEE Transac-

tions on Computer-Aided Design of Integrated Circuits and Systems 41, pp. 4169-4180, no.

11, 2022

Jiyue Yang, Tianmu Li, Wojciech Romaszkan, Puneet Gupta, and Sudhakar Pamarti, ”A

65nm 8-bit All-Digital Stochastic-Compute-In-Memory Deep Learning Processor,” in 2022

IEEE Asian Solid-State Circuits Conference (A-SSCC), pp. 10-11, 2022

xxvii

CHAPTER 1

Introduction

In the last decade, the computing landscape has been engulfed by chaos. The looming depre-

cation of Moore’s Law has created a demand for new devices, architectures, and algorithms

to deliver the steady stream of performance improvements on which the markets have relied

for decades [12]. At the same time, the rapid emergence of deep learning has created a mas-

sive demand for domain-specific computational power across both cloud and edge computing

[13, 14, 15]. The existing infrastructure struggles to satisfy this demand, particularly at the

edge, where deep learning’s hunger for FLOPs and MBs goes against tight latency, energy,

and privacy constraints [16]. Those conditions have created a perfect storm of opportunity

for introducing new hardware architectures, especially at the edge, where silicon real es-

tate is traditionally very scarce. Indeed, smartphone SoC with various ”neural engines” are

proliferating the markets as we speak [17].

Coupled with the above circumstances is the fact that deep learning algorithms have

been shown to be incredibly approximation tolerant [18, 19, 20]. This tolerance has opened

a pandora’s box of new and old techniques, such as pruning or quantization, and hardware

approaches, including spiking, neuromorphic, in-memory, and stochastic computing, among

others [21, 22, 23, 24, 2, 25, 26]. What they all have in common is a promise of driving down

deep learning model sizes and computational costs, enabling their widespread deployment in

edge devices. The work in this dissertation explores, combines, and evolves those techniques

to enable the development of future highly-compact and highly-efficient architectures and

algorithms for deep learning.

1

The remainder of this Section provides a brief overview of the topics that form the

foundation of this dissertation. Section 1.1 provides an introduction to neural network

model compression, including quantization and pruning, as well as existing methods of model

deployment on edge devices. Section 1.2 introduces stochastic computing and its intricacies.

Section 1.3 discusses the rapidly growing field of domain-specific accelerators, particularly

those targeting neural networks. Finally, Section 1.4 summarizes the work presented in this

dissertation.

1.1 Model Compression: Better, Faster, Smaller

Ever since the staggering success of AlexNet in the ImageNet visual recognition challenge,

deep learning models have been evolving at a rapid rate [27, 28]. Vision models based

on convolutional layers quickly reached tens of giga-operations (GOPS) and tens if not

hundreds of megabytes (MBs), in size [29, 30, 1, 31]. With complexity, their capabilities

grew, becoming a force multiplier for edge devices, like smartphones or sensors [32, 33, 34].

However, this growing demand for resources made deploying those models restrictive, if not

outright prohibitive, on those same devices [16]. And thus, a simple question - ”how do we

make the models smaller?” has preoccupied countless researchers for the better part of the

last decade, yielding many ingenious solutions [35]. This Section aims to present a high level

summary of those. A general introduction to deep neural networks is omitted for brevity,

but readers not familiar with the topic can refer to [29, 36].

1.1.1 Fewer Bits - Quantization & Binarization

One of the first crucial insights into model compression was the realization that 32-bit

floating-point precision, ubiquitous in scientific computing, was not necessary for highly

redundant and error resilient deep learning models [14, 2]. Multiple works have shown that

decreasing precision of underlying computation through quantization does not affect accu-

2

racy while significantly improving storage and runtime [37, 38, 39, 40, 19, 14]. A quick

progression of lower precision models and libraries followed - 16-bit floating point [41], 16-

bit fixed-point [2], 8-bit fixed-point [42], and below [19, 42, 24]. To reduce computational

complexity to its absolute limit, researchers have proposed binarization, which restricted

all values to -1 and +1 [43, 44, 45, 18, 46]. Those Networks are commonly referred to as

XNOR-Nets, because multiplication between binarized values can be implemented using a

bitwise XNOR operation.

The promise of significant performance and storage improvements given by XNOR-Nets

has resulted in multiple software and hardware implementations. Umuroglu et al. have cre-

ated FINN [47], a framework for binarized FPGA accelerators, further expanded to support

larger models by Fraser et al. [48]. Other binarized accelerators have been proposed, both

targeting FPGAs [49, 50, 51, 52], ASIC [53, 54, 55, 56], and in-memory compute [57, 58].

Yang et al. [59] have developed BMXNet, an extension of MXNet [60] based on binarized

GEMM kernel. Depth-first binarized convolution implementations have also been shown for

both CPUs and GPUs [61, 62, 63].

1.1.2 Alternate Number Representations

Besides quantization, researchers have explored alternative ways of representing numbers.

One of them is the so-called unary computing. Compared to binary numbers, like fixed- or

floating-point, where each bit has a positional significance, unary numbers are streams of bits

with identical significance [64]. There are two types of unary numbers: rate- and temporal-

coded. In the former, the value is encoded in a frequency of an event, e.g., the number of

1s in a stream. Rate-coded unary computation is commonly known as stochastic computing

(SC). Since SC is a major focus of this dissertation, a more comprehensive introduction is

provided in Section 1.2. Temporal coding encodes the information into the timing of a signal

transition, with a stream consisting of a series of 1s followed by a series of 0s. Temporal

coding can be performed within the stream generator, using the so-called thermometer coding

3

[65], or by designing paths with different delays, referred to as race-logic [66]. Compared to

rate coding, temporally-coded numbers either do not have essential functional units or those

units are highly inefficient. Further, temporal coding lacks many opportunities for improving

accuracy possible in SC [67].

Other number representation methods are tied to the hardware implementation. A large

body of work tries to imitate the behavior of the human brain through spiking neuron connec-

tivity [26, 68, 69, 70]. Spiking hardware, commonly referred to as neuromorphic, represents

data using the timing or frequency of the pulses, instead of their amplitude. This can be im-

plemented in the digital or analog domain. Examples of the former include IBM TrueNorth

[26], the SpiNNaker Project [68], and Bluehive [71]. Analog spiking hardware examples are:

Neurogrid [69], HICANN [70], and CAVIAR [72]. While neuromorphic hardware has poten-

tial advantages, like energy efficiency, and on-device training using synaptic plasticity, they

are also notoriously hard to train and scale [73]. Pulse width modulation (PWM) has also

been used as a way of representing values for more efficient analog hardware implementations

[6].

There are also purely digital alternative representations. Posit format has been proposed

as an substitute for floating-point, offering variable-width exponent and fraction fields, higher

dynamic range, and more efficient hardware implementations [74]. While some devices offer

posit support, it has not yet been broadly adopted [75, 76]. Apart from that, various form

of non-linear quantization have been proposed beyond fixed-point, often requiring custom

software or hardware support [77, 24, 78].

1.1.3 Fewer Values - Sparsity & Pruning

The other realization foundational to model compression was that in computation based

on linear algebra, multiplications involving a zero will not contribute to the final result,

hence can be skipped [79]. The underlying computation then becomes sparse. While it

applies to both weights and activations, the opportunities and mechanisms involved are

4

different. Zero-valued weights are enabled through the process of pruning the model, which

involves removing connections in the model that are deemed inconsequential. It was first

proposed over 20 years ago as a way of improving generalization and reducing computational

complexity for both training and inference [22, 80]. Since activations are dynamic, they

cannot be pruned statically in the same manner. However, activations can be effectively

sparsified through the use of the popular rectified linear unit (ReLU) activation function

[79, 81]. Once weights, activations, or both, are made sparse, in theory, it is possible to

skip both storage and computation involving zero values. Recently, Han et. al. [82] have

shown over 10x compression on popular network models with no increase in error rates.

By further coupling pruning with quantization and efficient coding in a scheme called Deep

Compression, they achieved up to 49x size reduction [83]. However, deploying pruned models

on highly-parallel architectures has proven problematic due to the storage overhead and

irregular memory access patterns of sparse matrix multiplication [21, 84].

To make pruning more regular, multiple forms of ”structured” pruning have been pro-

posed. Lebedev and Lempitsky [85] proposed group-wise sparsification. Foroosh et. al.

[86] hard-coded the sparsity patterns into the source code, achieving up to 6.88x speedup

on CPUs. Anwar et. al. [87, 88] explored different granularities of pruning: feature map,

kernel, and intra-kernel and introduce kernel strided sparsity. Sredojevic et. al. [84] have

proposed an algorithmic way of inducing regularity in sparse networks. Yu et. al. [21] have

developed a hardware-aware pruning method called Scalpel, which matches the coarseness

of pruning to the parallelism of the underlying hardware. Wang et. al. [89] have used struc-

tured sparsity in unrolled kernels after im2col conversion. Pruning has been successfully

exploited in custom accelerators by using compressed storage, skipping memory accesses,

gating computation, and exploiting novel dataflows [13, 90, 79, 19]. Crossbar-aware pruning

has also been proposed given the recent emergence of analog crossbar-based accelerators [91].

5

1.1.4 Edge Models & Libraries

Edge Machine Learning inference on embedded platforms has been explored in recent years

as a way to remove the communication energy and latency involved in offloading it to the

servers. Due to severe memory and energy constraints of such devices, various model com-

pression techniques have been used to make such applications feasible. Compressed Neural

Network models like SqueezeNet [92], ShuffleNet [93], and MobileNet [94] have been devel-

oped, specifically targeting low memory footprints. Lai et. al. [95], have developed CMSIS-

NN, a software library for ARM Cortex-M microcontrollers with 8- and 16-bit fixed-point

support. Microsoft is developing EdgeML, a Machine Learning library containing algorithms

optimized for low storage, energy and latency [96, 97]. Google has create TensorFlow Lite,

and extension of the TensorFlow framework targetting microcontroller class devices [98].

Other examples include Apache microTVM, STM Cube.AI, Synopsys embARC, and MIT

MCUNet [16, 99].

1.2 Stochastic Computing - Processing with Random Streams

Stochastic Computing (SC), introduced by [100] in the 1960s, is a number representation

system. It uses a proportion of 1’s in a binary stream to represent fractional numbers.

Compared to conventional fixed- or floating-point formats, SC makes it possible to implement

certain arithmetic operations, like multiplication and addition, using single logic gates, and

is highly error-tolerant [101]. However, the compact arithmetic offered by SC comes at

the cost of random errors and precision issues, which make it unsuitable for applications

requiring high numerical precision[102]. Because of that, SC found its niche in error-tolerant

applications, like image processing [102] and Discrete Fourier Transform [103]. Fortunately,

neural networks’ error-tolerant nature, as well as heavy reliance on linear algebra kernels and

multiply-accumulate (MAC) operations, make them perfect candidates for SC acceleration

[5, 64, 104]. Because of that, SC has been enjoying a renaissance, with many different flavors

6

of computation proposed, spanning various points on the accuracy-efficiency spectrum -

some of them maximizing the density and efficiency, while others maintaining the accuracy

close to fixed-point designs [5, 10, 64, 105, 104]. Below we briefly outline the most relevant

components of SC.

1.2.1 Number Representation

Stochastic computing offers two alternative number representation formats: unipolar and

bipolar. In the former, a value in the range of [0, 1) is represented as the proportion of

1’s in a binary stream of arbitrary length, as shown in Figure 1.1a). The latter, shown

in Figure 1.1b), represents a number in the range of (−1, 1) using the difference between

the number of 1’s and 0’s in the stream. The streams are generated by comparing the

possibility with a uniformly-distributed random number in [0, 1). The stream generation

circuits are commonly referred to as stochastic number generators (SNGs), consisting of a

pseudo-random number source, e.g., a linear feedback shift register (LFSR) and a comparator

[100], as shown in Figure 1.1c). Converting back to the binary domain can be done using a

counter for unipolar representation.

Figure 1.1: Examples of unipolar (a) and bipolar (b) SC representation, and a unipolar

Stochastic Number Generator Circuit (SNG) with an AND gate SC multiplication (c).

7

In neural networks, maintaining high accuracy mandates using weights with both positive

and negative values, which makes bipolar representation historically the most common choice

when implementing SC-based accelerators [106, 107, 105]. However, [108] noticed that using

unipolar representation results in higher accuracy compared with bipolar. Higher precision

comes from the fact that the value of a unipolar bitstream has equivalent distribution to a

binomial distribution divided by the length of the bitstream, so the root mean square (RMS)

error can be represented as:

Eu =

√
nuv(1 − v)

nu

=

√
v(1 − v)

nu

(1.1)

Where Eu is the error, and nu is the length of the unipolar bitstream. Error of bipolar

stream can be calculated similarly as:

Eb =

√
1 − v2

nb

(1.2)

Where Eb is the error, and nb is the bitstream length. To have the same RMS error for

both representations, nb = nu × (1 + v)/v, and (1 + v)/v > 2 for 0 < v < 1. Consequently,

the bipolar representation will always require > 2X bitstream length to represent the same

value with the same accuracy compared to unipolar representation. Figure 1.2a) shows the

simulated error of software-generated stochastic numbers across 10,000 runs for different

values, confirming the theoretical results. Because of that, recent works have embraced

unipolar representation with extensions to make using negative numbers possible [109, 110].

1.2.2 Multiplication and Accumulation

One of the main selling points of SC is that it can perform computation using bit-wise oper-

ations between two input bitstreams. To explain the reason behind that, consider stochastic

numbers as probabilities. For example, an AND gate performs AND(v1, v2) = v1 × v2,

where v1, v2 are the input possibilities for two unipolar streams. Similarly, a 2:1 multiplexer

8

1

100

10000

16 32 64 128

HEIF BISC-MVM OR-based

MAC

Area

[um2]

Number of inputsValue

RMS

Error

0.06

0.04

0.02

0.00

0.0 0.2 0.4 0.6 0.8 1.0

Unipolar Bipolar 2x Bipolar

a) b)

Figure 1.2: RMS error of the bit stream representation for a given value a), and area [µm2]

comparison between different SC MACs, depending on the number of inputs b).

(MUX) can be used to compute a scaled addition between two inputs: MUX(v1, v2, s) =

s × v1 + (1 − s) × v2, where s is the select input. For a bit-wise computation, each output

bit follows a Bernoulli distribution with a mean equal to the expected value if input bits

are independent. As a result, the output accuracy of bit-wise computation has the same

accuracy as generating the same number directly. This observation allows the modeling of

output error using only the expected output value without worrying about input values and

computation performed.

Accumulation has historically been an issue when applying stochastic computing to neural

networks, mainly due to precision [106]. Multiplexer can act as a stochastic adder by using

a 50% random stream at the select input. However, multiplexer-based addition suffers from

two critical issues: it requires the generation of an additional random stream and scales

down the result by two compared to typical addition. Sharing a random sequence can

alleviate the former problem. The latter issue degrades the accuracy of computation, mainly

when performing extensive accumulation. Since neural networks generally perform very large

matrix multiplications, fully stochastic MUX-based addition is not suitable for those without

a significant increase in the stream length [106]. Because of that, prior works in SC-based

9

neural network acceleration were often forced to perform accumulation in the fixed-point

domain, by either using costly approximate parallel counters (APCs) [106] or converting the

results every multiplication [107].

An alternative way of stochastic accumulation, OR-based accumulation, has been pro-

posed in [111]. It is scaling-free (important for extensive accumulations in DNNs), and also

much more compact than alternative accumulation methods. However, it has reasonable

accuracy only for unipolar streams. This property has made it largely disregarded in prior

SC work [106]. Figure 1.2b) shows the comparison of the MAC area for two prior state-of-

the-art methods, SC-DCNN/HEIF [106, 105] and BISC-MVM [107] to OR-based MAC for

a different number of inputs synthesized using a commercial 28nm library. SC-DCNN/HEIF

uses APC-based accumulation, while BISC-MVM converts results to fixed-point binary after

every multiplication. As can be seen, OR accumulation can be as much as 4.2x and 23.8x

more compact than SC-DCNN/HEIF and BISC-MVM, respectively. As we will show in

Section 3.3.1, taking advantage of computational density is vital to reap the full benefits of-

fered by SC, which is why using OR-based accumulation is so important. However, a major

issue with it is that it is not an exact addition. For a two-input OR, the result is equal to

v1+v2−v1v2 instead of v1+v2. We show later how we address this imperfect accumulation

in the training of the networks.

1.2.3 Stochastic Neural Network Functions

More complicated operations, like neural network activation functions, are often implemented

using finite-state machine (FSM) circuitry [106, 105]. Many recent efforts have been directed

towards finding optimal SC representations for particular operations [112, 113, 114, 115].

Another essential operation is max pooling, which is the most commonly used method of

dimensionality reduction in neural networks [27, 1]. Although prior works have shown suc-

cessful implementation of max pooling in SC [106, 108, 116], it usually requires a finite state

machine (FSM), which increases the area and energy cost of SC. In contrast, to implement

10

average pooling, only a single multiplexer exploiting the scaled addition property is required.

For example, [116] have shown that replacing max with average pooling, can reduce the area

and power of a stochastic convolutional engine by up to 2.02x and 1.94x respectively.

1.3 Domain-Specific Acceleration - Breaking the Shackles of Gen-

erality

Even apart from the emergence of deep learning, the need for domain-specific (DS) computing

has been widely recognized [12, 117]. However, the rapid popularization of first vision [27, 1,

30], and then language models [118, 119], made the adoption of DS accelerators a priority.

Initial approaches, like Eyeriss [2] and DianNao [120], focused on reducing the precision of

computation from floating- to fixed-point, and optimizing dataflows targeted at convolutional

neural networks (CNNs). From there on, multiple different approaches followed. Some

focused on finding new hardware opportunities in quantization, in particular using bit-serial

arithmetic, which serially processes fixed-point numbers, one bit position at a time. Examples

of such accelerators include Stripes [19], UNPU [121], Laconic [122], and Pragmatic [123], and

Bit Fusion [124]. There are also binary and ternary hardware accelerators, listed in Section

1.1.1. Others have tried designing architectures oriented around exploiting sparsity, like

SCNN [79], EIE [81], NullHop [125], GoSPA [126], SparTen [127], and Tensaurus [128], among

others. A more comprehensive discussion of sparse accelerators is presented in Chapter

5. Extensive work has also been done on optimizing dataflows [129, 130], and scale-out

architectures [15, 131].

Given the limits of efficiency within the digital domain, and highly regular, dot-product-

based arithmetic involved in neural networks, people quickly recognized the potential of

analog computation. Neuromorphic approaches have already been discussed in Section 1.2.1.

However, they were quickly overshadowed by non-spiking analog accelerators based on the

idea of compute-in-memory (CIM) [132]. They combine the advantage of the advantage of

11

dense and efficient analog computation, with reduced data movement, as one of the operands

does not need to leave the memory. Different types of memory cells can be used, providing

different benefits [132, 133, 56, 134, 135, 136, 137, 138]. This is an extensive field, and while

more details are provided in Chapter 6, interested readers should refer to [25].

1.4 Dissertation Outline

The research in this dissertation was motivated by a single goal: enabling ever-larger deep

learning models to run on even the most resource-constrained edge devices. This goal is

achieved by identifying the most promising techniques, coming up with novel solutions that

address their shortcomings, combining them in a synergistic manner, and creating efficient

highly hardware and software implementations.

This dissertation is organized as follows:

• Chapter 2 describes 3PXNet - Pruned, Permuted, Packed XNOR Networks, which

combine binarization and pruning to deliver usable neural network models deployable

on the most tightly constrained platforms.

• Chapter 3 proposes ACOUSTIC - Accelerating Convolutions through OR-Unipolar

Skipped Stochastic Computing, the first system-level accelerator architecture that at-

tempts to maximize the synergies of deep convolutional neural networks and stochastic

computing. A 14nm demonstration chip is also demonstrated.

• Chapter 4 presents GEO - Generation and Execution Optimized Stochastic Com-

puting Accelerator for Neural Networks. GEO addresses the main shortcomings of

ACOUSTIC, through novel algorithmic and architectural solutions.

• Chapter 5 describes SASCHA – Sparsity-Aware Stochastic Computing Hardware Ar-

chitecture for Neural Network Acceleration a first accelerator that combines both

12

stochastic computing and weight sparsity support by solving a series of non-trivial

implementation challenges to enable a new frontier in energy-efficiency.

• Chapter 6 presents SCIMITAR - an event-based, stochastic compute in-memory accel-

erator architecture. It synergistically merges SC with the emerging field of in-memory

computation, while enabling support for highly-sparse event-based data processing.

• Finally, Chapter 7 summarizes the contributions of this dissertation, and describes

its possible future extensions.

13

CHAPTER 2

3PXNet - Fewer Bits, More Zeros

As the adoption of Neural Networks continues to proliferate different classes of applications

and systems, microcontroller-based edge devices have lingered behind. Their strict energy

and storage limitations make them unable to cope with the sizes of popular neural network

models. While many compression methods, such as precision reduction and pruning, have

been proposed to alleviate this, they do not go quite far enough. To push size reduction to its

absolute limits, we combine binarization with sparsity in Pruned-Permuted-Packed XNOR

Networks (3PXNet), which can be efficiently implemented on even the smallest of embedded

microcontrollers. 3PXNets can reduce model sizes by up to 38X and runtime by up to 3X

compared with already compact conventional binarized implementations with less than 3%

accuracy reduction. We have created the first software implementation of sparse-binarized

Neural Networks, released as an open-source library targeting edge devices. Our library is

complete with training methodology and model generating scripts, making it easy and fast

to deploy.

Collaborators:

• Tianmu Li, Electrical and Computer Engineering, UCLA.

• Professor Puneet Gupta, Electrical and Computer Engineering, UCLA.

Source code available at: https://github.com/nanocad-lab/3pxnet/

14

https://github.com/nanocad-lab/3pxnet/

2.1 A Case for Sparse XNOR Networks

Given the significant benefits of binarization and sparsity on their own, it is not immediately

obvious why we would want to combine them. However, consider the available memory in

some of the common embedded microcontroller platforms, shown in the first part of Table

2.1. Their storage is usually limited to few hundred kilobytes at most. Such severe resource

constraints make implementation of reasonable deep learning networks on these platforms

challenging. For example, consider few network models shown in Table 2.2. Most floating

point and even 8-bit fixed point implementations are 10-1000X off from where they need to

be for these platforms.

Table 2.1: Hardware platforms used for the runtime experiments. Only the Large platform

has a DSP extension with hardware multiply-accumulate unit. All three microcontrollers

are from the ST Nucleo family [139].

Name Model SRAM Flash Core Clock

(KB) (KB) Type (MHz)

NUC Large F746ZG[139] 320 1024 ARM CM7 216

NUC Medium F103RB[139] 20 128 ARM CM3 72

NUC Small F031K6[139] 4 32 ARM CM0 48

Name Model L2 DRAM Core Clock

(MB) (GB) Type (GHz)

Raspberry Pi Model B+ [140] 2 1 ARM CA53 1.2

By constraining weights and activations to binary values, Binarized Neural Networks can

perform 32 multiply-accumulate operations using XNOR and population count (popcount)

instructions in a 32-bit processor (with appropriate “packing” of weights and activations),

15

which gives it a potential 32x storage and computation saving compared to a 32-bit im-

plementation (see Table 2.2). While this in itself is impressive, it might not be enough to

use popular models on typical embedded development platforms. Further compression is

therefore necessary to use large models on those devices, or in case of the most memory-

constrained ones, make it feasible to deploy them at all.

Table 2.2: Weight storage requirements of different networks depending on precision.

Network Weight Memory [MB]

F32 FP8 XNOR

ILSVRC VGG-D [1] 553.4 138.3 17.3

ILSVRC AlexNet [27] 227.5 56.9 7.1

MNIST MLP [141] 147.2 36.8 4.6

MNIST MLP Small (This work) 0.40 0.10 0.01

CIFAR-10 CNN [141] 56.1 14 1.7

CIFAR-10 CNN Small [95] 0.36 0.09 0.01

In this Chapter, we propose a Pruned, Permuted, and Packed XNOR Neural Network

(3PXNet) model aiming to combine binarization and pruning in a way that is computation-

ally efficient and does not significantly degrade accuracy. We specifically target resource-

constrained edge devices and provide implementation results on a range of embedded plat-

forms. Our pruning method allows further model size reduction and speedup compared to

binarized networks. Contributions of this work are as follows:

• We develop methods to prune binarized XNOR networks, aware of the need for packing

them into words for computational efficiency.

• We develop training methods for such 3PXNets and open-source the training routines

using PyTorch framework [142].

16

• We show that 3PXNets offer some of the most compact networks with good accuracy:

3x-38x (22x-307x) size reduction versus dense binary (8-bit), with 0-5.2% (0.3-10.4%)

accuracy drop on MNIST and 2.3-3.8% (3.5-5%) on Google Speech dataset, depending

on the level of sparsity.

• We develop the first software implementation of sparse binarized networks and open-

source implementation of 3PXNets.

• We make multiple design optimizations, like loop ordering, fused kernels, and implicit

padding, which result in a compact memory footprint and runtime. 3PXNet imple-

mentation can be as much as 3X (25X) faster and more energy efficient than dense

binarized (8-bit fixed point) networks enabling real-time inference on IoT platforms.

2.2 The 3PXNet Approach

In the following sections we describe the principal components of the Pruned-Permuted-

Packed XNOR Networks.

2.2.1 Challenges in pruning XNOR networks

Binarized neural networks reduce network size by having only one bit for each weight, al-

lowing packing of multiple weights in a binary vector, e.g., a processor 32-bit word. By con-

straining activations to binary values, they can also be packed, and 32 multiply-accumulate

operations (MAC) can be performed in parallel using a bitwise XNOR and population count

(popcount, or Hamming weight) instructions on the activation and weight packs in a 32-bit

processor (or 64 MACs in a 64-bit processor). In theory, this can reduce weight storage and

computation requirement by a factor of 32 compared to a 32-bit floating point implementa-

tion.

Dense binarized or XNOR networks are relatively straightforward to pack for both weights

17

and activations, thereby getting close to the theoretical 32X improvement [46]. However,

introducing sparsity on top of binarization will not necessarily improve the results further.

We first illustrate how naively pruning binarized networks actually worsens storage and

runtime. Consider a ”small” binarized MLP used for MNIST (see Table 2.2) classification

with the input layer of size 784, one hidden layer with 128 neurons, and an output layer of

size 10, both followed by batch normalization [143]. If we prune it without any constraints

and store the sparse weight matrix using compressed-sparse-row (CSR) format [144], binary

weight packing and ”SIMD” XNOR multiplication cannot be easily leveraged. We refer to

this scheme as Naively-Pruned (NP) network. If the number of non-zero weights for each

kernel is constrained to be the same multiple of 32, binary weights can now be packed to save

storage, but activations need to be fetched individually and packed separately for each kernel

during computation. We refer to this scheme as Naively-Pruned, Packed Network (NPP).

NPP scheme has two advantages over NP in terms of storage overhead. First is packing

weights into binary vectors instead of storing values individually. Second is getting rid of

row extent values in the CSR format - having the same number of packs per kernel means

that only one row extent value per layer needs to be stored. This benefit will have a more

profound impact at high sparsity levels, because while the number of column indices goes

down with sparsity, the number of rows, and therefore row extents, stays the same. Figure

2.1 shows the total storage required for NP and NPP implementations, compared to a dense

one. NPP offers significant storage reduction over NP, mainly through a reduction in weight

storage itself. However, to break even with Dense XNOR, sparsity levels of over 90% and

95% are required for NPP and NP, respectively.

While the NPP scheme allows for packing non-zero weights, there is no easy way to lever-

age input packing. As runtime is usually a concern for convolutional layers, we implemented

both dense and NPP kernels for the Large CNN model (Table 2.3) for CIFAR-10. Even

with sparsity set to 87.5% for each convolutional layer, except for the first one, which is

kept as dense binary-weight (BWN - using full-precision activations and binarized weights

18

S
to

ra
g

e
 [K

B
]

Sparsity [%]

Weights Mem [KB] Index Mem [KB]

0

10

20

30

NP NPP NP NPP NP NPP NP NPP Packed

85 90 95 99 Dense

Figure 2.1: Storage requirements for Dense, NP and NPP XNOR ”small” MNIST MLP for

varying levels of sparsity.

[141]), NPP version is 15X-29X slower compared to the unpruned dense XNOR Net on the

different convolutional layers, running on a Raspberry Pi 3. This result clearly shows that

naively pruning binarized networks, even with packing, is not beneficial at best and possibly

detrimental to both their size and runtime.

2.2.2 Pruning a packed XNOR network

To make inference of pruned binarized neural networks more efficient, inputs (activations)

need to be fetched in packs, and those packs need to work for all kernels in a layer. This

requirement leads us to constrain the non-zero, or ”active”, weights of each kernel to packs

of 32 consecutive positions. These 32-bit packs are aligned across all kernels of a layer so

that the activations only need to be packed once. If two kernels have active packs with the

same index, they will be multiplied with the same activation pack. This packing constraint

reduces the number of indices to store by a factor of 32 compared to NPP implementation.

Forcing the packing constraint reduces the flexibility of the network and can result in

excessive pruning in some packs and insufficient pruning in others. To alleviate this effect,

19

Table 2.3: Benchmark models and datasets

Dataset Model Architecture

MNIST

MLP
Large [141] 784-4096-4096-4096-10

Small 784-128-10

CNN Small

32CONV 5 −MP2

32CONV 5 −MP2

10FC

CIFAR-10

CNN

Large [141]
128CONV 3 × 2 −MP2

256CONV 3 × 2 −MP2

SVHN
Medium

512CONV 3 × 2 −MP2

Speech[145] (1024FC × 2) − 10FC

we propose to permute the weight matrix so that weights inside the 32-bit packs are more

likely to be all zeros in the 3PXNet network. Figure 2.2 illustrates the effect of permutation

on packing for a pack size of 4. A similar approach appears in [91] albeit in the context

of crossbar neuromorphic systems. Weight permutations are performed on input channels

(NI) of a fully-connected or convolutional layer. For a convolutional layer with weight

shape (KN,KZ,KY,KX), the weight is first flattened in all dimensions except KZ to

(KN flat,KZ), and then treated as a fully-connected layer.

Permutation tries to group similar input channels into packs of 32 in a method resembling

Prim’s algorithm [146]. Before grouping, weights are first ternarized to {-1,0,+1}. For each

pack, a random input channel is chosen as starting point. A similarity score is calculated by

counting the overlap of 0 positions between the existing input channels in the pack and all

other channels that have not been grouped, and the channel with the most overlap is added

to the pack. If a group has both 0s and {-1, +1} values in a position, it is considered as

a non-zero position, as it’s unclear if weights in the pack will be pruned or not, and either

20

1

1 1

1

11

-1

-1 -1 1

11

1 11

-1

-1 -1

-1

-1 -1

1

1

1

1

1 -1

-1 -1 1

1 -1

1

-11

-1-1 -1

0

0

0

0

Permute

Prune

Prune

a)

b)

Figure 2.2: Pruning with packing constraint of 4 bits a) without permutation, b) with

permutation

choice will result in some weights being forced to change. On the other hand, positions

filled with 0s in a pack will definitely be pruned, and the pruning action will not force any

weight change. Once a pack is filled, another random input channel is chosen as the starting

position for the next pack. This process continues until all input channels are grouped into

packs. Input channel permutations can be directly translated to output channel reordering

of the previous layer, so it is completely free in terms of inference except for the first layer.

Figure 2.3 shows the effect of using permutation in a small MLP, where maximal benefit

(> 4%) is observed with very high sparsity.

2.2.3 Training 3PXNets

Network pruning is usually performed by training a dense network and then deleting some

edges or kernels [22, 80]. Since 0 cannot be represented in a binarized XNOR network, and

the binary values contain no information about the importance of each weight, we start the

training with ternary weights to introduce zero values. The training algorithm is adapted

21

76%

84%

92%

50% 60% 70% 80% 90% 100%

A
cc

u
ra

cy

Sparsity

No Permutation

Permutation

Unconstrained

Figure 2.3: Comparison of training results with and without permutation for different spar-

sities.

from the one in [46] where full-precision weights are kept during training, and are binarized

during inference, except that the weights are ternarized using a threshold function instead

of binarization.

1 weight_sorted = sort(weight , descending=True)

2 index = ceil((1- sparsity)*size/word_width) * word_width

3 thres = weight_sorted[index -1]

Algorithm 2.1: Pseudocode for calculating threshold for NPP.

The threshold used for pruning is calculated using Algorithm 2.1. The weight tensor is

first flattened and sorted based on the floating point values. The threshold value is then

chosen to make sure that the sparsity roughly aligns with the sparsity target of that layer,

and that the number of active weights aligns with the word width of the processor (typically

set to 32). The result of this phase of training follows the NPP scheme, which allows efficient

storage of weights but requires high indexing overhead. We then permute the weight matrices

using the method mentioned above and enforce the packing constraint.

1 weight_split = split(weight , split_size=word_width)

2 // For every split weight pack

3 for sp = 0 to size/word_width

22

4 weight_sum[sp] = sum(abs(weight_split[sp]))

5 weight_sorted = sort(weight_sum , descending=True)

6 index = ceil((1- sparsity) * size / word_width)

7 thres = weight_sorted[index -1]

Algorithm 2.2: Pseudocode for calculating threshold for packed pruning.

Similar to the NPP phase, a threshold is calculated using Algorithm 2.2 to determine

the packs to prune. For each kernel in the weight matrix, we split the weight values into

packs aligned to the word width of the processor, and sum the absolute value of weights

inside each pack. We then calculate the threshold so that the sparsity roughly matches the

sparsity requirement of the layer, and prune away the packs with sums below the threshold.

For packs that are not pruned, the weights inside are forced into {-1, +1}, even if they were

originally 0. Before pruning is fixed, the pruned packs can still be unpruned if the sum of

another pack drops lower than the pruned pack. The network is trained for a few more

epochs to determine which packs to prune. Finally, the packs to be pruned are fixed, and

the model is fine-tuned to further improve accuracy. The final pruned, permuted and packed

binarized network is referred to as 3PXNet.

As shown in Figure 2.3, forcing the packing constraint reduces network accuracy com-

pared to unconstrained pruning, and permutation cannot fully recover accuracy loss. Per-

mutation of inputs changes the allowed topology of the final network, which is the case for

MLPs. For CNNs we are not pruning the input layer, so permutation does not change the

achievable topology. Due to the fact that we are permuting entire kernel planes, permutation

is also more restrictive for convolutional layers. Immediately after permuting, packing and

pruning a trained network, permutation has a significant advantage in accuracy (as much as

20% from 23.0 to 43.2%) but we fine-tune the network after permutation and it largely re-

covers irrespective of permutation indicating that the networks have significant redundancy

unless the sparsity is very high (> 90%). Because of the negligible effect of permutation on

23

training and inference runtime, all networks are trained with and without permutation, and

the better performing one is chosen as result.

2.3 Implementing 3PXNet

In this Section, we detail the implementation choices which make 3PXNet one of the most

compact and efficient neural network compression schemes. Before doing that however, we

want to establish a consistent terminology for describing both fully-connected (FC) and

convolutional (CN) layers. We will be using uppercase variables to describe dimensions,

and lowercase ones to describe indices within those dimensions. Fully-connected layer is

essentially a matrix-vector product between a vector of NI activations, or inputs, and a

matrix of weights with size NO × NI, producing NO outputs, as shown in Figure 2.4.

Number of outputs is the same as the number of kernels, and each kernel is a row in the

weight matrix, with a size equal to the number of inputs.

Activations (1xNI)

Weights (NOxNI)

NI

NO

Outputs

(NOx1)

Fully Connected Layer

Matrix-Vector

Product

Figure 2.4: A schematic view of a fully-connected layer with NI inputs and NO kernels.

A convolutional layer is shown schematically in Figure 2.5. Input to the layer is a 3D

activation tensor of height Y , width X and depth Z. Activations are often padded in the

X and Y dimensions, creating a ”halo”. Padding size, PD, is applied on both sides of each

dimension, creating a tensor of height Y +2PD, width X+2PD, and depth Z. This tensor is

24

then convolved with KN kernels, each with height KY , width KX and depth KZ. We only

consider cases where input (Z) and kernel (KZ) depths are the same [1, 30]. Each kernel

generates an output of height Y +2PD−KY +1, width X+2PD−KX+1, and depth of 1.

Those outputs are then ”stacked” depth-wise, creating a tensor of height Y +2PD−KY +1,

width X+2PD−KX+1, and depth of KN . Certain convolutional layers will be followed by

pooling operations to reduce output dimensionality. Pooling, most commonly max pooling,

uses a kernel with size and stride PL in the Y , and X dimensions, producing an output of

height OY = (Y + 2PD−KY)/PL+ 1, width OX = (X + 2PD−KX)/PL+ 1, and depth

KN . Those equations can be used for any type of layer - if padding is not used, PD is set

to 0, and if there is no pooling, PL is set to 1. For pooling operations, kernel size and stride

might sometimes be different, but that is not the case for any of the networks implemented

here [27]. For simplicity we also do not discuss strided convolutions [30].

ActivationsAcY

X
Z

Padded

Activations
Y+

2PD

X+2PD
Z

KernelKeKY

KX
KZ

KN Kernels

Outputs

(pre-pool)
Y+2PD

-KY+1

X+2PD

-KX+1

KN

PL

PL
1

Pooling

OutputsOY=

(Y+2PD

-KY)/PL

+1
OX=(X+2PD

-KX)/PL+1

D
KN

Padding Convolution Pooling

Figure 2.5: A schematic view of a padded convolutional layer followed by pooling operation.

2.3.1 Fully-Connected Layers

As mentioned above, a fully-connected layer is essentially a general matrix-vector multi-

plication (GEMV) kernel. As it is easy to obtain close to theoretical speedups even with

a straightforward GEMV implementation, we use it for our dense binarized reference [59].

Activations and weights are packed into binarized vectors which size is a multiple of 32 or

64, depending on the bitwidth of the processor used. In all subsequent sections we assume

25

a 32-bit pack width. The exact alignment to the multiple of 32 is not necessary and could

be handled by masking and adjusting the last pack to arbitrary size. However, for common

network topologies, like the one presented in this work, layer sizes are generally a multiple of

32. We use the outputs/kernels as an outer loop, and input packs as an inner loop, as shown

in Algorithm 2.3 for 32-bit packs. After all popcounts for a given output are completed,

the result needs to be adjusted. This is because the popcount result is the number of ones,

whereas the actual result is the number of ones minus the number of zeroes, since zeroes

represent -1. The advantage of using outputs as an outer loop is that only one output is

accumulated to at a time, and its partial result can be kept locally. On the other hand,

it can make input reuse in caches harder. However, binarized input vectors are usually in

the order of few hundred bytes, meaning even the smallest caches can fully fit them. After

a single output is computed, we then perform on-the-fly binarization, to pack outputs into

vectors for the next layer, as shown in Algorithm 2.3.

1 # For every output pack

2 for no = 0 to NO/32-1

3 # For every output in a pack

4 oPack = 0

5 for pCnt = 0 to 32-1

6 output = 0

7 # For every input

8 for ni = 0 to NI/32-1

9 # XNOR multiplication

10 mult = xnor(inputs[ni],weights[no*NI+ni])

11 # Popcount accumulation

12 output += popcount(mult)

13 # Correct output value

14 output = output -(NI*32- output)

15 # Binarize

16 output = output >= 0

17 # Shift and pack

26

18 oPack |= output << (31-pCnt)

19 outputs[no] = oPack

Algorithm 2.3: Pseudocode showing dense FC layer processing.

For 3PXNets, we only store active (non-zero) weights. We constrain pruning such that

every kernel has the same number of non-zero weight packs, NP . We did not enforce this

constraint initially, but we found that introducing it does not hurt accuracy. Models trained

with the same size of sparse kernels sizes never have more than 0.5% lower accuracy than

models without that constraint. Additionally, it enables a further reduction in indexing

overhead, by not storing row extents of the CSR format. For example, for MLP-L with high

sparsity we can achieve up to 50% reduction in indexing storage and 16.7% overall. We call

those active packs. Because we know the number of packs for each neuron, only one index

per pack needs to be stored, making it more efficient than e.g., the CSR format. We use

8-bit indices, which support layers of up to 8192 activations. A simplified representation of

weight and index storage for 3PXNet FC layers is shown in Figure 2.6. The loop ordering

is the same as for dense implementation, but the inner loop iterates only through the active

packs instead of all inputs, as shown in Algorithm 2.4. Both the dense and 3PXNet FC layer

implementations have versions with and without output binarization, the latter used for the

final classifier layer.

1 # For every output pack

2 for no = 0 to NO/32-1

3 oPack = 0

4 # For every output in a pack

5 for pCnt = 0 to 32-1

6 output = 0

7 # For all active packs

8 for np = 0 to NP -1

9 # Fetch correct input pack

10 input = inputs[indcs[no*NP+np]]

27

NO

NI/32 NP

denseWeights[NO*NI/32] sparseWeights[NO*NP]

0 4

2 7

3 5

1 6

sparseIdx[NO*NP]

Figure 2.6: 256x4 fully-connected layer weight and index storage with 75% sparsity (NP=2x

32-bit packs per output).

11 # XNOR multiplication

12 mult = xnor(input ,weights[no*NP+np])

13 # Popcount accumulation

14 output += popcount(mult)

15 # Correct output value

16 output = output -(NP*32- output)

17 # Rest as in Alg 2.1

Algorithm 2.4: Pseudocode showing 3PXNet fully-connected layer processing.

2.3.2 Convolutional Layers

Convolutional layers can be unrolled into matrix-matrix multiplication, as proposed by Chel-

lapilla et al. [147], which makes it possible to compute them in the same way as FC layers.

However, the overhead of unrolling into matrix form in binarized implementations offsets the

arithmetic speedup [61]. To address that, we implement dense convolutional layers directly

using the PressedConv approach proposed by Hu et al.[61]. We capitalize on the fact that

most convolutional layer activations have a depth (Z) which is a multiple of 32 and organize

our data using depth as the innermost dimension for both activations and kernels. Because

28

of that, we can easily pack the activations and kernel weights in vectors of 32, irrespective

of X and Y dimensions, which can have arbitrary values depending on the network. This is

schematically shown, for a Y = 3, X = 3, Z = 32 kernel, in Figure 2.7. When implementing

convolutional layers, loop ordering plays a particularly important role. There are at mini-

mum 6 loops: output height (OY), output width (OX), output depth (KN), kernel height

(KY), kernel width (KX), and kernel depth (KZ). For dense XNOR implementation, we

use OY −OX−KN−KY −KX−KZ ordering, as shown in Algorithm 2.5. The kernel (KN)

loop is split into two loops to facilitate packing, similar to the output loop in fully-connected

layers. The advantage of this ordering is that it provides good locality on both activations

and outputs. Figure 2.8 shows a comparison of speedups for a few different VGG-16D [1]

for dense and 3PXNet with the kernel as an outer (K − Y X) and inner (Y X − K) loop,

normalized to dense K − Y X. Using kernel as an inner dimension results in 8% geomean

speedup.

KY

=

3

KX=3

KZ=32

Kernel

weights[0] y=0, x=0, z=0-31
weights[1]

y=0, x=0, z=0-31
y=0, x=1, z=0-31

weights[2]
y=0, x=1, z=0-31
y=0, x=2, z=0-31

weights[3]
y=0, x=2, z=0-31
y=1, x=0, z=0-31

...
weights[8]

...
y=2, x=2, z=0-31

Figure 2.7: 3x3x32 kernel packed into depth-first binarized vectors.

1 # For every output row

2 for oy = 0 to OY -1

3 # For every output column

4 for ox = 0 to OX -1

5 # For every kernel packet

6 for kn = 0 to (KN/32) -1

29

0

1

2

3

C2 C4 C6 C9 C11 GEOMEAN

Dense K-YX Dense YX-K 3PXNet K-YX 3PXnet YX-K

S
p

e
e

d
u

p

Figure 2.8: Dense and 3PXNet (93.75% sparsity) speedups for kernel as an outer (K-YX)

and inner (YX-K) loop for different VGG-16D [1] layers, normalized to dense K-YX.

7 # For every kernel in a packet

8 for ks = 0 to 32-1

9 # For every kernel row

10 for ky = 0 to KY -1

11 # For every kernel column

12 for kx = 0 to KX -1

13 # For every pack

14 for kz = 0 to KZ/32-1

15 # XNOR multiplication

16 # Popcount accumulation

17 # Output correction

18 # Packing

Algorithm 2.5: Pseudocode showing dense conv layer loop ordering.

Similarly to FC layers, for 3PXNets, we only store the non-zero weight packs and their

corresponding indices. We also constrain each kernel to have the same number (KL) of

active packs to simplify indexing. This is shown schematically in Figure 2.9, for a kernel

with KY = 3, KX = 3, KZ = 32, and KL = 3 active packs. We only use one index per

pack, which combines information on all three dimensions, compressing index storage by a

30

factor of 3. It comes at a cost to runtime, as indices need to be decoded for every kernel.

KX=3
KZ=32

Kernel

weights[0] y=0, x=1, z=0-31
weights[1]

y=0, x=1, z=0-31
y=1, x=0, z=0-31

weights[2]
y=1, x=0, z=0-31
y=2, x=1, z=0-31

indcs[0] = (y*KX*KZ + x*KZ + z)/32 =

 (0*3*32 + 1*32 + 0)/32 = 1

indcs[1] = (1*3*32 + 0*32 + 0)/32 = 3

indcs[2] = (2*3*32 + 1*32 + 0)/32 = 7

KY

=

3

KL = 3

Figure 2.9: 3x3x32 Convolution kernel weight packs and indices with KL=3 active packs.

For 3PXNet convolutional layers, we change the loop order compared to the dense im-

plementation. As shown in Figure 2.6, for 3PXNet, using kernel as an outer dimension is

faster. This is because it amortizes the cost of fetching and decoding indices - this way it

only needs to be done once per kernel. The downside of this approach is reduced output

locality. Therefore we use kernels (KN) as an outer loop, as shown in Algorithm 2.6.

1 # For every kernel packet

2 for k = 0 to (KN/32) -1

3 # For every kernel in a packet

4 for ks = 0 to 32-1

5 # Decode indices

6 # For every output row

7 for oy = 0 to OY -1

8 # For every output column

9 for ox = 0 to OX -1

10 # For every active pack

11 for kl = 0 to KL -1

12 # XNOR multiplication

13 # Popcount accumulation

14 # Output correction

31

15 # Packing

Algorithm 2.6: Pseudocode showing 3PXNet conv layer loop ordering.

For padding support, to further reduce storage requirements for intermediate activations,

we opt against storing padded regions explicitly in memory, as they don’t contribute to out-

put values. We detect multiplications that fall under the padded regions and skip related

computation. This approach is possible because convolution is done depth-first in packs of

32 or 64 values and each pack falls completely inside or outside the padded region. Skipping

decision is therefore made on a single pack granularity. Other binarized works have proposed

doing padding computation explicitly, through -1 or +1 padding, without significantly affect-

ing accuracy [48, 50] albeit with increased storage and runtime. For example, using explicit

padding in convolutional layers of CNN Large, listed in Table 2.3, adds between 12.8% and

56.3% additional activation storage and increases computation by 4.1% to 31.9%, depending

on the layer. Because padding is only ever applied in X and Y dimensions and packing is

done along the depth, every pack is either completely in the padding region or not. Since

this approach makes computation irregular, potentially worsening runtime, we further split

activations into five regions where the middle one can be computed without padding-related

overheads, and the ”halo” regions use computation skip, as shown in Figure 2.10.

2.3.3 Fused kernels

Because we are targeting resource-constrained embedded devices, we want to limit inter-

mediate storage used during the computation. In XNOR Networks, outputs of a given

fully-connected or convolutional layers are generally passed through pooling or batch nor-

malization layers before they can be binarized [27, 143], meaning that intermediate results

need to be stored in full precision. To alleviate this issue, we use fused kernels, similar to

McDanel et al. [63]. Operations following fully-connected and convolutional layers, such as

pooling and batch normalization, are performed on-the-fly for each output. Specifically, they

32

Act

PD+

KY-1

X+2PD

Padding

Center

Top

Bottom

L
e

ft

R
ig

h
t

PD+

KX-1

Y+

2PD

Y-

2KY

+2

X-2KX+2

Figure 2.10: Convolution splitting into padded and non-padded regions for efficient compu-

tation.

are implemented as follows:

• Max pooling layers - to enable on-the-fly pooling, we process the outputs of convolu-

tional layers in groups matching the pooling patch size. For each patch, we keep a

running maximum updated as outputs are calculated.

• Batch normalization and binarization - Umuroglu et al.[47] observed that in binarized

networks, batch normalization followed by binarization can be reduced to a thresh-

olding operation followed by a conditional sign change. By using this approach only

one floating-point parameter needs to be stored per kernel. Signs can be stored in

binary-packed format and applied in batches using bitwise XNOR operations.

The idea behind fused kernels and threshold Batch Normalization is shown in Figure

2.11.

2.3.4 ARM NEON Support

For devices with ARM Cortex-A processors, like Raspberry Pi, we utilize NEON SIMD

extension [148] to leverage hardware popcount support. Since our NEON-optimized functions

33

PL=2

112 -56

178 22
178 > µ-β/γ √(σ^2+ε))*sign(γ)(

Pooling Threshold Batch Norm

Figure 2.11: A 2x2 fused Max Pooling followed by threshold Batch Normalization.

use double- and quad-word (64- and 128-bit) support, we restrict sparsity to have a number

of 32-bit packs that is a multiple of 2 or 4 for every kernel. Special care needs to be taken

with padding in sparse convolutional layers, where within a single 64-/128-bit block, some

packs may be within the padded region, while others are not. There is no easy way of

skipping computation in that case, so we mask multiplication results that fall under the

padding region. We use masking operations before popcounts to correct for that.

2.3.5 Binarization of the First Layer

In the case of image processing, usually, the only layer with a depth that is not a multiple of

32 is the first one, which makes it problematic to implement using depth-first convolutions.

However, binarized implementations generally compute the first layer using full precision

activations and binary weights to retain accuracy [141]. MLPs are used for MNIST, which is

almost black and white, so we binarize the inputs and keep the first layers as XNOR layers.

For CNNs, we refrain from sparsifying the first layer due to limited storage benefits.

2.4 Experimental Setup

Hardware and software platforms, benchmark datasets, and neural network architectures we

use for our experiments are outlined below.

34

2.4.1 Platforms

We test our implementation on three different embedded development platforms from the

STM Nucleo family [149] and a Raspberry Pi, with the configurations shown in Table 2.1.

Our implementation is written in C and compiled with ARMCC version 5.06 for Nucleo

devices, and GCC version 5.4 for Raspberry Pi, with -03 compiler optimizations enabled.

For Cortex-M7 and M3 devices (”NUC Large” and ”NUC Medium”), we use the built-in

cycle counter to measure execution time over ten runs for each network [150]. For Cortex-M0

(”NUC Small”), we use the SysTick counter with a period of 1ms over 100 runs [151]. For

Raspberry Pi, we use C library routines to measure execution time over 100 runs. We use

an off-the-shelf USB power meter with two decimal digit precision to perform rough power

measurements for each board.

2.4.2 Benchmarks

We evaluate our approach using two fully-connected networks (MLP) and a small convo-

lutional neural network (CNN) on MNIST dataset, and two convolutional neural networks

on CIFAR-10 and SVHN dataset as shown in Table 2.3. All datasets are image classifi-

cation datasets with ten classes. MLP-Large (MLP-L) and CNN-Large (CNN-L) are used

in [141]. CNN-Medium (CNN-M) uses the same convolutional layers as CNN-L but only

has one fully-connected layer. CNN-Small (CNN-S) is a modified version of LeNet in [152],

and MLP-Small (MLP-S) is a minimally sized MLP with one hidden layer. We also tested

the same CNN-M for Google Speech Command dataset [145]. Networks are trained with

PyTorch 0.4.1 [142]. All models are trained on the training set provided, and accuracies are

measured on the testing sets. We used Adam optimizer [153] for training, with batch size of

256 and initial learning rate of 0.001.

35

2.4.3 Baseline

On Nucleo boards, we use the ARM CMSIS-NN [95], version 5.3.0, optimized for Cortex-M

processors. CMSIS-NN uses a DSP extension present M7 processor for SIMD multiplication

and accumulation. On Raspberry Pi, we use Arm Compute Library [154], version 18.03, with

NEON extension enabled, -O3 compiler optimizations, no batching, and no multithreading

for a fair comparison with 3PXNet. For both CMSIS-NN and Compute Library, we use 8-

bit precision: q7 t and QS8 datatypes, respectively. The first layer in CNNs is implemented

using CMSIS-NN/CL routines with binarization overhead since they are not packed and

sparsified. We tried comparing two existing dense binarized implementations: BMXNet

[59] and EBNN [63]. Unfortunately, we were not able to extract and compile underlying C

implementations for BMXNet, and the eBNN runtimes we obtained were worse than CMSIS-

NN 8-bit precision1, therefore we refrain from reporting them. All results are generated for

a batch size of B = 1. Larger batch sizes increase storage requirements and can make the

models even more prohibitive to deploy on resource-constrained devices.

2.5 Results and Discussion

We discuss results for 3PXNet accuracy separately from performance, as only the latter

depends on the hardware platform.

2.5.1 Accuracy & Model Size

Figure 2.12 compares accuracy vs. model size of 3PXNet to a dense binarized network eBNN

[63]. 3PXNet achieves up to 4X (2.5X) reduction in MLP (CNN) model size with the same

or better accuracy than eBNN. While both implementations use quantization, for eBNN,

1eBNN was ∼ 8X and > 80X slower than our dense implementation for FC and CNN layers respectively,
which we believe is partially because it uses 8-bit packs for higher flexibility, but lower computational
efficiency, and using floating-point accumulation.

36

additional size compression comes from tweaking the network structure itself, whereas for

us, it comes from pruning. In this work, we only explore the interaction binarization and

pruning, but we plan to extend our approach to also optimize across the network structure

itself.

80%

90%

100%

1 4 16 64 256

A
cc

u
ra

cy

Memory (KB)

MLP-L+S CNN-S eBNN MLP eBNN CNN

XNOR MLP-S XNOR CNN-S

Figure 2.12: Accuracy vs. Memory tradeoff compared to eBNN and dense XNOR.

Training results are shown in Table 2.4. Each network is trained with two sparsity levels,

and the size of the network is shown in parenthesis next to accuracy. For most models, the

3PXNetlow has target sparsity of 90%, while 3PXNethigh is targeting 95%. For MLP-L on

MNIST, 3PXNetlow has target sparsity of 95%, while 3PXNethigh is targeting 99%. Output

layers of CNN-M and CNN-L are kept at 50% sparsity due to their negligible impact on

storage and computation. Because we are not pruning entire neurons, batch normalization

layers are also not pruned. Since these constant-sized layers take up a varied proportion of

the entire model and do not decrease in size with higher sparsity, the actual compression

rate varies a lot across models, and we think it is more clear to list the actual sizes of the

models, which are shown in parenthesis next to accuracy numbers. For binary/3PXNet

implementations, weights are binary or ternary depending on the sparsity of a layer, and

activations are all binary except for inputs to the first layer in CNNs. While for some of the

networks, there is a noticeable drop in accuracy when comparing 8-bit with 3PXNet, as in

the case of MLP-S on MNIST and networks on CIFAR-10, we argue that the main benefit of

37

3PXnet is enabling deploying some of those models on heavily memory constrained devices,

which would not be possible with 8-bit and, in some cases, even dense binary. As shown in

Table 2.5 and 2.6, binarization enables implementation of the network in 3 cases, and 3PXNet

enables another 2. When the model loses noticeable accuracy when binarized, it tends to

lose more when pruned. Accuracy loss can be mitigated by using more permutations per

layer in addition to the ”free” one or using smaller pack sizes like 8. For MLP-S on MNIST,

reducing pack size to 16 and 8 for ”3PXNetlow” increases accuracy to 88.42% and 90.09%,

respectively. The added indexing storage and runtime overhead are usually not a good trade-

off when naively using packs of size smaller than 32, but we plan on exploring more efficient

implementations of such networks in the future.

Table 2.4: Accuracy and network size (KB, in brackets) comparison.

Dataset MNIST CIFAR-10 SVHN Speech

Model MLP-L MLP-S CNN-S CNN-L CNN-M CNN-L CNN-M CNN-M

8-bit 98.67% (36.9k) 98.28% (102) 99.42% (32.7) 92.52% (14.1k) 92.51% (4.69k) 95.65% (14.1k) 95.15% (4.69k) 97.87% (4.70k)

XNOR 98.40% (4.64k) 93.15% (13.1) 97.83% (4.46) 89.07% (1.80k) 88.29% (592) 95.03% (1.80k) 95.00% (592) 96.64% (591)

3PXNetlow 98.37% (421) 90.35% (3.96) 96.60% (1.66) 84.74% (257) 82.49% (98.8) 93.51% (257) 92.57% (98.8) 94.32% (97.6)

3PXNethigh 96.58% (120) 87.93% (2.08) 96.27% (1.46) 81.40% (143) 78.28% (61.7) 92.25% (143) 90.61% (61.7) 92.81% (60.5)

Network pruning can also be performed on higher precision models, so we compared our

performance to magnitude-based weight pruning [82]. Apart from the processing difficulties

resulting from irregular sparsity, the index of each active weight also needs to be stored.

Since the size of a filter can easily surpass 255, which is the limit of 8-bit indexing, we

used 16 bits for each index, but Figure 2.13 shows the accuracy comparison between sparse

8-bit networks and binarized networks. For MNIST, sparse 8-bit networks have a worse

accuracy-size trade-off compared to dense binarized networks, let alone the sparse ones. For

CIFAR-10, sparse 8-bit networks have higher accuracy for the same size compared to dense

binarized networks but are worse than 3PXNet implementations. To achieve the model size

of binarized networks, an 8-bit fixed-point network requires very high sparsity, particularly

38

due to the indexing required and loses too many connections to sustain accuracy. Methods

to reduce indexing overhead for fixed-point networks are proposed in [21] but are mostly

limited to the packing of 2, so the conclusion doesn’t change. Under the size constraints

of very small microcontrollers, 3PXNet offers better accuracy-size trade-offs, even when not

accounting for the benefits in processing efficiency our structured pruning method brings.

2.5.2 Performance & Energy

Runtime and energy results for 8-bit, XNOR, and 3PXNet are shown in Tables 2.5 and

2.6 for MNIST and CIFAR-10/SVHN/Google Speech Command, respectively. We report

only one result for CIFAR-10, SVHN, and Speech Command. The first two have the same

network structure, which yields the same runtime. For Google Speech Command, only the

first and the last layers are different, and runtime differences are so small (¡5%) we opt not

to report them separately. For the MLP-S 3PXNet shows between 10.7x and 25.2x runtime

improvement over CMSIS-NN, and 1.8x to 3x over Dense XNOR implementation. MLP-L

can fit the NUC Large only after binarizing and sparsifying the network. On Raspberry Pi,

the speedups obtained for both MLP-S and MLP-L are much higher than expected (76x-

400x). For the former, the model is so compact that overheads like memory management limit

the performance of 8-bit (ARM CL) implementation. For MLP-L, which has a model size

in tens of MBs, the large latency might be caused by memory bandwidth limitations. This

result means that dense and sparse binary implementations can provide speedups beyond 8x

(vs. 8-bit binary) on memory bandwidth-constrained models and architectures.

On CNN-S, 3PXNets show between 2x and 2.6x improvement over 8-bit implementations,

and between 1.06X and 2.7x improvement over dense XNOR, on Nucleo platforms, for low

and high sparsity, respectively. On Raspberry Pi, the speedups are 2.6x and 2.8x versus

8-bit, and 1.5x and 1.6x versus dense binary. 3PXNet CNN-M is 2.2x and 2.7x faster than

dense binary, on the largest Nucleo device, where the 8-bit model cannot fit altogether. On

Raspberry Pi, 3PXNet achieves a 7.4-10.4x speedup vs. ARM CL and a 2-2.75x speedup

39

20%

40%

60%

80%

100%

0 10 20 30 40

A
cc

u
ra

cy

Network Size (kB)

 CNN-S 8-bit CNN-S, 3PXNet

40%

60%

80%

100%

0 500 1000 1500 2000

A
cc

u
ra

cy

Network Size (kB)

CNN-M, 8-bit CNN-M, 3PXNet
CNN-L, 8-bit CNN-L, 3PXNet

a)

b)

Figure 2.13: Accuracy comparison between sparse 8-bit network and 3PXNet, for MNIST

(a) and CIFAR-10 (b).

40

over dense binary. Energy reduction is proportional to runtime, which means 3PXNets could

greatly extend the battery life of edge devices.

A few factors limit achievable speedups, for both dense networks and 3PXNets. First is

the lack of hardware popcount support on Cortex-M processors, which is the case for most

embedded microcontrollers. Even heavily optimized software implementation, which we use,

is quite inefficient [155]. On the small MLP, especially sparse versions, pure XNOR speedups

are further limited by overhead of input binarization and batch normalization, particularly on

NUC Medium and Small platforms, which don’t have hardware floating point units (FPUs).

We plan on exploring fixed-point batch normalization in the future to alleviate that. CNN

speedups are heavily limited by the binary-weight first layer, especially for CNN-S, e.g.,

dense XNOR on ”NUC Large” spends 54% of total runtime in the first layer, whereas for

3PXNethigh that number reaches 92%. In principle, binary-weight layers have an advantage

over full-precision ones because multiplication can be removed with an up/down counter.

However, this comes at a cost of introducing data-dependent conditional statements, which

are potentially worse than actual multiplication. An alternative is to preserve multiplication

and compressed weights, which achieves storage reduction at a very small cost to runtime due

to weight unpacking overhead. We plan on implementing more efficient BWN layers in future

work. Finally, 3PXNet performance improvements over dense XNOR implementations are

limited by indexing-related overheads.

Table 2.5: Runtime (ms) and energy (mJ, in brackets) for MNIST networks. A dash indicates

a given model could not fit in memory.
MLP-S MLP-L CNN-S

8bit XNOR 3PXNlow 3PXNethigh 8bit XNOR 3PXNetlow 3PXNethigh 8bit XNOR 3PXNetlow 3PXNethigh

RPi 2 (9.5) ≈5e-3 (0.02) ≈5e-3 (0.02) ≈5e-3 (0.02) 191.3 (908) 4.9 (23.2) 2.5 (11.8) 0.41 (1.9) 12.4 (58.9) 7 (33) 4.8 (23) 4.5 (21)

NUC Large 1.83 (2.03) 0.37 (0.41) 0.17 (0.19) 0.14 (0.15) — — 10.1 (11.2) 3.97 (4.41) 47.4 (52.6) 34.09 (37.8) 23.4 (26) 23.2 (25.7)

NUC Medium 19.9 (8) 2.4 (0.9) 1.05 (0.4) 0.79 (0.3) — — — — 1733 (693) 731.2 (292) 676.8 (271) 673.3 (269)

NUC Small — 2.9 (0.7) 1.6 (0.4) 1.3 (0.3) — — — — — 1176 (294) 1109 (275) 1102 (277)

41

Table 2.6: Runtime (ms) and energy (mJ, in brackets) for CIFAR-10/SVHN/Speech net-

works. A dash indicates a given model could not fit in memory.

CNN-M CNN-L

8bit XNOR 3PXNetlow 3PXNhigh 8bit XNOR 3PXNetlow 3PXNethigh

RPi 551 (2.6k) 146 (700) 74 (350) 53 (250) 638 (3k) 154 (730) 75 (350) 54 (250)

NUC Large — 3625 (4k) 1630 (1.8k) 1346 (1.5k) — — 1632 (1.8k) 1347 (1.5k)

2.6 Distinction between 3PXNet and Ternary Networks

Traditional implementations of ternary networks, which restrict values to -1, 0, and +1,

can be considered binary-sparse, like 3PXNet. However, they store numbers in 2-bit for-

mat and don’t skip computation, which makes it impossible to capitalize on the benefits

of either binarization (XNOR multiplication), or sparsity (storage and computation reduc-

tion) [40, 156, 157, 158, 159, 160, 161]. Thus we would like to differentiate between explic-

itly Ternary Networks, using 2-bit representation, and Binary-Sparse Networks, leveraging

XNOR multiplication and size compression, like ours. As an example of the latter, Lin et

al. [162], exploited Singular Value Decomposition to reduce kernel sizes in BNNs. Cer-

tain software and hardware implementations rely on operand-gating XNOR multiplication

[163, 164], however they still require 2-bits of information per weight: value and mask. Li

and Ren [165] decomposed first-layer activations into ”bit-slices” and explore pruning op-

portunities in those, but their scheme does not extend over the whole network. Faraone et

al. [23] have discussed implications of exploiting sparsity in binarized FPGA accelerators,

but not software ones.

2.7 Conclusion

We have developed the first software implementation and corresponding training methodolo-

gies for sparse binarized networks or 3PXNets. 3PXNets can deliver up to 300x (38x) smaller

model sizes compared to 8-bit fixed point (dense binarized) networks allowing us to fit com-

42

plex deep learning models on smallest microcontrollers for the first time. Even in smaller

models that can fit with conventional approaches, 3PXNets achieve up to 25x improvement

in runtime and energy. We show multiple sub-ms and sub-mJ models on commodity low-end

microcontrollers, which would not be possible without 3PXNet. We release 3PXNet as an

open-source library targeting machine learning at the edge.

43

CHAPTER 3

ACOUSTIC - Accelerator Built on Randomness

High demand for edge machine learning inference is leaving resource-constrained devices

struggling to cope with large and computationally complex models. Software implementa-

tions, like the one described in Chapter 2, while useful, cannot overcome the fundamental

limitations of the underlying hardware. Even the increasingly frequent use of domain-specific

acceleration cannot offset their limitations. However, there is enormous potential in exploit-

ing data reuse opportunities and amenability to reduced precision as a means to improve

performance on such devices. This potential has been left mostly untapped, as it requires

a level of compute density unattainable for conventional fixed-point arithmetic. Stochastic

Computing, an approximate computing paradigm, would be capable of delivering such den-

sities if it was not for multiple underlying precision issues. In this work, we present ACOUS-

TIC: a framework for training and architecture design, offering scalable, fully-stochastic,

high-density CNN inference. By taking full advantage of SC compute density, ACOUS-

TIC architecture delivers server-class parallelism within a mobile area and power budget -

a 12mm2 accelerator can be as much as 38.7x more energy-efficient and 72.5x faster than

conventional fixed-point accelerators. It can also have up to 79.6x lower energy consump-

tion than state-of-the-art stochastic accelerators. At the lower end, ACOUSTIC achieves

8x-120x inference throughput improvement with similar energy and area when compared to

recent mixed-signal and neuromorphic accelerators. ACOUSTIC can also take advantage of

runtime-configurable precision at minimal hardware cost, enabling tradeoffs between latency

and accuracy - something which is impossible for conventional fixed-point architectures.

To prove the feasibility of our approach, we show both FPGA and ASIC implementations

44

of a lower-end ACOUSTIC configuration, with performance competitive with much more

resource-heavy architectures.

Collaborators:

• Tianmu Li, Electrical and Computer Engineering, UCLA.

• Rahul Garg, then Electrical and Computer Engineering, UCLA.

• Tristan Melton, Electrical and Computer Engineering, UCLA.

• Professor Sudhakar Pamarti, Electrical and Computer Engineering, UCLA.

• Professor Puneet Gupta, Electrical and Computer Engineering, UCLA.

3.1 Introduction

Rapidly growing demand for deep learning algorithms, coupled with their immense com-

putational and memory requirements, has made them an enticing target for custom-built

accelerators [29, 2, 15, 166, 90, 14, 167, 26]. Energy and area optimization of these accel-

erators is especially crucial for resource-constrained edge devices, which are taking on an

increasing share of inference workloads due to privacy, energy, and latency concerns. One of

the notable contributions towards making deep learning accelerators more efficient was the

realization that reducing the precision of underlying computation incurs very little to no accu-

racy degradation [168, 141, 37, 19, 169] when we train these networks appropriately. Another

was recognizing vast data reuse opportunities present, particularly in convolutional neural

networks (CNNs), and devising dataflows that take the best advantage of those [13, 130].

Both low precision and data reuse are crucial for reducing the number of memory accesses,

on- and off-chip, which are the critical contributors to overall system energy consumption

[12].

The above realization has paved the way for the renaissance of stochastic computing, or

45

SC for short. It is a number representation system half a century old that has long been

abandoned by mainstream research due to its inherent approximation issues [100]. While

it may never be suitable for applications that require floating-point precision, it is excep-

tionally competitive for sub-8-bit fixed-point numbers [170]. Coupled with the unparalleled

levels of compute density it provides, SC can be an excellent candidate for convolutional neu-

ral network (CNN) acceleration, a realization that spawned multiple works in recent years

[171, 106, 172, 166, 105]. However, researchers have not been able to harness the full ben-

efits of SC. Specific issues, like accuracy degradation when performing addition, force early

conversion or even abandoning stochastic accumulation altogether, reducing SC domain to

just multiplication [171, 106, 172]. Further, most prior SC works develop network-specific

ASICs (e.g., [106]) rather than programmable accelerators.

This Chapter presents ACOUSTIC - Accelerating Convolutional neural networks through

Or-Unipolar Skipped sTochastIc Computing, a scalable, programmable, and fully-stochastic

CNN accelerator framework. ACOUSTIC integrates multiple algorithm and architecture

optimizations that allow us to harness the full benefits of SC:

• Optimization of SC primitives for deep neural networks. We develop a spa-

tially or temporally processed split-unipolar stochastic representation that enables 2X+

shorter streams while retaining the bipolar capability of representing both positive and

negative weight values required for neural network inference. Second, we enable prac-

tical stochastic accumulation through the use of OR-based accumulation, which has

unique scale-free saturating addition properties with unipolar SC streams critical for

deep neural networks with extensive accumulations. OR-based accumulation can re-

duce MAC size by 4X-20X or more compared to fixed-point accumulators used by most

existing SC approaches while retaining comparable accuracy.

• Computation skipping method for stochastic average pooling that can deliver

latency and energy reduction proportional to the size of the pooling window (4X-9X)

46

on the convolutional layer itself. Computation skipping is made possible through fully-

stochastic accumulation.

• A scalable, configurable, fully-stochastic convolutional neural network ac-

celerator architecture built to harness SC compute density to maximize activation

and weight reuse while minimizing or completely removing partial sums to reduce con-

version overheads and the number of memory accesses required. The compact size of

our MAC enables levels of compute density unachievable for other SC accelerators, not

to mention fixed-point binary ones.

• Training optimization, which allows it to adapt to the characteristics of SC computa-

tion. Through modifications to the accumulation kernel and noise injection, stochastic

OR-based addition can be used without significant accuracy loss, something that was

deemed impossible in previous works. Furthermore, this allows us to improve the scal-

ability of training of networks for SC accelerators improving the training runtime by

orders of magnitude.

• Hardware support for runtime-configurable accuracy and latency trade-

offs. Through minimal hardware overheads, our architecture can support configurable

stream lengths on a layer-by-layer basis.

• FPGA and ASIC performance evaluations. We show actual results on a synthe-

sized RTL code running on the AVNET ULTRA96-V2 platform, as well as a taped-out

14nm custom chip, proving the feasibility of our design.

47

3.2 ACOUSTIC Optimizations for DNNs

3.2.1 Split-Unipolar Representation

To capitalize on both shorter streams offered by unipolar representation, as well as the

ability to represent negative weights, we propose the split-unipolar representation. It uses

two streams to represent each weight, one for the positive and one for the negative component.

For a positive weight value, its corresponding negative stream is 0, and vice-versa. Because

activations (inputs) of a neural network layer are typically non-negative due to the ReLU

activation function [79, 30, 1] in the previous layer, they can be represented using only a

single positive stream. The activation streams are multiplied and accumulated separately

with positive and negative weight components using up counters, whose values are then

subtracted from each other to obtain the final result. Since the counter output is in the

fixed-point binary domain, ReLU activation is easily implemented as a bitwise AND of the

inverted sign with every other bit. There are two ways in which this method can be realized

in hardware - using spatial or temporal unrolling, as shown in Figure 3.1a).

Spatial unrolling doubles the compute arrays, and shares both weights and activations

between them. Weights to one of the arrays are masked using their sign, and weights to

the other are masked using the inverse of the sign. Each array has its output counters, and

corresponding results from both arrays need to be subtracted. While this results in overall

50% utilization, increasing it for any arbitrary network is non-trivial, since the positive and

negative weight distribution is not known a priori. A simple example of spatially unrolled

split-unipolar computation is shown in Figure 3.1c). A similar idea has been recently, inde-

pendently proposed by [110], however, it requires knowing the positive/negative distribution

of weights a priori.

Temporal unrolling achieves the same result with a single MAC array, where computation

happens in two phases. In the first phase, all negative weights, and by extension their

respective multipliers, are gated using their sign. This means only results corresponding to

48

positive weights are accumulated, and the output counters count up. In the second phase, the

mask is inverted, only negative weights contribute to the outputs, and counters count down.

Supporting temporal split-unipolar representation requires only a couple of additional gates

per SNG and replacing regular up-counters (CNT) with up/down counters (U/D CNT). A

simple example of a 2-wide MAC with one positive and one negative weight, and stream

length of 8 is shown in Figure 3.1b).

0000 00000 1110 10110000 0000
0110 0011

0 11101 10110 1
111 1101 0010

0101 01100 0000 00000101 0110
1000 0100

0 00000 00000 0
000 0001 0100

0000 00001100 0010

0000 0100 0000 0000

11000 11000110 101
(0.75)

0101 0000
(0.5)

0011 0011101 011
(-0.5)

000000 0010010
(0.25)

(0.375)

(-0.125)

U/D CNT
0000 01001100 0010

Phase +Phase -

Phase

0.25

(0.75 * 0.5) + (-0.5 * 0.25)

b)
Sign

Phase

SNG

WGT N
N

RNG

MAC ACT

CNT

SNG

WGT N

RNG

MAC ACT

U/D CNT Phase

N

a)

Sign

SNG

WGT
N

RNG

MAC-
ACT

SUBT

N

MAC+

CNT CNT
1110 10111110 1011
1101 0010

0101 01100101 0110
1000 0100

1100 0010

0000 0000

11100 11001110 101
(0.75)

0101 001001
(0.5)

(0.375)

CNT

0.375

c)
0011 00011101 011

(0.5)

(-0.5)

000000 0010010
(0.25) (0)

1100 0010
(0.375)

0000 0100

0000 0000

(0.125)

CNT

(0)

0000 0100
(0.125)

SUBT

0.175

0.25

Figure 3.1: Circuit level support for unipolar, temporal split-unipolar, and spatial split-u-

nipolar representations (a) and an example of 2-wide split-unipolar MAC temporarily- (b)

and spatially-unrolled c).

3.2.2 OR-based Scaling-Free Accumulation

As mentioned in Section 1.2.2, OR accumulation has been largely disregarded by prior work

due to its inherent inaccuracy for bipolar streams. Since the use of split-unipolar repre-

sentation eliminates the need for bipolar streams, we decided to revisit OR-based addi-

tion. Figure 3.2a) shows the accuracy comparison between MUX and OR for accumulating

3 × 3 × 256 = 2304 random numbers. Since neural networks generally require large matrix

multiplications that have extensive additions, MUX is not suitable for compact SC addition

due to its high absolute error at even moderately long bitstream lengths. As mentioned

earlier, using fixed-point binary adders is undesirable due to a large area overhead.

49

OR

Result

Expected Result

0.4

0.0

0.8

0 2 4 6 8

Actual Value
Proposed Approximation

Absolute

Error 1

10

Bitstream Length
4 64 1k 16k

MUX OR

b)a)

Figure 3.2: Accuracy comparison between MUX and OR a) and comparison of approximation

methods for OR accumulation b).

Though OR accumulation has a systematic error, it is well-defined and, therefore, can

be taken into account by replacing all additions with OR-addition during the training of a

neural network. It requires multiplications in the neural network to be performed explicitly

while training, and also slows down addition during both forward and backward pass (∼15X

longer training runtime). To speed up training, we approximate the effect of OR addition

using the following function:

OR(a1, a2, ..., an) ≈ 1 − e−s (3.1)

Where s is the sum of inputs. This equation approximates OR-addition by adding an

activation function after the normal network layer. To show the validity of this approach, we

extracted runtime results from training with OR-addition, with shown in Figure 3.2b). OR-

additions have minimal variations during run time, and the proposed method provides a good

approximation across the entire range. Using OR accumulation for the output layer slows

down training due to the limited range. To offset this effect, we add a batch normalization

layer after the output layer to be computed by the host. Since it is done only after the

final layer, it does not require offloading intermediate results, which would have a significant

impact on runtime.

50

3.2.3 Computation Skipping using Stochastic Average Pooling

While multiplexer-based average pooling has been used in prior SC work [173, 105], to the

best of our knowledge, we are the first to exploit its unique properties to perform computation

skipping. The average pooling multiplexer selects inputs based on a random select signal,

same as scaled addition. To get the required output value, the select signal does not need to

be random as long as the inputs are random and independent from each other. Since we know

the bits the multiplexer ”chooses” a priori, we can skip computation for all other inputs’ bits.

Instead of passing multiple streams through the pooling multiplexer, we concatenate shorter

streams, either in the stochastic or fixed-point binary domain. This allows us to reduce

the computation required by the convolutional layer preceding a pooling operator by 4x to

9x, depending on the pooling window size. The area overhead of supporting computation

skipping is minimal - it increases the size of an individual activation counter by 2.7% to

8.7%, depending on the pooling window size, which is < 1% of the overall accelerator area.

The issue with the computation skipping scheme is that the results are correlated, thus

necessitating the randomization of outputs. However, ACOUSTIC architecture converts the

streams to binary after each layer, removing the correlation problem.

Of course, the accuracy reduction of using average pooling needs to be addressed. Table

3.1 shows the accuracy comparison between average and more commonly used max pooling

methods for two models and datasets. We used the pre-trained models from PyTorch [142]

for max pooling, then replaced pooling layers with average pooling and retrained the models.

We believe this small accuracy increase does not justify the area and power penalty incurred

by using max pooling, especially when factoring in the benefits offered by computation

skipping.

3.3 ACOUSTIC Architecture

In this section, we motivate and develop the ACOUSTIC accelerator architecture.

51

Table 3.1: Accuracy comparison between different pooling methods.

Network Dataset Max Pooling Average Pooling

Small CNN [95] CIFAR-10 [174] 80.61% 80.53%

AlexNet [27] ImageNet [28] 79.09% 78.87%

3.3.1 Understanding SC Benefits

While the prospect of implementing a multiplier using a single gate might seem area, and

energy-efficient, it is far from the complete picture. Stochastic streams can require orders

of magnitude more bits than equivalent fixed-point representations, which has a profound

impact on energy and latency of the computation. Further, that length makes it prohibitively

expensive to store values in their stream representation. This forces conversion to and from

fixed-point domain when storing and reading values from memory, respectively. All of the

above needs to be considered when evaluating area, energy, and latency cost of SC-based

computation. At the same time, the impact of conversion can be reduced through data reuse,

which also needs to be considered. To calculate the actual per-MAC cost, we have synthesized

individual blocks: 8-bit fixed-point binary and stochastic MACs, 8-bit registers, and LFSR-

based SNG using a commerical 28nm library and Synopsys Design Compiler synthesis tool.

We assumed that RNGs are shared among multiple SNGs, which is a common approach to

amortize their cost [175, 108].

For Stochastic Computing based MACs, we consider two types of reuse. First is the

output reuse, which amortizes stochastic-to-fixed-point (SC2FXP) conversion. It can be

facilitated by performing extensive reduction operations in parallel in the stochastic domain.

The cost of SC2FXP conversion does not scale with the width of accumulation as long as

all of the computation is performed in parallel, since only a single output stream needs

to be converted. SC2FXP spatial output conversion is different from the temporal output

reuse employed by classical accelerators, where a partial sum is kept locally, while serially

52

accumulating the final result over multiple clock cycles [13]. The second type of reuse we

consider is input, or fixed-point-to-stochastic (FXP2SC), reuse, where a single input can

be read from memory and converted once, and reused across multiple MAC operations. In

the context of convolutional neural networks, this can be applied both to activations and

weights. FXP2SC reuse is equivalent to input reuse in conventional accelerators; however,

only spatial reuse is possible [13]. Temporal, or sequential, reuse for SC accelerators would

require buffering the streams itself, which is prohibitively expensive.

For this experiment, we considered three different input reuse patterns: no input reuse,

one of the inputs (e.g., activations) reused across 32 MAC operations, and both inputs (e.g.,

activations and weights) reused across 32 and 16 MAC operations, respectively. Figure 3.3

shows that even with input and output reuse when all of the costs are accounted for, SC

MACs can, at best, achieve parity with fixed-point in terms of energy. While our proposed

optimizations, such as split-unipolar representation and computation skipping, can signifi-

cantly improve SC’s energy efficiency, it is not where it excels.

1

10

100

1 4 16 64 256 1024

8-bit binarySC no FXP2SC reuse SC 32x FXP2SC reuse SC 32x/16x FXP2SC reuse

MAC Width

Norm.

MAC

Energy

[pJ]

SC2FXP reuse: 4.6x

FXP2SC reuse: 11.1x

10

100

1000

1 4 16 64 256 1024
MAC Width

1

10

100

1 4 16 64 256
Number of intermediate results

Norm.

MAC

Energy

[pJ]

Norm.

MAC

Area

[um2]

SC2FXP reuse: 2.1x

FXP2SC reuse: 10.2x
SC2FXP/FXP2SC

overhead: 34.5x

a) b) c)

Figure 3.3: Normalized MAC energy (a) and area (b) for 8-bit fixed-point and 256-long,

unipolar SC implementations in TSMC 28nm node with 200MHz clock, with different data

reuse patterns. Normalized MAC energy for 256-wide MAC when intermediate results are

converted to binary (c).

Figure 3.3b) shows where the true benefit of SC lies - compute density. Even without

any data reuse, stochastic MACs are more than two times smaller than their fixed-point

53

equivalents. With reuse, SC implementations can be up to 47x more compact. While high

compute density directly improves system cost through reduced area footprint, it is much

more valuable as a means of reducing overall energy consumption and inference latency. As

multiple previous works have shown, the bulk of energy in contemporary computing systems

goes into DRAM and on-chip memory accesses, not the actual computation [12, 2, 130].

High compute density made possible by SC enables higher levels of parallelism, which, in

turn, allows us to amortize the costs associated with memory accesses and conversion. To

do that, however, ample data reuse patterns need to be present, which is why convolutional

neural networks are an ideal application for SC-based acceleration.

This conclusion leads us to two essential dataflow guidelines for SC-based accelerator

design: (1) avoid partial sums and (2) maximize compute density. To understand the first

point, consider the processing elements in conventional fixed-point binary accelerators. They

often rely on tightly coupled local scratchpads for efficient, partial sum buffering for output

reuse [13, 2, 130]. The same approach in an SC-based accelerator would require either

buffering the intermediate result in its stochastic stream form or converting it back to a

fixed-point binary representation. The former can drastically reduce the compute density:

buffering an intermediate 128-bit stream for a 32-wide MAC block would increase its area

by 10.6x. The latter, while possible, can very quickly cause a substantial increase in MAC

energy consumption as the number of intermediate results grows, as shown in Figure 3.3

c) for a 256-wide MAC. It is, therefore, imperative to minimize or eliminate partial sums

and amortize conversion costs through more parallelism. SC-DCNN/HEIF [106, 105] achieve

this through completely unrolled, parallel computation. Their approach, which requires a

custom design for every network topology, results in a prohibitively large area, making it

highly impractical. Other approaches, like SCOPE or BISC-MVM, rely on the accumulation

in the fixed-point binary domain, limiting achievable compute density [107, 166].

Our second guideline, maximizing compute density, has important repercussions for the

on-chip connectivity. Many conventional fixed-point architectures put an emphasis on flexi-

54

ble network-on-chip (NoC) design to better facilitate data reuse [13, 2, 130]. For SC, however,

using sophisticated NoCs can drastically reduce achievable compute density. Consider the

following scenario: to add a minuscule level of configurability, we allow each MAC block to

have two possible sources of activation streams. It would require using a 2:1 multiplexer,

which at least doubles the area and energy of the MAC block. It is easy to see how an

elaborate NoC could quickly dominate the area of an SC-based accelerator, reducing the pre-

cious compute density. While there exist successful accelerators relying on rigid connectivity

schemes like systolic arrays, those are not easily amenable to SC computation. Reconciling

the streaming nature of both SC and systolic arrays would require either extensive buffering

of stochastic streams, or very complex multi-cycle path design.

3.3.2 Accelerator Architecture

3.3.2.1 Overview

Figure 3.4a) depicts the overall block diagram of the ACOUSTIC Accelerator. It includes

two external interfaces: configuration 1 and direct memory access (DMA) 2 . The former is

used to load the machine code representing a given network model to the instruction memory

and enable the processing. The execution control scheme is described in detail in Section

3.3.2. The DMA interface loads the initial activations and weights for each neural network

layer from external memory to their respective on-chip memories, 3 and 4 and writes

out final classification results. ACOUSTIC does not use a unified global buffer; instead

activations and weights have their dedicated on-chip memories. While this organization

might result in sub-optimal memory utilization, it allows us to better tailor each memory to

its purpose in terms of width, depth, and bandwidth.

The following is a high-level explanation of the computation dataflow, which we will

expand on in the following sections. There are three activation memories 3 , corresponding

to three MAC array columns. This organization provides optimal support for the commonly

55

MAC

Column 0

Activation

SNG 0

Weight

 Mem

Weight

SNG 0

MAC

Column 1

Activation

SNG 1

 Activation

Mem 0

Weight

SNG 1

MAC

Column 2

Activation

SNG 2

 Activation

Mem 1

Weight

SNG 2

 Activation

Mem 2

Cnt/

ReLU

DMA

Dispatch ICode

Control Interface

WGTLD

ACTLD/ACTST ACCST/

ACCLD

ACTRNG

WGTRNG

MAC

WGTSHIFT

MAC

Binary Weights/Activations

ACTLD/ACTST/WGTLD/ACCST

ACTRNG/WGTRNG/WGTSHIFT

Stochastic Weights/Activations

MAC

Stochastic Partial Sums

MAC

Activation

Buf 0

Activation

Buf 1

Activation

Buf 2

ivati

Buf 1

Weight

Buf 0

Weight

Buf 1

Weight

Buf 2

1

2

3

4

5

6

5

6

7 8

...

MAC 0000MAC 0000
MAC 0001

MAC 00014MAC 00014
MAC 00015

...M=

16

A000 A001 A006 A007...A=8

SR00 SR01 SR02S=3

R0R0
R1

R31

...
R=32

Kernel Activation

...

MAC

MAC Array

Sub-row

Row

A

B

C

D

E

a) b)

Slice

F

Figure 3.4: Block diagram of the proposed ACOUSTIC accelerator (a), and the hierarchical

organization of the compute engine with parts of the kernel and activation tensors covered

by each level of hierarchy (b).

56

used 3x3 convolutional kernels, as explained below. Each of the MAC array columns has a

corresponding set of activation and weight SNGs 5 , each with its dedicated value buffer 6 .

Those buffers are responsible for providing reference values to SNGs during the conversion

process and do not have an obvious proxy in conventional accelerators. To avoid confusion,

we only use the term ”buffer” to refer to SNG buffers and not to any of the on-chip memories.

It is worth noting that due to the combinational nature of SC arithmetic units, conversion,

or SC stream generation, is equivalent to computation - when one is happening, so must the

other.

Stochastic streams from the SNGs are fed into their respective MAC array columns 7 ,

which perform mostly hard-wired multiplication and accumulation. Results generated this

way are then passed through a flexible SC accumulation fabric supporting different layers

and kernel sizes. Final sums are sent to the activation counter modules 8 for SC2FXP

conversion, followed by the ReLU activation. Fixed-point activation implementation is both

cheaper and more precise than the SC equivalent. When the computation, or stream gen-

eration, is completed, results from the activation counters are written back to one of the

activation memories as inputs for the next layer.

The general processing flow will, therefore, require the following steps. (1) Load acti-

vations from external memory to on-chip activation memories (first layer only). (2) Load

weights from external memory to on-chip weight memories. (3) Load activations from on-

chip memories to activation SNG buffers. (4) Load weights from on-chip memories to weight

SNG buffers. (5) Generate and compute bitstreams. (6) Store outputs from activation coun-

ters to activation on-chip memories. (7) Repeat steps 3-6 for each of the layers in the neural

network model. It is important to note that some of the above steps, like activation and

weight loading, can be overlapped, and ACOUSTIC is designed to take the best advantage

of those opportunities to improve performance.

The compute engine of the ACOUSTIC accelerator has a highly hierarchical organization,

shown in Figure 3.4b), to balance parallelism with flexibility, as per our guidelines. First,

57

hard-wired, multiply-accumulate units A perform 96-wide multiplication and accumulation.

This reduction spans the depth of the activation tensors. Those MAC units are the basic

building blocks of our compute engine, and thanks to their rigid connectivity, they can form

an extremely dense computing fabric. They are followed by a flexible accumulation fabric

which maps partial sums onto specific outputs for further reduction. A group of M=16 MAC

units with partially-shared activations and fully-shared kernel weights forms a MAC array

B . This grouping is equivalent to spatially unrolling a single kernel sliding horizontally

across a partial activation tensor. Arrays, in groups of A=8, form a sub-row C . Each of the

arrays in a sub-row has its respective activation SNGs, all serviced from the same activation

memory, with a single set of weight SNGs shared among them. Their grouping corresponds

to extending horizontally the range of the activation tensor that is covered by a single kernel.

We refer to those partial activation sub-tensors as slices F . Sub-rows in groups of S=3 form

rows D , which extend the partial activation tensor in the height dimension. There are R=32

rows E , which means 32 kernels can be computed in parallel using the same activations.

3.3.2.2 Layer Size

To understand how ACOUSTIC organizes the dataflow, let us first consider a convolutional

layer shown in Figure 3.5a) and b). They show the intra- and inter-array mapping of the same

layer, respectively. This layer has an input activation tensor of height and width y=x=128,

and depth z=32 1 . It is convolved with a single kernel tensor of height ky=1, width kx=3,

and depth kz=32. An activation slice of height y’=1, width x’=128, and depth z’=32 2 is

loaded into a column SNG buffer which can hold 4096 values 3 . Because the buffers are

one-dimensional, the slice is flattened using depth (z) as the innermost loop. Typically, each

of the three columns’ SNG buffer would get a single slice to extend across the activation

tensor height (y). In this case, since the kernel has a height (ky) of 1, only one input slice

is needed at a time, so only one of the columns and sub-rows is used. If a slice cannot fit

in the available buffers, it is partitioned in depth (z) dimension and processed sequentially

58

in multiple passes. Within the column SNG buffer, the slice is partitioned into 8 partial

slices of 512 values, each corresponding to a tensor of a height y”=1, width”=16 and depth

z”=32 4 . Each partial slice is an input to one of the eight arrays within the sub-row, as

shown in Figure 3.5b) 5 . Within each array, the first MAC unit receives the first 96 values

of the partial slice and its kernel weights 6 . All of the MACs in a given array use the

same weights, but activations are offset by 32 between them. This offset simulates a sliding

convolutional with the stride of 1 in width (x) dimension. Mapping layers with depths z¡32

requires special consideration and is discussed later. Each of the MAC units computes one

adjacent output for a single kernel. The last two MAC units in an array are connected to

the first 64 inputs of the subsequent array to ensure spatial continuity of the sliding window

7 . We call those overlap connections. As a result, a single array will compute a partial

output tensor of height oy’=1, width ox’=16, and depth oz’=1 8 . Across all eight arrays,

this will combine to form an output tensor of height oy=1, width ox=128, and depth oz=1

9 . To extend the kernel size to height ky=3, three successive activation slices are loaded

into three columns, and their corresponding outputs are accumulated together.

MAC1A0

Activation

Slice

x' = 128

z = 32
x'' = 16

MAC1

MAC0

96

32
MAC2

MAC14

MAC15

...

oz' = 1

ox' = 16

...
A1

y = 128

x = 128
1

z'=z''

 = 322

3

4

5

6

7

8

a) b)

x = 64

z = 64

z = 1

x = 64

A0 A1 A2 A3 A4 A5 A6 A7

Output Slice

c)

A0

x' = 128

z' = 32

oz = 1

ox = 128

A1 A2 A3 A4 A5 A6 A7

... 5

Activation

Slice

Output Slice

o ' 16

8

Output

Part. Slice

7

9

A

B

Figure 3.5: Convolving a 1x128x32 input slice with a 1x3x32 kernel to compute a 1x16x1

partial output slice a). Extension across multiple arrays to compute a 1x128x1 output slice

b). Configuration for a 1x64x64 input tensor.

59

Throughout the CNN layers, the width and height of activation tensors decrease, through

either pooling or striding, while their depth increases. ACOUSTIC’s compute engine can

easily support that by modifying the overlap connections, as shown in Figure 3.5c). When

the depth increases, overlap connections between certain arrays are severed - for example,

for a 1x64x64 activation slice, there is no connection between arrays 3 and 4, as the full

extent of activation tensor width spans only four arrays A . At the same time, outputs of

the arrays corresponding to the same position are reduced across the depth (z) dimension -

for a 1x64x64 slice, corresponding outputs of arrays 0 and 4 are accumulated together B .

Input and output height is processed sequentially, as shown in Figure 3.6 a), for a single

kernel. To compute the first output slice, three input slices are loaded into their respective

columns 1 . After the outputs are computed, the column corresponding to the uppermost

slice is reloaded with the next slice, and kernel values are shifted between columns to ensure

kernel and input slices are aligned properly 2 , imitating a vertically sliding convolutional

window. Then the second output row can be computed 3 . The advantage of this approach

is that only one of the columns’ activation buffers needs to be reloaded between subsequent

computational phases. All rows will share the same activations, but each one of them will

have its own set of weights corresponding to a single kernel, as shown in Figure 3.6b).

Outputs of different rows are transposed, with width and depth dimensions being swapped,

which creates the depth-first layout required on the input side of the next layer. This

transposition guarantees a self-aligning data layout, which is consistent between layers. The

maximum number of outputs that can be computed at a time is 4096, which is the number

of output counters.

3.3.2.3 Kernel Size

Supporting smaller kernel sizes is straightforward. In the simplest form, only one or two

columns will be used to compute 1x1 or 2x2 kernels. More columns can also be used to

compute multiple 1x1 kernels concurrently in the same row, as long as there are enough

60

SR0 SR1 SR2 R0

Row 0 Row 1 Row 2

SR0 SR1 SR2 R0

Row 3 Row 1 Row 2

Kernel Row 0 Kernel Row 1 Kernel Row 2

Compute

Output Row 0

Shift kernels/

Reload Bank 0

Compute

Output Row 1

Row 0

Row 1

R0

Row 0 Row 1 Row 2

R1

R31

...

Width2Depth

Output

Slice
oz = 32

ox

a) b)

1

2

3

Figure 3.6: Processing two successive output rows sequentially (a), processing multiple ker-

nels at the same time, with output transposition (b).

output counters for a given layer. To support larger kernel sizes, we couple outputs of

multiple rows, as shown in Figure 3.7a), for kernels up to 6x6. First MAC unit in row 0

gets values corresponding to the first 1x3x32 partial slice, and the 4th MAC unit in row

1 gets the second 1x3x32, which means together they are covering a 1x6x32 partial input

slice. By splitting the kernel across rows 0 and 1 and adding their corresponding results, 3x4,

3x5, and 3x6 kernels can be computed at the same time. To extend kernel height beyond

3, two computational passes are required, with activation and kernel reloading in-between.

This scheme can be extended across more rows to support even larger kernels if necessary.

However, 11x11x3 and 7x7x3 kernels of the first layers of AlexNet and ResNet, respectively,

can be handled through careful input data layout without explicit large kernel support, as

described below [27, 30].

3.3.2.4 Padding, Pooling and Stride

Padding across activation tensor height can be done easily by adjusting which input slices are

loaded into which columns. For example, with padding = 1, when computing the first output

slice, one of the columns will not be used since it spatially corresponds to the padded-out

input region, as shown in Figure 3.7 b). To perform padding across the width, we introduce

61

SR0 SR1 SR2 R0

Row 0 Row 1

b)

512

Activation Slice

MAC0

...

c)

H-Pad Shifting Fabric

...

MAC1

A0A0
M0

A0A0
SR0

R0

0-95

A0A0
SR0

R1

5 96-191

a)

M3

Padded Column

Padded Row

Figure 3.7: Extending kernel size up to 6x6 by coupling adjacent rows (a), enabling padding

through row scheduling for height (b) and configurable shifting fabric before array inputs for

width (c).

an additional horizontal padding shifting fabric, that can shift inputs in increments of 32 to

the left before passing them into the columns, which is shown in Figure 3.7 c). The overhead

of the shifting fabric is minimal, as it is shared between all rows.

For pooling across output height, ACOUSTIC exploits computation skipping by using

proportionally shorter streams and not resetting output counters between successive com-

putation phases. As a result, outputs that fall under the same pooling window are averaged

together using the scaled addition property of stochastic stream concatenation. It means

each compute pass is shortened proportionally to the pooling size.

Pooling across output width is done by output counters. Output counter with pooling

support has small (2x-3x) parallel counters before them, which allows them to accumulate

adjacent outputs that fall under the same pooling window. This choice allows us to shorten

the streams proportionally to the pooling window width. As explained in Section 3.2.3, the

area overhead of this solution is minimal. Stridden convolutions can be performed by reload-

ing more than one column at a time, and dropping some of the results - for example, a 2x2

stride would require reloading two input slices between computation phases and dropping

every other MAC result. Supporting arbitrary stride across the height does not incur any

62

extra area overhead. Across the width, however, using arbitrary stride would require a cross-

bar structure hence only limited stride window sizes are considered, e.g., 2x2. ACOUSTIC

naturally prefers pooling as opposed to striding for dimensionality reduction.

3.3.2.5 First Layer Support

ACOUSTIC architecture is optimized for activation tensors with a depth in multiples of 32.

It generally holds true for commonly employed models, except for the first layer [27, 1, 30].

Naively, a layer with a depth smaller than 32 can be implemented by storing just a single

1x1x3 input slice per every 32 values. Unfortunately, that would result in underutilization

and slow processing of the first layer. Through a careful input data layout, however, good

utilization of shallow layers can be achieved without any additional hardware overhead.

Consider the first layer of AlexNet, which uses 11x11x3 kernels with a stride of 4. We can

pack 4 1x3 partial slices per row, from two rows, into a single block of 32 values, resulting

in the utilization of 2*4*3 = 24 out 32 values per block [27]. We can then pack the whole

input width of 227 values across two rows into 56 such blocks and subsequent two rows into

another 56 blocks, utilizing 2*56*24 = 2,688 values out of 4096 possible for a single column.

A similar data packing method can be performed to support ResNet-style [30] 7x7x3 kernels

with 2x2 stride in the first layer.

3.3.2.6 Fully-Connected Layer Support

ACOUSTIC supports fully-connected (FC) layers in the most straightforward manner possi-

ble. Since FC layers cannot re-use weights without employing batching, ACOUSTIC cannot

capitalize on weight re-use within an array. This means that only a single MAC in a given

array can be used. Because of that 416 out of 512 inputs to an array are wasted. However,

if the fully-connected kernel is extended across six successive rows, their collective arrays

can cover all 512 inputs with individual weights. The corresponding outputs of those rows

63

need to be then accumulated together, which is supported by the ACOUSTIC fabric. While

this is highly unoptimized, and leads to 87.5% underutilization we argue that there is not

much point in further optimizing the FC performance. While the first breakthrough CNN

architectures like AlexNet and VGG relied on multiple, large FC layers with 10s of millions

of weights each, newer ones like ResNet or Inception rely on a single, relatively small ones,

which has very negligible impact on overall performance [27, 1, 30, 31].

3.3.2.7 Underutilization

Given the sheer number of multiply-accumulate units used in our architecture and its reliance

on inflexible connectivity fabric, non-ideal resource utilization is unavoidable. We summarize

the following main sources of underutilization:

• Filter Size - filter sizes other than 3x3 will cause compute resources to be underutilized.

• Input size - while arbitrary activation height is supported without underutilization,

optimal width support is tied to the array/sub-row size. For example, most convolu-

tional layers in ResNet will have a utilization of 87.5% due to their sizes not being a

multiple of 16.

• Padding - padding will cause column underutilization when computing first and last

output rows, resulting in utilization between 90.4% and 98.2%, depending on the acti-

vation tensor height.

• Stride - Underutilization caused by strided convolutions can be severe - a 2x2 stride

means that every other MAC is not used. While it is supported, ACOUSTIC architec-

ture is optimized towards exploiting computation skipping in pooling layers. It achieves

both goals of strided convolution - dimensionality reduction and reduced computation

without loss of accuracy [176].

We do not consider this a major issue of our architecture for two reasons. First, even

64

with 50% or lower utilization, the effective number of multiply accumulate units is still on

the order of hundreds of thousands. Second, unused MACs and SNGs do not contribute to

dynamic energy consumption - because their input values are zeroes, AND-based multipliers

perform operand gating, removing any switching propagation.

3.3.3 Control

For any convolutional or FC layer, ACOUSTIC reloads activation and weight buffers mul-

tiple times depending on the number of rows and kernels of activation and output tensors.

While this dataflow can easily be directed by a centralized FSM-style control unit, we opted

for a distributed control scheme. It allows us to keep individual control modules simple

while enabling overlapping different phases to reduce overall latency. We have developed a

restricted instruction set shown in Table 3.2. The main control unit is the Dispatcher which

reads the instructions, distributes them to other control units, maintains execution loops,

and enforces synchronization through barriers. Four types of execution loops are supported,

each with its iteration counter:

• Kernel loops iterate through kernels in batches of size equal to the number of rows

(32).

• Batch loops iterate through multiple images for each layer. Batching should only

be used when all activations can be stored on chip, as ACOUSTIC does not reload

activations from external memory during processing.

• Row loops iterate through layer output height dimension.

• Pooling loops iterate through pooling window height dimension.

Each loop has its dedicated registers, and only one of each type can be used at a time.

Loops themselves can modify other instructions through base addresses and increments. For

65

Table 3.2: ACOUSTIC control modules and their respective instructions.

Module Instruction Description

DMA ACTLD/ST Load/store activations from/to external memory

WGTLD Load weights from external memory

MAC MAC Compute

ACTRNG ACTRNG Load activations into SNG buffers

WGTRNG WGTRNG Load weights into SNG buffers

WGTSHIFT Shift weight SNG buffers

CNT CNTLD/ST Load/store activations from/to output counters

DISPATCH FOR*/END* Kernel/batch/row/pooling loop

K/B/R/P

BARR Barrier

66

example, the kernel loop provides a base address and increment for loading weight buffers

(WGTRNG). The dispatcher will modify and send instructions to other control units, which

can be implemented as simple counter-based FSMs. Each of them will maintain a small

FIFO to buffer multiple instructions and output an IDLE signal to the dispatcher once all

instructions are processed. Instructions will continue to be dispatched until a barrier is

encountered. Once that happens, the barrier mask will be compared with combined IDLE

signals to determine if the execution can continue. This behavior allows ACOUSTIC to run

multiple operations concurrently, e.g., loading weights for the next layer while processing the

current one.

Overall, ACOUSTIC supports an extensive number of operations which allows it to imple-

ment the majority of image recognition models. Convolutions with different kernel, padding,

and pooling sizes, fully connected layers, ReLU activations, and residual connections are all

supported.

3.3.4 Evaluated ACOUSTIC Architectures

In this section, we parametrize the ACOUSTIC architecture to two reasonable choices that

we evaluate in the next section. Besides the compute engine size, three main factors affect

ACOUSTIC’s performance: clock frequency, off-chip memory bandwidth, and on-chip mem-

ory size. Increasing the clock frequency speeds up the computation, but may require higher

memory bandwidth not to be memory bound. Figure 3.8 shows that for the bandwidth

achievable using different DDR3 standards, latency becomes memory limited at around 300

MHz or below. For smaller layers, that ”boundary” frequency will be much higher (e.g.,

above 1 GHz for 128 3x3x128 kernels). Further, for ultra-low energy accelerators, support

for large model sizes may be unnecessary, and therefore the support for DRAM can be

omitted. Finally, activation memory can be sized up to support larger batch sizes.

We evaluate two versions of ACOUSTIC architecture - low power (LP) and ultra-low-

power (ULP). Performance estimation for both configurations was done using a commercial

67

0

0.1

0.2

0.3

0.4

100 200 300 400 500 600 700 800 900 1000

DDR3-800 DDR3-1066 DDR3-1333
DDR3-1600 DDR3-1866 DDR3-2133 HBM

La
te

n
cy

 [
m

s]

Clock Frequency [MHz]

Figure 3.8: Latency of processing a convolutional layer with 16x16x512 inputs and 512

3x3x512 kernels and pre-loading 512 3x3x512 kernels for the subsequent layers using dif-

ferent clock frequency and external memory interfaces, using temporarily-unrolled 256-long

split-unipolar streams.

28nm library. The LP variant (details in Table 3.4) is intended to be integrated in mobile

SoCs with limited area and power budgets. It has enough on-chip weight memory (147.5KB)

to store all weights for commonly encountered convolutional layers. For large fully-connected

layers, a new batch of weights is fetched while the current one is being processed. It has

enough on-chip activation memory (600KB) to process the most commonly used CNNs

without ever having to offload activations off-chip [27, 1, 31, 30]. In cases where that is not

possible, outputs are offloaded to external memory and fetched back when necessary for the

next layer, which is supported by ACOUSTIC ISA. The ULP variant (Table 3.5) targets low-

complexity inference (e.g., MNIST digit recognition using LeNet-5) on extremely resource-

constrained devices. It is meant to compete with the analog, and neuromorphic approaches in

terms of energy efficiency [6]. It has 2KB of activation memory and 3KB of weight memory.

68

3.4 Evaluation & Results

3.4.1 Evaluation Methodology

SC is extremely slow to accurately simulate in software, mainly because of randomization

[166]. To aid in computationally tractable design space exploration, we opted to decouple

functional and performance simulations. For any trained neural network model, accuracy

is evaluated using our custom SC functional simulator, which models just the computation

part using bitstreams. It is given the network model, test dataset, trained weights, and SC

configuration, e.g., stream lengths, RNG scheme, which it uses to compute test accuracy

and compare against training results. The same configuration and neural network model

(described in ACOUSTIC ISA) is then fed to the custom performance simulator, whose goal

is to accurately model execution time and data movement without simulating the actual

computation. The performance simulator is also fed power, area, and latency numbers

for individual system components, which it uses to generate accurate processing energy

and latency numbers. We used the TSMC 28nm library with Synopsys Design Compiler

synthesis tool to obtain area, latency, and power numbers for the MAC array, buffers, SNGs,

and counter/ReLU units. Memory, both SRAM and DRAM, were modeled using CACTI

6.5 [177].

We use Eyeriss as a baseline for the LP variant, which is a template for most spatial

accelerators [2, 13, 130]. To model latency and energy consumption, we use the simulator

presented in [178]. We compare our numbers to original Eyeriss configuration with 168

processing elements (PEs), as well as a scaled-up version with 1024 PEs, both scaled to

28nm technology and 8-bit precision. Where possible, we also compare to SCOPE, a state-

of-the-art SC neural network accelerator [166]. SCOPE is a flexible DRAM-based in-memory

compute accelerator, with only multiplication performed in the stochastic domain. SCOPE

numbers are reproduced from [133, 166] and scaled to 28nm. For the ULP variant, we

compare with MDL-CNN [6], a time-based convolution engine with a similar area footprint

69

and Conv-RAM [7], analog, in-memory convolutional engine, both scaled to 28nm. All

ACOUSTIC configurations use split-unipolar representation with 2x128-bitstreams.

3.4.2 ACOUSTIC Accuracy

Accuracy results are shown in Table 3.3. AlexNet on ImageNet is too large for our current

SC simulator, so SC validation accuracy is not available 1. We do stochastic stream-based

training with an approximate OR, as described in Section 3.2, to show the achievable accu-

racy of ACOUSTIC. As Table 3.3 shows that ACOUSTIC accuracy is the same as SCOPE,

and it can achieve an accuracy similar to 8-bit fixed point hardware with stream lengths of

512 (i.e., 256x2 for split-unipolar). We believe part of the remaining gap is due to the use of

approximate OR during training, and better but computationally tractable approximations

are part of our ongoing work.

Table 3.3: Accuracy comparisons.

Validation Accuracy [%]

Stream 8-bit
SCOPE ACOUSTIC

Network Dataset Length Fixed Pt

LeNet-5 MNIST 128 99.2 99.32 99.3

CNN
SVHN

256
90.29

N/A 86.75

512 N/A 89.02

CIFAR-10
256

79.9
N/A 74.9

512 N/A 78.04

1SCOPE [166] only reports results on MNIST.

70

3.4.3 Runtime Configurable Precision

Second, each counter has a configurable shift module at the output, which can scale results

up and down in the power of 2’s, so they are consistent with the ”native” length of 128 bits.

ACOUSTIC can support runtime-configurable stream lengths from 32 to 1024 (in steps of

powers of 2). Further, thanks to its programmable nature, stream lengths can be configured

on a layer-by-layer basis, or even at a finer granularity, at a cost to the code size. Different

stream lengths for different layers enable fine-grained control of accuracy and performance.

Figure 3.9 shows achievable accuracy and relative latency increase for different stream length

configurations on the CIFAR-10 CNN, running on ACOUSTIC ULP. △ represents stream

length of 256 in the 1st layer, while □ represents 512 and ♢ represents 1024. Blue represents

a stream length of 256 in the 2nd and 3rd layer, while green represents 512 and red represents

1024. The stream length of the 4th layer is also modified, and longer stream lengths increase

accuracy and latency. By slowing the accelerator down two times, the accuracy improvement

of 4.7% can be achieved. In theory, quadrupling the stream lengths in all layers should result

in a 4x latency increase. The much lower actual increase is caused by the small size of the

compute engine in the ULP version. Full slices in layers 2 and 3 cannot fully fit in activation

SNG buffers, resulting in frequent buffer reloading, and lowering the computation duty cycle.

An analysis of the relative precision importance of each layer can also be obtained from those

results.

3.4.4 Area & Power Breakdown

Area breakdowns for ACOUSTIC LP and ULP configurations are shown in Figures 3.10 a)

and b), respectively, while power breakdowns are shown in Figures 3.10 c) and d). As can

be seen, MAC arrays are significant contributors to both area and power on the ACOUSTIC

LP variant. Weight buffers, while being significant contributors to the area, have much

lower relative power consumption due to very infrequent switching. A more area-efficient

71

(256, 256, 256)

(512,256,512)

(512,512,512)

(256,256,1024)

(1024,256,1024)

(1024, 1024,1024)

74%

76%

78%

80%

0.8 1 1.2 1.4 1.6 1.8 2 2.2

Accuracy

Rela!ve Latency

1st layer stream length: 256 512 1024

2nd/3rd layer stream length: 256 512 1024

Figure 3.9: Accuracy and performance at different stream lengths for the CIFAR-10 CNN on

ACOUSTIC ULP. Labeled points are pareto points with the numbers representing stream

lengths in 1st layer, 2nd & 3rd layer, and 4th layer.

22%

10%

20%

26%

3%

4%

4%

8% 3%

32%

9%

19%

8%

7%

1%

7%

13%

4%

a) b) c) d)

Inst Mem Act Mem Wgt Mem Act Buf Act SNG Wgt Buf Wgt SNG Act Counter MAC Array

5%

14%

6%

7%

3%

4%39%

22%

12%

19%9%

3%

10%

2%

31%

14%

Figure 3.10: Area breakdown for ACOUSTIC LP (a) and ULP (b) and power breakdown

for ACOUSTIC LP (c) and ULP (d).

implementation of weight buffers should, therefore, be explored. The area and energy of the

ULP variant are dominated by activation and weight memories.

72

3.4.5 Performance Comparisons

Table 3.4 compares area, power, and clock frequency for all accelerators, as well as inference

throughput (frames/s) and energy efficiency (frames/J) for different models. ACOUSTIC

outperforms conventional fixed-point accelerators. LP variant can be as much as 38.7x

more energy-efficient than Eyeriss with 1k PEs, depending on the network model. It is also

more energy-efficient than SCOPE - up to 79.6x higher frames per Joule. SCOPE requires

hundreds of mm2 of area, which makes it unsuitable for edge inference. SCOPE multiplies

stochastic streams in parallel, instead of using streaming like ACOUSTIC. This mandates

using multiple, large DRAM arrays to achieve low latency.

The latency of AlexNet and VGG is primarily dominated by fully-connected layers. Both

VGG and AlexNet have multiple, large FC layers, with tens of MB of weights, and ACOUS-

TIC is not optimized toward those. On the Resnet-18 model, which has only a single, small

FC layer, ACOUSTIC delivers lower latency than for AlexNet, despite Resnet-18 being ≈2x

more computationally intensive.

Table 3.5 shows that the ACOUSTIC ULP variant, with a comparable area footprint,

can deliver up to 123x speedup over MDL-CNN, and is 1.33x more energy efficient2. It

has 8.2X higher throughput than Conv-RAM with similar energy efficiency. Furthermore,

ACOUSTIC uses 8-bit precision for both weights and activations, while both MDL-CNN and

Conv-RAM use binarized weights, resulting in a 1%-3% drop in accuracy for MNIST. For a

fair comparison, we are using 128-long bitstreams for ACOUSTIC ULP and non-accelerated

MDL, such that neither architecture sacrifices any accuracy.

2Only convolutional layers are compared as CONV-RAM, and MDL-CNN do not report performance on
FC layers.)

73

Table 3.4: Performance comparison between ACOUSTIC LP and other fixed-point and

stochastic accelerators.

Eyeriss 8-bit ACOUSTIC

Base 1k PEs SCOPE LP

Area[mm2] 3.7 15.2 273.0 12.0

Power[W] 0.12 0.45 N/A 0.35

Clock[MHz] 200 200 125 200

AlexNet Fr/J 306.9 381.2 136.2 2590.6

Fr/s 41.1 210.7 5771.7 238.5

VGG-16 Fr/J 14.4 18.7 9.1 723.8

Fr/s 1.8 8.4 755.9 93.2

Resnet-18 Fr/J 295.6 380.3 N/A 2471.6

Fr/s 34.0 182.5 N/A 542.6

CIFAR-10 CNN Fr/J N/A N/A N/A 1.01M

Fr/s N/A N/A N/A 46,168

74

Table 3.5: Performance comparison between ACOUSTIC ULP, MDL CNN [6] and Con-

v-RAM [7] on convolutional layers of LeNet-5 and CIFAR-10 CNN.

Conv-RAM MDL CNN ACOUSTIC ULP

Domain Analog Time SC

Precision [A/W] 6b/1b 8b/1b 8b/8b SC

Area [mm2] 0.02 0.124 0.18

Power [mW] 0.016 0.03 3

Clock [MHz] 364 24 200

LeNet-5 Fr/J 40M 33.6M 41.7M

Fr/s 15,200 1009 125,000

CIFAR-10 CNN Fr/J N/A N/A 697K

Fr/s N/A N/A 2100

3.5 FPGA Evaluation

To prove the feasibility of the ACOUSTIC concept, we present a functional FPGA im-

plementation. We used the AVNET Ultra96-V2 board, with a Xilinx Zynq UltraScale+

MPSoC ZU3EG device. It has a built-in ARM-based SoC which we used to interface with

the ACOSUTIC accelerator. We implemented the ULP version of ACOUSTIC in Verilog

RTL and synthesized and implemented it using Xilinx Vivado 2019.2 software. The current

RTL version does not yet include a DMA engine, so we have upsized the on-chip memory

sizes compared to the VLSI ULP version, to be able to fully run LeNET and CIFAR-10 CNN

networks. We used an accurate cycle counter to measure execution latency.

Table 3.6 shows the hardware utilization and peak performance for ACOUSTIC ULP

and certain fixed-point FPGA convolutional neural network accelerators. For performance,

75

we report giga-MACs per second (GMACS), to avoid the ambiguity of GOPS 3. First, notice

that ACOUSTIC uses fewer flip-flops than any other architecture, due to the combinational

nature of SC compute. Flip-flop usage has crucial implications for VLSI implementations,

as sequential elements can occupy large portions of the chip. Second, while there are accel-

erators that use fewer logic resources, they all rely on large numbers of costly DSP resources.

The only accelerators that can outperform ACOUSTIC in terms of GMACS require an order

of hundreds of those units, which restricts them to very large and expensive FPGA devices.

ACOUSTIC, in contrast, requires only logic and memory resources, meaning it can easily

scale to the underlying hardware. While other accelerator’s performance is tied to their cho-

sen number representation, ACOUSTIC can support different precision, and performance,

at runtime, without any hardware reconfiguration.

Using the hardware cycle counters, we have empirically verified the simulated LeNet-5

and CIFAR-10 CNN throughputs listed in Table 3.5, corrected for clock frequency. Our

hardware simulator results are within 4% and 6% on LeNet-5 and CIFAR-10 CNN, respec-

tively. Discrepancies are mainly due to the lack of an actual DMA in our current hardware,

and certain dead cycles caused by inefficiencies in the current RTL implementation of the

control scheme.

3.6 Demonstration Chip

To further demonstrate the potential of the ACOUSTIC architecture, we have tapeout out

a chip using Global Foundries’ 14LPP technology node. The taped-out chip is based on the

ULP/FPGA variant, with minor modifications described below.

3Where it was not clearly stated, we assumed authors reported their numbers assuming OP=MAC, to
their benefit.

76

Table 3.6: FPGA utilization and performance comparison between ACOUSTIC ULP and

other convolutional neural network accelerators. ACOUSTIC performance is for stream

lengths in range of 32 to 256-bits.

Architecture Device FF [k] LUT [k] BRAM DSP Clock [MHz] GMACS

SC DEMO MPSoC ZU3EG 26.3 46.5 38 0 140 84-672

ANGEL-EYE [179] 4PE 16CONV XC7Z045 34.1 43.1 203 400 150 105.2

Aristotle [180] ZYNQ 7030 34.1 43.1 203 400 150 172.8

CNNA [181] ZU9EG 28 95 900 1200 250 500

NullHop [125] ZYNQ7100 229 107 386 128 60 8.6

DCNN 2 MACs[182] ZYNQ 7045 N/A 112.5 131.5 392 145.45 41.5

3.6.1 Architecture

The block diagram of the taped-out accelerator is shown in Figure 3.11. To further em-

phasize the benefits of using stochastic computing, we highlight components that support

variable precision in blue and reuse-oriented design choices in red. Numbers associated with

each technique refer to the order used in Figure 3.14. The chip consists of control logic, an

activation scratchpad coupled with buffers and stochastic number generators (SNGs), and

six multiply-accumulate (MAC) block rows, each with its weight memory (total 131KB),

and output counters, pooling, and activation logic. Control consists of instruction memory

(4KB), a dispatcher, and distributed control units. The activation scratchpad is organized

as a ping-pong buffer (2 banks of 16KB). After conversion into stochastic streams, activation

broadcast is used across all six MAC rows, enabling a high level of spatial reuse. All MAC

rows use the same activations, but each can compute a single output channel in a convolu-

tional layer, or three rows can be coupled to compute one output channel in a fully-connected

layer.

77

Stochastic Computing MAC Columns

 Activation

Bank 0

Weight Stochastic Number Generators

 Activation

Bank 1

Output

Cnt

Pooling

ReLU

Fixed-Point ValuesSC Streams

Activation SNG Shift Register
Read

Buffer

Output

Buffer

6x

JTAG

Ctrl

Control Signals

MAC Row

JT
A

G
 IF

Activation Stochastic Number Generators

Weight Temporal Reuse (4)

Inst

Mem

Inst

Disp.

 Activation

Bank 1

Weight

Memory

 Bank
Weight SNG Shift Register

Activation

Temporal

Reuse (4) Activation

 Broadcast (1)

Figure 3.11: Overall accelerator architecture.

78

0.75
WGT0

-0.5
WGT1

RNG

RNG

abs

abs

sign

sign

0.5ACT0 RNG

(0.5) 11010010 (0.25) 10000100

Up/Dn

Cnt1,1,0,0,1,-1,0

(0.25)

 Neighbor stream

(average pooling)

ReLU Scale

SNG

SNG0.3125

0.6875
x

≈
0.2148

SNG

SNG0.3125

0.6875
x

≈
0.2148

Absolute Error ≈ 0.035 Absolute Error ≈ 0.027

Stream Length = 8 Stream Length = 16

0,1,-1,0,1,0,0 0.1875 0.1875
< <

<

<

0.50.25ACT1 RNG

 Stochastic

Average Pooling (5)

(0.75)

11101011

(0.5)

01010110

(0.375)

11000010

(0.125)

00000100

(0.125)

(0.375)

01000011

(0.625)

11011001

(0.25)

01000001

0100011000100100

(0.3125)

(0.6875)

1111101001011110

(0.1875)

0100001000000100

Figure 3.12: SC split-unipolar MAC and stochastic average pooling (top). Precision-latency

trade-off using different stream lengths (bottom).

79

3.6.2 SC Computation

Figure 3.12 explains how the underlying SC computation is performed by the taped-out chip,

through an example of a 2-way dot product using 8-bit long streams. We use comparator-

based SNGs, with 7-bit linear feedback shift registers [5]. Multipliers and adders are imple-

mented using AND and OR gates, respectively. Their small size allows us to pack extremely

wide dot products, up to 200-wide, without timing or congestion issues present in fixed-point

designs. After accumulation, positive and negative streams are subtracted and fed into a

counter for conversion to fixed-point. Each up/down counter accepts outputs of two neigh-

boring accumulation trees to implement X-dimension (horizontal, e.g. 1x2) part of stochastic

average pooling by concatenating the streams corresponding to two adjacent outputs in the

same output row. Y-dimension (vertical, e.g. 2x1) part of pooling is implemented sequen-

tially, using the previously described sliding window. Pooling is only used after convolutional

layers. Counters are followed by ReLU activation and a configurable power-of-2 scaling unit

to handle different stream lengths. Scaling factors range from 1/4 to 32, are programmable,

and can be set on a layer basis. Figure 3.12 also shows how by changing the stream length,

the computation precision can be changed at runtime.

3.6.3 Computation Mapping

Convolution mapping is shown in Figure 3.13. Each MAC block row is organized into five

columns, each corresponding to one input and filter row across 4 or 8 input channels. Fixed-

point input and weight rows are loaded into the SNG buffers of their respective column.

This way, a complete 5x5 filter can be computed in parallel, generating one complete row

of outputs per MAC block row. Both sets of SNG buffers are organized as shift registers,

meaning that after one iteration, a new input row is shifted in, and the subsequent output

row can be computed. This sliding activation reuse behavior emulates a vertically-sliding

convolutional window, reducing the number of required memory accesses.

80

Figure 3.13: Mapping of convolutional layers in MAC rows, and memory/stream generation

amortization through data reuse. Shift-register organization emulating sliding window (left),

MAC block with input/weight reuse and padding support (center), block organization im-

plementing different levels of reduction (right).

Figure 3.14: Normalized ratio of MAC to memory accesses and stream generations compared

to fixed-point designs. Accelerator area scaled to 14nm is included.

81

Each column is organized into eight SC MAC blocks, each corresponding to one input

channel, operating in a fully-streaming manner. A block takes 16 inputs and 5 weights

and implements a sliding MAC window, generating up to 16 partial output streams de-

pending on padding. Activation stream multicast with overlap is used between successive

dot-products, and weight stream broadcast is used for all dot products in a block, amortiz-

ing stream generation cost. Every two neighboring blocks can be coupled to support wider

input rows. Corresponding output streams from all 8 blocks are then reduced (Z-dimension

stream reduction), after which corresponding outputs from all 5 columns are reduced (Y-

dimension stream reduction). This hierarchical, SC reduction enables wide dot products (up

to 200-wide) to be unrolled spatially, amortizing the cost of converting stochastic streams to

fixed-point outputs. Our reuse-oriented design choices make it possible to perform over 130

MACs per memory access, and over 40 MACs per stream generation, as shown in Figure

3.14, lowering the relative energy cost of those operations. This high level of data reuse was

only possible by using very dense SC computation – fixed-point designs have an order of

magnitude lower memory access reuse.

Since computation, highlighted in blue, operates purely on stochastic streams, it can

support arbitrary precision by adjusting SC stream length, only limited by the width of

the output counters. Precision selection is possible on sub-layer granularity, e.g., groups of

filters. Our custom instruction set enables selective gating of MAC block rows, columns,

and blocks to support smaller activation or filter sizes. Filters or inputs that cannot be fully

unrolled using existing resources are computed sequentially. A set of hardware loops with

multi-stride memory accesses enables a variety of layer shapes and dataflow choices. Our

accelerator can therefore support end-to-end inference with different types and shapes of

layers.

82

Model

Stream

Length

Python

Compiler/

Tuning

ISA

Python

Assembly

inst

.mem

wgt

.mem

Input
in

.mem

Python

JTAG

Driver

Device

Label

Wgts.

Figure 3.15: Model deployment pipeline.

3.6.4 Evaluation & Results

To speed up the training procedure, models are first trained using a fast generation scheme

that maximizes stream sharing and then fine-tuned using an accurate model of the hard-

ware. The effect of OR accumulation is modeled using an additional activation function

described earlier. Models are trained on MNIST, CIFAR-10, and SVHN datasets, using

models shown in Table 3.7. An output counter overflow issue in the taped-out design causes

the deployed models to use aggressive scaling factors, which result in a 0.2-7.4 p.p. accuracy

drop compared to simulated results without the overflow. The scaling factor is set to be

2⌈log2(max(|a|))⌉, where max(|a|) is the largest magnitude observed in the output activations

of a layer. This scaling factor ensures that output activations do not overflow after scaling,

and that the scaling function can be achieved using simple shifts. Accuracy could also be

improved through larger networks, or more recent SC accuracy improving techniques, such

as the ones proposed in [64]. Once trained, models are translated into a sequence of accel-

erator instructions using a compiler under active development, which is then programmed

onto the device, as shown in Figure 3.15.

The chip, shown in Figure 3.16, was fabricated in 14nm LPP technology. The core of

our accelerator occupies a 0.5 mm2 area and operates at 0.6-0.9V voltage and a maximum

frequency of 500MHz. Figure 3.17 shows the accuracy, latency, and energy measurements

83

Table 3.7: Datasets and models used in evaluation. Model sizes are limited by available

on-chip memory.

Dataset Model Model Architecture Size [kB]

CIFAR-10, tinyConv CN5x32-CN5x32-CN5x64-FC10-BN* 89

SVHN tinyConv-L* CN5x32-CN5x32-CN5x32-CN5x32-FC10-BN* 81

MNIST LeNet-5 CN5x6-CN5x16-FC120-FC84-FC10 62

LeNet-3 CN5x6-CN5x16-FC10 7

Specifications

Technology 14nm LPP

Die Area 5 mm2

Core Area 0.5 mm2

Supply Voltage 0.6-0.9V

Frequency 250-500 MHz

Precision 8-64 bitstreams

Memory 167 KB

Power
16 mW@ 250 MHz, 0.6V

68 mW@ 500 MHz, 0.9V

0.5 mm
WGT

Bank1

WGT

Bank2

Act

Mem

Ins

Mem

1 mm

WGT

Bank0

WGT

Bank1

WGT

Bank2

WGT

Bank3

WGT

Bank4

WGT

Bank5

Act

Mem

Ins

Mem

1 mm

0
.5

 m
m

MAC

Row0

MAC

Row1

MAC

Row2

MAC

Row3

MAC

Row4

MAC

Row5

Figure 3.16: Die shot and specifications.

84

Figure 3.17: Accuracy, latency (left), and energy (right) on the MNIST (top), SVHN and

CIFAR-10 (bottom) datasets.

on different networks and datasets. We highlight that SC exposes a precision-performance

tuning knob, by adjusting the stream length. For example, on the MNIST dataset, changing

the stream length from 32 to 16 reduces the accuracy by only up to 0.3 p.p., while reducing

energy and latency up to 31%. On SVHN, accuracy can be improved by up to 4.7 p.p. with

a 50% increase in latency and energy. Non-ideal performance scaling is caused by control

logic overheads. Thanks to highly compact SC compute we achieve higher data reuse than

other accelerators, resulting in lower relative memory power contribution, as shown in Figure

3.18.

Peak energy efficiency ranges between 9.4 and 75 TOPS/W at 250MHz/0.6V, as shown in

Figure 3.19. Table 3.8 shows a comparison with prior work. Overall, SC offers unparalleled

computational density in terms of MAC units per mm2. Our chip outperforms fixed-point

accelerators [183] in energy efficiency while enabling configurable precision. While bit-serial

architectures [121] can have high peak energy efficiency, it is only achievable at single-bit

precision. Mixed-signal, binary design in [58], achieves extremely high energy efficiency, but

it comes at a cost of little configurability, supporting only one convolutuional filter size.

85

Area Breakdown
Logic Memory

0

0.25

0.5

0.75

1

Chen JSSC’16 [6] Jia JSSC’21 [7] Sayal JSSC’21 [8] Ours

Power Breakdown
Logic Memory

Figure 3.18: Area (left) and power (right) breakdown, compared to [2, 3, 4].

It requires using much larger, slower models to improve accuracy. We also outperform, or

approach the efficiency of neuromorphic and analog designs [184, 6], without suffering from

their scalability and programmability issues, on account of being purely digital.

0

20

40

60

80

250 300 350 400 450 500

E
ff
ic

ie
n

c
y

[T
O

P
S

/W
]

Frequency [MHz]

8 16 32 64

Stream Length

Figure 3.19: Peak energy efficiency at different stream lengths.

3.7 Related Work

3.7.1 Deep Learning using Stochastic Computing

Since SC allows very cheap implementation of multiplication and addition and neural net-

works are shown to be highly error-tolerant [185], SC has been used to accelerate neural

86

Table 3.8: Comparison table.

ISSCC’21 [183] ISSCC’18 [121] JSSC’18 [58] ISSCC’19 [184] ISSCC’19 [6] This Work

Type Digital
Digital, Mix.-sig., Neuro- Time- Digital,

bit-serial binary morphic Domain SC

Purpose Train./Infer. Infer. Infer.4 Train./Infer. Infer.4 Infer.

Node 7nm 65nm 28nm 65nm 40nm 14nm

Area [mm2] 19.6 16 4.6 17.6 0.124 0.5

Voltage [V] 0.55-0.75 0.63-1.1 0.53-0.8 0.8 0.375-1.1 0.6-0.9

Clock [MHz] 1-1.6 200 1.5-10 20 0.2-3.1 250-500

Power [mW] — 3.2-297 0.09-0.9 23.1-23.6 0.03 16-68

#MAC 32k1 3.5k1-13.8k2 65k — — 19.2k

MAC/mm2 1.6k1 0.2k1-0.9k2 14.2k — — 38.4k

Mem. 8MB 256KB 328KB — — 167KB

Precision FP8-32,INT4/2 1-16 1 — — 4-85

TOPS/W 8.9-16.51 11.61-50.62 532-7722 3.42 12.08 4.4-75

TOPS/mm2 3.27-5.221 0.0861-0.462 0.015-0.12 — — 0.3-4.8 (0.75-12)6

GOPS 62K-102.4K1 1.4K1-7.32 72-5322 — 0.365 150-2.4k

MNIST Perf. - - -

97.8%, 97%, 95.1-98.7%,

3.4 TOPS/W, 4.65-12.08 1.1-9.5 TOPS/W,

100 kFr/s TOPS/W4 25-215 kFr/s

CIFAR-10 Perf. - -

85.7-86.1%

- -

69.4-71.7%,

532-772 TOPS/W, 2-6.3 TOPS/W,

0.04-0.24 kFr/s 2.8-8.3 kFr/s

1 Int4. 2 Binary. 3 Fixed-function, MNIST only. 4 Convolutional layers only. 5 Effective precision with 8-64 bit SC streams

and SC average pooling. 6 Without on-chip memory.

87

network inference. In most cases, SC is used to accelerate multiplication, and addition is

performed using counters[106, 108, 171, 186, 104]. Those approaches have recently moved

towards using deterministic, instead of pseudo-random sequences to generate stochastic

streams [187, 110]. We plan to explore the applicability of such sequences in the ACOUSTIC

framework as a part of our future work. [111, 188] used OR for addition for small networks

and partially with rest of accumulation still handled by counters. MUX is also used to imple-

ment addition in SC, but they are either limited to one single layer[172] or show poor [189] or

even no accuracy [190]. Apart from bipolar and unipolar stream, other representation meth-

ods like extended stochastic logic (ESL) [186, 191], two-line representation [192] and integer

stream [193] are also proposed. Among them, ESL suffers from increased error due to having

a stochastic stream in the denominator, while the other two suffer from increased hardware

cost for computation. Prior FPGA implementations of SC-based acceleration have been

shown, but those are fixed-function accelerators tailored towards a single network [194, 191],

whereas ACOUSTIC is a scalable and programmable architecture.

3.7.2 Approximate and Programmable Precision Accelerators

Long-proven neural network resistance to approximation has become one of the primary

means of reducing model size and complexity [168, 37, 169]. Binarization [47, 53], though

resource-efficient, can suffer from accuracy problems and does not offer any flexibility in terms

of computation precision. Bit-serial and bit-pair encoding accelerators [19, 195, 196, 197, 121,

198] decompose multi-bit operations into serially processed binary ones, therefore, allowing

for accuracy vs. energy and latency tradeoffs similar to SC but are nowhere as compact as

SC. Performance benefits here rely mainly on reducing the precision of computation below

8-bits, whereas we show ACOUSTIC being competitive at close to iso-8-bit precision. An

in-memory version of bit-serial processing has also been explored [197, 133] but require

modifications to heavily optimized memory fabrication process and large arrays to deliver

performance, making them unsuitable for edge devices. Using dynamic voltage-frequency

88

scaling for energy-accuracy tradeoff has also been explored [199, 200]. Due to its inherent

fault-tolerance, SC is also extremely well-suited to it [201], and we plan to explore its use in

ACOUSTIC in the future.

3.8 Conclusion

In this paper, we presented the ACOUSTIC accelerator for convolutional neural networks.

ACOUSTIC incorporates multiple algorithm optimizations: split-unipolar representation,

stochastic average pooling with computation skipping, and training and hardware coopti-

mization. ACOUSTIC accelerator architecture is built around the idea of density-enabled

data reuse, which allows it to significantly reduce the number of on- and off-chip memory

accesses. ACOUSTIC architecture delivers server-class parallelism within a mobile area and

power budget - a 12mm2 accelerator can be as much as 38.7x more energy-efficient and 72.5x

faster than conventional fixed-point accelerators. It can also be up to 79.6x more energy-

efficient than state-of-the-art stochastic accelerators and can be implemented in order of

magnitude less area than recent SC-based accelerators, delivering real-time performance in

a mobile/IoT energy/area envelope. It can also take advantage of runtime-configurable pre-

cision to enable tradeoffs between latency and accuracy. Finally, we have shown a functional

hardware implementation, proving the feasibility of our approach. Our ongoing primarily

addresses developing fast training algorithms for ACOUSTIC to improve accuracy for large

networks.

We have also presented the first stand-alone, configurable, and programmable SC NN

accelerator in silicon. The chip, taped out in 14nm technology, achieves 2.4 TOPS and 75

TOPS/W throughput and energy efficiency. It has a custom ISA and supports end-to-end

inference with convolutional and fully-connected layers of variable input and filter sizes. The

use of SC makes it possible to pack 19,200 MAC units in a small area, enabling a high

degree of spatial data reuse, amortizing the cost of SC conversion, and reducing the number

89

of memory accesses. By varying the stream length, it enables extensive accuracy-latency

trade-offs.

90

CHAPTER 4

GEO - Pushing Stochastic Computing Further

ACOUSTIC, introduced in the previous Chapter, laid foundations for the design of stochas-

tic computing neural network accelerators. However, it came with a host of issues, like

noticeable accuracy loss, costly stream generation, and reliance on off- and on-chip mem-

ory bandwidth. In this Chapter, we propose GEO – Generation and Execution Optimized

Stochastic Computing Accelerator for Neural Networks, which optimizes stream generation

and execution components of SC, and bridges the accuracy gap between stochastic comput-

ing and fixed-point neural networks. It improves accuracy by coupling controlled stream

sharing with training and balancing OR and binary accumulations. GEO further optimizes

the SC execution through progressive shadow buffering and other architectural optimiza-

tions. GEO can improve accuracy compared to state-of-the-art SC by 2.2-4.0% points while

being up to 4.4X faster and 5.3X more energy efficient. GEO eliminates the accuracy gap

between SC and fixed-point architectures while delivering up to 5.6X higher throughput and

2.6X lower energy.

Collaborators:

• Tianmu Li, Electrical and Computer Engineering, UCLA.

• Professor Sudhakar Pamarti, Electrical and Computer Engineering, UCLA.

• Professor Puneet Gupta, Electrical and Computer Engineering, UCLA.

91

4.1 Introduction

As established in Chapter 3, stochastic computing has been enjoying a renaissance in deep

learning acceleration for latency-, energy-, and cost-constrained devices [109, 166, 104, 110,

5]. Its approximate nature synergizes well with neural networks’ inherent error-tolerant

properties, enabling new axes of accuracy and performance tradeoffs [104, 202, 5]. However,

precision remains the most significant barrier to wider SC adoption. Since the bulk of ac-

curacy is lost in the addition operation, the majority of prior works opted for approximate

parallel counter-based accumulation fabric [105, 203, 110, 202] or directly converting each

multiplication result and adding them in the fixed-point domain [107, 104], losing computa-

tional density. Others try to compensate by using longer stochastic stream lengths at the

cost of throughput and energy efficiency [204]. ACOUSTIC showed OR-accumulation using

split-unipolar stochastic streams to be a viable, unscaled accumulation approach for neural

network acceleration, but it still suffers from accuracy loss.

Stochastic bitstream generation has also received much attention. A typical stochastic

number generator (SNG) has a random number generator (RNG) and a comparator that

compares the target value with the random number [100]. Streams generated from a true

random number generator (TRNG) have a predictable error variance that can only be re-

duced through longer stream lengths [102]. Less expensive TRNGs [205, 206, 207, 208] as

well as quasi-random sequences [107, 104, 110] have been explored to reduce error and cost

of stream generation. Correlation of the random sources in stream generation can severely

impact accuracy and has forced most prior works to limit the amount of computation per-

formed in the stochastic domain, sacrificing potential performance benefits [107, 104, 110].

In this work, we show that those sacrifices are not necessary.

Further, most prior SC literature focuses on SC “component” improvements [107, 104,

64] or implement dedicated network-specific accelerators [106, 105]. Programmable, full-

system SC implementations [166, 5], like the focus of our work are rare. We account for

92

overheads of generalizability of programmable accelerators and generate power, performance,

and accuracy numbers for the entire compute+memory system.

In this Chapter, we propose GEO - Generation and Execution Optimized stochastic

computing for neural networks - an ensemble of optimization techniques that can bridge the

accuracy gap between stochastic and fixed-point accelerators while improving inference en-

ergy and latency even when compared to the state of the art stochastic inference accelerators.

Our contributions are as follows:

• We show that, with appropriate training, neural networks can learn the biases caused by

pseudo-RNGs and extensive sharing of them in SNGs and improve accuracy compared

to using non-shared TRNGs by as much as 6.1% points while reducing energy and

area.

• We propose a progressive stream generation and shadow buffering scheme that reduces

required memory bandwidth by up to 4X while improving latency by as much as 2X.

• We propose using a balanced mix of stochastic OR and fixed-point accumulation to

improve accuracy by up to 9.4% points. The increase in accuracy allows us to reduce

stream length by 4X while maintaining 2.2-4.0% points accuracy advantage.

• We leverage pipelining and near-memory computation to enable high throughput, max-

imal reuse, and efficient compute utilization regardless of layer parameters.

• Overall, we show that GEO is Pareto-superior to existing SC-based and fixed point

accelerators in accuracy and energy/latency tradeoffs.

The rest of this Chapter is organized as follows. Section 4.2 describes the proposed GEO

improvements to stream generation and Section 4.3 describes the optimizations to compu-

tation and architecture. Experimental methodology and results are discussed in Section 4.4

and we conclude in Section 4.5.

93

4.2 Stochastic Stream Generation Optimizations

This section proposes a methods optimizing the stream generation process of SC. Combin-

ing shared stream generation and training improves accuracy, while progressive generation

relieves memory bottleneck.

4.2.1 Co-optimized Shared Generation and Training

RNG Sharing has been shown to be detrimental to stochastic computing accuracy[175, 209],

and typically requires complicated methods to decorrelate streams from the same source

to avoid incurring large stream generation penalties. However, we hypothesize that a

partially-shared generation leads to higher accuracy, especially when coupled with deter-

ministic stream generation and stream-based training.

Deterministic and repeatable (using a pseudorandom RNG) stream generators guarantee

obtaining the same outputs from the same inputs, enabling the model to train for a fixed

instead of a random error. We achieve determinism using maximum-length linear feedback

shift registers (LFSR) as RNGs. When generating streams of length 2n, an n-bit maximum-

length LFSR is used with a cycle of 2n − 1. Apart from guaranteeing an almost accurate

generation, LFSR generates the same output with the same input and seed and allows mul-

tiple uncorrelated stream generations (by varying the seed or the characteristic polynomial)

suitable for large multiply-accumulate operations. Sharing stream generation simplifies the

error profile caused by SC. Assuming that all kernels in a layer share the same set of seeds,

training only needs to deal with an error associated with one set of seeds.

To test this hypothesis, we implement three levels of sharing for a 4-layer CNN[95] on the

SVHN dataset. Streams are represented using the split-unipolar format, and OR is used for

accumulation, similar to ACOUSTIC. In the “no sharing” case, each SNG gets a different

seed for its LFSR. The “moderate sharing” case shares the same set of seeds across all kernels

in a given layer. Finally, in the “extreme sharing” case, all rows of all kernels in a layer use

94

the same set of seeds. The same is done when a true random number generator (TRNG) is

used as an RNG1. The results are shown in Figure 4.1. At moderate sharing levels, LFSR-

based SNGs show a significant uplift in the accuracy (up to 6.1% points compared to unshared

TRNGs) at both stream lengths, adhering to the hypothesis. TRNG does not see the accuracy

improvement with sharing due to the lack of determinism. However, both TRNG and LFSR

suffer from a significant drop in accuracy when using extreme sharing. In this case, stream

correlation becomes an issue hard to overcome just by training.

These results also mean that low discrepancy (LD) sequences are not suitable for OR

accumulation due to the difficulty of generating multiple uncorrelated streams, even though

LD sequences can improve accuracy for single operations [210]. We also compared the

validation accuracy when using LFSR without modeling it during training. The models are

trained using TRNG but validated using LFSR. No accuracy can be gained from moderate

sharing when the model is not trained for it, and extreme sharing reduces accuracy to about

20%. We use the moderate sharing scheme in GEO (up to the limit of availability of unique

RNG seeds).

55%

70%

85%

TRNG, 128-bitTRNG, 128-bit LFSR, 128-bit LFSR, 32-bit LFSR, 128-bit,
no train

LFSR, 32-bit,
no train

Accuracy No Sharing Moderate Sharing Extreme Sharing

Figure 4.1: Accuracy vs. sharing for TRNG and LFSR-based random number generation.

4.2.2 Progressive Stochastic Stream Generation

Once stream computation is finished for a given set of weights and activations, the SNG

buffers need to be reloaded for the next iteration. If the underlying architecture needs

1Due to the lack of hardware TRNG, we approximate it using the rand function in PyTorch.

95

to reload activations and weights extensively during computation, reloading can become a

significant bottleneck. We propose using a progressive generation scheme to alleviate this

inefficiency, where stream generation begins as soon as the first two most-significant bits

are loaded into the buffers instead of waiting for all 8 bits, as shown in Figure 4.2. The

rest of the bits are padded with 0s. As stream generation continues, the remaining bits are

gradually loaded in groups of 2 bits every two cycles until the number of bits loaded matches

the LFSR length used. As GEO matches the LFSR length to the stream length being used,

shorter stream lengths effectively truncate the converted fixed-point values. Our progressive

buffering scheme can take advantage of that truncation to reduce the number of required

memory accesses, which is not possible when all bits for a given value are being loaded in

parallel. Compared to starting generation when all 8 bits are loaded, progressive generation

reduces the latency overhead of reloading by 4X.

5

25

16 32 64 128

R
M

S
 E

rr
o
r

Stream Length

Normal Generation Progressive Generation

Figure 4.2: Accuracy comparison between normal generation and progressive generation

performing a multiplication of two uniformly sampled inputs. RMS Error is multiplication

error compared to an 8-bit integer.

As shown in Figure 4.3, performing progressive loading does not hurt multiplication

accuracy. Generation is accurate after eight cycles at most when the loaded values match

LFSR length. Progressive loading introduces error in at most eight cycles when using 7-bit

lfsr and 128-bit streams. On a network level, using progressive loading only lowers accuracy

by 0.42% when using 32-bit streams and 0.16% when using 64-bit streams. Note that this

is a worst-case scenario where all input and weight streams are assumed to be generated

progressively. Any input or weight reuse in the architecture leads to fewer reloads.

96

a)

0 1 1 1 0 0 0 1
CMP

Load

Buf

RNG

0 1 1 1 0 0 0 1

…0110

Buf

RNG

Generate

b)

0 1

0 0 0 0 0 0

CMP
Load

Buf

RNG

0 1 0 0 0 0 0 0

…0110

Buf

RNG

Generate
1 1

Load

CMP

CMP

Figure 4.3: Normal SNG (a) and progressive stream generation (b).

4.3 Stochastic Computing Execution Optimizations

This section describes the overall GEO architecture and discusses a variety of microarchi-

tectural optimizations to improve performance and accuracy on GEO.

4.3.1 GEO Architecture

Before describing further execution optimizations, we will briefly explain the underlying

accelerator architecture. The GEO accelerator uses fully-stochastic computation, which can

easily be modified to support different levels of partial-binary accumulation. Further, it is

agnostic to the stream generation scheme and supports extensive RNG sharing. We will

now briefly describe the architecture functionality. GEO architecture is largely similar to

ACOUSTIC, except for the introduced optimizations.

Figure 4.4a) shows the block diagram of the accelerator. It uses separate weight and

activation memories, which are used to load their respective SNG buffers. Both weight and

activation memories are organized in 2 logical banks, supporting ping-pong operation. For

weights, this allows loading the next set of kernels from external memory, while the current

one is being processed. For activations, it enables loading activations while writing back

partial sums and outputs. Both sets of memories are sized accordingly to support such

97

operation.

Row 1

Row N

...

Weight

Memory 0

Activation SNG

Activation SNG Buffers
Act.

Mem.

Control

& Instruction

Memory

Pooling

 Counter

MAC Row

Weight SNG

Weight SNG Buffers

SC MAC Arrays

Partial-Binary Accumulation

Row 0

Weight

Memory 1

Weight

Memory N

Output

Conv.

Array

Subtract

OC

Output

Converter

Fixed Point

Values

Stochastc/

Partial Binary

Streams

87654321

87654321
'0'

b)

c)

a)

N-Mem

 Comp

Pipeline Stage

Activation Streams

Figure 4.4: Overall SC accelerator architecture block diagram. with breakdowns of the MAC

row (left) and output converter (right) modules (a). Fixed 8-bit maximum length LFSR (b),

and configurable 8- or 7-bit maximum length LFSR (c).

Once all required inputs and weights are loaded into the buffers, the stream generation

begins, and SNG outputs are fed directly into the compute engine. The compute is or-

ganized to maximize density while minimizing the conversion costs of stochastic streams.

It is logically partitioned into rows, where each row is responsible for one output channel.

This way, the same set of activations can be broadcasted across multiple rows, amortizing

activation stream generation costs. Within each row, the same set of weights is multiplied

with different sets of activations, emulating the convolutional sliding window. This way, the

architecture also achieves high levels of weight reuse.

Output streams of each row are passed to the output converter array, where individual

output converter modules convert them to a fixed-point format to accumulate the final

value into a counter. By using small, configurable parallel counters before the conversion,

the output converter array can add neighboring outputs, achieving average pooling with

computation skipping on layers followed by pooling operators as in [5]. Computation skipping

allows shorter streams on layers with pooling since average pooling adds multiple streams

in the fixed-point domain. Once the stream generation is finished and output values are

completely accumulated, they are passed through the near-memory batch normalization and

98

ReLU activation blocks before being written back to activation memory to serve as inputs

to the next layer.

4.3.2 Partial Binary Accumulation

As mentioned in Section 4.1, many recent SC works opt to perform accumulation in the fixed-

point domain, as it offers higher accuracy than SC-based addition [106, 107]. In contrast,

few others have tried implementing fully-stochastic accumulation to save costs. In contrast

to these two extremes, we propose to use partial SC-fixed-point accumulation, where the

first few levels of accumulation are implemented in SC using OR gates before converting the

intermediate results to fixed-point and adding them.

The partition between SC and fixed-point accumulation significantly affects both accu-

racy and performance. While using an approximate parallel counter (APC) [211] allows

one layer of SC accumulation before fixed-point accumulation, the combined use of AND

and OR makes it equivalent to multiplexers and is thus unsuitable for multiple layers of

accumulation. Using OR for addition with training allows an arbitrary trade-off between

SC and fixed-point domains. We tested model accuracy with different fixed-point accumu-

lation levels. Assuming weight filters are arranged into (Cin, H,W) dimensions, performing

fixed-point accumulation in the W dimension (PBW) improves accuracy by 4.5% and 9.4%

respectively for 128-bit and 32-bit streams compared to performing all accumulations using

OR. Extending fixed-point accumulation to H (PBHW) improves accuracy by < 0.5% but

increases the number of fixed-point adders by 5X for 5 × 5 filters.

Adding support for partial binary accumulation only requires replacing the last levels of

OR accumulation with a parallel counter. While the level of partial binary accumulation

is fixed at the design stage, it still allows for trading off precision with latency through SC

stream length configuration. Since partial binary accumulation fabric operates on a bitwise

basis, it is agnostic to the chosen stream length. Parallel counters in the average pooling

fabric in the output converters need to be adjusted to handle wider inputs. In Section 4.4,

99

we show that those changes have minimal impact on the overall architecture.

Figure 4.5 shows the overhead, in terms of area, of implementing SC-based MAC units

with a partial binary accumulation stages. We compare the full-or accumulation (SC), PBW,

PBHW, and fixed-point accumulation (FXP) configurations for different three-dimensional

kernel sizes. While area overhead of PBW and PBHW partial binary accumulation can be as

much as 1.4X and 4.5X for smaller kernels, the area increase goes down to 4% and 9% for large

ones. Implementing partial binary accumulation is, therefore, well suited for highly-parallel

SC architectures where such overheads would be negligible. Figure 4.5 also shows that

implementing complete binary accumulation can increase the area by more than five times

for most kernel sizes, emphasizing its performance limitation. While approximate parallel

counters [212] (APC) offers noticeable area benefits compared to fixed-point accumulators,

it is still more than 3X larger than PBW and PBHW for larger kernels. Given that PBW

is almost identical accuracy-wise, the rest of the paper uses PBW as the default unless

otherwise mentioned.

0.0

0.5

1.0

5x5x1 5x5x4 5x5x8 5x5x16

R
e

la
ti
v
e

 A
re

a

SC PBW PBHW APC FXP

Figure 4.5: Area comparison for different hardware implementations of SC-based MAC units

for different kernel sizes and different levels of partial binary accumulation.

Using partial binary accumulation increases the dynamic range of outputs. Since the

increase of output precision comes primarily from increased range, truncating activations

without factoring in the dynamic range diminishes partial binary accumulation benefits.

To deal with this, we use an 8-bit fixed-point version of batch normalization (BN) before

ReLU activation to minimize the cost of implementing it in hardware. While still potentially

expensive, BN offers 5.5-6.5% points accuracy improvement. For layers with pooling, pooling

100

is placed before ReLU activations so that BN can be performed on pooled activations.

4.3.3 Near-Memory Computation

Organizing the GEO accelerator compute hierarchy to mimic a vertically sliding convolu-

tional window means that it naturally yields to the weight-stationary dataflow [2]. While the

window iterates through the output tensor, weights can stay unchanged, and only a single

row of activations needs to be reloaded between each computational pass, therefore minimiz-

ing both weight and activation bandwidth requirements. Indeed, this dataflow choice reduces

the overall number of memory accesses by up to 3.3X compared to input-stationary, making

it the optimal choice in virtually every convolutional layer we have explored. However, this

is only true if a strict, weight-stationary implementation can be enforced. It requires that

the MAC units’ width and the corresponding number of SNGs are sized to fit the entire ac-

tivation tensor covered by a kernel in a given layer. This constraint guarantees that output

values can be generated during a single computational pass, without partial sums, effectively

“merging” weight- and output-stationary dataflows in one.

However, it is not uncommon in modern neural networks to find kernels with thousands

of weights, which cannot be fully unrolled without sacrificing a prohibitive amount of silicon

area. When that is not possible, the accelerator needs to store converted partial sums for

later accumulation. If the architecture does not support that, it has to implement a strict

output-stationary dataflow, accumulating output values in output conversion modules over

multiple passes, where both weights and activations need to be swapped between each pass.

Such dataflow can increase memory accesses by as much as 10.3X vs. ideal, weight-stationary

implementation. While progressive generation can alleviate such dataflow’s bandwidth re-

quirements to a degree, the steep energy cost of memory accesses remains.

One way to avoid being forced into such suboptimal dataflow is to couple output conver-

sion modules with small register files. However, the number of registers required will depend

on a particular layer - to support some of the very deep ones would require register files that

101

dwarf the size of conversion modules. At the same time, those register files would remain

mostly unused on the shallower layers. Instead, we propose implementing near-memory ac-

cumulation, where the activation memory is tightly coupled with an array of adders. We then

expand the GEO ISA to support a 2-cycle read-add-write vector instruction that can be used

to accumulate partial sums. Since partial sums are stored in large activation memory, there

is no need to size it for any specific network or layer.

There are two downsides w.r.t. to local register files. First, activation memory accesses

are much more energy costly than to local registers. However, in this dataflow, partial

sum accesses constitute only 13% to 20% of overall memory accesses, meaning they are

not critical to overall energy consumption. Second, additional accesses put more strain on

memory bandwidth. However, as we will show in Section 4.4, progressive shadow buffering

can alleviate this problem. We further expand this scheme to support near-memory batch

normalization through an array of fixed-point MAC units, tightly coupled with activation

memory.

4.3.4 Pipeline Optimizations

On top of the generation and execution optimizations listed above, the GEO accelerator

includes two microarchitectural enhancements. First, we supplement the progressive gen-

eration with shadow buffers. When current progressive values are fully loaded, a certain

number of bits can be loaded into the shadow buffers for the next computation. Thanks to

that, the following computation phase can begin immediately after the current one finishes,

since the minimum number of bits required, which in our case is two, is already available

in the shadow buffer. Without progressive generation, shadow buffers would need to be the

same size as the actual SNG buffers (i.e., 4X larger), incurring a significant area penalty.

The overhead of progressive shadow buffers is only about 4% at the whole accelerator level.

Second, we implement a pipeline stage within our compute engine between the SC and

partial-binary accumulation stages. This is because of a long critical path between the LFSR,

102

SNG, SC MAC, partial binary accumulation, and output counters. Implementing the pipeline

stage in that location allows us to cut down the critical path by over 30% while minimizing

the area required by additional flip-flops (<1% overhead on the accelerator level). Because

of the recovered timing slack, we can now reduce the operating voltage without lowering the

frequency to achieve better energy efficiency.

4.4 Evaluation & Results

4.4.1 Evaluation Methodology

We test accuracies on CIFAR-10, SVHN, and MNIST datasets. For CIFAR-10 and SVHN,

we use the same 4-layer CNN [95] (CNN-4) as in Section 4.3 and VGG-16 [1]. VGG-16

has the X/Y input dimensions of each layer downscaled, and the fully-connected layers are

reduced to FC-512 instead of FC-4096 to accommodate the smaller image sizes. For MNIST

we use LeNet-5 [152]. We use PyTorch 1.5.0 to train the models. We implement the forward

pass using both floating-point and simulated SC. Simulated SC is used to compute output

values, while the floating-point forward pass is used to guide backpropagation. With SC sim-

ulation’s speed limitations, we skipped training for more complex datasets (i.e., ImageNet)

due to the prohibitively long training time. Due to the use of floating-point for backpropa-

gation, GEO can only accelerate the inference of SC models. Models are trained using the

ADAM optimizer [153] with an initial learning rate of 2e-3, and accuracy is evaluated on the

corresponding testing dataset after 1000 epochs. Each model is trained with different stream

lengths using split-unipolar implementation and designated by two stream lengths {sp − s},

sp for layers with pooling and s for layers without it. While max pooling is possible, we use

average pooling with computation skipping to reduce stream length requirements for layers

with pooling. Output layers always use 128-bit streams due to their small performance im-

pact but noticeable accuracy benefits. The actual stream length used is double the specified

value due to the use of split-unipolar representation.

103

To estimate the area, power, and latency of the proposed design, we have written individ-

ual blocks (SNGs, MAC arrays, buffers, output converters) in Verilog and then synthesized

them using a commercial 28nm library. Memories were modeled using CACTI 6.5 [177].

For the LP variant described below, we consider the cost of external memory accesses, with

the bandwidth and access energy modeled after the HBM2 standard [213]. We used activity

factors obtained through RTL simulations to adjust active power numbers in synthesis (since

many modules, such as SNG buffers and batch normalization modules are idle most of the

time). To obtain accurate energy and latency estimates, we used a custom performance

simulator, which combines the numbers from individual modules with a compiled code rep-

resenting the given network model. Since the proposed enhancements are mostly agnostic of

the control flow, we use the ISA used by ACOUSTIC, with minor modifications. We create

two versions of GEO: ultra-low power (ULP) or low-power (LP) targeted at different area

points and network sizes. ULP has 25.6K MACs with total on-chip memory of 150KB, while

the LP variant has 294K MACs and 0.5MB of on-chip memory.

As a fixed-point baseline, we use Eyeriss [13], scaled to 4-bit or 8-bit precision and 28nm

node. The on-chip memory capacity and the number of processing elements are chosen to

achieve close to the iso-area comparison point with GEO. We simulate the execution of the

neural networks using [178]. For SC comparison points, we use the ACOUSTIC [5], Sign-

Magnitude SC (SM-SC) [109] and SCOPE [166]. ACOUSTIC configurations are sized to

have the same amount of memory and compute as GEO, and we use longer stream lengths to

maintain close to iso-accuracy with GEO. ACOUSTIC architecture configurations differ from

the original, but we use the same simulation framework, ensuring consistent results. We also

include activity factors in power estimation. SM-SC is not a fully programmable accelerator

making full comparison impossible. SCOPE is an in-memory, DRAM-based accelerator with

a massive area footprint, not well suited towards edge applications [166]. Unfortunately,

many recent works on SC neural network acceleration only report performance numbers for

the compute part while omitting the crucial impact of memory and dataflow, making it

104

impossible for us to compare on the system level. Numbers are scaled to the 28nm node

when necessary, using the models provided in [214]. We further compare GEO-ULP with

CONV-RAM [7] and MDL-CNN [6] mixed-signal accelerators.

4.4.2 GEO Accuracy Comparisons

Table 4.1 compares the accuracy of GEO with fixed-point and other SC implementations.

Eyeriss results are retrained at respective precision2. Results for other works are reported

from the respective papers. GEO offers 2.2-4.0% points better accuracy at quarter stream

length compared to ACOUSTIC and similar accuracy at the same stream length compared

to [109]. Both shared stream generation and partial binary accumulation contribute to

increased accuracy. For CNN-4 on SVHN with 32-64 stream length, dropping binary accu-

mulation lowers accuracy to 79.6%, while using TRNG on top of that drops it further to

73.7%. Compared to fixed-point, the accuracy with CNN-4 is comparable to 4-bit fixed-point

when using 32-64 setup on SVHN, but 4% lower on CIFAR-10 when using 32-64 and 1.9%

lower when using 64-1283. Accuracy with VGG-16 is 2.2% lower than the 8-bit fixed-point

on CIFAR-10 and comparable on SVHN. Accuracy on MNIST is already comparable to

fixed-point in the baseline, and GEO optimizations do not affect it. Compared to CONV-

RAM[7], an in-memory architecture and MDL-CNN[6], a time-domain architecture, GEO

offers superior accuracy even with 16-32 stream length.

4.4.3 Performance Impact of GEO Enhancements

We compare the baseline ULP architecture (without GEO optimizations and 16-bit LFSRs

to emulate TRNG) with two GEO variants:

2Original Eyeriss [13] was 16-bit with truncated accumulation, which suffers from substantial accuracy
loss at lower 4/8-bit precision. We assume full 16-bit accumulation bitwidth and, as a result, Eyeriss accuracy
results are somewhat optimistic.

3While intermediate accumulation results for Eyeriss are allowed to have double the input precision,
overflow may still happen and these results are optimistic

105

Table 4.1: Accuracy comparison with fixed-point, other SC implementations and so on.
Eyeriss ACOUSTIC GEO SCOPE[166] CONV-RAM[7] MDL-CNN[6] SM-SC[109]

Dataset Model 8-bit 4-bit 256 128 64-128 32-64 16-32 128 7a1w 4a1w 128

CIFAR-10
CNN-4 85.1% 82.1% 78.0% 74.9% 80.2% 78.1% —– —– —– —– 80%

VGG-16 90.9% —– —– —– 88.7% 88.7% —– —– —– —– —–

SVHN
CNN-4 93.3% 90.5% 89.0% 86.8% 91.9% 90.8% —– —– —– —– —–

VGG-16 96.2% —– —– —– 96.0% 95.9% —– —– —– —– —–

MNIST LeNet-5 —– 99.3% —– 99.3% —– 99.3% 98.9% 99.3% 96% 98.4% —–

• GEO-GEN-128,128 - uses the generation optimizations from Section 4.2. Progressive

shadow buffers are used in this configuration.

• GEO-GEN-EXEC-32,64 - uses both the generation and execution (from Section 4.3

optimizations. Further, it reduces the stream lengths being used to remain iso-accuracy

with other configurations.

The area, energy, and latency impacts of GEO optimizations on the ULP architecture

are shown in Figure 4.6. For energy and latency, we simulated the SVHN CNN inference on

each of those design points. Generation optimizations result in an overall 1% decrease in the

accelerator area, where an increase in the area due to progressive shadow buffers is balanced

by more extensive RNG sharing. At the same time, the use of progressive shadow buffers to

hide memory latency results in a 1.7X speedup and 1.6X reduction in energy. Energy savings

come mainly from SNG optimizations and reduced leakage.

Adding execution optimizations on top of the generation ones increases the area by 2%

w.r.t. to baseline. The impact of pipelining and partial binary accumulation is minimal

due to its limited application and an overall small contribution of the SC MAC array to

the overall area. Similarly, near-memory computation is well amortized because it is time

multiplexed. The combination of shorter stream lengths, more efficient dataflow enabled

by near-memory computation and pipelining coupled with DVFS results in 4.3X and 5.2X

reduction in latency and energy w.r.t. baseline.

106

0

0.2

0.4

0.6

0.8

1

Norm. Area Norm. Energy Norm. Area Norm. Energy Norm. Area Norm. Energy

Base-128,128 GEO-GEN-128,128 GEO-GEN-EXEC-32,64

SC MAC Arrays Act. SNG Act. SNG Buffers Wgt. SNG

Wgt. SNG Buffers Output Conv. Act. Memory Wgt. Memory Latency

Figure 4.6: Area, energy and latency for different GEO configurations (normalized to

Base-128,128).

4.4.4 GEO Performance Compared

Table 4.2 shows a comparison of the proposed GEO ULP accelerator with fixed-point and

mixed-signal approaches. First, we show that GEO-32,64 outperforms the 4-bit fixed-point

baseline in terms of throughput, by 2.7X, and energy efficiency, by 2.6X, in the same area.

It also outperforms ACOUSTIC-128, by 4.4X and 5.3X, respectively, while achieving higher

accuracy. It is also highly-competitive in terms of energy-efficiency with mixed-signal accel-

erators like Conv-RAM and MDL-CNN. We refrain from comparing the throughput against

those implementations due to the large area difference.

On the scale-out end of the spectrum, GEO LP outperforms iso-area, 8-bit Eyeriss by

5.6X in terms of throughput and 2.6X in terms of energy efficiency. Modest energy reduction

is caused by the high cost of external memory accesses - when those are omitted, GEO is

as much as 6.1X more energy-efficient than Eyeriss. It is also 2.4X faster and 1.6X more

energy efficient than ACOUSTIC while having higher inference accuracy. Despite occupying

only 3.3% of SCOPE area, GEO has nearly 24% of its peak throughput and has 2.4X better

energy efficiency.

107

Table 4.2: Comparison between GEO ULP and fixed-point and neuromorphic implementa-

tions. Numbers are scaled to 28nm.

Eyeriss GEO ULP Conv- MDL ACOUSTIC GEO ULP

4-bit -32,64 RAM CNN ULP-128 -16,32

[2] [7] [6] [5]

Voltage 0.9 0.81 0.9 0.537 0.9 0.81

Area [mm2] 0.59 0.58 0.02 0.06 0.57 0.58

Power [mW] 20 48 0.016 0.02 72 48

Clock [MHz] 400 400 364 25 400 400

Precision 4-bit — 6b/1b 8b/1b — —

CIFAR-10 Fr/s 5.2k 14k — — 3.2k 29k

CIFAR-10 Fr/J 115k 305k — — 57k 576k

LeNet5 CNN Fr/s 47k 520k 15k 1k 3.2k 780k

LeNet5 CNN Fr/J 790k 42M 40M 33.6M 57k 56M

Peak GOPS4 80 640 10.7 0.365 160 1280

Peak TOPS/W 4 13.3 44.2 18.2 2.22 26.6

4.5 Conclusion

In this Chapter we presented GEO, a generation and computation-optimized stochastic com-

puting architecture for neural network acceleration. We develop an ensemble of accuracy

improvement and energy/runtime improvement techniques. These optimizations improve

accuracy by 2.2-4.0% points compared to state-of-the-art SC-based accelerators while also

being 4.4X faster and 5.6X more energy efficient. GEO can compete with fixed-point im-

plementations with similar accuracy and area while delivering up to 5.6X throughput and

2.6X energy-efficiency gains. GEO, despite being an all-digital, programmable accelerator,

can achieve energy efficiency comparable to in-memory/mixed-signal accelerators.

108

Table 4.3: Comparison between GEO LP and fixed-point and SC implementations. Numbers

are scaled to 28nm.

Eyeriss GEO LP SM-SC SCOPE ACOUSTIC GEO LP

8-bit -64,128 LP-256 -32,64

[2] [109] [166] [5]

Voltage 0.9 0.81 0.9 — 0.9 0.81

Area [mm2] 9.3 9.2 — 273 9 9.2

Power [mW] 848 797 — — 1160 797

Clock [MHz] 400 400 1536 200 400 400

CIFAR-10 VGG Fr/s 555 3.1k — — 1.3k 5.2k

CIFAR-10 VGG Fr/J 618 1.6k — — 1k 2.2k

Peak GOPS 204 1.8k 1.7k 7.1k 460 3.6k

Peak TOPS/W 0.48 2.25 0.92 — 0.4 4.5

109

CHAPTER 5

SASCHA - Combining Randomness with Sparsity

ACOUSTIC, GEO, and other works have shown the potential of using stochastic comput-

ing for machine learning acceleration. Its high compute density, affinity with dense linear

algebra primitives, and approximation properties have an uncanny synergy with deep neural

network computational requirements. However, there is a conspicuous lack of work trying to

integrate SC hardware with sparsity awareness, that has brought significant performance im-

provements to conventional architectures. In this Chapter, we identify why popular sparsity-

exploiting techniques are not easily applicable to SC accelerators and propose a new archi-

tecture - SASCHA - Sparsity-Aware Stochastic Computing Hardware Architecture for neural

network acceleration that addresses those issues. SASCHA encompasses a set of techniques

that make utilizing sparsity in inference practical for different types of SC computation.

At 90% weight sparsity, SASCHA can be up to 6.5X faster and 5.5X more energy-efficient

than comparable dense SC accelerators with a similar area without sacrificing the dense

network throughput. SASCHA also outperforms sparse fixed-point accelerators by up to 4X

in terms of latency. To the best of our knowledge, SASCHA is the first stochastic computing

accelerator architecture oriented around sparsity.

Collaborators:

• Tianmu Li, Electrical and Computer Engineering, UCLA.

• Professor Puneet Gupta, Electrical and Computer Engineering, UCLA.

110

5.1 Introduction

New classes of machine learning mobile applications, like virtual assistants, translation, and

image recognition, continue to emerge, amplifying the demand for fast, efficient, and secure

inference [32, 33, 34]. Increasingly, this demand cannot be satisfied by offline, cloud-based

processing due to substantial and unpredictable network latencies, as well as privacy concerns

[32, 215]. To enable online machine learning, mobile devices increasingly incorporate custom

accelerators, broadly known as neural processing units, or NPUs [34]. Those devices are

deployed under strict area, power, and energy constraints.

To improve the throughput and energy efficiency, researchers have increasingly looked

into model compression methods, like quantization and pruning [35, 20, 21, 90], including

3PXNet presented in Chapter 2. At the same time, non-conventional computing methods,

like in-memory or stochastic computing, have also been gaining popularity [102, 197, 133].

Hardware support for some of those techniques has already made its way into commercially

available devices [216].

As demonstrated in Chapters 3 and 4, stochastic computing, in particular, is a promis-

ing approach to approximate computing acceleration, particularly for dense, compute-heavy

models like convolutional neural networks [10, 105, 64]. There is now a plethora of possible

SC flavors, spanning the accuracy-efficiency Pareto curve, depending on application require-

ments. However, there is a conspicuous lack of SC architectures trying to take advantage

of neural networks’ resilience to pruning [21], something that could enable further perfor-

mance improvements. To address this gap, we propose SASCHA - Sparsity-Aware Stochastic

Computing Hardware Architecture for Neural Network Acceleration. SASCHA consists of

computational unit design, accelerator architecture, and a scheduling method that improves

the efficiency of executing sparse neural networks using SC computation without sacrificing

high parallelism and data re-use opportunities.

The key contributions of this work are:

111

• We introduce the multi-group, parallel stream sparse SC SASCHA processing element

(PE), agnostic of underlying SC computation style, and perform a thorough evaluation

of its extensive design space.

• To the best of our knowledge, we propose the first stochastic computing neural network

accelerator architecture that takes advantage of parameter sparsity. SASCHA can

achieve up to 6.5X throughput and 5.5X energy efficiency improvement at 90% sparsity

level, compared to a dense SC accelerator with a similar area, while maintaining the

throughput and suffering only up to 31% energy efficiency in the dense case.

• We propose a weight bit-slicing technique using asymmetric streams unique to SC that

can extract weight sparsity even in dense networks, improving SASCHA throughput

and energy efficiency by up to 1.75X on unpruned networks.

The rest of this Chapter is organized as follows: Section 5.2 explains why conventional

approaches to exploiting sparsity are not easily applicable or beneficial in the case of SC

accelerators. Section 5.3 introduces the sparse SASCHA PE and explores its design space.

Section 5.4 describes the architecture of the SASCHA accelerator and its asynchronous sched-

uler. Section 5.5 discusses a bit-slicing method that can extract high effective sparsity in

unpruned networks. Section 5.6 shows the benefits of the SASCHA accelerator. Finally,

Section 5.7 summarizes related work.

5.2 Motivation

Given the recent popularity of stochastic computing and sparsity-aware accelerators, there

is a surprising lack of attempts to combine both approaches. This section explains why

taking advantage of sparsity in stochastic computing hardware cannot be tackled by the

same techniques as conventional, floating- or fixed-point accelerators.

Most common attempts to exploit sparsity in hardware rely on matching non-zero input

112

and weight values that need to be multiplied together to avoid ineffectual computations,

i.e., ones where at least one operand is zero [217, 218, 17, 219, 79, 126, 90, 220, 127]. To

avoid an issue where no non-zero operands are available, causing stalls and poor utilization,

larger staging buffers that can spatially or temporarily advance operands are frequently used

[217, 218, 17, 219]. While pre-trained weights can often be scheduled offline, simplifying the

hardware, exploiting input sparsity must be performed dynamically, incurring non-negligible

hardware overheads. For example, [219] increases the area of the compute core by 2.8-5.9x to

support sparsity compared to the dense baseline. In other approaches, matching is achieved

by calculating an intersection operation between input and weight values on an output-by-

output basis [79, 127, 220], or coupling custom dataflows with sparse storage format choices

[221, 222]. Those techniques can also incur significant overheads. For example, in [127], the

intersection calculation module is more than 10x larger than the compute. In [79], a large

crossbar network is required to route the outputs, exceeding the size of compute units by

more than 3X. Similarly, in [222], more than 95% of the processing element area is consumed

by the sorting queues.

For devices operating with conventional floating- or fixed-point values, high area and

energy cost of computation can justify such overheads. However, that is not the case in

SC-based architectures. As mentioned previously, conversion circuitry, including SNGs,

RNGs, and buffers, is frequently the dominant area and power contributor in SC accel-

erators. Analyzing the accelerator area breakdowns in [10], we can see that the SC MAC

arrays (multipliers and adders) occupy as little as 6% of the overall area, while the conversion

circuitry consumes 51%, with similar energy contributions. While the techniques mentioned

above could be applied to SNGs, the high spatial data reuse introduces an additional level

of complexity [5, 104, 105]. Commonly, thousands (or more) of multiply-accumulate opera-

tions can be scheduled concurrently, with individual operand streams being broadcast across

many multiplications in parallel. Therefore, a given operand could only be skipped if all

corresponding operands it is meant to be concurrently multiplied with are zeros. Such ex-

113

tensive reuse would limit ineffectual computation skipping opportunities and dramatically

increase the cost of already expensive dynamic intersection calculation, dwarfing low-cost SC

computation. Further, conventional sparse accelerators require complex sparsity detection

logic to improve the utilization of the limited number of their large and complex processing

elements [219]. SC’s high parallelism and low cost make underutilization less of a problem

compared to architectures with a limited number of large floating- or fixed-point PEs [5]. In

short, for SC architectures, detecting sparsity is more costly than ignoring it.

Taking advantage of sparsity in stochastic computing architectures by using conventional

approaches can, therefore, yield minimal benefits or could end up being detrimental. To

this end, we make a few guiding observations. First, any attempt at exploiting sparsity

should not compromise the high parallelism enabled by SC [5]. Therefore any approaches

requiring fine-granularity, dynamic scheduling, or other sources of hardware overheads are

highly undesirable. Particularly, individual, dynamic intersections between sparse weights

and activations are not compatible with spatial data reuse employed by SC. To this end,

whenever possible, we want the burden of exploiting sparsity to lie on the offline, static

side, so as not to introduce unnecessary hardware overheads. Because of that, we focus only

on the sparsity of weights, which are static, and known a priori, while keeping activations

dense. Second, explicitly avoiding the ineffectual SC computations, as opposed to floating-

or fixed-point ones has limited benefits and should not be the goal in itself. Instead, we

believe sparsity should be used to improve the dominant area and energy contributors in

SC-based architectures: memory and SNGs [5, 10].

5.3 SASCHA Sparse SC PE

5.3.1 Sparse PE Design Objectives

In this section, we outline the design of a sparse SC processing element, implementing a par-

allel dot product operation. Our PE is agnostic of the underlying style of SC computation.

114

To demonstrate that, we evaluate three implementations: split-unipolar AND-based multi-

plication with partial-binary OR-based accumulation used by GEO, modified GEO-style PE

with full binary accumulation, and the uMUL multiplier with binary accumulation proposed

by uGEMM [64]. We will refer to them as GEO-, GEO+- and uGEMM-style PEs, respec-

tively. Those PEs offer progressively higher precision at an increased area/power cost, as

discussed in Section 5.6. While full-binary accumulation refers to adding all individual bits

of SC multiplication results, preserving their full fidelity, partial-binary refers to performing

the first part of accumulation using streaming, OR-based adders for more compact area,

and the rest using binary accumulation [10]. Alternative SC computational components are

fundamentally compatible with SASCHA, but they are beyond the scope of this work.

Our goal is to design a sparse SC compute unit, given SC hardware peculiarities outlined

in Section 5.2. First, as explained in Section 5.2, our prime target for optimization is the cost

of converting the numbers between fixed-point and stochastic representations. Second, we

need to choose whether we should target weight or input sparsity. As explained in Section

5.2, we want to avoid any dynamic approaches that incur high hardware overheads relative to

cheap SC compute. Because of that, we avoid trying to exploit both weight, and activation

sparsity due to costly intersection calculations [79, 127, 126]. Even exploiting just activation

sparsity would require spatial and temporal operand advancement [217, 218] performed dy-

namically in hardware. Instead, we focus solely on the sparsity of network weights, which is

known a priori for inference accelerators and enables static, offline scheduling. It allows us

to exploit sparsity with minimal hardware changes that do not compromise SC density and

high spatial reuse.

5.3.2 G:C Sparse PE

Similar to [216], we exploit structural sparsity in weights. We believe this simple approach

is well suited to our requirements as a) it can be statically scheduled, b) it allows us to

reduce the overhead of stochastic number generation, c) it does not exploit or make any

115

assumptions about input sparsity, and d) does not require high multiplexing overheads, as

we will show shortly. However, we make three important distinctions between the sparse

compute units of [216] and our Sparse SC PE. First, we explore other sparsity structures - in

general, for every group of G parameters, we allow C non-zero ones. We will henceforth refer

to G as a group size and C as capacity. Second, where [216] can only accelerate networks

pruned to their exact sparsity structure, we design a scheduler capable of mapping networks

with arbitrary level and structure of sparsity onto the compute fabric built using sparse

PEs. Finally, we focus specifically on stochastic computing, which enables different design

trade-offs compared to conventional compute.

Figure 5.1: Sparse PE with group size G and capacity C (a). Decomposing 3 arbitrary

parameter groups of size G = 4, into groups satisfying the capacity requirement of C ≤ 2

(b).

116

A block diagram of a generic, i.e., supporting any format of underlying computation,

sparse PE with a group size G and capacity C is shown in Figure 5.1 a). It performs

a spatially parallel dot product operation between a dense vector of G activations and a

sparse vector of C weights and their corresponding indices. A weight’s index indicates its

position in the dense vector and is used to select an activation that needs to be multiplied by

the weight’s value. Compared to an equivalent dense PE, it requires G−C fewer multipliers

and adders, at the cost of C additional G : 1 multiplexers.

Using this PE is only possible when there is a guarantee that every group of G weights

contains only up to C non-zero ones. We refer to such groups as balanced. When the

balancing is enforced on the network parameters, as is the case with [216], with G = 4 and

C = 2, the computation can be scheduled in the same way as on hardware using dense PEs

while reducing storage and ineffectual operations. To schedule a network with an arbitrary

level and structure of sparsity, we can decompose any weight vector of size G to between 1

and ⌈G/C⌉ vectors. This is shown schematically in Figure 5.1 b), where three groups of size

G = 4 get decomposed into four balanced groups, each satisfying C ≤ 2. The decomposed

groups can then be scheduled on a sparse PE with G = 4 and C = 2. However, this

computation will require 33% longer runtime compared to a dense processing element. We

refer to the ratio of the number of decomposed to original weight groups as the iteration

overhead. The maximum iteration overhead for a given sparse PE configuration is ⌈G/C⌉. It

is one of the main metrics for evaluating the efficiency of different sparse PE configurations.

For simplicity, we restrict both G and C to be powers of 2.

A stochastic computing equivalent using GEO-style PE [10] is shown in Figure 5.2 a).

The main concern in the SC case is the overhead of additional conversion circuitry. We

implemented and synthesized a set of sparse SC PEs using a commercial TSMC 28nm library

and Cadence Genus synthesis tool to evaluate this. Figure 5.2 b) shows the breakdown of

a fixed-point and GEO SC sparse PE with G = 4 and C = 2, excluding input and output

buffers. While the fixed-point PE is dominated by the area of multipliers, in the SC one, the

117

Figure 5.2: Sparse GEO-style SC PE with group size G and capacity C (a). Split-Unipolar

[5] logic is omitted case for readability. Area breakdown of fixed-point (left) and GEO SC

(right) sparse PEs with G=4, and C=2 (b).

118

arithmetic occupies only about 2% of the area. While the conversion cost can be amortized

through input broadcasting and wider dot-products, it presents us with different optimization

priorities compared to a fixed-point sparse PE. We have also compared the area of sparse

SC PEs with different G and C, shown in Figure 5.3, for different styles of SC. For GEO-

style PEs with C < 8, the area of the sparse SC processing element is roughly equivalent

to half of the dense one, even for large group sizes. This reduction is because conversion

circuitry dominates the overall area, and the sparse SC PE structure eliminates roughly

half of the overall SNGs when C is small. uGEMM sparse PE shows much higher area

reduction compared to dense, due to the fact that weight buffers and SNGs are bundled

together with the multiplier, resulting in a larger size of a dense PE. The close coupling of

stream generation and computation is done for decorrelation purposes, resulting in higher

multiplication precision [64]. If the sparsity structure can be enforced, this area reduction

shows great potential for synergy between SC and sparse neural networks.

5.3.3 Multi-Group Sparse SC PE

Given the proposed sparse SC PE design, we need to choose the best G and C for a sparse

SC accelerator. There are three main considerations here. First, as mentioned above, is

minimizing the iteration overhead. We explore it in detail in Section 5.4. The second is

maximizing the hardware efficiency and amortizing SC conversion costs. SC accelerators

often employ highly parallel dot product units, ranging from 16 to hundreds of concurrent

MAC operations [5, 10, 64, 105]. High parallelism allows them to amortize the cost of

converting streams corresponding to partial sums back to fixed-point representation. From

this standpoint, using sparse PEs with large group sizes like 16 or 32 is desirable. However,

this is where the third consideration comes into play - storage compression efficiency.

While we focused our discussion on sparse computation until now, another benefit of

sparsity is reducing required storage - one of the main contributors to the area and energy

consumption of neural network accelerators [90, 2, 15], including SC ones, [5, 10]. Sparse

119

5 10 15 20 25 30

Group Size

1.0k

2.0k

A
re
a
[u
m

2
]

a)

Dense
C = 1

C = 2
C = 4

C = 8
C = 16

5 10 15 20 25 30

Group Size

1.0k

2.0k

A
re
a
[u
m

2
]

b)

5 10 15 20 25 30

Group Size

1.0k

2.0k

3.0k

A
re
a
[u
m

2
]

c)

Figure 5.3: Area of sparse and dense SC PEs, given different group sizes and capacities, for

GEO (a), GEO with full binary accumulation (b), and uGEMM (c) style SC.

accelerators often employ compressed memory formats like compressed sparse row (CSR) to

reduce storage and throughput requirements [17, 220, 218, 222]. In this work, we explore

a simple compression scheme, where each weight is coupled with an index indicating its

position in the group. The group’s relative position in a given filter is then handled by the

scheduler as described in Section 5.4. While more efficient compression schemes may be

available, they are beyond the scope of this work.

The index size is determined by the group size G and is equal to log2(G). Since indices

are required on a per-value basis, they are independent of C. Larger group sizes will therefore

incur higher indexing overheads. Figure 5.4 shows storage compression, the ratio between

the memory required for storing all dense weights and storing only the sparse weights and

120

their indices. It is an ideal case, where we assume only the sparse weights are stored, and

there are no additional overheads, for example, coming from alignment requirements. Using

a group size of 64 requires 1.44X more storage than a group size of 2. At a sparsity level

of 90%, this translates to 5.7X and 8.9X compression for G = 64 and G = 2, respectively.

More importantly, when running a dense network, going from a group size of 2 to 64 reduces

compression from 0.89X to 0.57X. We want SASCHA to be flexible and support networks

with different sparsity levels with high efficiency, even in the dense case. Because of that,

large group sizes are highly undesirable.

Figure 5.4: Ideal ratio of dense to sparse storage cost for different PE group sizes, and

sparsity levels. Gray line shows the break-even point between sparse and dense storage.

However, there is a way of implementing wide SC dot products while maintaining better

compression ratios enabled by smaller group sizes. Until now, we have only considered dot

products consisting of a single group, referred to as single-group sparse SC PEs. Alterna-

tively, we can construct a wide dot product using multiple smaller PEs. For example, a

dot product of width K = 32 can be constructed using L = 4 PEs with G = 8 or eight

with G = 4. We refer to those as multi-group sparse SC PEs, where the number of groups

L is equal to K/G. An example of single- and throughput-equivalent, multi-group, sparse

processing element with L groups is shown in Figure 5.5 a) and b), respectively. They are

not strictly equivalent because the sparsity structure required for the multi-group PE is more

restrictive - the capacity is now uniformly distributed among individual groups instead of

121

the whole dot product width.

Figure 5.5: Single-group sparse PE with a group size G, capacity C and dot product width

K (a), and a throughput-equivalent multi-group sparse PE with L groups.

5.3.4 SASCHA PE Analytical Model

While the sparse SC PE is expected to be more area and energy-efficient than the dense one

when weight groups are balanced, i.e., highly sparse, the opposite will happen when running

a dense network. In the worst-case scenario, iteration overhead will cause a ⌈G/C⌉ times

longer runtime when the same number of dense and sparse PEs is used. To evaluate potential

benefits at different sparsity levels, we develop a simple analytical SASCHA PE iteration

overhead model. For simplicity, we assume that sparsity is uniformly distributed among

weights. The iteration overhead of a multi-group sparse PE of size K, with L = K/G groups,

will be determined by the group with the largest number of non-zero weights. Therefore we

want to find out the expected maximum number of non-zero values in a group of size G

122

across L groups. For a group of size G, the probability of having O non-zero weights given

sparsity S is:

PNZ=O =

(
G

O

)
(1 − S)OSG−O (5.1)

Where S ∈ ⟨0, 1⟩ indicates the ratio of zero weights to all weights. Probability that across

L groups of size G, one or more have O non-zero values, and non have more than O:

PLGO =
L∑
i=1

(
L

i

)
P i
NZ=OP

L−i
NZ<O (5.2)

Where PNZ<O is the probability that a group of size G has fewer than O non-zero values:

PNZ<O =
O−1∑
i=1

(
G

i

)
(1 − S)iSG−i (5.3)

The average maximum number of non-zero values A across L groups of size G is therefore:

A =
G∑
i=0

iPLGi (5.4)

And the expected iteration overhead I, given group capacity C is:

I =
A

C
(5.5)

In our model, we assume that dot products where all weights are zero can be skipped

entirely in the sparse PE example, as explained in Section 5.4. This behavior allows the

iteration overhead to become less than 1. We used the above model to estimate iteration

overheads of a multi-group sparse SC PE of width K = 16 at different group sizes, capacities,

and sparsity levels. Results, normalized by the area, are shown in Figure 5.6 a), with a

reference line showing the latency break-even point compared to a dense PE with the same

K. It shows that configurations with larger group sizes are not as efficient at low sparsity

123

levels but much better on highly sparse networks. For example, while sparse PE with G = 8

and C = 1 is on average 22% slower than the one with G = 2 and C = 1 at sparsity below

40%, it is on average 63% faster at higher sparsity levels. Further, increasing the capacity

is an efficient way of improving the throughput: PE with a group size of 8 and capacity of

4 is, on average, 32% faster than the one with a capacity of 1 when normalized to the area.

Based on those results, we will opt for larger group sizes, e.g., 4 and 8, compared to smaller

ones.

Figure 5.6 b) compares the iteration overhead obtained through the model with the

one obtained using an ideal scheduler described in Section 5.4 on the CIFAR-10 TinyConv

network, for a PE with G = 4. Our model achieves a 0.996 correlation with the scheduler

results, which justifies our choice of modeling weight sparsity using a uniform distribution.

While our design could be optimized better towards forms of structured pruning, we want

SASCHA to be flexible enough to handle any form of unstructured sparsity without putting

the burden on machine learning researchers to conform to the underlying hardware. Using

capacity > 1 seems like an obvious choice given its area-throughput benefits. This insight

might explain the configuration chosen by [216] since the above analytical model is also

applicable to fixed-point PEs. However, we will now discuss an alternative way of improving

the throughput of sparse PEs that is unique to SC, and enables yet another design axis to

explore.

5.3.5 Parallel Stream Processing

As Figure 5.3 shows, sparse SC PEs can be as much as 2.7X smaller than dense ones. The

straightforward way of using this area advantage to increase the throughput is by packing

more PEs in the same area. Unfortunately, in the case of sparse SC computation, this

approach would yield only limited improvement. As shown in Figure 5.6, depending on the

group size and capacity, iteration overheads can be as high as 4 or 8 times. Doubling, or

tripling, the number of PEs would not be enough to compensate for it. Another way, as shown

124

Figure 5.6: Multi-group K = 16 sparse SC PE iteration overheads normalized to dense

PE area (GEO-style), for different group size G and capacity C, at different sparsity levels,

estimated using the analytical model (a). Gray line shows the latency break-even point with

a dense PE. Iteration overhead difference between the model and an ideal scheduler described

in Section 5.4 on the CIFAR-10 TinyConv network, for a PE with G = 4 (b).

in the previous subsection, is to increase the capacity, which shows a good area-throughput

trade-off.

However, stochastic computing provides us with another option for increasing the compu-

tation throughput. Until now, we assumed that stochastic streams are processed sequentially

- one bit at a time. However, by using multiple SNGs, multipliers, and adders per weight,

the computation can be parallelized by a varying degree, cutting down the stream processing

time and improving throughput [223, 224]. An example of a sparse SC PE with group size

G, capacity C = 1, and P = 2 parallel streams is shown in Figure 5.7. Stream parallelism

factor P can be varied to improve the throughput at the cost of additional area. This area-

throughput trade-off space is unique to SC and not applicable to conventional fixed- and

125

floating-point architectures, except for bit-serial ones [219, 19].

Figure 5.7: Sparse SC PE with group size G, capacity C = 1, and P = 2 parallel streams.

Split-unipolar accumulation fabric is omitted for readability.

If it is possible to apply parallel stream processing to sparse SC PEs to improve their

throughput, the same technique could be applied to dense ones. However, the cost of in-

creasing the stream parallelism is much higher for the dense PEs. Figure 5.8 shows the

area of a 32x32 array of K = 32 PEs for dense and sparse PEs with different group sizes.

Capacity is fixed at 1. Buffers, SNGs, and output counters are included. The area of the

dense compute grows at a much faster rate with P than the sparse ones because the dense

implementation requires many more SNGs, LFSRs, and compute units than sparse ones.

For example, the GEO-style array with G = 2, C = 1, and P = 2 is only 5% larger than

the dense one with P = 1 while providing the same throughput in the dense case. Dense

implementation with parallel streams scales especially poorly for the uGEMM-style imple-

mentation, where each parallel stream path requires a local decorrelating SNG. Because of

that sparse uGEMM-style arrays are significantly smaller, up to 9.5X.

From now on, we will refer to the multi-group, parallel-stream sparse SC PE as SASCHA

PE. SASCHA PE can be uniquely identified by a set of parameters K,G,C, P , where K is

the dot product size, G is the group size, C is the capacity, and P is the stream parallelism

factor. We will restrict our evaluation to group sizes of 8 and smaller, which guarantees high

126

2 4 6 8

Stream Parallelism P

0.5

0.8

A
re
a
[m

m
2
]

a)

Dense
G = 2

G = 4
G = 8

2 4 6 8

Stream Parallelism P

0.5

1.0

A
re
a
[m

m
2
]

b)

2 4 6 8

Stream Parallelism P

0.0

10.0

A
re
a
[m

m
2
]

c)

Figure 5.8: Total area of a 32x32 array of K = 32 GEO (a), GEO+ (b) and uGEMM

(c) PEs, dense and sparse, with different stream parallelism factors. C = 1 for all sparse

configurations.

storage compression ratios. To further restrict the design space, we will use SASCHA PEs

with PC/G = 1.

5.4 SASCHA Architecture

5.4.1 SASCHA Accelerator

SASCHA accelerator block diagram is shown in Figure 5.9. It uses a highly parallel PE

array similar to [64] and [224]. It relies on broadcasting and spatial data reuse, where all

127

PEs in the same row share the same set of weights, and all PEs in the same column share

the same set of activations. As explained in [64], this structure is uniquely suited for SC

computation given small PE sizes and low wire congestion, as opposed to conventional fixed-

and floating-point computation. The major distinction in our architecture is the use of

SASCHA PEs, instead of dense processing units, using a sparse weight storage format and

additional indexing and circuitry required to support asynchronous scheduling, as described

below. We refer to the number of rows as M , the number of columns as N , and the dot

product width as K. Each of the M rows operates on a set of CK/G weights (WGT), their

corresponding indices (IDXW), and the parent filter index (IDXF). The latter is needed to

support asynchronous scheduling as described in Section 5.4.2. Apart from SASCHA PEs, it

contains a weight memory and PCK/G SNGs for parallel stream generation and merger units

required for asynchronous scheduling. All N columns share the activation memory, which

is organized as a ping-pong buffer [225] to facilitate simultaneous input reads and output

writes. Similarly to [10], we use a near-memory vector unit to handle additional partial sum

accumulation, batch normalization, scaling, and activation functions. We assume the use of

ReLU activation, but the vector unit could be modified to support different ones.

The architecture in [64] focuses on accelerating general matrix multiplication (GEMM)

operations, which can be used to implement both fully-connected and convolutional layers in

neural networks. Since those two layer types frequently consume > 90% of inference runtime

[226], optimizing the efficiency of GEMM computation is highly desirable. However, while

fully-connected layers yield themselves to GEMM representations naturally, convolutional

layers need to be transformed. There are two common ways of doing that: image to column

(im2col) and kernel to row (kn2row) [227]. In most cases, the latter is desirable, as it does

not result in the input replication required by im2col. On the other hand, kn2row can result

in compute underutilization on layers with a small number of input channels, Z [227]. For

our SASCHA architecture and scheduler, we implement layers that satisfy Z < K using

im2col to maintain high utilization, while layers that satisfy Z ≥ K using kn2row. In both

128

Figure 5.9: SASCHA accelerator architecture block diagram. Partial sum output connections

were omitted for readability.

129

scenarios, filters are partitioned into partial filters whose sizes match the dot product width

K. Partial filters that come from different parent filters, but correspond to the same spatial

extents, can be scheduled concurrently in multiple rows of the SASCHA array as they can be

multiplied with the same sets of inputs, producing partial sums corresponding to the same

row and column in the output tensor.

5.4.2 SASCHA Asynchronous Scheduler

We now discuss the strategy for scheduling computation in a SASCHA architecture defined

by M,N,K,G,C, and P parameters. Naively, after performing im2col or kn2row unrolling,

we can assign each partial filter to a specific row in the array and co-schedule M partial

filters at a time. For the dense architecture, an example schedule of five partial filters, each

with K = 4, using an architecture with M = 4 rows, is shown in Figure 5.10 a). We refer to

this as dense synchronous scheduling since the execution of each group of M partial filters

has to be synchronized. However, in the SASCHA case, as shown in Figure 5.1 c), depending

on the level and structure of sparsity, as well as K,G, and C parameters, a given partial filter

can be decomposed into a different number of balanced groups. If multiple partial filters are

scheduled synchronously, their overall execution time will be constrained by the one with

the lowest sparsity, as shown in Figure 5.10 b), for K = G = 4, and C = 1 referred to as

sparse synchronous scheduling. In this toy example, synchronous scheduling leads to I = 2

iteration overhead (assuming P = 1) and 50% compute underutilization.

We propose the SASCHA sparse asynchronous scheduling to improve scheduling effi-

ciency. In essence, while the sparse synchronous approach operates on partial filters before

decomposition into balanced groups, the SASCHA asynchronous scheduler works with in-

dividual balanced groups after decomposition. For all partial filters that correspond to the

same spatial subset of original filters, their decomposed balanced groups are combined into a

single list. The list elements are then sequentially scheduled onto available rows while keeping

track of which partial filter they belonged to initially. The resulting SASCHA asynchronous

130

Figure 5.10: Three schedules of 5 partial filters, with K = G = 4 and C = 1, on an

architecture with M = 4 rows: dense synchronous (a), sparse synchronous (b) and sparse

asynchronous (c). Crossed out boxed indicate compute underutilization.

schedule for the same set of partial filters as before is shown in Figure 5.10, resulting in the

same iteration count as the dense schedule and 100% utilization. Using the asynchronous

scheduler comes at the cost of additional storage. Each balanced group now needs to carry

information about which parent filter it belongs to so that it can be written to the correct

location in memory. However, we estimate this penalty to be modest - the worst-case over-

head, given K = 32 and G = 8, would be 30%, while for G = 2, it would be below 10%. The

resulting compressed weight storage format is shown in Figure 5.9. Weight bank word size

will depend on G,K,C parameters, but since those are dictated by PE configuration and

131

fixed for a given SASCHA implementation, weight memory width can be explicitly provi-

sioned for it. We assume a 10-bit parent filter index, allowing us to index up to 1024 filters,

which is enough for commonly used neural network models.

We have implemented both the sparse synchronous and asynchronous schedulers in soft-

ware. They take as an input a trained network and SASCHA configuration and output

iteration counts. The asynchronous scheduler cannot guarantee perfect utilization if the

total number of balanced groups corresponding to a set of partial filters is not divisible by

M . To assess the effectiveness of the asynchronous scheduler, we also consider the ideal

scheduler, which is the asynchronous scheduler for a single row that can always be perfectly

utilized. Combined results for all three schedulers for the convolutional layers of the CIFAR-

10 TinyConv network [95], using a N = 32,M = 32, K = 32 SASCHA array with different

group sizes are shown in Figure 5.11 a). All configurations have C = 1 and CP/G = 1

(iso-throughput PEs). When parallel streams are used to compensate for the loss of MAC

throughput, larger group sizes are better at converting sparsity into lower iteration overhead.

Using a group size of 8 has, on average, 1.3X and 1.6X lower iteration overhead than when

using group sizes of 4 and 2, respectively. With G = 8, iteration overhead starts decreasing

at as low as 10% sparsity, while G = 4 and G = 2 require sparsity of at least 40% and 70%

to start showing benefits. In the best case of G = 8, our asynchronous scheduler has on

average 1.4X lower iteration overhead than the sparse synchronous one, up to 2.2X at 90%

sparsity. It is also, on average, within 11% of the ideal scheduler.

Figure 5.11 b) compares the iteration overhead with different group sizes and capacities

while maintaining CP/G = 1 when using the asynchronous scheduler. It shows that using

parallel stream processing is a more efficient way of using the additional area than increasing

the capacity. SASCHA with G = 8, C = 1, P = 8 is on average 1.2X and 1.46X faster

than C = 2, P = 4 and C = 4, P = 2 configurations, respectively. For group size of 4,

C = 1, P = 4 is on average 1.15X faster than C = 2, P = 2. This conclusion is unique to SC

- conventional fixed- and floating-point accelerators do not have access to stream parallelism

132

design trade-offs. Therefore, we will focus on configurations with C = 1 and P = G as the

optimal SASCHA PE choices.

Figure 5.11: Iteration overhead using different sparse scheduling methods (a) and different

group sizes and capacity using the sparse asynchronous scheduler (b).

5.4.3 Memory Organization

While beneficial from the point of view of runtime, using the asynchronous scheduler comes

at a cost. Synchronous scheduling allows the simple combining of partial sums from different

balanced groups corresponding to the same partial filter, as they are assigned sequentially

to the same row, as shown in Figure 5.10 b). It means that individual balanced groups

do not generate multiple partial sum memory accesses, which can be very costly. For the

133

asynchronous scheduler, partial filters can now be distributed across multiple rows, making

such combining non-trivial. To avoid generating unnecessary memory accesses, we implement

merging logic on the datapath used for flushing partial sums out of the PE array, as shown

in Figure 5.9. By having parent filter indices (IDXF) associated with partial sums, those

corresponding to the same parent filter can be accumulated when being flushed out of the

array and before being written back to activation memory.

We used our scheduler to model the number of memory accesses for activations, weights,

and partial sums, for dense and sparse architectures using different schedulers and dataflows.

Results of the convolutional layers of the CIFAR-10 TinyConv network, at 90% sparsity, are

shown in Figure 5.12. Output stationary dataflow is impossible when using the asynchronous

scheduler due to balanced groups belonging to the same parent filter being potentially dis-

tributed across different PE units. Input stationary dataflow is, therefore, the best choice of

the dataflow for the SASCHA asynchronous scheduler, cutting down the number of memory

accesses by 18% compared to weight stationary at high sparsity levels. It is also within 7%

and 13% of the best achievable dataflow for dense and synchronous scheduling, respectively.

5.5 Bit-Slicing Weights

While SASCHA architecture, discussed in the previous Section, shows high latency improve-

ments on sparse networks, it can, at most, maintain the same throughput when running dense

ones. In this Section, we show how higher effective sparsity and more efficient hardware can

be extracted by exploiting intra-value sparsity of unpruned weights through bit-slicing. By

bit-slicing, we mean decomposing weights into smaller slices and processing them individu-

ally, then scaling the results depending on the LSB position of a given slice. For example,

two-way slicing involves splitting the fixed-point weight value into equally sized MSB and

LSB slices, multiplying them individually with each corresponding activation, scaling the

MSB result, and adding both. A similar technique has been proposed in the context of SC

134

Figure 5.12: Number of memory accesses in bytes for the convolutional layers of CIFAR-10

TinyConv network at 90% sparsity, depending on the choice of scheduling and dataflow. All

results for M = 32, N = 32, and K = 32. Sparse results for G = 8, C = 1, and P = 8.

in [224]. However, it is used only as a means of reducing the computation stream length

and not exploiting additional operand sparsity. For SASCHA, we assume an equal split

between the number of most significant and least significant bits. While other split sizes and

granularities are possible, their analysis is beyond the scope of this work.

The idea behind improving sparsity with bit-slicing comes from the observation that if we

divide a set of values into bit-slices, the resulting sparsity, i.e., the percentage of slices that

are completely zero, will be at worst the same and at best higher than sparsity of non-sliced

values. Given that weights in neural networks exhibit zero-centered bell-shaped distributions,

we would expect the sparsity of MSB bit-slices to be even higher. To verify this, we evaluated

the overall, MSB, and LSB sparsity in the convolutional layers of the CIFAR-10 TinyConv

network at different network pruning levels. Results are shown in Figure 5.13 a). We can

see that even for the unpruned networks, MSB slices exhibit very high sparsity - 64%. While

the high MSB sparsity could help when processing dense networks, we expect the benefits

to be minuscule at high sparsity levels - the MSB and LSB sparsity of the network pruned

135

to 90% is 90% and 90.1% respectively, meaning there is not a lot of additional computation

savings available.

0.0 0.2 0.4 0.6 0.8

Pruning Level

0.25

0.50

0.75

S
p
a
rs
it
y

a)

Overall
MSB
LSB

0 0.6 0.9

Pruning Level

0

2

C
o
m
p
u
ta
ti
o
n
R
ed
u
ct
io
n

b)
Fixed-Point
SC

Figure 5.13: Overall, MSB and LSB sparsity for (a) and reduction in sliced multiplication

area x delay cost relative to non-sliced cost for SC and fixed-point (b), at different pruning

levels for CIFAR-10 TinyConv.

We assume that only one of the operands, weight, is sliced, as we mainly care about

extracting more sparsity on the weight side. In a naive implementation, where each slice is

computed with the native stream length, e.g., 64, this would lead to a minuscule runtime

reduction at best since most of the LSB slices are not sparse. However, we can capitalize on

the fact that the MSB slice contribution to computation will be much higher than the LSB

one. By computing the MSB part with the original stream length, e.g., 64, and the LSB

part with a shorter one, e.g., 8, and then scaling the LSB result and adding it to the MSB

one, we can approximate the original result. We refer to this as asymmetric-stream slicing,

136

as opposed to prior works which used symmetric stream lengths [224]. The comparison of

non-sliced and sliced unipolar multiplication is shown schematically in Figure 5.14 a) and

b), respectively. As can be seen, when using sliced operands, the size of the SNG and its

buffers can be reduced, which improves the area.

Figure 5.14: SC unipolar multiplication a), and sliced multiplication b).

The slicing technique is also applicable to fixed-point computation. However, while in

the fixed-point case it would result in the same precision used for both the MSB and LSB

parts, SC makes asymmetric precision possible. In terms of the area-delay product cost of a

multiplier, 4-bit MSB/LSB slicing results in a 2.24X reduction for each of the parts compared

to a regular multiplier. Assuming 64-bit long MSB streams and 8-bit long LSB streams in the

SC case, there is no reduction in the cost for the MSB part, but there is an 8X cost reduction

in the LSB part. When considering the sparsity levels of each part in Figure 5.13 a), we see

that at low pruning levels the number of LSB slice multiplications dominate, and we expect

the asymmetric SC precision to give us higher benefits than symmetric fixed-point slicing.

To evaluate this hypothesis, we multiplied the proportion of non-zero MSB and LSB slices

137

by their area-delay cost reduction factors when slicing and combined the results to show

an overall ideal reduction in multiplication cost. Results, normalized to the ideal non-sliced

sparsity computation reduction, are shown in Figure 5.13 b). For low and moderate levels

of pruning SC slicing achieves higher cost reduction than fixed-point one - 2.6X on average,

compared to 1.8X, respectively. While not as effective at high sparsity levels, asymmetric

precision of slicing allows us to show improvement even at low sparsity levels, as shown in

Section 5.6.

There is a concern about how slicing will affect computation precision. To evaluate that,

we analyzed the root mean square error (RMSE) of stochastic unipolar multiplication in

both the non-slicing and slicing scenarios using the same stream lengths as shown in Figure

5.14. The operands are drawn from activation and weight distributions of the CIFAR-10

TinyConv model, where weight distribution is used for the sliced operand. The average

RMSE across 1000 trials is shown in Table 5.1, and the sliced multiplication error is within

30% of the non-sliced one. We will discuss network-level accuracy and performance impact

of slicing in Section 5.6.

Table 5.1: RMSE of unipolar multiplication with and without bit-slicing, w.r.t. floating-point

precision, for different stream lengths (1000 trials). LSB stream length is 8.

Stream Length 16 32 64 128 256

RMSE No Slicing 4.49 3.14 2.26 1.531 0.98

With Slicing 4.97 3.28 2.78 1.867 1.31

To summarize, bit-slicing allows us to expose higher levels of sparsity present in weights

to SASCHA compute. By utilizing the asymmetric sparsity of MSB and LSB slices, lower

relative precision required for the latter, and SC’s unique precision-latency trade-off space,

bit-slicing enables SASCHA to show performance improvements even on dense networks,

as shown in Section 5.6. Bit-slicing can be handled natively by SASCHA at the cost of

138

underutilizing the sparse storage and SNG buffers (provisioned for 8-bit values). However,

for completeness’ sake, we also evaluate the SASCHA-S variant, which is dedicated to weight-

sliced networks, by having reduced weight storage and SNG buffers. From the scheduler’s

point of view, each sliced part can be treated as a separate layer. The outputs of those layers

are then scaled and added element-wise.

5.6 Evaluation & Results

5.6.1 SASCHA Accuracy

All models are trained using PyTorch. The training setup is similar to the one used in

[10], but with added layer-wise magnitude-based pruning. TinyConv, VGG-11 and VGG-16

[1] are trained on the CIFAR-10 dataset, and ResNet-18 and -34 are trained on ImageNet

dataset. The fully-connected layers of VGG-16 are reduced to 512 to accommodate the small

CIFAR-10 dataset. All models are trained with 64-bit streams. Bit-slicing has little effect

on accuracy on VGG-11, and the accuracy with and without bit-slicing differs by less than

0.7%, as shown in Figure 5.15.

82.0%

84.0%

86.0%

88.0%

90.0%

0% 20% 40% 60% 80%

A
cc
u
ra
cy

Sparsity

64
64+slicing

Figure 5.15: Accuracy of CIFAR-10 VGG-11 with different sparsity levels. 0% sparsity

means no sparsity constraint.

Figure 5.16 summarizes the results on CIFAR-10. Compared to GEO and ACOUSTIC,

139

which also use OR accumulation, accuracy has been improved by switching the order of

ReLU, pooling, and batch normalization (bn). While previous works use pooling-bn-ReLU

order to achieve spatial pooling, SASCHA does not have the same constraint and can use the

more optimal bn-ReLU-pooling. This change improves accuracy by 2% for both TinyConv

and VGG-16 on CIFAR-10. Due to its small size, TinyConv is less resilient to sparsity. At

60% sparsity, accuracy drops by 0.3-0.8%. Accuracy drop using VGG-16 is milder, with no

noticeable drop in accuracy when using 60% sparsity and ≈ 4.5% using 90% sparsity. While

slicing reduces accuracy when the models are dense, the accuracy gap reduces with increased

sparsity. While the gap is 1-1.7% for the dense models, the gap is negligible or even reverses

at maximal sparsity usable for each model.

75%

80%

85%

90%

95%

TinyConv with

Slicing

TinyConv without

Slicing

VGG-16 with

Slicing

VGG-16 without

slicing

A
cc

u
ra

cy

8-bit fixed-point GEO 0% sparsity GEO 60% sparsity GEO 90% sparsity

Figure 5.16: SASCHA CIFAR-10 Top-1 accuracy with dense and sparse networks.

Figure 5.17 summarizes the results of Resnet-18 and Resnet-34 on ImageNet. We use a

higher accuracy version of stochastic computing, denoted as GEO+. In GEO+, full binary

accumulation replaces partial binary accumulation, eliminating OR accumulation. Since only

inputs within the same OR accumulation window require different seeds, all multiplications

can use the same seed pair. We further improve the multiplication accuracy by choosing the

seed pair that produces the lowest error. With this modification, SASCHA achieves com-

parable accuracy to 8-bit fixed-point throughout different sparsity levels. Because uGEMM

achieves accuracy comparable to 8-bit fixed-point without retraining, as reported by [64], we

140

expect it will behave similarly with pruning. Since no efficient stream simulation functions

are available for uGEMM, we have not trained it separately.

65%
70%
75%
80%
85%

90%
95%

Resnet-18

0% sparsity

Resnet-18

80% sparsity

Resnet-18

90% sparsity

Resnet-34

0% sparsity

Resnet-34

80% sparsity

Resnet-34

90% sparsity

A
cc

u
ra

cy

8-bit fixed-point GEO+

Figure 5.17: SASCHA ImageNet Top-5 accuracy with dense and sparse networks.

5.6.2 Performance Results

To evaluate SASCHA performance, we implement the entire GEMM array, including indi-

vidual components such as SASCHA PEs, SNGs, LFSRs, merge blocks, vector unit, and the

necessary glue logic using Verilog HDL, and synthesize them using TSMC 28nm library and

Cadence Genus synthesis tool, at 400MHz clock frequency. We use the results to estimate

overall area, power, and energy consumption of different SASCHA configurations. We use

the scheduler described in Section 5.4 to estimate runtime and memory accesses required

for different networks and levels of sparsity. We use the CACTI tool to estimate the cost of

memory accesses [177]. To demonstrate how SASCHA is agnostic to the underlying style of

SC computation, we evaluate three configurations: SASCHA-GEO, -GEO+, and -uGEMM,

using the PEs as described in Section 5.3.

We compare SASCHA to GEO ULP [10], which uses the same underlying computation

as SASCHA-GEO but is optimized towards convolutional layers. We use the same simulator

as described in [10] to estimate performance. Also, for each of the SASCHA versions, we

compare it with a corresponding dense version, with the same number of PEs, and no

141

stream parallelism, referred to as GEMM-GEO, -GEO+, and -uGEMM. The last one is

very similar to the original uGEMM architecture [64] but uses binary instead of streaming

accumulation. To keep the results consistent with uGEMM, we only report the logic area

without including memories. For a comparison with sparse fixed-point accelerators, we use

SCNN [79] and Laconic [122]. For a fair comparison with SASCHA, we omitted the area of

on-chip memories, based on the area breakdowns provided by the original works, and scaled

the area of compute and buffers to account for the change in precision from 16 to 8 bits. We

also scaled the technology node to 28nm using the scaling equations provided in [214]. We

then configured the number of each accelerator’s PEs to roughly match the area of SASCHA.

We refer to those configurations as SCNN-M and Laconic-M, respectively. Their execution

is modeled using DNNSim [228]. We omit ResNet-34 results on Laconic-M, as the simulator

was not able to schedule the computation successfully. All designs are iso-frequency.

Based on the results discussed in the previous sections, we limited our exploration to

configurations with G = 4 or 8, as they are better at extracting sparsity benefits than G = 2.

We also limit ourselves to configurations with C = 1 and G = P , since they provide a better

area-throughput trade-off than ones with C > 1 and lower parallelism. This choice, enabled

by parallel stream processing unique to SC, allowed us to arrive at a different design point

that would be optimal for fixed-point PEs, as exemplified by [216]. Based on area estimates,

for the SASCHA-GEO and -GEO+ versions we picked M = 32, N = 16, K = 32, G = 4, C =

1, G = 4, referred to as SASCHA-GEO and SASCHA-GEO+ 4/1/4 as they are within 8%

of the logic area of GEO ULP. We also include SASCHA-GEO and -GEO+ configurations

with the same M,N,K, and C, but with G and P equal to 8, referred to as SASCHA-GEO

and SASCHA GEO+ 8/1/8. Those configurations, while consuming only 23-42% larger area

than the 4/1/4 configurations, are much better at extracting sparsity benefits, as we will

show shortly. Figure 5.18 shows the area and power breakdown of SASCHA-GEO 8/1/8,

based on individual module synthesis, showing a more balanced, and not SNG-dominated,

distribution compared to [10]. SASCHA achieves this through the combination of GEMM-

142

style architecture and sparsity-oriented design. For the uGEMM variant, due to a much

larger PE area, we size the array with M = 16, N = 16, K = 16, for both 4/1/4 and 8/1/8

versions, which brings them close to the iso-area with the GEO and GEO+ variants. Finally,

we include two SASCHA-GEO and GEO+ configurations with the same parameters as the

ones above, but with bit-slicing support, referred to as SASCHA-GEO-S and SASCHA-

GEO+-S. We do not include SASCHA-uGEMM slicing configurations, as the impact of

slicing on the uGEMM-style PE accuracy is beyond the scope of this work. All non-slicing

configurations use a stream length of 64, while the slicing ones use 64-bit long streams for the

MSB computation and 8-bit long streams for LSB. We assume that memory bandwidth is

provisioned for maximum expected throughput. When reporting sparse results, we pick the

maximum sparsity at which SC accuracy is within 4% of fixed-point, GEO for CIFAR-10,

and GEO+ for ImageNet, sliced or non-sliced, whichever is higher.

Figure 5.18: Area (a) and power (b) breakdown of SASCHA GEO 8/1/8.

Final results are shown in Table 5.2, for the TinyCONV and VGG-11 and -16 networks on

the CIFAR-10 dataset, and ResNet-18 and -34 networks on the ImageNet dataset. Results are

shown at two different levels of sparsity. We first analyze the performance of dense networks.

Compared to the dense GEMM versions with the same array size, non-slicing SASCHA

configurations maintain a similar throughput while suffering at most 31% loss in energy

efficiency. This is expected - while stream parallelism is used to recover runtime, it lowers PE

energy efficiency through lower SNG reuse. Further, in the dense case, SASCHA will require

more overall memory accesses due to indexing overheads and asynchronous scheduling. The

143

Table 5.2: Area [mm2], power [mW], throughput [Fr/s] and energy-efficiency [Fr/J] for

different accelerators, models and datasets, and sparsity.
CIFAR-10 TinyConv CIFAR-10 VGG-11 CIFAR-10 VGG-16 ImageNet ResNet-18 ImageNet ResNet-34

Sparsity 0% 60% Sparsity 0% 70% Sparsity 0% 90% Sparsity 0% 80% Sparsity 0% 90%

Area Power Fr/s Fr/J Fr/s Fr/J Fr/s Fr/J Fr/s Fr/J Fr/s Fr/J Fr/s Fr/J Fr/s Fr/J Fr/s Fr/J Fr/s Fr/J Fr/s Fr/J

Architecture [mm2] [mW] [k] [k] [k] [k] [k] [k] [k] [k] [k] [k] [k] [k]

SCNN-M 0.3 - 1.7 - 3.0 - 0.11 - 0.42 - 0.11 - 0.42 - 8 - 79 - 4 - 46 -

Laconic-M 0.2 - 3.4 - 3.6 - 0.07 - 0.07 - 0.12 - 0.12 - 46 - 49 - - - - -

GEO ULP 0.24 50 10.6 240 - - - - - - - - - - - - - - - - - -

GEMM-GEO 0.20 78 6.6 72 - - 0.5 5.5 - - 0.26 2.9 - - 50 499 - - 27 299 - -

SASCHA GEO 4/1/4 0.21 75 6.7 73.5 8.8 93.5 0.8 8.2 1.1 10.5 0.65 7.0 0.95 9.8 50 525 105 969 27 301 76 754

SASCHA GEO 8/1/8 0.30 93 6.7 60.2 12.2 102.7 0.9 7.2 1.5 11.1 0.81 7.0 1.39 11.2 50 435 151 1078 27 246 121 921

SASCHA-GEO-S 4/1/4 0.19 62 6.8 76.2 7.5 83.7 1.3 10.8 1.5 11.9 0.68 7.3 0.84 8.4 46 481 97 821 29 357 68 736

SASCHA-GEO-S 8/1/8 0.26 80 8.8 73.6 10.3 86.1 1.6 10.1 2.1 11.6 0.91 7.3 1.21 8.9 47 435 140 863 36 331 108 894

GEMM-GEO+ 0.24 81 6.6 70 - - 0.5 5.3 - - 0.26 2.8 - - 50 485 - - 27 289 - -

SASCHA GEO+ 4/1/4 0.23 78 6.7 71.0 8.8 90.4 0.8 8.0 1.1 10.2 0.65 6.8 0.95 9.5 50 508 105 941 27 290 76 731

SASCHA GEO+ 8/1/8 0.32 99 6.7 56.1 12.2 96.1 0.9 6.7 1.5 10.5 0.81 6.5 1.39 10.5 50 406 151 1019 27 229 121 867

SASCHA-GEO+-S 4/1/4 0.21 65 6.8 75.4 7.5 82.8 1.3 10.7 1.5 11.8 0.68 7.2 0.84 8.3 46 476 97 814 29 353 68 755

SASCHA-GEO+-S 8/1/8 0.27 83 8.8 72.5 10.3 84.8 1.6 10.0 2.1 11.4 0.91 7.2 1.21 8.8 47 375 140 854 36 325 108 881

GEMM-uGEMM 0.34 112 2.1 17.5 - - 0.1 1.0 - - 0.06 0.55 - - 13 106 - - 7 57 - -

SASCHA uGEMM 4/1/4 0.26 82 2.0 23.0 2.9 32.5 0.2 2.3 0.3 3.4 0.19 2.1 0.36 3.9 13 148 33 354 7 77 26 272

SASCHA uGEMM 8/1/8 0.27 86 2.0 21.7 4.0 40.8 0.2 2.2 0.4 4.1 0.23 2.4 0.57 5.5 13 142 48 475 7 72 42 399

exception is SASCHA-uGEMM, where going from dense to sparse-parallel PEs can reduce

area and power, due to the large size of the former, which results in marginally higher energy

efficiency in the dense case. In the case of CIFAR-10 VGG networks, where the network has

high natural weight sparsity without pruning, throughput, and energy efficiency are improved

by up to 3.6X and 4.4X, respectively. Bit-slicing SASCHA-S configurations perform much

better on unpruned networks, as expected. By exploiting high inherent MSB slice sparsity,

they can improve the throughput by up to 1.33X over GEMM Dense and improve energy

efficiency by up to 1.2X, except in the CIFAR-10 VGG case, where improvements are higher.

GEO achieves higher throughput and energy efficiency on the dense TinyConv, which comes

from the fact that its architecture is highly optimized toward convolutional layers. Compared

to SCNN-M, SASCHA-GEO, and GEO+ can improve the throughput by 4X-8.7X, owing

to the higher efficiency of SC compute over fixed-point. SASCHA-uGEMM configurations,

despite having 4x fewer PEs than the other configurations, still outperform SCNN-M by

2.2X. Compared to Laconic-M, GEO and GEO+ configurations have up to 19X, while the

144

uGEMM ones have up to 7.8X speedup on dense networks.

When running moderately sparse (60%) TinyConv, SASCHA accelerators improve the

throughput by up to 1.92X compared to the dense variants and up to 1.94X compared to the

unpruned network on the respective SASCHA configurations. At 90% sparsity, SASCHA

configurations can be up to 6.5X faster and 5.5X more energy-efficient than the dense ver-

sions. Compared to their respective versions running dense networks, they improve runtime

by up to 8.8X and energy efficiency by up to 10.1X. SASCHA-GEO and GEO+ maintain a

1.5X to 4X throughput advantage over SCNN-M on sparse convolutional networks, despite

SCNN taking advantage of both weight and activation sparsity, while SASCHA only utilizes

the former. SASCHA-uGEMM 8/1/8 outperforms SCNN-M by up to 2.2X on convolutional

networks. While sliced configurations are not as efficient at high sparsity, they still achieve up

to 4.7X and 3.4X throughput improvement over GEMM Dense and SCNN-M, respectively,

on sparse convolutional networks. Laconic-M extracts most of its benefits on a bit-sparsity

level even without pruning and does not show large improvements when small weights are

removed.

In Table 5.3 we show the achieved weight compression ratio for all four evaluated SASCHA

configurations and three evaluated networks. For weight compression, the underlying PE

architecture does not matter. As expected, at high sparsity, bit-slicing configurations have

lower effective compression due to indexing overhead affecting both the LSB and MSB slices.

The exception is the VGG-11 network, where a combination of high natural sparsity and

relatively low pruned sparsity allows the slicing configurations to come out ahead. SASCHA

8/1/8 has a higher compression ratio at 90% sparsity compared to 4/1/4, despite higher

indexing overhead. This is due to more efficient weight storage - for the same dot product

width, it will store half of the weights in each memory word compared to SASCHA 4/1/4.

For the latter, at high sparsity, many of those words will be underutilized.

145

Table 5.3: Weight compression ratio for different SASCHA configurations, networks, and

sparsity levels.

Model TinyConv VGG-11 VGG-16 ResNet-18 ResNet-34

Sparsity 60% 70% 90% 80% 90%

SASCHA 4/1/4 1.09 2.00 4.22 1.43 2.11

SASCHA 8/1/8 1.22 2.27 5.34 1.75 2.85

SASCHA-S 4/1/4 0.90 2.34 4.07 1.22 1.68

SASCHA-S 8/1/8 0.93 2.52 5.19 1.38 2.10

5.7 Related Work

5.7.1 Sparse Accelerators.

Exploiting sparsity to improve performance in hardware has been extensively studied for

floating- and fixed-point accelerators. Some of the prior works only try to exploit the sparsity

of one operand type, like Cnvlutin (activations) [229], or Cambricon-X (weights) [90]. Others,

like Cambricon-S [230], SCNN [79], Bit-Tactical [219], or TensorDash [218], can exploit

both activation and weight sparsity, often through a combination of static and dynamic

scheduling. While most accelerators opt for some form of operand advancing through a

staging window [218, 219, 217], others like SCNN [79] or MatRaptor [222] rely on multiplying

all non-zero operands and mapping the results to appropriate partial sums afterward. Due to

the high cost of detecting and supporting sparse execution, the majority of sparse accelerators

focus on higher precision arithmetic like 32-bit and 16-bit floating-point or 16-bit fixed-point

[90, 218, 79, 217, 222]. Such datatypes and accelerators are more suited to training neural

networks. In contrast, SASCHA focuses on approximate edge inference, where quantized,

8-bit, and lower fixed-point precision has become a standard [20]. Despite only focusing on

weight sparsity, it can outperform fixed-point accelerators that also exploit sparse activations,

146

thanks to highly efficient stochastic computation.

5.7.2 Stochastic Computing Accelerators.

While stochastic computing has been enjoying a recent renaissance due to its synergies with

deep learning algorithms; there is a surprising lack of configurable, system-level designs

available. A few examples include ACOUSTIC [5], which is an accelerator targeting convo-

lutional neural networks specifically, GEO [10], which improves on ACOUSTIC’s accuracy

and performance, uGEMM [64] and StoRM [224], which are flexible general matrix multiply

engines, and SCOPE [166], and in-memory DRAM accelerator. We compare SASCHA with

GEO and uGEMM, which target similar, low-precision edge inference. StoRM can be con-

sidered a specific case of uGEMM with specialized PEs. While it explores operand slicing, it

processes them in a spatially unrolled manner, requiring symmetric stream lengths and not

being able to utilize additional sparsity exposed by it, unlike SASCHA. SCOPE is a data

center accelerator with area requirements orders of magnitude higher than SASCHA. Other

works, like HEIF [105], or SC-DCNN [106] have proposed generating custom hardware for

specific neural network models. Those approaches often lead to impractically high area and

are of limited utility in the rapidly changing neural network landscape. BISC-MVM [107],

and SkippyNN [104], propose more accurate stochastic multiplier designs but are limited

to fixed-point addition and do not present system-level elaboration. Finally, some recent

works propose methods of doing stochastic computing in a deterministic manner, without

introducing any error [187]. However, they often require long stream lengths for processing

and are not competitive in terms of latency and energy.

5.8 Conclusion

In this Chapter, we presented SASCHA - a sparsity-aware neural network accelerator ar-

chitecture using stochastic computing. SASCHA exploits sparsity in a way that synergizes

147

with the main advantages of SC. It encompasses a sparse multiply-accumulate block design,

GEMM accelerator architecture, and asynchronous scheduling method. Further, we pro-

pose a bit-slicing method unique to SC that can exploit sub-operand sparsity even in dense

networks. At 90% weight sparsity, SASCHA can be up to 6.5X faster and 5.5X more energy-

efficient than comparable dense SC accelerators with a similar area, and up to 8.7X faster

than sparse fixed-point accelerators, without sacrificing performance on dense networks. Our

future work will explore the interplay between sparsity and bitstream length in the context

of SC.

148

CHAPTER 6

SCIMITAR: Event-Based Tracking with Stochastic

Compute-In-Memory

Event-based cameras are a relatively new class of devices that offer low latency and band-

width, high dynamic range, sparse imaging data that is well suited towards high-speed

object tracking. However, this sparse format is not compatible traditional architectures used

in computer vision, geared towards dense, frame-based information. There is a need for new

devices that can work efficiently with event-based data, taking advantage of its inherent

sparsity, while being able to take advantage of its low latency. In this Chapter, we propose

SCIMITAR: Stochastic Computing In-Memory In-situ Tracking ARchitecture for Event-

Based Cameras, an accelerator for high-speed object tracking. SCIMITAR uses stochastic

compute-in-memory (SCIM) for highly efficient analog processing, in-situ stream generation

for compact implementation, and a host of optimizations for utilizing input sparsity. SCIM-

ITAR provides unparalleled throughput for ROI-based processing, with both latency and

energy that can scale with sparsity. We demonstrate SCIMITAR performance on an object

tracking application using detailed circuit level simulations.

Collaborators:

• Jiyue Yang, Electrical and Computer Engineering, UCLA.

• Alexander Graening, Electrical and Computer Engineering, UCLA.

• Vinod Kurian Jacob, Electrical and Computer Engineering, UCLA.

149

• Professor Sudhakar Pamarti, Electrical and Computer Engineering, UCLA.

• Professor Puneet Gupta, Electrical and Computer Engineering, UCLA.

6.1 Introduction

A new class of imaging devices has emerged in recent years - the so-called event-based

cameras [231]. In contrast to their conventional, frame-based counterparts, those cameras do

not capture the entire image at a fixed frame rate. Instead, they try to imitate the behavior

of a biological retina by transmitting only the information about changes in their field of view

as an asynchronous event stream [231]. Certain characteristics of event-based cameras, like

implicit background filtering, low latency, and high dynamic range, make them a potential

replacement for frame-based ones for some classes of applications. One of those applications

is object tracking, where event-based cameras are already showing a great promise [232,

231, 233, 234]. However, the developing nature of this field means that researchers are still

establishing the best way of processing event-based data. Approaches vary from purely

asynchronous ones [235, 236, 237, 238], to ones that try reconstructing frames from events

[239, 240, 241, 242, 243]. While former are not yet well established, the latter do not take

full advantage of the sparse nature of the event stream.

At the same time, the low-latency, high data rate nature of event-based cameras proves

to be a blessing and a curse. On the one hand, it makes it possible to track high-velocity

objects without motion blur plaguing conventional cameras [240]. On the other hand,

general-purpose architectures cannot deal with the requirements of low-latency and spar-

sity presented by this type of data. One solution to this problem is using domain-specific

accelerators, custom-made for a particular application [12]. Indeed, multiple prior works

have proposed custom accelerators for event-based data, using FPGAs [235, 244], or ASICs

[72].

To push the performance of event-based object tracking systems, we propose SCIMITAR:

150

Stochastic Computing In-Memory In-situ Tracking ARchitecture for Event-Based Cameras.

SCIMITAR uses two techniques that have become popular in machine learning accelerators

in recent years - stochastic computing (SC) [5, 64, 104], and compute in-memory (CIM)

[166, 245, 246]. Both are apt at processing low-precision, linear algebra kernels with low

latency and high energy-efficiency. What is more important, they can be combined as a

stochastic compute in-memory (SCIM) accelerator, which makes it possible to further im-

prove the performance by removing costly analog-digital converters (ADCs) [245]. SCIM is

a good candidate for processing event-based data, although it comes with a set of challenges.

First, it requires spatial unrolling of stochastic streams, which can lead to large chip area

[245]. Second, it cannot easily take advantage of the sparse nature of the event stream,

leading to many inconsequential computations. SCIMITAR solves those issues through the

use of: in-situ generation, which alleviates the need for stream unrolling, and a host of

microarchitectural optimizations utilizing sparsity.

Our contributions are as follows:

• First event-based object detection and tracking accelerator using in-situ stochastic

computing in-memory (SCIM) processing.

• Evaluation of different event-based data processing methods from the point of view of

hardware efficiency.

• In-situ stream generation for SCIM architectures, which can significantly cut down the

area requirement of SCIMITAR.

• A set of micro-architecture techniques to support high input sparsity, that demonstra-

bly improve the energy efficiency of SCIMITAR.

151

6.2 Motivation

6.2.1 Event-Based Cameras

Event-based cameras are sometimes referred to as neuromorphic cameras since the original

design and data format was inspired by the biological retina [231, 247]. The biological

retina is thought to send pulses to the brain as individual cells in the eye sense changes

in intensity. Similar to this, event-based cameras only transmit pulses when the brightness

value of a specific pixel changes. Output from an event camera is typically a stream of

positive and negative events depending on whether a change is an increase or decrease in

brightness. Pixels that do not change do not send events. In a situation where the camera is

stationary, this means moving objects will cause events, but stationary background objects

will not, thus highlighting the most important information in the scene for many applications

such as tracking [231, 248, 249, 250]. Figure 6.1 shows how moving objects are highlighted

while the background disappears. If the event-based camera is moving, it will highlight

the edges of objects in its field of view, providing useful data for SLAM-type applications

[231, 251, 252, 251, 253].

Event-based cameras have several benefits compared to traditional frame-based cameras,

especially when it comes to object tracking:

• Sparse Data Output : Since only events are transmitted, in most applications, only a

small portion of the pixels will be active at a time. This behavior compares to frame

cameras, where all pixels transmit the measured brightness for every image/frame

captured. [231, 247]

• Fast Response to Changes : Event-based cameras can have very high maximum firing

rates for pixels, and they are not constrained by data output rate as much as frame

cameras due to the sparse format. For existing cameras, pixel latency varies from 120

to 3 µs. [231, 254, 255].

152

• High Dynamic Range: Event-based cameras have very high dynamic range due to

the individual behavior of pixels (avoiding a shared exposure level) and because the

implementations for event-based cameras typically respond to changes in the log of

intensity instead of operating on a linear scale. This can give a dynamic range of 130-

140dB for event cameras compared to a dynamic range around 60dB for a traditional

camera. [231, 254, 256]

• Very High Temporal Resolution: Event-based cameras can provide continuous informa-

tion about the location of fast-moving objects that might move a lot between frames

on a traditional camera. Existing cameras support event rates between 1 and 1200

Meps (mega-events per second) [231, 254, 257].

Figure 6.1: Spinning Marker. This image shows event data generated from tossing a spinning

whiteboard marker into the air with a cluttered background. The stationary background has

disappeared so it is easy to see the moving objects. The white events are positive events

indicating an increase in brightness and the blue events signal a decrease in brightness.

153

6.2.2 Event-Based Data Processing

Given this new data representation, we have to determine the best way of processing such

information. While it ultimately depends on the application, most approaches can be cat-

egorized into three groups [231]. First are the algorithms that process individual events

[235, 236, 237, 238]. Those event-based methods update their state on every incoming event,

guaranteeing minimum latency while avoiding the processing of irrelevant data. However,

given the young age of this field, such techniques are still not well developed. The second

type of approach processes events in groups [239, 240, 241, 242, 243]. It often involves re-

constructing the image frames. The frame format makes it possible to employ an abundance

of well-established computer vision (CV) algorithms. However, frame reconstruction causes

the sparsity of event data to be lost - frames will mostly be filled with inactive, zero-valued

pixels. We will refer to those methods as frame-based algorithms. Finally, the last type uses

so-called patches or regions-of-interest (ROIs) [258, 259, 260, 261]. This can be considered

a compromise between the first two categories - while still reconstructing partial frame in-

formation, only pertinent fragments of it (ROIs) are processed. Processing ROIs makes it

possible to avoid processing large, inconsequential parts of the scene while still being able to

harness conventional CV methods. Such ROI-based algorithms have been shown to drasti-

cally improve performance compared to frame-based ones [262], by reducing the amount of

computation required. The three approaches are shown schematically in Figure 6.2.

In this work, our goal is to find an approach that best complements custom hardware, to

provide the fastest and most energy-efficient implementation for tracking applications. For

this purpose, we need to consider not just the cost of computation, but also memory, which

is frequently overlooked, despite having a potentially much higher impact on system perfor-

mance [12]. In order to gain intuition into how different event data processing techniques

compare, we build a simple analytical performance model. We assume that a camera has an

HxW resolution and M events are processed in a single iteration. The overall interval in

which the events are acquired (t) is divided into D bins, and events belonging to a particular

154

bin end up in the corresponding time channel. This spatiotemporal voxel grid representation

is a commonly used way of reconstructing event data, as it preserves temporal information

[231, 240]. As a proxy for computation, we assume the use of N spatiotemporal filters of the

size KxKxD, convolved with the image data for object detection, either the reconstructed

frame/ROI or individual events. Such filters, for example, Gabor ones, are commonly used

for object detection in tracking applications [263], and we use them as a general proxy for

computation cost. The maximum of a given filter is recorded and used for tracking, for

example, by Kalman or particle filters [259, 260]. For ROI-based processing, we assume that

C ROIs of size RxRxD, where R << W,H, are processed. We omit the computational cost

of selecting ROIs in this analysis. Prior works have shown that ROI detection, or region

proposal, requires much lower energy and latency compared to filtering itself [264, 265, 262].

All parameters of our model are shown in Figure 6.2.

For each approach, we consider the performance metrics shown in Table 6.1. In all

cases, we make the most optimistic assumptions about hardware capabilities. First, we are

interested in memory access counts. For simplicity, we assume all accesses are of the same

size. For all cases, the number of weight accesses is the same and equals filter size (KKD)

times the number of filters (N). In the case of event-based processing, only 2M input accesses

are required - one write and read per event. However, assuming that events are processed

sequentially, each convolution result would need to be individually updated, leading to M

event updates of KK convolution results for N filters. Given that there is no trivial way

of predicting where within the frame incoming events are located, there is also no way of

collating the results on the fly to reduce the number of output accesses without resorting to

frame- or ROI-based processing.

For frame-based processing, we require M event writes, and a frame read of size WHD.

However, assuming the filtering is completely unrolled spatially, all results are available, and

all maxima can be determined at the same time, leading to only N output writes. Similarly,

ROI-based processing requires M event writes, and C ROI reads of size RRD. Maxima

155

e
0

P,X,Y,T ,e
1

P,X,Y,T... e
M-1

P,X,Y,T

...

W

H

D

......
...KxKxD

N

max
0
(x

0
,y

0
) ... max

N
(x

N
,y

N
)

... ...

C

...

R

R
D

M

...
N

M

...

...

W

H N

Figure 6.2: Analytical model parameters, for frame- (top), ROI- (middle), and event-based

(bottom) processing.

Table 6.1: Analytical event-based tracking performance model. Event, frame, and ROI refer

to event-, frame-, and ROI-based processing, respectively.

Event Frame ROI

Accesses

Input 2M M+WHD M+RRDC

Output KKMN N CN

Weight KKDN KKDN KKDN

MAC KKMN KKDWHN KKDRRCN

Reuse

Input KKN KKN KKN

Output 1 WH RRC

Weight 1 KKD KKD

156

need to be updated on every ROI, leading to CN output writes. We measure the required

computation in multiply-accumulate (MAC) operations. For event-based processing, M

events need to be convolved with N filters of size KK. For frame-based processing, the

entire WHD frame needs to be convolved with N filters of size KKD. For ROI-based

processing, C ROIs of size RRD need to be convolved with N filters of size KKD.

103

105

107

In
p
u
t
A
cc
es
se
s

Frame-Based

Event-Based

ROI-Based 10

ROI-Based 100

104

107

O
u
tp
u
t
A
cc
es
se
s

0.0 0.2 0.4 0.6 0.8 1.0

Event Count ×106

106

108

1010

M
A
C

C
o
u
n
t

Figure 6.3: Input (top) and output (middle) memory accesses, and MAC count (bottom),

with varying event count.

Let us now assume a camera resolution of W = 1280, H = 720 pixels, based on com-

mercially available models [231]. We then assume D = 8 time step channels. For filters,

we assume N = 32, K = 9 spatio-temporal Gabor filters. For ROI-based processing, we

assume R = 64 region size. Figure 6.2 shows how memory access counts and MAC change

when the number of events being processed varies from 10 to 1 million. We consider two

157

ROI-based cases, with 10 and 100 ROIs, respectively. We see that while with a low event

count, event-based processing requires significantly fewer input accesses and computation

than other methods, that efficiency is quickly lost when the event count increases. At the

100k event mark, event-based processing is comparable to ROI-based one with 100 ROIs.

More importantly, the number of output accesses is significantly higher than other methods,

even at relatively low event counts.

105

107

In
p
u
t
A
cc
es
se
s

Frame-Based

Event-Based

ROI-Based 32x32

ROI-Based 64x64

103

105

O
u
tp
u
t
A
cc
es
se
s

0 100 200 300 400 500

ROI Count

108

1010

M
A
C

C
o
u
n
t

Figure 6.4: Input memory accesses (top), and MAC count (bottom), with varying ROI count.

We then compared the results for a fixed event count (M = 1000) but with a varying ROI

count and size (R = 64, and R = 32). Results are shown in Figure 6.4. We see that if the

number of ROIs can be kept low, ROI-based processing provides a good trade-off between

event- and frame-based processing. Finally, we also consider possible data reuse in each of

the approaches, as it can be used to amortize both memory and computation cost, especially

158

in custom hardware architectures [13]. As shown in Table 6.1, while all approaches can

exploit the same level of input reuse, event-based processing cannot easily take advantage

of weight or output reuse. Based on all of the above, we decided to focus on ROI-based

processing: it allows us to take advantage of parallelism and data reuse while providing a

good efficiency trade-off between event- and frame-based approaches.

6.2.3 Stochastic Computing In-Memory

Given the focus on 2D convolution operators and ROI-based processing, we are looking for

technologies that make it possible to implement large, dense linear algebra kernels in a fast

and efficient manner. Fortunately, given the recent emergence of deep neural networks, which

rely heavily on linear algebra, there is now an abundance of techniques used for accelerating

such computations [13, 246, 5]. This further motivates our choice of ROI-based processing,

as purely event-based methods, while available, are not yet as well developed [235, 72].

Stochastic computing, discussed extensively in prior Chapters, is one of such techniques.

However, people have now found ways of improving its efficiency even more, in a scheme

called Stochastic Compute-In-Memory (SCIM) [245].

SCIM accelerators achieve much higher energy-efficiency by embedding SC’s computation

logic inside the memory [166, 245, 266]. Conventional Compute-In-Memory (CIM) accelera-

tors perform analog compute inside the memory, which requires power-hungry ADC/DACs

[267, 246]. Stochastic Computing (SC) uses tiny digital logic gates such as AND/OR gate

as the basic computation unit. Since SC is a digital computing scheme, no ADC/DAC is

needed. Figure 6.5 shows the structure of a 256-element MAC unit in an SRAM-based

SCIM macro. Each 6T SRAM cell stores a stochastic bit of the weight parameters. Two

extra NMOS transistors are added next to the 6T SRAM cell to perform an AND operation

between the stored stochastic bit and the compute word line. The outputs of all SCIM

cells are connected to form the compute line (CL), which effectively performs a wired-OR

operation. When all the multiplication results are zero, the CL stays at VDD. If at least

159

Cell

SNG

CL

CL =1

CL =0

VDD

VSS

SA Vth

Compute Line (CL) 1b Result

SA

SC Multiplier
OR-Based SC
Accumulator

Cell

SNG

Cell

SNG

CWL

Figure 6.5: 256-wide SCIM MAC structure.

one multiplication result is one, the CL will be discharged to VSS. Due to the large voltage

separation between VSS and VDD, a small inverter is used as a sense amplifier, which is

robust against PVT variations and local mismatches.

The SCIM macro stores the stochastic representation of the weight parameters, which

requires a large amount of storage and an extra conversion step while loading the macro. In

the loading cycle, the weight binary numbers are converted to stochastic bits by the column’s

stochastic number generator(SNG) and written into the macro. Each SCIM macro stores a

1-bit representation of the filters and computes 1 bit for the outputs. 2N memory cells are

needed to accurately represent N-bit precision. For example, a 4-bit binary number requires

16 cells to store stochastic bits in 16 SCIM macros separately. Due to the exponential

scaling of the SC’s stream length, the area penalty is worse for higher precision compared to

conventional CIM solution, which only needs N cells for storage [245].

Based on the above discussion, we believe that SCIM is very well suited towards custom

hardware tracking acceleration of event data. However, it comes with a host of issues.

First, stream unrolling, as explained above, leads to large area requirements, which can

prohibitive, particularly for edge devices [245]. Further, SC and SCIM, with their high

160

parallelism and spatial reuse, are naturally geared towards dense computation and cannot

easily take advantage of event data sparsity [5, 64, 245]. While a SC architecture dealing

with weight sparsity has been proposed recently [11], here we are mainly concerned with

input sparsity. In the next section, we explain how our design addresses those issues.

As a note, ROI processing is not unique to event-based data. A similar approach can

be applied to conventional cameras, using forms of motion estimation to propose regions

of interest. However, this process is computationally cheaper for event-based cameras, as

motion estimation is inherently ”built into” the data format, and people have proposed that

event-based region proposal can be done with very little overhead [231, 264].

6.3 SCIMITAR Implementation

6.3.1 Stochastic Compute-in-Memory Macro with In-Situ SNG

In
p

u
t

D
ri

ve
r

Tr
ac

ki
n

g
 S

lic
e

CTRL

Slice 1
I2561

Memory
Cells SNG

SC MAC
x32

I2592

RN401

RN405

I1

Memory
Cells SNG

SC MAC
x32

I32

RN1

RN5

SCIM Unit 1

SCIM Unit 81

SCIM
Unit 1

Slice 32

SCIM
Unit 32

I1
I32

RN1

RN5

I2561

I2592

RN401

RN405

CL1 CL32 CL225 CL256 REFCL

R
an

d
o

m
N

u
m

b
er

 G
en

er
at

o
r

Read Write Circuitry and I/Os

Figure 6.6: SCIM Macro architecture.

161

In this work, we propose a Stochastic Compute-In-Memory accelerator with an in-situ

Stochastic Number Generator (SNG). The in-situ binary to stochastic number conversion

allows the SCIM macro to store the binary numbers instead of the unrolled stochastic bits,

therefore significantly increasing the macro density. The compact in-situ SNG only has a

small area overhead. The output of the in-situ SNG is reused by many in-memory SC MAC

units, which further reduces the SNG cost. Figure 6.6 shows an overview of the SCIM macro.

The SCIM unit is the smallest compute primitive within the macro. The SRAM-based

memory cell array stores a 6-bit fixed-point weight that has 1 bit for sign and 5 bits for

magnitude. The in-situ SNG converts the weight from binary to stochastic number using a

5-bit random number (RN1 – RN5). The random numbers are generated from the pseudo-

random number generator block, next to the memory and shared across the SCIM units

on the same row. The SNG output within each SCIM unit is multiplied with 32 inputs

(I1 – I32) and accumulated with other SCIM units in the same SCIM slice. Each SCIM

slice stores a 9x9 filter and computes 32 outputs, using nine unrolled input half-rows (9x36,

including overlap). There are 32 SCIM slices within the macro that share the same inputs,

each implementing a different filter. The outputs of the SCIM MAC are streams of 1-bit

values and are converted to digital bits by the sense amplifier at each Compute Line (CL).

An extra replica slice is built to track the process, voltage, and temperature (PVT) variation

of the circuit and generate the timing signals for the output sampling. The following sections

will provide a detailed description of the in-situ SNG and the in-memory SC MAC units.

6.3.2 In-Situ Stochastic Number Generator

We propose to embed a compact stochastic number generator (SNG) inside the memory to

achieve in-situ binary to stochastic number conversion, which significantly reduces the re-

quired storage size. Previous bit-parallel stochastic-CIM macro stores 2N stochastic number

in the memory for N-bit precision [245]. By embedding in-situ SNGs, only N number of

cells are required. During computation, the in-situ SNGs use random numbers generated

162

WB = -3/8

WSC- = 1, 0, 1, 0, 0, 0, 1, 0 (3/8)
WSC+ = 0, 0, 0, 0, 0, 0, 0, 0 (0/8)
WB = P(WSC+) – P(WSC-) = - 3/8

Split Unipolar
Representation:

P(|WSC|) = ,)=0.5K-k+1

RN0 (0.55)

6T
SRAM

PCHB

RN5 (0.5)

6T
SRAM

MSB (Sign)LSB

WSC+ WSC-

6T
SRAM

6T
SRAM

WB[4]WB[0]

Binary:

Stochastic:

Figure 6.7: Split-unipolar stochastic representation (top) and in-situ stochastic number gen-

erator (SNG) circuit (bottom).

near the memory and shared across columns to serially convert the binary numbers stored in

the memory to stochastic bits. The in-situ SNG circuit is shown in Figure 6.6. The SRAM

memory cells store the binary weight numbers. Besides the sign bit (MSB), each memory cell

has two extra cascaded NMOS transistors beside the regular 6T SRAM to perform an AND

operation between the stored binary bit and a random number that is generated outside of

the array. The probability of a random number is binary weighted from MSBs to LSBs: the

leading bit is selected by the random number with the probability of 0.51, while the nth LSB

is selected with the probability of 0.5K . The output of AND logic in each cell is connected

to form a local bitline, which performs a wired-OR operation. An inverter amplifies in-situ

SNG’s local bit line and inverts the signal to maintain the correct logic. Using the in-situ

SNG also means that the implementation is now agnostic to the stream length being used,

which was not the case for bit-parallel SCIM [245].

A split unipolar stochastic number generation is used to support signed numbers [5].

In the split-unipolar representation, a signed number is represented by two stochastic bit

163

streams: WSC+ and WSC−, while only one of the bit streams is enabled by the sign bit. The

value of the number is encoded as the difference between two streams: WSC+−WSC−. If the

number is positive, WSC+ represents the value’s amplitude, and WSC− will produce a stream

of zeros, and vice versa for the negative numbers. A demultiplexer circuit is implemented

using pseudo-NMOS logic to generate a stochastic bit stream in split-unipolar format. The

sign bit stored in a memory cell selects which of the WSC+ and WSC− should be kept as zero

and passes the SNG output to the other stream. An inverter is added at the output as a

buffer.

6.3.3 In-Memory Stochastic MAC Unit

Previous work has demonstrated a stochastic in-memory compute macro for unsigned num-

bers [245]. In this work, we propose an in-memory SC MAC unit that supports both unsigned

and signed computation. With an interleaved multiplier design, higher energy efficiency and

lower area overhead of the MAC unit are achieved. Figure 6.8 shows the comparison be-

tween a conventional signed SC multiplier for split-unipolar stochastic representation [5],

and the proposed interleaved SC multiplier design. The weight is stored in the memory

and converted to a split-unipolar stochastic stream(W+, W−) by the in-situ SNG. The input

is read from a buffer, converted to stochastic bits (I+, I−), and applied to the in-memory

MAC unit. For the non-interleaved design, input/weight each has two stochastic streams

and a cross multiplication is performed: I+ ×W+, I+ ×W−, I− ×W+, and I− ×W−. Partial

output streams with the same sign, e.g. I+ × W+ and I− × W− are combined, and then

the negative result is subtracted from the positive one to obtain the final result. Individual

multiplication is done by an in-memory AND gate using only two NMOS transistors. The

output is precharged to VDD. If and only if both operands are high, there is a conducting

path pulling down the output to VSS, effectively performing an AND operation.

The interleaved multiplier cell design is used to reduce area overhead and energy con-

sumption. The computation is split into two phases. In the first one, the input’s positive

164

W+
W-

I+
I-

W+
W-

I

CLp CLn

I CLp CLn

1st Cycle I+ W+ × I+ W- × I+

2nd Cycle I- W+ × I- W- × I-

Split- Unipolar Signed Multiplier Interleave Design

W × I = B

W+ × I+ + W- × I- = B+

W+ × I- + W- × I+ = B-

Figure 6.8: Interleaved Signed SC MAC unit.

streams are applied and multiplied with weights. The intermediate outputs are converted to

binary numbers by counters. In the second phase, the input’s negative streams are applied.

The final result is the addition of the results from two cycles. The interleaved SC multiplier

design reduces the area overhead by half, at the cost of processing latency. However, the

overall energy consumption is reduced, since a more compact cell area benefits from shorter

routing and correspondingly lower parasitics.

Each SCIM unit has 32 SC MACs sharing the in-situ SNG’s outputs to increase the

weight reuse factor, effectively performing multiplication between one weight and 32 inputs.

The large reuse factor significantly amortizes the weight memory access cost and energy

overhead of the in-situ SNG. Increasing the reuse factor for the conventional charge-based

CIM solution is challenging due to the large area of the ADCs. Each MAC output of the

CIM macro requires an ADC. To achieve accurate MAC results, the compute cell using a

transistor or metal capacitor requires a large area to improve the matching property. This

limits the weight reuse factor of the conventional CIM macro to 1. The SCIM’s extremely

compact MAC unit only uses three NMOS transistors. Since the SCIM’s MAC output is

only 1 bit, a simple inverter can be used as a sense amplifier. Figure 6.9 shows the design of

a SCIM slice. 32 input lines are routed in the horizontal direction on top of the SRAM cells.

165

The input lines use minimal spacing and occupy two SRAM cells’ height. The 32 inputs

multiply with the output of the in-situ SNG by the 32 SCIM MAC units. 81 SCIM units

form a SCIM slice that performs 32 81-way dot products. The MAC outputs (CLp1-32 and

CLn1-32) are amplified by an inverter at the bottom of the macro.

S
N

G

SRAM SRAM SRAM

SRAM SRAM SRAM

S
N

G

SRAM SRAM SRAM

SRAM SRAM SRAM

I1

I32

Unit 1

Unit 81

I2561

I2592

MAC #1 MAC #32

MAC #1 MAC #32C
Lp

1

C
Ln

1

C
Lp

32

C
Ln

32

W+

W-

W+

W-

W+

W-

W+

W-

Figure 6.9: SCIM Unit with 32 MAC reuse and SCIM slice

6.3.4 Event-Based SCIM Accelerator Architecture

Figure 6.10 shows the overall architecture of SCIMITAR. Given a limited set of operations,

the control logic is implemented as a finite-state machine (FSM) controlled through a set of

programmable registers. The exact programmability is discussed later. The I/O interface

transfers ROIs to input SRAMs and outputs/maxima from the output SRAM. SCIMITAR

supports two modes of operation: sparse, or neuromorphic, using a single 64x64 ROI with

up to eight time channels, and dense, using up to eight frame-based, grayscale 64x64 ROIs

concurrently. Based on that, the architecture is organized into eight columns, each consisting

166

of an input SRAM, staging buffer, and a SCIM bank. There are eight input SRAMs, each

provisioned to double buffer one time channel of a 64x64 pixel ROI. Input SRAM width is

provisioned to hold 64 1-bit values, and multiple rows can store multi-bit inputs, as described

below.

Input
SRAM 0

Input
SRAM 1

...

Input
SRAM 7

Staging
Buffer 0

Staging
Buffer 1

Staging
Buffer 7

36+6 bits

SCIM
Bank 0

SCIM
Bank 1

SCIM Bank 7

SNG
Buff 0

SNG
Buff 1

SNG
Buff 8

...

SNG 0 SNG 1 SNG 8

36x6 + 1 bits

SCIM Macro

Counters

36x6 bits

36x6 streams

32x32x2 streams

Global Accumulator & Max Pooling

...

32x32 values

Output SRAM

SCIMITAR1

6

2 3

4
5

Figure 6.10: SCIMITAR architecture block diagram.

Values from input SRAM are first read into staging buffers, then optionally rotated, and

passed onto the SCIM banks. Since, as described in the previous Section, the SCIM macro

can only process half of the row at a time, staging buffers are provisioned for 36 6-bit values.

This includes the overlap needed to avoid gaps in convolution coverage. Within each SCIM

bank, the input values are written to the SNG buffers, where they are used to generate SC

streams when the computation starts. Each bank has nine SNG buffers, which collectively

hold nine rows of 36 values, making it possible to unroll 9x9 convolutional filters spatially.

167

This spatially unrolled convolutional window is similar to the one used in [5], as it maximizes

spatial reuse opportunities.

The weights are pre-loaded in the SCIM, and their streams are generated in-situ, as

described in the previous Section. Within each macro, a sliding 9x9 convolution is performed

across nine input rows, generating 32 outputs, for 32 filters, for a total of 1024 outputs per

bank. Outputs of each compute line, are fed into counters. After computation is finished,

counter outputs are sent to the global accumulator block. In the sparse mode, respective

outputs of up to eight counters are added implementing the combined 9x9x8 filter size. In

the dense mode, outputs of banks are not accumulated, as only 9x9x1 filters are supported.

We will now describe certain architectural optimizations, indicated in Figure 6.10 using

numbered circles.

1 Transposed Memory Layout

In both frame- and ROI-based approaches, a given pixel can ”fire” multiple times during

the same time window, as event rates are much higher than frame rates [231]. Certain

algorithms saturate, constraining pixel values to -1/0/+1, while others accumulate events,

meaning that active pixels can have values proportional to their event count. SCIMITAR

can work with either approach, while also supporting dense, grayscale frames with up to

6-bit precision.

To support seamless transitions between different input precisions, we use a transposed

memory layout as shown in Figure 6.11. Each memory word consists of a 6-bit next row id,

and 64 bits of data D. Instead of each memory word storing a set of all bits, it instead stores

one bit position for a certain number of values. When using 6-bit precision, 64 values will

be stored in 6 words, for 5-bit precision - 5 words, and so on. Thanks to this approach we

avoid wasting memory capacity when using lower precision, as well as memory access energy,

compared to a non-transposed format. Precision is programmed into one of the configuration

registers of SCIMIAR, so that control logic knows how many reads are required for a given

168

000000 I
63

MSB

000000 I
63

MSB-1

0

1

...

...

I
1

MSB

I
1

MSB-1

I
0

MSB

I
0

MSB-1

......

000001 I
63

MSB-5

000001 I
63

MSB

5

6

...

...

I
1

MSB-5

I
1

MSB

I
0

MSB-5

I
0

MSB

A next_row

_id[5:0]

D[63:0]

000001 I
63

MSB

000010 I
63

MSB

0

1

...

...

I
1

MSB

I
1

MSB

I
0

MSB

I
0

MSB

......

111111 I
63

MSB

000000 I
63

MSB

62

63

...

...

I
1

MSB

I
1

MSB

I
0

MSB

I
0

MSB

6-bit Input Data

1-bit Input Data

1

Figure 6.11: Transposed memory layout for 6-bit (top) and 1-bit (bottom) input data.

bitwidth. In conventional, fixed-point architectures, such layout might increase memory

access latency, but SC stream latencies allow us to effectively hide it without performance

impact. The next row id associated with each memory word is used for zero detection,

described below.

2 Channel Load Skipping

While ROI processing provides a significant reduction in memory and computation com-

pared to full frames, individual ROIs are also highly sparse. To take advantage of this

sparsity, we propose to embed additional information in input memory to avoid storing and

loading parts of the ROI that contain no events. Since data in memory is organized in the

form of rows, we consider two levels of granularity: row and channel skipping. The former

will skip any slice of 64x8 pixels (one row across all eight time channels) if all values are

zero. The latter will skip any slice of 64 pixels (one row, one time channel), if all values are

169

zero.

To support this functionality, input memory contains the next row index, which indicates

the index of the next non-zero row stored in the subsequent address. In case of row skipping,

the next row index is shared across all eight input SRAMs. For channel skipping, each

SRAM has its own next row index information. To evaluate potential storage compression,

we used an in-house dataset described in Section 6.4, partitioned it into 64x64x8 ROIs, and

calculated the memory required for each of the ROIs, including next row index information.

Results are shown in Figure 6.12. Row skipping reduces storage requirements by 2.36X

on average, while channel skipping does so by 8.88X, on average, even including indexing

overheads. Given those results we opt to implement channel skipping in SCIMITAR.

97.5 98.0 98.5 99.0 99.5 100.0

Sparsity [%]

0

10

20

S
to

ra
ge

R
eq

u
ir
em

en
t

[K
B

]

No Compression
Row Compression
Channel Compression

Measured
Average

Figure 6.12: ROI memory requirements for different compression schemes.

Channel skipping is implemented in local control logic, on a column-by-column basis.

Whenever reading a word from input memory, if next row id is more than current row+ 1,

where current row is the index of the currently read row, provided by the global control FSM,

local control logic skips the next NxP reads. N is equal to the next row id− current row,

and P is equal to input precision. This is shown schematically in Figure 6.13. In other

words, local input SRAM control will wait until global FSM catches up to its next non-zero

170

row. The first row in any given ROI is always read, as no next row id is initially known.

Left

Bank

Middle

Bank

Right

Bank

D[0:27] D[36:63]

D[28:35]D[0:7] D[8:27] D[36:55] D[56:63]

SD[0:7] SD[8:27] SD[28:35]

next_row_id3 D[0:27] D[28:35] D[36:63]

next_

row_id

Local

Ctrl

zero

current

_row

L/R

sel

2

read

Figure 6.13: Channel load skipping and half-row multiplexing using partitioned input SRAM.

3 Half-Row Multiplexing

The SCIM Macro can only process half of the 64-wide row at a given time. Given the

relatively high energy cost of accessing SRAM, it might seem prudent to store half-rows

separately in memory, to save on accesses. However, to avoid a gap in convolution coverage,

each half needs to include the same 8-pixel overlap region. Further, next row id information

would need to be stored with each half-row. Instead of storing 64 + 6 bits, we would need

to store 2x(36 + 6) = 84 bits, leading to a 20% storage overhead. Instead, we partition

each input SRAM into three physical banks: left (bits 0-27), middle (bits 28-35), and right

(bits 36-63), as shown in Figure 6.13. A signal from the control FSM (L/R - left/right)

decides which banks are accessed (left-middle, or middle-right) and multiplexes the outputs

to appropriate positions of the staged data SD. This approach avoids storage overheads,

while saving access energy. next row id is stored in the middle bank, as it is always accessed.

4 Deserializing Staging Buffers & Zero Indicator

171

Input values which transposed, or bit-serialized, in memory, need to be transposed before

being used to generate stochastic streams. To do this, we use deserializing staging buffers,

shown in Figure 6.14. Whenever a certain bit position is read from input SRAM, global

control logic indicates which bits in the buffers are enabled. Depending on the required

precision, parts of the buffer can remain unused. Each staging buffer can hold up to 6x64 =

384 bits of staged, deserialized data SDD. To further improve efficiency, staging buffers

contain a zero indicator bit. Upon detecting one or more zero rows, using the next row id,

local control will also set the zero indicator bit in its staging buffer, as shown in Figures 6.13

and 6.14. This bit is used downstream to gate the SNGs for that row, further saving energy.

I
35
MSB-5Z ...I

0
MSB-1I

0
MSB ... I

0
MSB-5 I

1
MSB

...
Pos5 Pos5Pos4 Pos0

...
Pos0

Zero

SD[1] 4
SD[0]

SDD[383:0]

Figure 6.14: Deserializing staging buffers with zero bit indicator.

5 Time Channel Overlap

SCIMITAR supports up to 8 time channels in each ROI. In some applications subse-

quent ”frames” can be completely non-overlapping, meaning their time channels cover non-

overlapping windows. For example, if using 1ms time-channels, the first reconstructed frame

covers the first 8ms, the second one the next 8ms and so on. However, temporal resolution

can be vastly improved if there is an overlap between subsequent ”frames”. For example,

each subsequent reconstruction could be shifted by 1ms, where the reamining 7ms overlap.

Given that in SCIMITAR, filter time channels are assigned to physical SCIM macros, each

of which is connected to its own input SRAM, naively supporting such overlap would require

reloading the entire ROI, as time channels would need to be physically moved between in-

172

put banks. To provide seamless support for overlapping time-channel ROIs, we propose to

connect staging buffers in a form of a circular buffer, as shown in Figure 6.15.

Initially, time channels are properly aligned to columns, for the first 8 time steps. Half-

rows can be loaded directly into staging buffers and passed to their respective SCIM banks.

After processing, time channel t = 0 is replaced with time channel t = 8 in column 0. After

loading each row to the staging buffers, they are rotated once, so that channel t = 8 ends

in column 7, channel t = 7 in column 6, and so on. Using this approach, time channels

can be overlapped with minimum number of memory accesses. The latency of rotating

staging buffers is again hidden using stochastic stream processing latencies. In the worst

case scenario, SCIMITAR needs to hide 6 cycles of memory reads (for 6-bit precision) and

7 cycles of rotation, for a total of 13 cycles. This is much lower than typical stream lengths

used, however, it might not be the case when early termination is used, as described in the

next Section.

6 Sliding Convolution Window

Within each SCIM bank, there are 9 SNG buffers, organized as shift registers. This is

done to emulate the vertically sliding convolution window. Whenever a new row is loaded,

all previous ones are shifted, with the last one (”highest”) shifted out. Since filter weights

have a fixed position in memory with respect to the values in SNG buffers, this is equivalent

to shifting the 9x9 convolutional window in each bank one row down. This approach is

similar to the one used in [5]. The zero bit is propagated with the values in SNG buffers,

and is used to get stream generation when all values are zero to save energy.

Figure 6.16 shows how computational energy efficiency if affected by the above opti-

mizations. The use of transposed layout, row multiplexing, and deserializing buffers lowers

the energy by 1.64X, when using low precision data. Adding channel skipping on top of

it, further reduces energy by 1.28X. Finally, time channel overlap and sliding convolutional

window allow us to save additional 14% on top of the above, for a 2.8X overall improvement.

173

t=0
t=1

...
t=7

t=8

...

Input

SRAM 0

Input

SRAM 1
...

Input

SRAM 7

St-Buf 0 St-Buf 1 St-Buf 7

...

Input

SRAM 0

Input

SRAM 1
...

Input

SRAM 7

St-Buf 0 St-Buf 1 St-Buf 7

...

t=0 - t=7

t=1 - t=8

Input

SRAM 0

Input

SRAM 1
...

Input

SRAM 7

St-Buf 0 St-Buf 1 St-Buf 7

...

Input

SRAM 0

Input

SRAM 1
...

Input

SRAM 7

St-Buf 0 St-Buf 1 St-Buf 7

...

Input

SRAM 0

Input

SRAM 1
...

Input

SRAM 7

St-Buf 0 St-Buf 1 St-Buf 7

...

5

Figure 6.15: Time channel overlap support using circular staging buffers.

174

Figure 6.16: Impact of proposed optimizations on computational energy efficiency of the

SCIMITAR architecture. Efficiency calculated on 99% sparse input data assuming 64-bit

long SC streams.

6.3.5 Multi-Level Early Termination

Stochastic computing has a known property of progressive precision, where the output

counter value converges onto the final result with each bit of the stream being processed

[64]. Hence, at every cycle of computation, we can treat the counter output as an estimate

of the final result. For example, counting the 1s resulting from a 16-cycle computation might

result in a count of 8. But if this is the case, we expect that if we only run part of the compu-

tation the ratio should still be about 50% 1s. This leads to the concept of early termination

(ET) [64]. Since early partial results from running a computation approximate the final

result, we can judge whether or not we are likely to care about the result of a computation

before the computation is complete.

The tradeoff with using results from shorter streams is that the shorter the stream is,

the more likely it is to have a large error. For example, if we expect a result of 50% for a

long stream, we might still expect about 50% for a short stream. But an error of 1 on a

16-bit stream could be 9/16 whereas an off-by-1 error for a 4-bit stream could be 3/4 which

175

is significantly more serious. To avoid this size of the error, we do not use early termination

on the first 8 bits of the stream and only turn it on after that.

In our application, we are looking for peaks, or maxima, of the filter convolution. This

means that if a value is negative or even just very close to 0 after some number of cycles, it

will most probably not be a peak. Although the sum of the first few bits of a computation

may have a significant error, we can make a very confident prediction about whether or

not a result will be a peak well before the computation is finished. This is the concept of

early termination. Using early termination, we can save power on many different inputs and

latency when processing inputs that do not contain objects and thus do not produce any

peaks above the object identification threshold.

In our early termination implementation, we periodically check the result of the stream

to see if it is below a threshold that would allow us to discard the pixel as a peak candidate.

In an ideal case for early termination, we could check the count against a threshold every

cycle, but in our case, we have unrolled positive and negative streams in time (alternating

every 8 bits) so the value is only fair to compare to early termination every 16 cycles when

we have computed an equal number of positive and negative streams. This gives us the

potential to reduce the time of computations by up to 75%, assuming 64-bit streams, based

on a threshold that can be chosen for the application, with a high degree of confidence that

we will not lose any peaks that we care about.

We apply early termination to three levels of computation, as shown in Figure 6.17:

• Level 1: each output counter contains a comparator, that compares the value against

a global threshold. If the value is below the threshold at the time of the comparison,

we disable the counter until the next computation starts. Level 1 early termination

can therefore save output counter energy.

• Level 2: if all output counters corresponding to the same Gabor filter are disabled,

we then disable the stream generation for weights of that filter. This further reduces

176

computation energy.

• Level 3: if all output counters are disabled, we stop computation altogether, and move

to the next iteration. This not only saves energy but also latency, as it effectively

translates to shorter stream lengths.

Figure 6.17: Schematic implementation of 3-level early termination.

We have evaluated early termination on a scaled-down, digital implementation of the

SCIMITAR architecture, implemented on an FPGA. We tested it on selected ROIs containing

objects from two in-house datasets containing various flying objects. Results, for varying

stream lengths, are shown in Table 6.2. From processing using 64-bit long streams, level 3

of early termination alone can provide up to 2.6X speedup.

177

Table 6.2: Average ROI processing latency in cycles, with and without early termination for

different stream leangths.

Stream ROI Latency w/o ET [cycles] ROI Latency w/ ET [cycles] ET Speedup

16 2552 1943 1.3

32 3576 2010 1.8

64 5624 2131 2.6

6.4 Evaluation

6.4.1 Accuracy

While algorithmic performance is beyond the scope of this work, we evaluate how the use of

approximate computation, compares with ”exact” methods, i.e. using floating-point compu-

tation. For comparison, we use spatio-temporal, 9x9 Gabor filters with eight time channels,

each consisting of 1 ms worth of accumulated events. We convolve those filters with frames

generated using our in-house datasets of flying objects. The datasets are highly sparse

(96-98% sparsity). Frames are divided into 64x64 ROIs. For ”exact” output, we calculate

the results using Matlab. SCIMITAR results are based on a digital implementation, which

matches the behavior of the SCIM, written using Verilog RTL and executed on an Alveo

U200 FPGA accelerator card. We use three different stochastic stream lengths - 16, 32, and

64 bits, all with early termination. For the 64-bit scenario, we also evaluate the accuracy

without ET. We consider 3 accuracy metrics: ROI agreement, filter agreement, and distance

error. ROI agreement is the percentage of filter maxima that were found in the same ROI in

both exact and approximate computation. Within those, filter agreement is the percentage

of matching peak-filter pairs between exact and approximate evaluation, and distance error

is the average absolute distance, in pixels, between exact and approximate peaks.

Results of our evaluation are shown in Table 6.3. We see that approximate computation

178

can match the peaks of between 80 and 90% for the ROIs considered. Within matched ROIs,

there is a very high correlation between exact and approximate peaks (> 99%), and the peaks

found using SC computation are generally within a few pixels of their ”exact” locations. It

is important to note, that the use of SC makes it possible to trade off performance and

accuracy - if higher fidelity is needed, longer stream lengths can be used. Further, early

termination can be disabled to further reduce the error in computation. Finally, the results

in Table 6.3 do not incorporate any of the techniques developed in Chapter 4, which can

significantly improve the precision of SC computation. A more detailed evaluation of the

SCIMITAR architecture on an end-to-end tracking application is a subject for future work.

Table 6.3: Accuracy metrics of approximate computation in tracking applications using

Gabor filters.

Stream ET ROI Agreement [%] Max Filter Agreement [%] Distance Error [pixels]

64 No 88 99 3

64 Yes 84 99 4.3

32 Yes 78 99 4.1

16 Yes 79 99 3.9

6.4.2 Hardware Evaluation

The SCIM macro is designed and simulated in 12nm technology using the extracted netlist

after layout, using the Cadence Virtuoso tool. The macro includes a digital controller, input

buffers, SCIM cell arrays, and read/write circuitries. The SRAM cell is custom-designed,

instead of using the foundry’s cell to pass the standard logic rules. A replica reference

column is used to track the process, voltage, and temperature (PVT) variation on the chip

and controls how long the compute line is discharged. The timing constraint of the SCIM

macro is simulated over multiple temperature, process, and voltage corners shown in Figure

179

6.18. The worst-case cycle time is 880p sec for SS corner, 125 Celsius, and 0.6V supply, which

meets the target system frequency requirement of 1GHz. The macro energy is measured by

running a transient simulation using the extracted netlist and integrating the supply power

waveforms. A dense load is used for inputs and weight, which means they are nonzero and

have a 0.5 probability of being 1. Figure 6.18 shows the breakdown of the macro energy. The

energy is normalized by the number of 6-bit operations. A MAC is counted as two operations

and the 6-bit operation is equivalent to processing 64 SC bits. Input communication energy

is the biggest component of energy consumption, followed by compute line discharge, and in-

situ weight SNG. The total energy consumption per operation is 8.95 fJ, which is equivalent

to 112 TOPS/W.

125, SS27, TT-40, FFVDD
680p557p460p0.8V
880p810p690p0.6V

Macro Cycle Time

Input
Communication

6.4 fJ

Compute Line
Discharge

2.2 fJ

In-situ Weight SNG
0.35 fJ

Macro Energy Breakdown
(Per Operation)

Figure 6.18: SCIM Macro timing (top), and energy breakdown (bottom).

For the system-level evaluation, we have implemented buffers and SNGs in Verilog RTL

and synthesized them using the same 12nm technology. SRAM energy is modelled based

on 12nm SRAM compiler tools. We estimate energy consumption assuming pessimistic 50%

switching probability of the stochastic streams, and three levels of input sparsity: dense (0%

sparse), 90%, and 99%. Further, we incorporate the impact of the optimizations proposed

180

in Section 6.3.4 by statically profiling the datasets discussed before, and adjusting memory

and SNG energy.

Overall results, with a detailed breakdown, are shown in Figure 6.19. On a dense load,

SCIMITAR consumes 12.9 fJ per 64-bit SC operation, translating to energy efficiency of

77.2 TOPS/W. At 90% sparsity, thanks to proposed optimizations and the implicit gating of

analog SCIM logic with zero inputs, per-operation energy is only 1.89 fJ, or 527 TOPS/W.

At 99% sparsity, the energy is only 1.46 fJ/OP, translating to efficiency of 680 TOPS/W.

SCIMITAR offers very high energy-efficiency for processing ROI-based event-data, that can

scale with sparsity thanks to analog circuit computation, and additional proposed optimiza-

tions. A comparable in-memory accelerator demonstrated in [268] achieves 60 TOPS/W

with 6-bit precision, in a comparable 16nm technology.

Figure 6.19: Energy breakdown of the SCIMITAR components for dense (outer circle), 90%

sparse (middle circle), and 99% sparse (inner circle) workloads. Energy is calculated using

64-long stochastic streams.

181

6.5 Conclusion

In this Chapter, we proposed SCIMITAR: Stochastic Computing In-Memory In-situ Track-

ing ARchitecture for Event-Based Cameras, an accelerator for high-speed object tracking.

SCIMITAR uses stochastic compute-in-memory (SCIM) for highly efficient analog process-

ing, in-situ stream generation for compact implementation, and a host of optimizations for

utilizing input sparsity. SCIMITAR provides unparalleled throughput for ROI-based process-

ing, with both latency and energy that can scale with sparsity. We demonstrate SCIMITAR

energy-efficiency using detailed circuit level simulations.

182

CHAPTER 7

Conclusion

This chapter reviews the key contributions of this dissertation and outlines directions for

future work.

7.1 Overview of Contributions

In this dissertation a series of techniques have been proposed to enable computationally

and memory-heavy machine learning models to be implemented on resource-constrained

edge devices. These techniques are applicable in both software (3PXNet), including open-

sourced libraries, as well as hardware (ACOUSTIC, GEO, SASCHA, SCIMITAR), including

FPGA and ASIC implementations. They span the use and combinations of binarization

(3PXNet), sparsity (3PXNet, SASCHA, SCIMITAR, stochastic computing (ACOUSTIC,

GEO, SASCHA, SCIMITAR) and in-memory compute (SCIMITAR).

7.1.1 3PXNet

3PXNet, described in Chapter 2, demonstrates the first combination of binarization and

sparsity in a software implementation. The 3PXNet approach relies on overcoming the

challenges of combining both techniques without losing their benefits. It is done through a

process of Pruning, Permuting, and Packing trained network weights. 3PXNet opens up new

possibilities for embedded systems developers. 3PXNet results have been demonstrated on

a host of microcontroller devices. We have shown up to 300X and 38X model size reduction

183

compared with 8-bit fixed-point and dense binarized models and up to 25X improvement in

runtime and energy. In practice, this enables the use of models that previously could not be

deployed on a particular platform due to memory or runtime constraints. Alternatively, it can

lower the system cost by enabling the use of cheaper parts with lower performance or memory

capacity. 3PXNet is based on commonly used frameworks: Pytorch for training and the C

programming language for deployment, making it broadly and easily applicable. Further, a

compiler makes translation from training to deployment seamless and user-friendly.

7.1.2 ACOUSTIC & GEO

Both ACOUSTIC and GEO, presented in Chapters 3 and 4 are system-level stochastic

computing accelerator architectures targeted at convolutional neural networks. ACOUSTIC

is the first comprehensive edge design that not only uses stochastic computing for acceleration

but also considers the programming model, scheduling, and memory hierarchy. Previous SC

works have focused only on the compute part, which made a holistic analysis impossible. By

putting SC in the context of an entire system, ACOUSTIC develops a set of crucial insights

regarding the most important benefits of using SC and how to best use them for system-level

benefits. ACOUSTIC then provides an baseline for SC accelerators, as well as an important

first step into their broader adoption. ACOUSTIC results have been demonstrated using

synthesis, performance simulation, FPGA, and even custom ASIC in Global Foundries 14nm

technology. The ACOUSTIC architecture delivers server-class parallelism within a mobile

area and power budget - a 12mm2 accelerator can be as much as 38.7x more energy-efficient

and 72.5x faster than conventional fixed-point accelerators. It can also be up to 79.6x more

energy-efficient than state-of-the-art stochastic accelerators and can be implemented in order

of magnitude less area than recent SC-based accelerators, delivering real-time performance

in a mobile/IoT energy/area envelope. The availability of working hardware devices justifies

performance claims and makes it possible for parties interested in using SC to evaluate its

viability.

184

GEO builds up on the ACOUSTIC design by fixing its biggest shortcomings: accuracy

loss, reliance on memory bandwidth, and inefficient stream conversion. GEO does this

through a set of complementary techniques: trained, shared stream generation, progressive

shadow buffers, partial binary accumulation, and near-memory computation. Thanks to

these optimizations, GEO improves accuracy by 2.2-4.0% points compared to other SC-

based accelerators while also being 4.4X faster and 5.6X more energy efficient. GEO can

compete with fixed-point implementations with similar accuracy and area while delivering

up to 5.6X throughput and 2.6X energy-efficiency gains. GEO results have been verified in

synthesis and using performance simulation. By closing the accuracy gap between SC and

fixed-point computation, without sacrificing performance, GEO marks another significant

step towards the broader adoption of SC-based accelerators.

7.1.3 SASCHA

SASCHA provides the important next step in the evolution of SC-based accelerators. Not

only does it enable exploiting sparsity in weights to improve performance, but it is also more

flexible than ACOUSTIC and GEO, due to its GEMM-based nature. SASCHA PE design,

scheduler, and architecture are designed to overcome non-trivial complications in combining

SC and sparsity. This goal was achieved through an extensive processing element design

exploration factoring in different aspects of SC, building a scheduling algorithm to improve

utilization, and a novel use of SC bit-slicing to extract sparsity from even dense weights.

SASCHA results have been demonstrated using synthesis results, providing a strong founda-

tion for our claims. The ability to process general matrix multiplications makes it possible

for SASCHA to run models beyond just CNNs, like multi-layer perceptrons (MLPs) or trans-

formers. Further, SASCHA does not require users to sacrifice dense network throughput,

thanks to the ingenious use of parallel stream processing in SC, making it more versatile

than many sparse fixed-point accelerators.

185

7.1.4 SCIMITAR

SCIMITAR is an apt conclusion to this dissertation, as it combines most of the themes

discussed in other parts: stochastic computing, sparsity, compute-in-memory, low-precision,

and domain-specific acceleration. SCIMITAR is specifically designed towards for the emerg-

ing event-based cameras, and takes advantage of their sparse, low-latency data streams to

accelerate object detection and tracking applications. Not only does SCIMITAR use state-of-

the-art stochastic compute-in-memory (SCIM) to provide very high energy-efficiency even on

dense load, it also incorporates circuit and architectural optimizations that allow us to scale

performance with input sparsity. On top of that, the introduction of the in-situ SNG tech-

nique can significantly cut down the area requirements of SCIM designs, making them more

suitable for edge applications. Despite using inherently approximate computation, SCIMI-

TAR provides results closely matching ”ideal”, floating-point computation, and techniques

are available for improving its accuracy further.

7.2 Directions for Future Work

Potential research avenues to expand on the work presented in this dissertation are discussed

below.

7.2.1 Exploration of Stochastic Computing Accelerators

While the various architectures presented here represent, or represented at the time of their

publication, the state-of-the-art in ML acceleration, they were largely designed by hand.

One way of improving them would be through automated design-space exploration, some-

thing that has been extensively applied to conventional accelerators, for example in [129].

As we have shown in Chapter 5, SC-based accelerators have different optimization axes, not

present in fixed-point architectures, that can lead to a different set of optimal parameters.

186

Because of that, automated design space exploration that takes into account the peculiar-

ities of stochastic computing could uncover new and interesting insights into how to best

design such devices. Further, the evaluation in this thesis is largely limited to convolutional

vision models, whereas the ML landscape is moving towards transformer-based models. This

limitation was caused by the slow training time of SC network models, something that is

beyond the scope of this dissertation. However, given the recent advancements in training,

SC-based transformer, and other models will soon become a possibility. Designing architec-

ture for them will become a new challenge. While SASCHA presents a good starting point,

being a GEMM-based accelerator, it remains to be seen how effective it would be at running

transformer models. Finally, if SC accelerators become broadly used, they will require robust

compiler support. While a compiler for ACOUSTIC and GEO has been developed, it can

only support a limited subset of operations in basic models and is unable to find and exploit

code optimization opportunities. Much more work is required on this front.

7.2.2 Analog Stochastic Computing

While SCIMITAR, presented in Chapter 6, successfully marries stochastic computing and

analog, in-memory computation, there are plenty of potential extensions for this work. First,

we found new range-extending techniques, which can maintain accuracy at lower SC stream

lengths, significantly improving performance. They were initially elaborated in a purely

digital setting, currently in publication, but can be applied to analog, in-memory stochastic

computation as well. Second, the combination of analog computation, and SC robustness

remain to be explored. We know that, due to its non-positional representation, stochastic

computing is very timing error-tolerant [201]. Since analog circuits often burn a lot of

area and power for margining and tolerance, SC robustness could be used to design more

streamlined circuitry. Various other techniques could also be used: DVFS, sub-threshold

operation, pipelining, etc. Ideally, all of those components could be combined in an automatic

design exploration tool, as described in the previous subsection.

187

7.2.3 Extending 3PXNet

Despite impressive performance gains, 3PXNet suffers from accuracy losses. Some gains

have been made in recent years in improving training and network architecture to recover

some precision, but the amount of information stored in a single bit remains a fundamental

limitation. To alleviate that, multi-bit binarized networks have been proposed [269], which

can use arbitrary precision for each of the operands, while still using efficient ”SIMD” XNOR

multiplication. To maintain performance gains over optimized, 8-bit libraries, precision is

limited to two or three bits, but even that can drastically improve accuracy [269]. Unfor-

tunately, existing work relies on using the so-called ”unipolar” multiplication, with inputs

being 0 or 1, which is not as efficient as bipolar, XNOR multiplication. Our ongoing efforts

have shown that XNOR multiplication can be used with a careful choice of activation func-

tions. Further, there is ongoing work on combining multi-bit XNOR networks with 3PXNet,

to deliver accuracy-competitive networks with minimal memory and runtime.

188

REFERENCES

[1] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-Scale
Image Recognition,” arXiv preprint arXiv:1409.1556, 2014. arXiv: 1409.1556 ISBN:
0950-5849.

[2] Y. H. Chen, T. Krishna, J. Emer, and V. Sze, “Eyeriss: An Energy-Efficient Re-
configurable Accelerator for Deep Convolutional Neural Networks,” IEEE journal of
solid-state circuits, vol. 52, no. 1, pp. 127–138, 2016. arXiv: 1512.04295 ISBN: 978-1-
4673-9466-6.

[3] T. Jia, Y. Ju, and J. Gu, “A Dynamic Timing Enhanced DNN Accelerator With
Compute-Adaptive Elastic Clock Chain Technique,” IEEE Journal of Solid-State Cir-
cuits, vol. 56, pp. 55–65, Jan. 2021.

[4] A. Sayal, S. Fathima, S. T. Nibhanupudi, and J. P. Kulkarni, “COMPAC: Com-
pressed Time-Domain, Pooling-Aware Convolution CNN Engine With Reduced Data
Movement for Energy-Efficient AI Computing,” IEEE Journal of Solid-State Circuits,
vol. 56, pp. 2205–2220, July 2021.

[5] W. Romaszkan, T. Li, T. Melton, S. Pamarti, and P. Gupta, “ACOUSTIC : Accelerat-
ing Convolutional Neural Networks through Or-Unipolar Skipped Stochastic Comput-
ing,” in 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE),
pp. 768–773, 2020.

[6] A. Sayal, S. Fathima, S. S. T. Nibhanupudi, and J. P. Kulkarni, “All-Digital Time-
Domain CNN Engine Using Bidirectional Memory Delay Lines for Energy-Efficient
Edge Computing,” in 2019 IEEE International Solid- State Circuits Conference -
(ISSCC), vol. 49, pp. 228–230, IEEE, 2019. Issue: 4.

[7] A. Biswas and A. P. Chandrakasan, “Conv-RAM: An energy-efficient SRAM with
embedded convolution computation for low-power CNN-based machine learning ap-
plications,” in 2018 IEEE International Solid - State Circuits Conference - (ISSCC),
(San Francisco, CA), pp. 488–490, IEEE, Feb. 2018.

[8] W. Romaszkan, T. Li, and P. Gupta, “3PXNet: Pruned-Permuted-Packed XNOR
Networks for Edge Machine Learning,” ACM Transactions on Embedded Computing
Systems, vol. 19, no. 1, pp. 1–23, 2020.

[9] W. Romaszkan, T. Li, R. Garg, J. Yang, S. Pamarti, and P. Gupta, “A 4.4–75-
TOPS/W 14-nm Programmable, Performance- and Precision-Tunable All-Digital
Stochastic Computing Neural Network Inference Accelerator,” IEEE Solid-State Cir-
cuits Letters, vol. 5, pp. 206–209, 2022.

189

[10] T. Li, W. Romaszkan, S. Pamarti, and P. Gupta, “GEO : Generation and Execution
Optimized Stochastic Computing Accelerator for Neural Networks,” in 2021 Design,
Automation & Test in Europe Conference & Exhibition (DATE), pp. 1–6, 2021.

[11] W. Romaszkan, T. Li, and P. Gupta, “SASCHA—Sparsity-Aware Stochastic Comput-
ing Hardware Architecture for Neural Network Acceleration,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 41, pp. 4169–4180,
Nov. 2022.

[12] M. Horowitz, “Computing’s Energy Problem (And What We Can Do About It),”
in Digest of Technical Papers - IEEE International Solid-State Circuits Conference,
vol. 57, pp. 10–14, 2014. ISSN: 01936530.

[13] Y. H. Chen, J. Emer, and V. Sze, “Eyeriss: A Spatial Architecture for Energy-Efficient
Dataflow for Convolutional Neural Networks,” in 2016 ACM/IEEE 43rd Annual In-
ternational Symposium on Computer Architecture (ISCA), pp. 367–379, 2016. ISSN:
02721732.

[14] N. P. Jouppi, A. Borchers, R. Boyle, P.-l. Cantin, C. Chao, C. Clark, J. Coriell,
M. Daley, M. Dau, J. Dean, B. Gelb, C. Young, T. V. Ghaemmaghami, R. Gotti-
pati, W. Gulland, R. Hagmann, C. R. Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt,
J. Ibarz, N. Patil, A. Jaffey, A. Jaworski, A. Kaplan, H. Khaitan, D. Killebrew,
A. Koch, N. Kumar, S. Lacy, J. Laudon, J. Law, D. Patterson, D. Le, C. Leary,
Z. Liu, K. Lucke, A. Lundin, G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Na-
garajan, G. Agrawal, R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick,
N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek, R. Bajwa, E. Samadiani, C. Sev-
ern, G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing, M. Tan, G. Thorson,
B. Tian, S. Bates, H. Toma, E. Tuttle, V. Vasudevan, R. Walter, W. Wang, E. Wilcox,
D. H. Yoon, S. Bhatia, and N. Boden, “In-Datacenter Performance Analysis of a Ten-
sor Processing Unit,” in Proceedings of the 44th Annual International Symposium on
Computer Architecture, pp. 1–12, 2017. arXiv: 1704.04760 ISSN: 10636897.

[15] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu, N. Sun,
and O. Temam, “DaDianNao: A Machine-Learning Supercomputer,” in 47th Annual
IEEE/ACM International Symposium on Microarchitecture, pp. 609–622, IEEE, 2014.
arXiv: 1512.04295v2 ISSN: 10724451.

[16] C. Banbury, V. J. Reddi, P. Torelli, J. Holleman, N. Jeffries, C. Kiraly, P. Mon-
tino, D. Kanter, S. Ahmed, D. Pau, U. Thakker, A. Torrini, P. Warden, J. Cordaro,
G. Di Guglielmo, J. Duarte, S. Gibellini, V. Parekh, H. Tran, N. Tran, N. Wenxu, and
X. Xuesong, “MLPerf Tiny Benchmark,” 2021. arXiv: 2106.07597.

[17] J.-s. Park, J.-w. Jang, H. Lee, D. Lee, S. Lee, H. Jung, S. Lee, S. Kwon, K. Jeong,
J.-h. Song, S. Lim, and I. Kang, “A 6K-MAC Feature-Map-Sparsity-Aware Neural

190

Processing Unit in 5nm Flagship Mobile SoC,” in 2021 IEEE International Solid-State
Circuits Conference-(ISSCC), pp. 152–153, 2021.

[18] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-Net: ImageNet
Classification Using Binary Convolutional Neural Networks,” in European Confer-
ence on Computer Vision, (Amsterdam, The Netherlands), pp. 525–542, XNOR-Net:
ImageNet Classification Using Binary Convolutional Neural Networks, 2016. arXiv:
1603.05279 ISSN: 0302-9743.

[19] P. Judd, J. Albericio, and A. Moshovos, “Stripes: Bit-Serial Deep Neural Network
Computing,” in 2016 49th Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO), pp. 1–12, 2016. arXiv: 1011.1669v3 ISSN: 15566056.

[20] T. W. Chin, P. I. Chuang, V. Chandra, and D. Marculescu, “One Weight Bitwidth to
Rule Them All,” European Conference on Computer Vision Workshops, 2020. arXiv:
2008.09916.

[21] J. Yu, A. Lukefahr, D. Palframan, G. Dasika, R. Das, and S. Mahlke, “Scalpel: Cus-
tomizing DNN Pruning to the Underlying Hardware Parallelism,” Proceedings of the
44th Annual International Symposium on Computer Architecture, pp. 548–560, 2017.
ISBN: 978-1-4503-4892-8.

[22] Y. L. Cun, J. S. Denker, and S. a. Solla, “Optimal Brain Damage,” in Advances in
Neural Information Processing Systems, vol. 2, pp. 598–605, 1990. arXiv: 1011.1669v3
Issue: 1 ISSN: 1098-6596.

[23] J. Faraone, N. Fraser, G. Gambardella, M. Blott, and P. H. Leong, “Compressing Low
Precision Deep Neural Networks Using Sparsity-Induced Regularization in Ternary
Networks,” in International Conference on Neural Information Processing, pp. 393–
404, 2017. arXiv: 1709.06262 ISSN: 16113349.

[24] S. Li, W. Romaszkan, A. Graening, and P. Gupta, “SWIS - Shared Weight bIt Sparsity
for Efficient Neural Network Acceleration,” in Proceedings of 2021 TinyML Research
Symposium, vol. 1, pp. 1–8, 2021. arXiv: 2103.01308 Issue: 1.

[25] S. Yu, H. Jiang, S. Huang, X. Peng, and A. Lu, “Compute-in-Memory Chips for
Deep Learning: Recent Trends and Prospects,” IEEE Circuits and Systems Maga-
zine, vol. 21, pp. 31–56, July 2021. Publisher: Institute of Electrical and Electronics
Engineers Inc.

[26] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan,
B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, and Others, “A Million Spiking-Neuron
Integrated Circuit with a Scalable Communication Network and Interface,” Science,
vol. 345, no. 6197, pp. 668–673, 2014.

191

[27] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep
Convolutional Neural Networks,” in Communications of the ACM, pp. 1106–1114,
2012. arXiv: 1102.0183 ISSN: 10495258.

[28] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet Large Scale Visual
Recognition Challenge,” Jan. 2015. Number: arXiv:1409.0575 arXiv:1409.0575 [cs].

[29] A. Canziani, A. Paszke, and E. Culurciello, “An Analysis of Deep Neural Network
Models for Practical Applications,” arXiv preprint arXiv:1605.07678, 2016. arXiv:
1605.07678 ISBN: 2857825749.

[30] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recogni-
tion,” in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 770–778, 2016. arXiv: 1512.03385 ISSN: 15737721.

[31] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich, “Going Deeper with Convolutions,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 1–9, 2015.

[32] Y. G. Kim and C. J. Wu, “Autoscale: Energy efficiency optimization for stochastic edge
inference using reinforcement learning,” Proceedings of the Annual International Sym-
posium on Microarchitecture, MICRO, vol. 2020-Octob, pp. 1082–1096, 2020. ISBN:
9781728173832.

[33] S. Wang, A. Pathania, and T. Mitra, “Neural Network Inference on Mobile SoCs,”
IEEE Design & Test, vol. 37, no. 5, pp. 50–57, 2020. Publisher: IEEE.

[34] C. J. Wu, D. Brooks, K. Chen, D. Chen, S. Choudhury, M. Dukhan, K. Hazelwood,
E. Isaac, Y. Jia, B. Jia, T. Leyvand, H. Lu, Y. Lu, L. Qiao, B. Reagen, J. Spisak,
F. Sun, A. Tulloch, P. Vajda, X. Wang, Y. Wang, B. Wasti, Y. Wu, R. Xian, S. Yoo,
and P. Zhang, “Machine learning at facebook: Understanding inference at the edge,”
Proceedings - 25th IEEE International Symposium on High Performance Computer
Architecture, HPCA 2019, pp. 331–344, 2019. Publisher: IEEE ISBN: 9781728114446.

[35] Y. Cheng, D. Wang, P. Zhou, and T. Zhang, “A Survey of Model Compression and Ac-
celeration for Deep Neural Networks,” arXiv preprint arXiv:1710.09282, 2017. arXiv:
1710.09282 ISBN: 9781467380263.

[36] M. Thoma, “Analysis and Optimization of Convolutional Neural Network Architec-
tures,” arXiv preprint arXiv:1707.09725, 2017. arXiv: 1707.09725.

[37] V. Vanhoucke, A. Senior, and M. Mao, “Improving the Speed of Neural Networks
on CPUs,” in in Deep Learning and Unsupervised Feature Learning Workshop, NIPS,
2011. ISSN: 9781450329569.

192

[38] V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan, “Analysis and Char-
acterization of Inherent Application Resilience for Approximate Computing,” in 2013
50th ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1–9, 2013.

[39] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep Learning with
Limited Numerical Precision,” in International Conference on Machine Learning,
pp. 1737–1746, 2015. arXiv: 1502.02551 ISSN: 19410093.

[40] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, “DoReFa-Net: Training Low
Bitwidth Convolutional Neural Networks with Low Bitwidth Gradients,” 2016. arXiv:
1606.06160.

[41] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Is-
ard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga,
S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever,
K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. War-
den, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-Scale
Machine Learning on Heterogeneous Distributed Systems,” Mar. 2016. Number:
arXiv:1603.04467 arXiv:1603.04467 [cs].

[42] Z. Yao, Z. Dong, Z. Zheng, A. Gholami, J. Yu, E. Tan, L. Wang, Q. Huang, Y. Wang,
M. W. Mahoney, and K. Keutzer, “HAWQV3: Dyadic Neural Network Quantization,”
arXiv preprint arXiv:2011.10680, pp. 1–15, 2020. arXiv: 2011.10680.

[43] Z. Cheng, D. Soudry, Z. Mao, and Z. Lan, “Training Binary Multilayer Neural Net-
works for Image Classification using Expectation Backpropagation,” arXiv preprint
arXiv:1503.03562, 2015. arXiv: 1503.03562 ISBN: 9781479909209.

[44] M. Courbariaux, Y. Bengio, and J.-P. David, “BinaryConnect: Training Deep Neural
Networks with Binary Weights During Propagations,” Advances in Neural Information
Processing Systems, vol. 28, pp. 3123–3131, 2015. arXiv: 1511.00363 ISSN: 10495258.

[45] M. Kim and P. Smaragdis, “Bitwise Neural Networks,” arXiv preprint
arXiv:1601.06071, vol. 37, 2016. arXiv: 1601.06071 ISBN: 9781538646588.

[46] I. Hubara, D. Soudry, and R. E. Yaniv, “Binarized Neural Networks,” Advances in neu-
ral information processing systems, vol. 29, no. Nips, pp. 1–9, 2016. arXiv: 1602.02505.

[47] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong, M. Jahre, and
K. Vissers, “FINN : A Framework for Fast , Scalable Binarized Neural Network In-
ference,” in Proceedings of the 2017 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pp. 65–74, 2017.

193

[48] N. J. Fraser, Y. Umuroglu, G. Gambardella, M. Blott, P. Leong, M. Jahre, and K. Vis-
sers, “Scaling Binarized Neural Networks on Reconfigurable Logic,” in Proceedings of
the 8th Workshop and 6th Workshop on Parallel Programming and Run-Time Man-
agement Techniques for Many-core Architectures and Design Tools and Architectures
for Multicore Embedded Computing Platforms, (Stockholm, Sweden), pp. 25–30, Asso-
ciation for Computing Machinery, 2017. arXiv: 1701.03400 ISBN: 9781450348775.

[49] Y. Li, Z. Liu, K. Xu, H. Yu, and F. Ren, “A 7.663-TOPS 8.2-W Energy-efficient FPGA
Accelerator for Binary Convolutional Neural Networks,” in Proceedings of the 2017
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays - FPGA
’17, (Monterey, California, USA), pp. 290–291, Association for Computing Machinery,
2017. arXiv: 1702.06392 Issue: March.

[50] R. Zhao, W. Song, W. Zhang, T. Xing, J.-H. Lin, M. Srivastava, R. Gupta, and
Z. Zhang, “Accelerating Binarized Convolutional Neural Networks with Software-
Programmable FPGAs,” Proceedings of the 2017 ACM/SIGDA International Sym-
posium on Field-Programmable Gate Arrays - FPGA ’17, pp. 15–24, 2017. ISBN:
9781450343541.

[51] Y. Li, K. Xu, and H. Yu, “A GPU-Outperforming FPGA Accelerator Architecture for
Binary Convolutional Neural Networks,” ACM Journal on Emerging Technologies in
Computing Systems (JETC), vol. 14, no. 2, pp. 1–16, 2018. arXiv: 1702.06392.

[52] L. Yang, Z. He, and D. Fan, “A Fully Onchip Binarized Convolutional Neural Network
FPGA Impelmentation with Accurate Inference,” in Proceedings of the International
Symposium on Low Power Electronics and Design, pp. 50:1–50:6, 2018.

[53] R. Andri, L. Cavigelli, D. Rossi, and L. Benini, “Yoda NN: An Architecture for Ul-
tralow Power Binary-Weight CNN Acceleration,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 37, no. 1, pp. 48–60, 2018. arXiv:
1606.05487 ISBN: 0278-0070 VO - PP.

[54] A. A. Bahou, G. Karunaratne, R. Andri, L. Cavigelli, and L. Benini, “XNORBIN: A 95
TOp/s/W Hardware Accelerator for Binary Convolutional Neural Networks,” CoRR,
vol. abs/1803.0, pp. 1–3, 2018. arXiv: 1803.05849 ISBN: 9781538661024.

[55] F. Conti, P. D. Schiavone, and L. Benini, “XNOR Neural Engine: a Hardware Accel-
erator IP for 21.6 fJ/op Binary Neural Network Inference,” 2018. arXiv: 1807.03010.

[56] K. Ando, K. Ueyoshi, K. Orimo, H. Yonekawa, S. Sato, H. Nakahara, S. Takamaeda-
Yamazaki, M. Ikebe, T. Asai, T. Kuroda, and M. Motomura, “BRein Memory : A
Single-Chip Binary / Ternary Reconfigurable in-Memory Deep Neural Network,” IEEE
Journal of Solid-State Circuits, vol. 53, no. 4, pp. 983–994, 2017.

194

[57] L. Jiang, M. Kim, W. Wen, and D. Wang, “XNOR-POP: A Processing-in-Memory
Architecture for Binary Convolutional Neural Networks in Wide-IO2 DRAMs,” in
2017 IEEE/ACM International Symposium on Low Power Electronics and Design
(ISLPED), (Taipei, Taiwan), pp. 1–6, IEEE, 2017. ISBN: 9781509060238.

[58] D. Bankman, L. Yang, B. Moons, M. Verhelst, and B. Murmann, “An Always-On 3.8
μ J/86% CIFAR-10 Mixed-Signal Binary CNN Processor With All Memory on
Chip in 28-nm CMOS,” IEEE Journal of Solid-State Circuits, vol. 54, pp. 158–172,
Jan. 2019.

[59] H. Yang, M. Fritzsche, C. Bartz, and C. Meinel, “BMXNet: An Open-Source Binary
Neural Network Implementation Based on MXNet,” in Proceedings of the 25th ACM
international conference on Multimedia, (Mountain View, California, USA), pp. 1209–
1212, Association for Computing Machinery, 2017. arXiv: 1705.09864 ISSN: 16130073.

[60] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang,
and Z. Zhang, “MXNet: A Flexible and Efficient Machine Learning Library for
Heterogeneous Distributed Systems,” arXiv preprint arXiv:1512.01274, 2015. arXiv:
1512.01274 ISBN: 0360-0300.

[61] Y. Hu, J. Zhai, D. Li, Y. Gong, Y. Zhu, W. Liu, L. Su, and J. Jin, “BitFlow: Exploit-
ing Vector Parallelism for Binary Neural Networks on CPU,” in 2018 IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS), (Vancouver, British
Columbia, Canada), pp. 244–253, IEEE, 2018. Publisher: IEEE ISBN: 978-1-5386-
4368-6.

[62] F. Pedersoli, G. Tzanetakis, and A. Tagliasacchi, “Espresso: Efficient Forward Propa-
gation for BCNNs,” 2017. arXiv: 1705.07175v2.

[63] B. McDanel, S. Teerapittayanon, and H. T. Kung, “Embedded Binarized Neural Net-
works,” 2017. arXiv: 1709.02260 ISBN: 9780994988614.

[64] D. Wu, J. Li, R. Yin, H. Hsiao, Y. Kim, and J. S. Miguel, “uGEMM : Unary Com-
puting Architecture for GEMM Applications,” 2020 ACM/IEEE 47th Annual Inter-
national Symposium on Computer Architecture (ISCA), pp. 377–390, 2020. ISBN:
9781728146614.

[65] S. Mohajer, Z. Wang, and K. Bazargan, “Routing Magic: Performing Computations
Using Routing Networks and Voting Logic on Unary Encoded Data,” in Proceedings of
the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
pp. 77–86, 2018.

[66] A. Madhavan, T. Sherwood, and D. Strukov, “Race Logic: A Hardware Acceleration for
Dynamic Programming Algorithms,” ACM SIGARCH Computer Architecture News,
vol. 42, no. 3, pp. 517–528, 2014.

195

[67] D. Wu and J. S. Miguel, “uSystolic : Byte-Crawling Unary Systolic Array,” in 2022
IEEE International Symposium on High Performance Computer Architecture (HPCA),
2022.

[68] B. S. B. Furber, F. Ieee, F. Galluppi, S. Temple, L. A. Plana, and S. M. Ieee, “The
SpiNNaker Project,” Proceedings of the IEEE, vol. 102, no. 5, pp. 652–665, 2014.
Publisher: IEEE.

[69] R. Silver, K. Boahen, S. Grillner, N. Kopell, and K. L. Olsen, “Neurotech for Neuro-
science: Unifying Concepts, Organizing Principles, and Emerging Tools,” Journal of
Neuroscience, vol. 27, pp. 11807–11819, Oct. 2007.

[70] J. Schemmel, D. Briiderle, A. Griibl, M. Hock, K. Meier, and S. Millner, “A wafer-scale
neuromorphic hardware system for large-scale neural modeling,” in Proceedings of 2010
IEEE International Symposium on Circuits and Systems, (Paris, France), pp. 1947–
1950, IEEE, May 2010.

[71] S. W. Moore, P. J. Fox, S. J. Marsh, A. T. Markettos, and A. Mujumdar, “Bluehive -
A field-programable custom computing machine for extreme-scale real-time neural net-
work simulation,” in 2012 IEEE 20th International Symposium on Field-Programmable
Custom Computing Machines, (Toronto, ON), pp. 133–140, IEEE, Apr. 2012.

[72] R. Serrano-Gotarredona, M. Oster, P. Lichtsteiner, A. Linares-Barranco, R. Paz-
Vicente, F. Gómez-Rodŕıguez, L. Camunas-Mesa, R. Berner, M. Rivas-Perez,
T. Delbrück, S. C. Liu, R. Douglas, P. Hafliger, G. Jimenez-Moreno, A. Civit Ballcels,
T. Serrano-Gotarredona, A. J. Acosta-Jimenez, and B. Linares-Barranco, “CAVIAR: A
45k neuron, 5M synapse, 12G connects/s AER hardware sensory-processing-learning-
actuating system for high-speed visual object recognition and tracking,” IEEE Trans-
actions on Neural Networks, vol. 20, no. 9, pp. 1417–1438, 2009.

[73] M. Bouvier, A. Valentian, T. Mesquida, F. Rummens, M. Reyboz, E. Vianello, and
E. Beigne, “Spiking Neural Networks Hardware Implementations and Challenges: A
Survey,” ACM Journal on Emerging Technologies in Computing Systems, vol. 15,
pp. 1–35, Apr. 2019.

[74] J. L. Gustafson and I. Yonemoto, “Beating Floating Point at its Own Game: Posit
Arithmetic,” Supercomputing frontiers and innovations, vol. 4, no. 2, pp. 71–86, 2017.

[75] D. Mallasén, R. Murillo, A. A. Del Barrio, G. Botella, L. Piñuel, and M. Prieto, “PER-
CIVAL: Open-Source Posit RISC-V Core with Quire Capability,” IEEE Transactions
on Emerging Topics in Computing, vol. 10, pp. 1241–1252, July 2022.

[76] M. K. Jaiswal and H. K.-H. So, “PACoGen: A Hardware Posit Arithmetic Core Gen-
erator,” IEEE Access, vol. 7, pp. 74586–74601, 2019.

196

[77] E. Park, J. Ahn, and S. Yoo, “Weighted-Entropy-based Quantization for Deep Neural
Networks,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 5456–5464, 2017.

[78] T. Kudo, K. Ueyoshi, K. Ando, K. Hirose, R. Uematsu, Y. Oba, M. Ikebe, T. Aasai,
M. Motomura, and S. Takamaeda-yamazaki, “Area and Energy Optimization for Bit-
Serial Log-Quantized DNN Accelerator with Shared Accumulators,” in 2018 IEEE 12th
International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MC-
SoC), pp. 237–243, 2018.

[79] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan, B. Khailany, J. Emer,
S. W. Keckler, and W. J. Dally, “SCNN: An Accelerator for Compressed-sparse Convo-
lutional Neural Networks,” in Proceedings of the 44th Annual International Symposium
on Computer Architecture, pp. 27–40, 2017. arXiv: 1708.04485 ISSN: 10636897.

[80] B. Hassibi, D. G. Stork, and G. J. Wolff, “Optimal brain surgeon and general network
pruning,” IEEE International Conference on Neural Networks - Conference Proceed-
ings, vol. 1993-Janua, pp. 293–299, 1993. ISBN: 0780309995.

[81] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J. Dally, “EIE:
Efficient Inference Engine on Compressed Deep Neural Network,” vol. 16, 2016. arXiv:
1602.01528 ISBN: 978-1-4673-8947-1.

[82] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both Weights and Connections
for Efficient Neural Networks,” in Advances in neural information processing systems,
pp. 1135–1143, 2015. arXiv: 1506.02626 ISSN: 01406736.

[83] S. Han, H. Mao, and W. J. Dally, “Deep Compression: Compressing Deep Neural
Networks with Pruning, Trained Quantization and Huffman Coding,” arXiv preprint
arXiv:1510.00149, pp. 1–14, 2015. arXiv: 1510.00149 ISBN: 0470021438.

[84] R. Sredojevic, S. Cheng, L. Supic, R. Naous, and V. Stojanovic, “Structured Deep
Neural Network Pruning via Matrix Pivoting,” arXiv preprint arXiv:1712.01084, pp. 1–
16, 2017. arXiv: 1712.01084.

[85] V. Lebedev and V. Lempitsky, “Fast ConvNets Using Group-wise Brain Damage,”
in Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 2554–2564, 2015. arXiv: 1506.02515 ISBN: 978-1-4673-8851-1.

[86] H. Foroosh, M. Tappen, and M. Penksy, “Sparse Convolutional Neural Networks,” 2015
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 806–814,
2015. ISBN: 978-1-4673-6964-0.

[87] S. Anwar and W. Sung, “Compact Deep Convolutional Neural Networks With Coarse
Pruning,” arXiv preprint arXiv:1610.09639, 2016. arXiv: 1610.09639.

197

[88] S. Anwar, K. Hwang, and W. Sung, “Structured Pruning of Deep Convolutional Neural
Networks,” ACM Journal on Emerging Technologies in Computing Systems, vol. 13,
no. 3, pp. 1–18, 2017. arXiv: 1512.08571 ISBN: 9781509059904.

[89] H. Wang, Q. Zhang, Y. Wang, and R. Hu, “Structured Deep Neural Network Pruning
by Varying Regularization Parameters,” ArXiv preprint: 1804.09461, vol. 3, 2018.
arXiv: 1804.09461.

[90] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo, T. Chen, and Y. Chen,
“Cambricon-X : An Accelerator for Sparse Neural Networks,” in 2016 49th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), pp. 1–12, 2016.

[91] L. Liang, L. Deng, Y. Zeng, X. Hu, Y. Ji, X. Ma, G. Li, and Y. Xie, “Crossbar-
Aware Neural Network Pruning,” IEEE Access, vol. 6, pp. 58324–58337, 2018. arXiv:
1807.10816.

[92] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer,
“SqueezeNet: AlexNet-level Accuracy with 50x Fewer Parameters and <0.5MB Model
Size,” arXiv preprint arXiv:1602.07360, pp. 1–13, 2016. arXiv: 1602.07360 ISBN:
978-3-319-24552-2.

[93] X. Zhang, X. Zhou, M. Lin, and J. Sun, “ShuffleNet: An Extremely Efficient Convolu-
tional Neural Network for Mobile Devices,” in 2018 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, (Salt Lake City, UT), pp. 6848–6856, IEEE,
June 2018.

[94] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. An-
dreetto, and H. Adam, “MobileNets: Efficient Convolutional Neural Networks for Mo-
bile Vision Applications,” arXiv preprint arXiv:1704.04861, 2017. arXiv: 1704.04861
ISBN: 2004012439.

[95] L. Lai, N. Suda, and V. Chandra, “CMSIS-NN: Efficient Neural Network Kernels
for Arm Cortex-M CPUs,” arXiv preprint arXiv:1801.06601, pp. 1–10, 2018. arXiv:
1801.06601.

[96] A. Kumar, S. Goyal, and M. Varma, “Resource-efficient Machine Learning in 2 KB
RAM for the Internet of Things,” in International Conference on Machine Learning,
pp. 1935–1944, 2017.

[97] C. Gupta, A. S. Suggala, A. Goyal, H. V. Simhadri, B. Paranjape, A. Kumar, S. Goyal,
R. Udupa, M. Varma, and P. Jain, “ProtoNN: Compressed and Accurate kNN for
Resource-scarce Devices,” in International Conference on Machine Learning, pp. 1331–
1340, 2017.

198

[98] R. David, J. Duke, A. Jain, V. J. Reddi, N. Jeffries, J. Li, N. Kreeger, I. Nappier,
M. Natraj, S. Regev, R. Rhodes, T. Wang, and P. Warden, “TensorFlow Lite Mi-
cro: Embedded Machine Learning on TinyML Systems,” in Proceedings of Machine
Learning and Systems, pp. 800–811, 2021.

[99] J. Lin, W.-M. Chen, Y. Lin, J. Cohn, C. Gan, and S. Han, “MCUNet: Tiny Deep
Learning on IoT Devices,” in Advances in Neural Information Processing Systems,
vol. 33, pp. 11711–11722, 2020.

[100] B. R. Gaines, “Stochastic computing systems,” Advances in Information Systems Sci-
ence, vol. 2, pp. 37–172, 1969.

[101] A. Alaghi, The Logic of Random Pulses: Stochastic Computing. PhD thesis, University
of Michigan, 2015.

[102] A. Alaghi and J. P. Hayes, “Survey of Stochastic Computing,” ACM Transactions on
Embedded computing systems (TECS), vol. 12, no. 2s, pp. 1–19, 2013.

[103] B. Yuan, Y. Wang, and Z. Wang, “Area-Efficient Scaling-free DFT / FFT Design
using Stochastic Computing,” IEEE Transactions on Circuits and Systems II: Express
Briefs, vol. 63, no. 1, pp. 1131–1135, 2016. ISBN: 9781479953417.

[104] R. Hojabr, K. Givaki, S. M. R. Tayaranian, P. Esfahanian, A. Khonsari, D. Rahmati,
and M. H. Najafi, “SkippyNN : An Embedded Stochastic-Computing Accelerator for
Convolutional Neural Networks,” in 2019 56th ACM/IEEE Design Automation Con-
ference (DAC), pp. 1–6, 2019.

[105] Z. Li, J. Li, A. Ren, R. Cai, C. Ding, X. Qian, J. Draper, B. Yuan, J. Tang, Q. Qiu, and
Others, “HEIF: Highly Efficient Stochastic Computing based Inference Framework for
Deep Neural Networks,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 38, no. 8, pp. 1543–1556, 2018.

[106] A. Ren, J. Li, Z. Li, C. Ding, X. Qian, Q. Qiu, B. Yuan, and Y. Wang, “SC-DCNN:
Highly-Scalable Deep Convolutional Neural Network using Stochastic Computing,”
ACM SIGPLAN Notices, vol. 52, no. 4, pp. 405–418, 2017. arXiv: 1611.05939 ISBN:
9781450344654.

[107] H. Sim and J. Lee, “A New Stochastic Computing Multiplier with Application to Deep
Convolutional Neural Networks,” in Proceedings of the 54th Annual Design Automation
Conference 2017 on - DAC ’17, pp. 1–6, 2017. ISSN: 0738100X.

[108] J. Yu, K. Kim, J. Lee, and K. Choi, “Accurate and Efficient Stochastic Computing
Hardware for Convolutional Neural Networks,” 2017 IEEE International Conference
on Computer Design (ICCD), pp. 105–112, 2017. ISBN: 978-1-5386-2254-4.

199

[109] A. Zhakatayev, S. Lee, H. Sim, and J. Lee, “Sign-Magnitude SC : Getting 10X Ac-
curacy for Free in Stochastic Computing for Deep Neural Networks,” in 2018 55th
ACM/ESDA/IEEE Design Automation Conference (DAC), pp. 1–6, IEEE, 2018.

[110] S. R. Faraji, M. H. Najafi, B. Li, D. J. Lilja, and K. Bazargan, “Energy-Efficient
Convolutional Neural Networks with Deterministic Bit-Stream Processing,” in 2019
Design, Automation Test in Europe Conference Exhibition (DATE), pp. 1757–1762,
EDAA, 2019.

[111] J. A. Dickson, R. D. Mcleod, and H. C. Card, “Stochastic Arithmetic Implementa-
tions of Neural Networks with in Situ Learning,” in IEEE International Conference on
Neural Networks, pp. 711–716, 1993.

[112] B. Brown and H. Card, “Stochastic neural computation. I. Computational elements,”
IEEE Transactions on Computers, vol. 50, pp. 891–905, Sept. 2001.

[113] D. Larkin, A. Kinane, V. Muresan, and N. O’Connor, “An Efficient Hardware Architec-
ture for a Neural Network Activation Function Generator,” International Symposium
on Neural Networks, pp. 1319–1327, 2006. ISBN: 3540344829.

[114] T.-H. Chen and J. P. Hayes, “Design of Division Circuits for Stochastic Computing,”
in 2016 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), (Pittsburgh,
PA, USA), pp. 116–121, IEEE, July 2016.

[115] V. T. Lee, A. Alaghi, L. Ceze, and M. Oskin, “Stochastic Synthesis for Stochastic
Computing,” arXiv preprint arXiv:1810.04756, 2018. arXiv: 1810.04756.

[116] Z. Li, A. Ren, J. Li, Q. Qiu, B. Yuan, J. Draper, and Y. Wang, “Structural Design
Optimization for Deep Convolutional Neural Networks Using Stochastic Computing,”
Proceedings of the 2017 Design, Automation and Test in Europe, DATE 2017, pp. 250–
253, 2017. ISBN: 9783981537093.

[117] V. Govindaraju, C.-H. Ho, T. Nowatzki, J. Chhugani, N. Satish, K. Sankaralingam, and
C. Kim, “DySER: Unifying Functionality and Parallelism Specialization for Energy-
Efficient Computing,” IEEE Micro, vol. 32, pp. 38–51, Sept. 2012.

[118] M. Zaheer, G. Guruganesh, A. Dubey, J. Ainslie, C. Alberti, S. Ontanon, P. Pham,
A. Ravula, Q. Wang, L. Yang, and A. Ahmed, “Big Bird: Transformers for Longer
Sequences,” in Advances in neural information processing systems, vol. 33, pp. 17283–
17297, 2020.

[119] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakan-
tan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, and
T. Henighan, “Language Models are Few-Shot Learners,” in Advances in neural infor-
mation processing systems, vol. 33, pp. 1877–1901, 2020.

200

[120] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam, “DianNao:
A Small-Footprint High-Throughput Accelerator for Ubiquitous Machine-Learning,”
Proceedings of the 19th international conference on Architectural support for program-
ming languages and operating systems, pp. 269–284, 2014. ISBN: 9781450323055.

[121] J. Lee, C. Kim, S. Kang, D. Shin, S. Kim, and H.-j. Yoo, “UNPU: A 50.6TOPS/W
Unified Deep Neural Network Accelerator with 1b-to-16b Fully-Variable Weight Bit-
Precision,” in 2018 IEEE International Solid - State Circuits Conference - (ISSCC),
pp. 218–220, IEEE, 2018.

[122] S. Sharify, A. D. Lascorz, M. Mahmoud, M. Nikolic, K. Siu, D. M. Stuart, Z. Pou-
los, and A. Moshovos, “Laconic deep learning inference acceleration,” Proceedings
- International Symposium on Computer Architecture, pp. 304–317, 2019. ISBN:
9781450366694.

[123] J. Albericio, P. Judd, A. Delmas, S. Sharify, and A. Moshovos, “Bit-Pragmatic Deep
Neural Network Computing,” Proceedings of the 50th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, pp. 382–394, 2017. ISBN: 9781450349529.

[124] H. Sharma, J. Park, and B. Chau, “Bit Fusion : Bit-Level Dynamically Composable
Architecture for Accelerating Deep Neural Networks,” 2018 ACM/IEEE 45th Annual
International Symposium on Computer Architecture (ISCA), pp. 764–775, 2018. Pub-
lisher: IEEE.

[125] A. Aimar, H. Mostafa, E. Calabrese, A. Rios-navarro, R. Tapiador-morales, I.-a. Lungu,
M. B. Milde, F. Corradi, A. Linares-barranco, S.-c. Liu, and T. Delbruck, “NullHop : A
Flexible Convolutional Neural Network Accelerator Based on Sparse Representations of
Feature Maps,” IEEE Transactions on Neural Networks and Learning Systems, vol. 30,
no. 3, pp. 644–656, 2019. Publisher: IEEE.

[126] C. Deng, S. Yang, S. Liao, and B. Qian, XuehaiYuan, “GoSPA : An Energy-efficient
High-performance Globally Optimized SParse Convolutional Neural Network Acceler-
ator,” in International Symposium on Computer Architecture (ISCA), pp. 1110–1123,
2021.

[127] A. Gondimalla, N. Chesnut, M. Thottethodi, and T. Vijaykumar, “SparTen: A Sparse
Tensor Accelerator for Convolutional NeuralNetworks,” in Proceedings of the 52nd
Annual IEEE/ACM International Symposium on Microarchitecture, pp. 151–165, 2019.
ISSN: 18697720.

[128] N. Srivastava, H. Jin, S. Smith, H. Rong, D. Albonesi, and Z. Zhang, “Tensaurus
: A Versatile Accelerator for Mixed Sparse-Dense Tensor Computations,” in 2020
IEEE International Symposium on High Performance Computer Architecture (HPCA),
pp. 689–702, 2020.

201

[129] H. Kwon, P. Chatarasi, M. Pellauer, A. Parashar, V. Sarkar, and T. Krishna, “Un-
derstanding reuse, performance, and hardware cost of DNN dataflows: A data-centric
approach using MAESTRO,” in Proceedings of the Annual International Symposium on
Microarchitecture, MICRO, pp. 754–768, 2019. arXiv: 1805.02566v6 ISSN: 10724451.

[130] H. Kwon, A. Samajdar, and T. Krishna, “MAERI: Enabling Flexible Dataflow Map-
ping over DNN Accelerators via Reconfigurable Interconnects,” in Proceedings of the
Twenty-Third International Conference on Architectural Support for Programming
Languages and Operating Systems, pp. 461–475, 2018. ISSN: 15232867.

[131] S. Venkataramani, P. Dubey, A. Raghunathan, A. Ranjan, S. Banerjee, D. Das,
S. Avancha, A. Jagannathan, A. Durg, D. Nagaraj, and B. Kaul, “ScaleDeep: A
Scalable Compute Architecture for Learning and Evaluating Deep Networks,” in Pro-
ceedings of the 44th Annual International Symposium on Computer Architecture - ISCA
’17, pp. 13–26, 2017. ISSN: 10636897.

[132] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Strachan, M. Hu,
R. S. Williams, and V. Srikumar, “ISAAC: A Convolutional Neural Network Acceler-
ator with In-Situ Analog Arithmetic in Crossbars,” ACM SIGARCH Computer Archi-
tecture News, vol. 44, no. 3, pp. 14–26, 2016.

[133] S. Li, D. Niu, K. T. Malladi, H. Zheng, B. Brennan, Y. Xie, and H. Zheng, “DRISA : A
DRAM-based Reconfigurable In-Situ Accelerator,” in 2017 50th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), vol. 14, pp. 288–301, 2017.
ISSN: 10724451.

[134] S. Dutta, S. A. Siddiqui, B. Felix, L. Liu, C. A. Ross, and M. A. Baldo, “A Logic-in-
Memory Design with 3-Terminal Magnetic Tunnel Junction Function Evaluators for
Convolutional Neural Networks,” pp. 83–88, 2017. ISBN: 9781509060375.

[135] S. Gupta, M. Imani, J. Sim, A. Huang, F. Wu, M. H. Najafi, T. Rosing, S. Diego, and
L. Jolla, “SCRIMP : A General Stochastic Computing Architecture using ReRAM in-
Memory Processing,” in 2020 Design, Automation \& Test in Europe Conference \&
Exhibition (DATE), pp. 1598–1601, 2020.

[136] H. Jia, M. Ozatay, Y. Tang, H. Valavi, R. Pathak, J. Lee, and N. Verma, “A
Programmable Neural-Network Inference Accelerator Based on Scalable In-Memory
Computing,” in 2021 IEEE International Solid-State Circuits Conference-(ISSCC),
pp. 236–237, 2021.

[137] S. Li, C. Xu, Q. Zou, J. Zhao, Y. Lu, and Y. Xie, “Pinatubo: A Processing-in-Memory
Architecture for Bulk Bitwise Operations in Emerging Non-volatile Memories,” Pro-
ceedings of the 53rd Annual Design Automation Conference on - DAC ’16, pp. 1–6,
2016. ISBN: 9781450342360.

202

[138] X. Ma, L. Chang, S. Li, L. Deng, Y. Ding, and Y. Xie, “In-Memory Multi-
plication Engine with SOT-MRAM Based Stochastic Somputing,” arXiv preprint
arXiv:1809.08358, 2018. arXiv: 1809.08358v1.

[139] STMicroelectronics, “STM32 Nucleo Boards.”

[140] “Raspberry Pi.”

[141] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio, “Binarynet: Train-
ing Deep Neural Networks with Weights and Activations Constrained to +1 or -1,”
2016. arXiv: 1602.02830 ISBN: 9781510829008.

[142] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,
L. Antiga, and A. Lerer, “Automatic differentiation in PyTorch,”

[143] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift,” in International Conference on Machine Learning,
pp. 448–456, Mar. 2015.

[144] A. Buluc, J. T. Fineman, M. Frigo, J. R. Gilbert, and C. E. Leiserson, “Paral-
lel sparse matrix-vector and matrix-transpose-vector multiplication using compressed
sparse blocks,” in Proceedings of the twenty-first annual symposium on Parallelism in
algorithms and architectures, (Calgary AB Canada), pp. 233–244, ACM, Aug. 2009.

[145] P. Warden, “Speech Commands: A Dataset for Limited-Vocabulary Speech Recogni-
tion,” Apr. 2018. Number: arXiv:1804.03209 arXiv:1804.03209 [cs].

[146] R. C. Prim, “Shortest Connection Networks And Some Generalizations,” Bell System
Technical Journal, vol. 36, pp. 1389–1401, Nov. 1957.

[147] K. Chellapilla, S. Puri, and P. Simard, “High Performance Convolutional Neural Net-
works for Document Processing,” in Tenth International Workshop on Frontiers in
Handwriting Recognition, 2006.

[148] ARM, “NEON.”

[149] STMicroelectronics, “STM32 Nucleo-144 board.”

[150] A. Limited, “ARMv7-M Architecture Reference Manual.”

[151] A. Limited, “ARMv6-M Architecture Reference Manual.”

[152] Y. LeCun, L. Bottou, and Y. Bengio, “Gradient-Based Learning Applied to Document
Recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[153] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” Jan. 2017.
Number: arXiv:1412.6980 arXiv:1412.6980 [cs].

203

[154] A. Limited, “ARM Compute Library.”

[155] W. Mula, N. Kurz, and D. Lemire, “Faster Population Counts Using AVX2 Instruc-
tions,” Computer Journal, vol. 61, no. 1, pp. 111–120, 2018. arXiv: 1611.07612 ISBN:
5555555555.

[156] F. Li, B. Zhang, and B. Liu, “Ternary Weight Networks,” arXiv preprint
arXiv:1605.04711, no. Nips, 2016. arXiv: 1605.04711.

[157] H. Alemdar, V. Leroy, A. Prost-Boucle, and F. Petrot, “Ternary Neural Networks for
Resource-Efficient AI Applications,” Proceedings of the International Joint Conference
on Neural Networks, pp. 2547–2554, 2017. arXiv: 1609.00222 ISBN: 9781509061815.

[158] N. Mellempudi, A. Kundu, D. Mudigere, D. Das, B. Kaul, and P. Dubey, “Ternary
Neural Networks with Fine-Grained Quantization,” arXiv preprint arXiv:1705.01462,
2017. arXiv: 1705.01462.

[159] A. Kundu, K. Banerjee, N. Mellempudi, D. Mudigere, D. Das, B. Kaul, and P. Dubey,
“Ternary Residual Networks,” arXiv preprint arXiv:1707.04679, pp. 1–16, 2017. arXiv:
1707.04679.

[160] H. Yonekawa, S. Sato, and H. Nakahara, “A Ternary Weight Binary Input Convo-
lutional Neural Network: Realization on the Embedded Processor,” 2018 IEEE 48th
International Symposium on Multiple-Valued Logic (ISMVL), pp. 174–179, 2018. Pub-
lisher: IEEE ISBN: 978-1-5386-4464-5.

[161] Z. He, B. Gong, and D. Fan, “Optimize Deep Convolutional Neural Network with
Ternarized Weights and High Accuracy,” in 2019 IEEE Winter Conference on Appli-
cations of Computer Vision (WACV), pp. 913–921, 2019. arXiv: 1807.07948v1.

[162] J. H. Lin, T. Xing, R. Zhao, Z. Zhang, M. Srivastava, Z. Tu, and R. K. Gupta, “Bi-
narized Convolutional Neural Networks with Separable Filters for Efficient Hardware
Acceleration,” IEEE Computer Society Conference on Computer Vision and Pattern
Recognition Workshops, vol. 2017-July, no. 1, pp. 344–352, 2017. arXiv: 1707.04693
ISBN: 9781538607336.

[163] M. P. Heinrich, M. Blendowski, and O. Oktay, “TernaryNet: faster deep model in-
ference without GPUs for medical 3D segmentation using sparse and binary convolu-
tions,” International Journal of Computer Assisted Radiology and Surgery, pp. 1–10,
2018. arXiv: 1801.09449.

[164] L. Deng, P. Jiao, J. Pei, Z. Wu, and G. Li, “GXNOR-Net: Training deep neural
networks with ternary weights and activations without full-precision memory under a
unified discretization framework,” Neural Networks, vol. 100, pp. 49–58, 2018. arXiv:
1705.09283.

204

[165] C. Li, H. Farkhoor, R. Liu, and J. Yosinski, “Measuring the intrinsic dimension of
objective landscapes,” arXiv, 2018. arXiv: 1804.08838.

[166] S. Li, A. O. Glova, X. Hu, P. Gu, D. Niu, K. T. Malladi, H. Zheng, B. Brennan, and
Y. Xie, “SCOPE: A stochastic computing engine for DRAM-based in-situ accelerator,”
Proceedings of the Annual International Symposium on Microarchitecture, MICRO,
vol. 2018-Octob, pp. 696–709, 2018. ISBN: 9781538662403.

[167] M. H. Ionica and D. Gregg, “The Movidius Myriad Architecture’s Potential for Scien-
tific Computing,” IEEE Micro, vol. 35, no. 1, pp. 6–14, 2015.

[168] D. D. Lin, S. S. Talathi, T. G. Com, V. S. Annapureddy, and S. G. Com, “Fixed
Point Quantization of Deep Convolutional Networks,” in International Conference on
Machine Learning, pp. 2849–2858, 2016. arXiv: 1511.06393v3.

[169] S. Anwar, K. Hwang, and W. Sung, “Fixed Point Optimization of Deep Convolutional
Neural Networks for Object Recognition,” in 2015 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 1131–1135, IEEE, 2015.

[170] V. T. Lee, A. Alaghi, R. Pamula, V. S. Sathe, L. Ceze, and M. Oskin, “Architec-
ture Considerations for Stochastic Computing Accelerators,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 37, no. 11, pp. 2277–
2289, 2018. Publisher: IEEE.

[171] H. Sim, D. Nguyen, J. Lee, and K. Choi, “Scalable Stochastic-Computing Accelerator
for Convolutional Neural Networks,” in 2017 22nd Asia and South Pacific Design
Automation Conference (ASP-DAC), pp. 696–701, IEEE, 2017.

[172] V. T. Lee, A. Alaghi, J. P. Hayes, V. Sathe, and L. Ceze, “Energy-Efficient Hybrid
Stochastic-Binary Neural Networks for Near-Sensor Computing,” in Design, Automa-
tion \& Test in Europe Conference \& Exhibition (DATE), 2017, pp. 13–18, 2017.

[173] Z. Li, A. Ren, J. Li, Q. Qiu, B. Yuan, J. Draper, and Y. Wang, “Structural Design
Optimization for Deep Convolutional Neural Networks using Stochastic Computing,”
Proceedings of the 2017 Design, Automation & Test in Europe Conference & Exhibition,
no. c, pp. 250–253, 2017. ISBN: 9783981537086.

[174] A. Krizhevsky, “Learning Multiple Layers of Features from Tiny Images,”

[175] H. Ichihara, S. Ishii, D. Sunamori, T. Iwagaki, and T. Inoue, “Compact and Accu-
rate Stochastic Circuits with Shared Random Number Sources,” in 2014 IEEE 32nd
International Conference on Computer Design (ICCD), pp. 361–366, IEEE, 2014.

[176] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, “Striving for Simplic-
ity: The All Convolutional Net,” in ICLR (workshop track), pp. 1–14, 2015. arXiv:
1412.6806v3.

205

[177] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “CACTI 6.0 : A Tool to
Model Large Caches,” HP laboratories, vol. 27, no. HPL-2009-85, p. 28, 2009.

[178] M. Gao and M. Horowitz, “TETRIS: Scalable and Efficient Neural Network Accelera-
tion with 3D Memory,” in Proceedings of the Twenty-Second International Conference
on Architectural Support for Programming Languages and Operating Systems, pp. 751–
764, 2017.

[179] K. Guo, L. Sui, J. Qiu, J. Yu, J. Wang, S. Yao, S. Han, Y. Wang, and H. Yang,
“Angel-Eye : A Complete Design Flow for Mapping CNN Onto Embedded FPGA,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 37, no. 1, pp. 35–47, 2017. Publisher: IEEE.

[180] K. Guo, L. Sui, J. Qiu, S. Yao, S. Han, Y. Wang, and H. Yang, “From Model to FPGA
: Software-Hardware Co-Design for Efficient Neural Network Acceleration,” in 2016
IEEE Hot Chips 28 Symposium (HCS), pp. 1–27, IEEE, 2016.

[181] H. Wang, X. Zhang, D. Kong, and G. Lu, “Convolutional Neural Network Accelerator
on FPGA,” in 2019 IEEE International Conference on Integrated Circuits, Technolo-
gies and Applications (ICTA), pp. 61–62, 2019.

[182] X. Hu, Y. Zeng, Z. Li, X. I. N. Zheng, S. Cai, and X. Xiong, “A Resources-Efficient Con-
figurable Accelerator for Deep Convolutional Neural Networks,” IEEE Access, vol. 7,
pp. 72113–72124, 2019. Publisher: IEEE.

[183] A. Agrawal, S. K. Lee, J. Silberman, M. Ziegler, M. Kang, S. Venkataramani, N. Cao,
B. Fleischer, M. Guillorn, M. Cohen, S. Mueller, J. Oh, M. Lutz, J. Jung, S. Koswatta,
C. Zhou, V. Zalani, J. Bonanno, R. Casatuta, C.-Y. Chen, J. Choi, H. Haynie, A. Her-
bert, R. Jain, M. Kar, K.-H. Kim, Y. Li, Z. Ren, S. Rider, M. Schaal, K. Schelm,
M. Scheuermann, X. Sun, H. Tran, N. Wang, W. Wang, X. Zhang, V. Shah, C. Brian,
V. Srinivasan, P.-F. Lu, S. Shukla, L. Chang, and K. Gopalakrishnan, “A 7nm 4-
Core AI Chip with 25.6TFLOPS Hybrid FP8 Training, 102.4TOPS INT4 Inference
and Workload-Aware Throttling,” in 2021 IEEE International Solid-State Circuits
Conference-(ISSCC), pp. 144–145, 2021.

[184] J. Park, J. Lee, and D. Jeon, “7.6 A 65nm 236.5nJ/Classification Neuromorphic Pro-
cessor with 7.5% Energy Overhead On-Chip Learning Using Direct Spike-Only Feed-
back,” in 2019 IEEE International Solid- State Circuits Conference - (ISSCC), (San
Francisco, CA, USA), pp. 140–142, IEEE, Feb. 2019.

[185] C. Torres-Huitzil and B. Girau, “Fault and Error Tolerance in Neural Networks: A
Review,” IEEE Access, vol. 5, pp. 17322–17341, 2017.

[186] Y. Liu, S. Liu, Y. Wang, F. Lombardi, and J. Han, “A Stochastic Computational Multi-
Layer Perceptron with Backward Propagation,” IEEE Transactions on Computers,
vol. 67, pp. 1273–1286, Sept. 2018.

206

[187] M. H. Najafi, D. Jenson, D. J. Lilja, and M. D. Riedel, “Performing Stochastic Compu-
tation Deterministically,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 27, no. 12, pp. 2925–2938, 2019. Publisher: IEEE.

[188] B. Li, M. H. Najafi, B. Yuan, and D. J. Lilja, “Quantized neural networks with new
stochastic multipliers,” in 2018 19th International Symposium on Quality Electronic
Design (ISQED), (Santa Clara, CA), pp. 376–382, IEEE, Mar. 2018.

[189] A. Ren, Z. Li, Y. Wang, Q. Qiu, and B. Yuan, “Designing reconfigurable large-scale
deep learning systems using stochastic computing,” in 2016 IEEE International Con-
ference on Rebooting Computing (ICRC), (San Diego, CA, USA), pp. 1–7, IEEE, Oct.
2016.

[190] N. Nedjah and L. de Macedo Mourelle, “Stochastic reconfigurable hardware for neural
networks,” in Euromicro Symposium on Digital System Design, 2003. Proceedings.,
(Belek-Antalya, Turkey), pp. 438–442, IEEE, 2003.

[191] V. Canals, A. Morro, A. Oliver, M. L. Alomar, and J. L. Rosselló, “A New Stochastic
Computing Methodology for Efficient Neural Network Implementation,” IEEE Trans-
actions on Neural Networks and Learning Systems, vol. 27, no. 3, pp. 551–564, 2015.
Publisher: IEEE.

[192] S. Toral, J. Quero, and L. Franquelo, “Stochastic pulse coded arithmetic,” in 2000
IEEE International Symposium on Circuits and Systems. Emerging Technologies for
the 21st Century. Proceedings (IEEE Cat No.00CH36353), vol. 1, (Geneva, Switzer-
land), pp. 599–602, Presses Polytech. Univ. Romandes, 2000.

[193] A. Ardakani, C. Condo, and W. J. Gross, “Sparsely-Connected Neural Networks:
Towards Efficient VLSI Implementation of Deep Neural Networks,” arXiv preprint
arXiv:1611.01427, 2016. arXiv: 1611.01427.

[194] C. Lammie and M. R. Azghadi, “Stochastic Computing for Low-Power and High-Speed
Deep Learning on FPGA,” in 2019 IEEE International Symposium on Circuits and
Systems (ISCAS), (Sapporo, Japan), pp. 1–5, IEEE, May 2019.

[195] Y. Wang, J. Lin, and Z. Wang, “FPAP : A Folded Architecture for Efficient Com-
puting of Convolutional Neural Networks,” in 2018 IEEE Computer Society Annual
Symposium on VLSI (ISVLSI), pp. 503–508, IEEE, 2018.

[196] A. Delm, S. Sharify, P. Judd, and A. Moshovos, “Tartan : Accelerating Fully-
Connected and Convolutional Layers in Deep Learning Networks by Exploiting
Numerical Precision Variability,” arXiv preprint arXiv:1707.09068, 2017. arXiv:
1707.09068v1.

207

[197] C. Eckert, X. Wang, J. Wang, A. Subramaniyan, R. Iyer, D. Sylvester, D. Blaauw, and
R. Das, “Neural Cache : Bit-Serial In-Cache Acceleration of Deep Neural Networks,”
in 2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture
(ISCA), pp. 383–396, 2018.

[198] S. Sharify, A. D. Lascorz, K. Siu, P. Judd, and A. Moshovos, “Loom: Exploiting
Weight and Activation Precisions to Accelerate Convolutional Neural Networks,” in
2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC), pp. 1–6, 2018.

[199] B. Moons and M. Verhelst, “A 0.3–2.6 TOPS/W Precision-Scalable Processor for Real-
Time Large-Scale ConvNets,” in 2016 IEEE Symposium on VLSI Circuits (VLSI-
Circuits), pp. 1–2, IEEE, 2016.

[200] B. Moons, R. Uytterhoeven, W. Dehaene, and M. Verhelst, “14.5 Envision: A 0.26-
to-10TOPS/W subword-parallel dynamic-voltage-accuracy-frequency-scalable Convo-
lutional Neural Network processor in 28nm FDSOI,” in 2017 IEEE International Solid-
State Circuits Conference (ISSCC), pp. 246–247, IEEE, 2017.

[201] M. H. Najafi, D. J. Lilja, M. D. Riedel, and K. Bazargan, “Polysynchronous Clock-
ing : Exploiting the Skew Tolerance of Stochastic Circuits,” IEEE Transactions on
Computers, vol. 66, no. 10, pp. 1734–1746, 2017.

[202] Z. Yawen, Z. Xinyue, S. Jiahao, W. Yuan, H. Ru, and W. Runsheng, “Parallel Con-
volutional Neural Network (CNN) Accelerators Based on Stochastic Computing,” in
2019 IEEE International Workshop on Signal Processing Systems (SiPS), pp. 19–24,
2019.

[203] B. Li, M. H. Najafi, and D. J. Lilja, “Low-Cost Stochastic Hybrid Multiplier for Quan-
tized Neural Networks,” ACM Journal on Emerging Technologies in Computing Sys-
tems (JETC), vol. 15, no. 2, 2019.

[204] Z. Li, J. Li, A. Ren, C. Ding, J. Draper, Q. Qiu, B. Yuan, and Y. Wang, “Towards
Budget-Driven Hardware Optimization for Deep Convolutional Neural Networks using
Stochastic Computing,” in 2018 IEEE Computer Society Annual Symposium on VLSI
(ISVLSI), pp. 28–33, 2018.

[205] X. Ma, Y. Zhang, G. Yuan, A. Ren, Z. Li, J. Han, J. Hu, and Y. Wang, “An Area and
Energy Efficient Design of Domain-Wall Memory-Based Deep Convolutional Neural
Networks Using Stochastic Computing,” in 2018 19th International Symposium on
Quality Electronic Design (ISQED), pp. 314–321, IEEE, 2018.

[206] A. Mondal and A. Srivastava, “Data Driven Optimizations for MTJ based Stochastic
Computing,” arXiv preprint arXiv:1804.03228.

208

[207] M. W. Daniels, A. Madhavan, P. Talatchian, A. Mizrahi, and M. D. Stiles, “Energy-
Efficient Stochastic Computing with Superparamagnetic Tunnel Junctions,” Physical
Review Applied, vol. 13, no. 3, p. 034016, 2020. Publisher: American Physical Society.

[208] S. Wang, S. Pal, T. Li, A. Pan, C. Grezes, P. Khalili-Amiri, K. L. Wang, and P. Gupta,
“Hybrid VC-MTJ/CMOS Non-volatile Stochastic Logic for Efficient Computing,” in
Design, Automation \& Test in Europe Conference \& Exhibition (DATE), 2017,
vol. 10, pp. 1438–1443, 2017.

[209] F. Neugebauer, I. Polian, and J. P. Hayes, “S-box-Based Random Number Genera-
tion for Stochastic Computing,” Microprocessors and Microsystems, vol. 61, no. May,
pp. 316–326, 2018. Publisher: Elsevier.

[210] S. Liu and J. Han, “Energy Efficient Stochastic Computing with Sobol Sequences,” in
Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 650–653,
EDAA, 2017.

[211] K. Kim, J. Lee, and K. Choi, “Approximate De-randomizer for Stochastic Circuits,”
in 2015 International SoC Design Conference (ISOCC), pp. 123–124, 2015.

[212] K. Kim, J. Lee, and K. Choi, “Approximate de-randomizer for stochastic circuits,”
ISOCC 2015 - International SoC Design Conference: SoC for Internet of Everything
(IoE), pp. 123–124, 2016. Publisher: IEEE ISBN: 9781467393089.

[213] M. O’Connor, N. Chatterjee, D. Lee, J. Wilson, A. Agrawal, S. W. Keckler, and
W. J. Dally, “Fine-grained DRAM: energy-efficient DRAM for extreme bandwidth
systems,” in Proceedings of the 50th Annual IEEE/ACM International Symposium on
Microarchitecture, (Cambridge Massachusetts), pp. 41–54, ACM, Oct. 2017.

[214] A. Stillmaker and B. Baas, “Scaling equations for the accurate prediction of CMOS
device performance from 180 nm to 7 nm,” Integration, vol. 58, no. January, pp. 74–81,
2017. Publisher: Elsevier B.V.

[215] G. Zhong, A. Dubey, T. Cheng, and T. Mitra, “Synergy: A HW/SW framework
for high throughput CNNs on embedded heterogeneous SoC,” ACM Transactions on
Embedded Computing Systems (TECS), vol. 18, no. 2, pp. 1–23, 2019.

[216] P. Mattson, C. Cheng, C. Coleman, G. Diamos, P. Micikevicius, D. Patterson, H. Tang,
G. Y. Wei, P. Bailis, V. Bittorf, D. Brooks, D. Chen, D. Dutta, U. Gupta, K. Hazel-
wood, A. Hock, X. Huang, B. Jia, D. Kang, D. Kanter, N. Kumar, J. Liao, G. Ma,
D. Narayanan, T. Oguntebi, G. Pekhimenko, L. Pentecost, V. J. Reddi, T. Robie, T. S.
John, C. J. Wu, L. Xu, C. Young, and M. Zaharia, “The A100 Datacenter GPU and
Ampere Architecture,” in 2021 IEEE International Solid- State Circuits Conference
(ISSCC), pp. 48–50, 2021. arXiv: 1910.01500 ISSN: 23318422.

209

[217] Z. Gong, H. Ji, C. W. Fletcher, C. J. Hughes, S. Baghsorkhi, and J. Torrellas, “Save:
Sparsity-aware vector engine for accelerating DNN training and inference on CPUs,”
in 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MI-
CRO), pp. 796–810, 2020. ISSN: 10724451.

[218] M. Mahmoud, I. Edo, A. H. Zadeh, O. Mohamed Awad, G. Pekhimenko, J. Albericio,
and A. Moshovos, “Tensordash: Exploiting sparsity to accelerate deep neural network
training,” in Proceedings of the Annual International Symposium on Microarchitecture,
MICRO, pp. 781–795, 2020. arXiv: 2009.00748v1 ISSN: 10724451.

[219] A. D. Lascorz, P. Judd, D. M. Stuart, Z. Poulos, M. Mahmoud, S. Sharify, M. Nikolic,
K. Siu, and A. Moshovos, “Bit-Tactical: A Software/Hardware Approach to Exploiting
Value and Bit Sparsity in Neural Networks,” International Conference on Architectural
Support for Programming Languages and Operating Systems - ASPLOS, pp. 749–763,
2019. ISBN: 9781450362405.

[220] K. Hegde, H. Asghari-Moghaddam, M. Pellauer, N. Crago, A. Jaleel, E. Solomonik,
J. Emer, and C. W. Fletcher, “ExTensor: An accelerator for sparse tensor algebra,”
in Proceedings of the Annual International Symposium on Microarchitecture, MICRO,
pp. 319–333, 2019. ISSN: 10724451.

[221] S. Pal, J. Beaumont, D. H. Park, A. Amarnath, S. Feng, C. Chakrabarti, H. S. Kim,
D. Blaauw, T. Mudge, and R. Dreslinski, “OuterSPACE: An Outer Product Based
Sparse Matrix Multiplication Accelerator,” Proceedings - International Symposium on
High-Performance Computer Architecture, vol. 2018-Febru, pp. 724–736, 2018. Pub-
lisher: IEEE ISBN: 9781538636596.

[222] N. Srivastava, H. Jin, J. Liu, D. Albonesi, and Z. Zhang, “Matraptor: A sparse-sparse
matrix multiplication accelerator based on row-wise product,” in 2020 53rd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), pp. 766–780,
2020. ISSN: 10724451.

[223] V. Sehwag, N. Prasad, and I. Chakrabarti, “A Parallel Stochastic Number Generator
with Bit Permutation Networks,” IEEE Transactions on Circuits and Systems II: Ex-
press Briefs, vol. 65, no. 2, pp. 231–235, 2018. Publisher: IEEE ISBN: 0010101111000.

[224] V. K. Chippa, S. Venkataramani, K. Roy, and A. Raghunathan, “StoRM: A Stochastic
Recognition and Mining processor,” in Proceedings of the 2014 International Sympo-
sium on Low Power Electronics and Design, pp. 39–44, 2014. ISSN: 15334678.

[225] E. G. Cota, P. Mantovani, G. Di Guglielmo, and L. P. Carloni, “An analysis of ac-
celerator coupling in heterogeneous architectures,” in 2015 52nd ACM/EDAC/IEEE
Design Automation Conference (DAC), pp. 1–6, 2015. ISSN: 0738100X.

210

[226] Y. Jia, Learning Semantic Image Representations at a Large Scale. University of
California, Berkeley, 2014. Publication Title: Ph.D. dissertation, EECS Department,
University of California, Berkeley.

[227] A. Vasudevan, A. Anderson, and D. Gregg, “Parallel Multi Channel convolution us-
ing General Matrix Multiplication,” Proceedings of the International Conference on
Application-Specific Systems, Architectures and Processors, pp. 19–24, 2017. arXiv:
1704.04428 ISBN: 9781509048250.

[228] “DNNSim.”

[229] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and A. Moshovos,
“Cnvlutin: Ineffectual-Neuron-Free Deep Neural Network Computing,” Proceedings of
the 43rd International Symposium on Computer Architecture, pp. 1–13, 2016. ISBN:
9781467389471.

[230] X. Zhou, Z. Du, Q. Guo, S. Liu, C. Liu, C. Wang, X. Zhou, L. Li, T. Chen, and
Y. Chen, “Cambricon-S: Addressing irregularity in sparse neural networks through a
cooperative software/hardware approach,” in Proceedings of the Annual International
Symposium on Microarchitecture, MICRO, pp. 15–28, IEEE, 2018. ISSN: 10724451.

[231] G. Gallego, T. Delbrück, G. Orchard, C. Bartolozzi, B. Taba, A. Censi, S. Leutenegger,
A. Davison, J. Conradt, K. Daniilidis, and D. Scaramuzza, “Event-based vision: A
survey,” arXiv preprint arXiv:1904.08405, 2019. arXiv: 1904.08405.

[232] H. Chen, Q. Wu, Y. Liang, X. Gao, and H. Wang, “Asynchronous Tracking-by-
Detection on Adaptive Time Surfaces for Event-based Object Tracking,” in Proceedings
of the 27th ACM International Conference on Multimedia, pp. 473–481, 2019.

[233] D. Gehrig, H. Rebecq, G. Gallego, and D. Scaramuzza, “EKLT: Asynchronous Photo-
metric Feature Tracking Using Events and Frames,” International Journal of Computer
Vision, vol. 128, no. 3, pp. 601–618, 2020. Publisher: Springer US.

[234] R. Jiang, X. Mou, S. Shi, Y. Zhou, Q. Wang, M. Dong, and S. Chen, “Object Tracking
on Event Cameras with Offline-Online Learning,” CAAI Transactions on Intelligence
Technology, pp. 1–7, 2020.

[235] A. Linares-Barranco, F. Gomez-Rodriguez, V. Villanueva, L. Longinotti, and T. Del-
bruck, “A USB3.0 FPGA event-based filtering and tracking framework for dynamic
vision sensors,” Proceedings - IEEE International Symposium on Circuits and Systems,
vol. 2015-July, pp. 2417–2420, 2015. ISBN: 9781479983919.

[236] C. Scheerlinck, N. Barnes, and R. Mahony, “Asynchronous Spatial Image Convolutions
for Event Cameras,” IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 816–822,
2019.

211

[237] H. Rebecq, T. Horstschaefer, G. Gallego, and D. Scaramuzza, “EVO: A Geometric
Approach to Event-Based 6-DOF Parallel Tracking and Mapping in Real Time,” IEEE
Robotics and Automation Letters, vol. 2, no. 2, pp. 593–600, 2017. Publisher: IEEE.

[238] C. Scheerlinck, N. Barnes, and R. Mahony, “Continuous-Time Intensity Estimation Us-
ing Event Cameras,” in Computer Vision – ACCV 2018 (C. Jawahar, H. Li, G. Mori,
and K. Schindler, eds.), vol. 11365, pp. 308–324, Cham: Springer International Pub-
lishing, 2019.

[239] H. Patel, C. Iaboni, D. Lobo, J.-w. Choi, and P. Abichandani, “Event Camera
Based Real-Time Detection and Tracking of Indoor Ground Robots,” arXiv preprint
arXiv:2102.11916, pp. 1–12, 2021. arXiv: 2102.11916.

[240] P. Bardow, A. J. Davison, and S. Leutenegger, “Simultaneous Optical Flow and In-
tensity Estimation from an Event Camera,” in 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), (Las Vegas, NV, USA), pp. 884–892, IEEE,
June 2016.

[241] C. Brandli, L. Muller, and T. Delbruck, “Real-time, high-speed video decompression
using a frame- and event-based DAVIS sensor,” in 2014 IEEE International Symposium
on Circuits and Systems (ISCAS), (Melbourne VIC, Australia), pp. 686–689, IEEE,
June 2014.

[242] C. Reinbacher, G. Munda, and T. Pock, “Real-time panoramic tracking for event cam-
eras,” in 2017 IEEE International Conference on Computational Photography (ICCP),
(Stanford, CA, USA), pp. 1–9, IEEE, May 2017.

[243] E. Mueggler, G. Gallego, H. Rebecq, and D. Scaramuzza, “Continuous-Time Visual-
Inertial Odometry for Event Cameras,” IEEE Transactions on Robotics, vol. 34,
pp. 1425–1440, Dec. 2018.

[244] A. Linares-Barranco, A. Rios-Navarro, S. Canas-Moreno, E. Piñero-Fuentes,
R. Tapiador-Morales, and T. Delbruck, “Dynamic Vision Sensor integration on FPGA-
based CNN accelerators for high-speed visual classification,” in International Confer-
ence on Neuromorphic Systems, Association for Computing Machinery, July 2021.
arXiv: 1905.07419.

[245] J. Yang, T. Li, W. Romaszkan, P. Gupta, and S. Pamarti, “A 65nm 8-bit All-Digital
Stochastic-Compute-In-Memory Deep Learning Processor,” in 2022 IEEE Asian Solid-
State Circuits Conference (A-SSCC), (Taipei, Taiwan), pp. 10–11, IEEE, Nov. 2022.

[246] H. Jia, M. Ozatay, Y. Tang, H. Valavi, R. Pathak, J. Lee, and N. Verma, “A Pro-
grammable Neural-Network Inference Accelerator Based on Scalable In-Memory Com-
puting,” in 2021 IEEE International Solid- State Circuits Conference (ISSCC), (San
Francisco, CA, USA), pp. 236–238, IEEE, Feb. 2021.

212

[247] C. Posch, T. Serrano-Gotarredona, B. Linares-Barranco, and T. Delbruck, “Retinomor-
phic Event-Based Vision Sensors: Bioinspired Cameras With Spiking Output,” Pro-
ceedings of the IEEE, vol. 102, pp. 1470–1484, Oct. 2014. Conference Name: Proceed-
ings of the IEEE.

[248] T. Delbruck and M. Lang, “Robotic Goalie with 3ms Reaction Time at 4% CPU Load
Using Event-Based Dynamic Vision Sensor,” Frontiers in neuroscience, vol. 7, p. 223,
Nov. 2013.

[249] A. Glover and C. Bartolozzi, “Event-driven ball detection and gaze fixation in clut-
ter,” in 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 2203–2208, Oct. 2016. ISSN: 2153-0866.

[250] M. Litzenberger, B. Kohn, A. Belbachir, N. Donath, G. Gritsch, H. Garn, C. Posch, and
S. Schraml, “Estimation of Vehicle Speed Based on Asynchronous Data from a Silicon
Retina Optical Sensor,” 2006 IEEE Intelligent Transportation Systems Conference,
pp. 653–658, 2006. Conference Name: 2006 IEEE Intelligent Transportation Systems
Conference ISBN: 9781424400935 Place: Toronto, ON, Canada Publisher: IEEE.

[251] H. Kim, S. Leutenegger, and A. J. Davison, “Real-Time 3D Reconstruction and 6-DoF
Tracking with an Event Camera,” in Computer Vision–ECCV 2016: 14th European
Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part VI
14 (B. Leibe, J. Matas, N. Sebe, and M. Welling, eds.), vol. 9910, (Cham), pp. 349–364,
Springer International Publishing, 2016. Book Title: Computer Vision – ECCV 2016
Series Title: Lecture Notes in Computer Science.

[252] A. Rosinol, H. Rebecq, T. Horstschaefer, and D. Scaramuzza, “Ultimate SLAM? Com-
bining Events, Images, and IMU for Robust Visual SLAM in HDR and High Speed
Scenarios,” IEEE Robotics and Automation Letters, vol. PP, pp. 1–1, Jan. 2018.

[253] H. Rebecq, T. Horstschaefer, G. Gallego, and D. Scaramuzza, “EVO: A Geometric
Approach to Event-Based 6-DOF Parallel Tracking and Mapping in Real Time,” IEEE
Robotics and Automation Letters, vol. 2, pp. 593–600, Apr. 2017.

[254] C. Brändli, R. Berner, M. Yang, S.-C. Liu, and T. Delbruck, “A 240 × 180 130 dB 3
µs Latency Global Shutter Spatiotemporal Vision Sensor,” Solid-State Circuits, IEEE
Journal of, vol. 49, pp. 2333–2341, Oct. 2014.

[255] T. Delbruck and P. Lichtsteiner, “Fast sensory motor control based on event-based
hybrid neuromorphic-procedural system,” in 2007 IEEE International Symposium on
Circuits and Systems, pp. 845–848, May 2007. ISSN: 2158-1525.

[256] H. Rebecq, R. Ranftl, V. Koltun, and D. Scaramuzza, “High Speed and High Dynamic
Range Video with an Event Camera,” IEEE transactions on pattern analysis and
machine intelligence, vol. 43, pp. 1964–1980, June 2021.

213

[257] P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128\times 128 120 dB 15 μs
Latency Asynchronous Temporal Contrast Vision Sensor,” IEEE Journal of Solid-
State Circuits, vol. 43, pp. 566–576, Feb. 2008. Conference Name: IEEE Journal of
Solid-State Circuits.

[258] S. Barua, Y. Miyatani, and A. Veeraraghavan, “Direct face detection and video recon-
struction from event cameras,” in 2016 IEEE Winter Conference on Applications of
Computer Vision (WACV), (Lake Placid, NY, USA), pp. 1–9, IEEE, Mar. 2016.

[259] J. Yang, W. Zhao, Y. Han, C. Ji, B. Jiang, Z. Zheng, and H. Song, “Aircraft tracking
based on fully conventional network and Kalman filter,” IET Image Processing, vol. 13,
no. 8, pp. 1259–1265, 2019.

[260] H. Liu, D. P. Moeys, G. Das, D. Neil, S.-c. Liu, and T. Delbrück, “Combined frame-
and event-based detection and tracking,” in 2016 IEEE International Symposium on
Circuits and Systems (ISCAS), pp. 2511–2514, 2016.

[261] B. Ramesh, S. Zhang, H. Yang, A. Ussa, M. Ong, G. Orchard, and C. Xiang,
“e-TLD : Event-based Framework for Dynamic Object Tracking,” arXiv preprint
arXiv:2009.00855, pp. 1–11, 2020. arXiv: 2009.00855v1.

[262] S. Paul, T. Majumder, C. Augustine, A. F. Malavasi, S. Usirikayala, R. Kumar, J. Kol-
likunnel, S. Chhabra, S. Yada, M. L. Barajas, C. Ornelas, D. Lake, M. M. Khellah,
J. Tschanz, and V. De, “A 0.05pJ/Pixel 70fps FHD 1Meps Event-Driven Visual Data
Processing Unit,” in 2020 IEEE Symposium on VLSI Circuits, (Honolulu, HI, USA),
pp. 1–2, IEEE, June 2020.

[263] X. Lagorce, C. Meyer, S. H. Ieng, D. Filliat, and R. Benosman, “Asynchronous Event-
Based Multikernel Algorithm for High-Speed Visual Features Tracking,” IEEE Trans-
actions on Neural Networks and Learning Systems, vol. 26, no. 8, pp. 1710–1720, 2015.
Publisher: IEEE.

[264] S. K. Bose and A. Basu, “A 389TOPS/W, 1262fps at 1Meps Region Proposal In-
tegrated Circuit for Neuromorphic Vision Sensors in 65nm CMOS,” in 2021 IEEE
Asian Solid-State Circuits Conference (A-SSCC), (Busan, Korea, Republic of), pp. 1–
3, IEEE, Nov. 2021.

[265] S. K. Bose, D. Singla, and A. Basu, “A 51.3 TOPS/W, 134.4 GOPS In-memory Bi-
nary Image Filtering in 65nm CMOS,” IEEE Journal of Solid-State Circuits, vol. 57,
pp. 323–335, Jan. 2022.

[266] S. Gupta, M. Imani, J. Sim, A. Huang, F. Wu, J. Kang, Y. Kim, and T. S. Ros-
ing, “COSMO: Computing with Stochastic Numbers in Memory,” ACM Journal on
Emerging Technologies in Computing Systems, vol. 18, pp. 1–25, Apr. 2022.

214

[267] J. Yue, X. Feng, Y. He, Y. Huang, Y. Wang, Z. Yuan, M. Zhan, J. Liu, J.-W. Su,
Y.-L. Chung, P.-C. Wu, L.-Y. Hung, M.-F. Chang, N. Sun, X. Li, H. Yang, and
Y. Liu, “A 2.75-to-75.9TOPS/W Computing-in-Memory NN Processor Supporting
Set-Associate Block-Wise Zero Skipping and Ping-Pong CIM with Simultaneous Com-
putation and Weight Updating,” in 2021 IEEE International Solid- State Circuits
Conference (ISSCC), (San Francisco, CA, USA), pp. 238–240, IEEE, Feb. 2021.

[268] H. Jia, M. Ozatay, Y. Tang, H. Valavi, R. Pathak, J. Lee, and N. Verma, “Scalable
and Programmable Neural Network Inference Accelerator Based on In-Memory Com-
puting,” IEEE Journal of Solid-State Circuits, vol. 57, pp. 198–211, Jan. 2022.

[269] J. Fromm, M. Cowan, M. Philipose, L. Ceze, and S. Patel, “Riptide: Fast End-to-End
Binarized Neural Networks,” Proceedings of Machine Learning and Systems, vol. 2,
pp. 379–389, 2020. arXiv: 1604.03058v5.

215

	Introduction
	Model Compression: Better, Faster, Smaller
	Fewer Bits - Quantization & Binarization
	Alternate Number Representations
	Fewer Values - Sparsity & Pruning
	Edge Models & Libraries

	Stochastic Computing - Processing with Random Streams
	Number Representation
	Multiplication and Accumulation
	Stochastic Neural Network Functions

	Domain-Specific Acceleration - Breaking the Shackles of Generality
	Dissertation Outline

	3PXNet - Fewer Bits, More Zeros
	A Case for Sparse XNOR Networks
	The 3PXNet Approach
	Challenges in pruning XNOR networks
	Pruning a packed XNOR network
	Training 3PXNets

	Implementing 3PXNet
	Fully-Connected Layers
	Convolutional Layers
	Fused kernels
	ARM NEON Support
	Binarization of the First Layer

	Experimental Setup
	Platforms
	Benchmarks
	Baseline

	Results and Discussion
	Accuracy & Model Size
	Performance & Energy

	Distinction between 3PXNet and Ternary Networks
	Conclusion

	ACOUSTIC - Accelerator Built on Randomness
	Introduction
	ACOUSTIC Optimizations for DNNs
	Split-Unipolar Representation
	OR-based Scaling-Free Accumulation
	Computation Skipping using Stochastic Average Pooling

	ACOUSTIC Architecture
	Understanding SC Benefits
	Accelerator Architecture
	Control
	Evaluated ACOUSTIC Architectures

	Evaluation & Results
	Evaluation Methodology
	ACOUSTIC Accuracy
	Runtime Configurable Precision
	Area & Power Breakdown
	Performance Comparisons

	FPGA Evaluation
	Demonstration Chip
	Architecture
	SC Computation
	Computation Mapping
	Evaluation & Results

	Related Work
	Deep Learning using Stochastic Computing
	Approximate and Programmable Precision Accelerators

	Conclusion

	GEO - Pushing Stochastic Computing Further
	Introduction
	Stochastic Stream Generation Optimizations
	Co-optimized Shared Generation and Training
	Progressive Stochastic Stream Generation

	Stochastic Computing Execution Optimizations
	GEO Architecture
	Partial Binary Accumulation
	Near-Memory Computation
	Pipeline Optimizations

	Evaluation & Results
	Evaluation Methodology
	GEO Accuracy Comparisons
	Performance Impact of GEO Enhancements
	GEO Performance Compared

	Conclusion

	SASCHA - Combining Randomness with Sparsity
	Introduction
	Motivation
	SASCHA Sparse SC PE
	Sparse PE Design Objectives
	G:C Sparse PE
	Multi-Group Sparse SC PE
	SASCHA PE Analytical Model
	Parallel Stream Processing

	SASCHA Architecture
	SASCHA Accelerator
	SASCHA Asynchronous Scheduler
	Memory Organization

	Bit-Slicing Weights
	Evaluation & Results
	SASCHA Accuracy
	Performance Results

	Related Work
	Sparse Accelerators.
	Stochastic Computing Accelerators.

	Conclusion

	SCIMITAR: Event-Based Tracking with Stochastic Compute-In-Memory
	Introduction
	Motivation
	Event-Based Cameras
	Event-Based Data Processing
	Stochastic Computing In-Memory

	SCIMITAR Implementation
	Stochastic Compute-in-Memory Macro with In-Situ SNG
	In-Situ Stochastic Number Generator
	In-Memory Stochastic MAC Unit
	Event-Based SCIM Accelerator Architecture
	Multi-Level Early Termination

	Evaluation
	Accuracy
	Hardware Evaluation

	Conclusion

	Conclusion
	Overview of Contributions
	3PXNet
	ACOUSTIC & GEO
	SASCHA
	SCIMITAR

	Directions for Future Work
	Exploration of Stochastic Computing Accelerators
	Analog Stochastic Computing
	Extending 3PXNet

	References

