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ABSTRACT
Head-based pointing is an effective interface for those with limited
hand control, though it may involve a learning curve due to dis-
crepancies between desired pointer movement and actual system
response to head motion. We theorize that individuals have unique
head movement patterns for similar tasks, necessitating tailored
mappings from head to pointer motion. This was explored by ana-
lyzing video data of participants tracking a moving target on-screen
using head movements. The study found that using a select set of
facial landmarks outperforms other methods, like focusing on the
nose-tip or rotation angles, in aligning head and pointer movements.
Despite this, there is still notable bias inherent in the simple affine
mapping model used. Significant variations were observed in par-
ticipants’ head movements when responding to similar target paths,
with diagonal movements showing a higher error rate. These in-
sights could be crucial in creating new, personalized head-tracking
interfaces, enhancing ease and efficiency.

CCS CONCEPTS
• Human-centered computing → Pointing; Empirical studies
in accessibility; Accessibility technologies; User studies.
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1 INTRODUCTION
Standard computer interfaces were designed for people with good
control of their hands (to use keyboard, mouse, track-pad, or touch-
screen). A number of access technologies have been made available
for those who cannot use their hand.

In many cases, touchscreen control is possible even with reduced
manual dexterity [32], employing customized “touch models” that
can accommodate individual abilities (e.g., touching the screen with
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the back or side of one’s hand or with one’s knuckles [22, 23], or
even using one’s nose [25]). For desktop or laptop computer access,
which is the object of our work, several adaptations are available,
such as larger/smaller keyboards, rollerball mice, and joysticks.
However, these adaptations cannot be used by those with paralysis
or poor control of their hands, including people with upper limb
motor impairment. We should mention that another input modality,
based on eye gaze, can also be used by people who cannot oper-
ate a mouse or keyboard. Eye gaze pointing, though, is generally
less accepted than head pointing [5], and it is often reserved for
those who cannot control their head (e.g., in the terminal stages of
ALS [3]).

Individuals who cannot operate a keyboard or mouse may use
physical tools such as mouthsticks or head-mounted styluses. These
devices are durable and simple to use, but some may feel awkward
employing them in social settings. The need for a physical device is
removedwhen using a different interface technology: head-tracking
pointing, which allows users to move the pointer on the screen
using their head. Head movements can be recorded by a user-facing
camera (normally embedded in screens and smartphones). Images
from the camera are analyzed in real-time by a computer vision
algorithm to extract relevant data features that are used to control
the pointer. Existing open-source software packages that implement
pointer control by head tracking include Camera Mouse [6] and
Enable Viacam. Head pointing control is also available as a native
accessibility feature under MacOS.

Head-tracking pointing is a powerful access modality, enabling
people with poor hand control to use all the functionalities of a
regular computer. Unfortunately, using current technology, typical
interaction tasks are substantially slower and less accurate with
head pointing than with a hand-controlled mouse, as multiple stud-
ies have shown (e.g., [17, 20, 27]). The goal driving our work is to
develop a new system for head pointing control that has higher
accuracy and enables faster completion of pointing tasks compared
with existing systems. The main premise of our approach is that
different individuals may prefer to adopt different head motion
patterns to accomplish the same goal. This is particularly true for
the potential users of a head pointing system, who may experience
limited active neck range of motion (ROM [24]) or poor control of
head movement.

Existing head pointer mechanisms pre-define a control algorithm
mapping head motion to pointer motion, to which the user needs
to adapt. Even though these applications normally afford a few
controllable settings (gain, acceleration, smoothness), the control
algorithm may not reflect the “natural” motion patterns that users
would spontaneously adopt. This may result in a long learning
curve [17] and relatively poor pointing performance [17, 20, 27].
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Figure 1: Examples of mapped trajectories (red), shown along with their smoothed version (black) and target trajectory (blue),
for the 6_landmarks_xyz feature. Each plot displays the participant ID (e.g., P7), trajectory ID (e.g., T1), and resulting RMSE in
screen pixel units. The gray frame represents the screen viewport.

Rather than stipulate a control algorithm and then tune some algo-
rithm parameters to try to match the user’s preferences, we propose
a new solution that turns the problem on its head: measure and
characterize each user’s natural head motion patterns, then build a
control algorithm around those.

Prior work by Çiçek and Manduchi[8] involved creating "trajec-
tory videos" showing a target moving on a screen, which partic-
ipants watched while mimicking the motion with their heads as
if controlling the target. The study aimed to capture natural head
movements without the participants directly controlling the cursor.
Participants were informed about the target’s future trajectory but
received no other feedback. Their head movements, recorded by a
camera, were proposed as indicative of natural, active head motion
patterns that could be used in designing a pointer control system
where the cursor moves as the user intends.

This paper presents an analysis of the data collected by Çiçek
and Manduchi. We considered several types of features (different
facial landmarks and geometric head pose), and for each type of fea-
ture, we computed a simple affine transformation (via least squares
regression) mapping the chosen features to pointer locations on the
screen. We then compared the “mapped” pointer trajectories with
the trajectories of the marker the participants were following with
their heads. Ideally, the mapping would reflect the user’s intent,
and the two trajectories would coincide. In practice, we observed
large discrepancies. This should not come as a surprise: the par-
ticipants did not receive any feedback about whether their head
movement would map to the desired movement of the pointer. In

a real application, users rely on visual feedback from the mapped
pointer motion on the screen to control their own head motion.

Still, the discrepancy between mapped and desired trajectories
in this “feed-forward” system, which operates by predicting and
acting without receiving real-time feedback, may reveal the extent
to which the considered mapping enables “natural” head motions
to accomplish desired pointer movements.

The work presented here is structured into three main tasks:

Task 1: Feature Selection. Wemeasured the root squaremean
error (RSME) of trajectory discrepancy for two families of
features: facial landmarks and geometric pose (3-D head
rotation along with 3-D head location).

Task 2: Trajectory Bias. We computed the spatial distribu-
tion (over 25 regions on the screen) of bias and standard devi-
ation of discrepancy (difference between mapped and target
location). Bias reveals consistent errors that could potentially
be mitigated by an appropriate mapping design. Standard
deviation is an inverse measure of consistency: whether or
not a participant moved his/her head in the same way when
the target trajectory was going through the same region of
the screen.

Task 3: Orientation. We measured the angular discrepancy
between the velocity of the mapped and target trajectories.
This analysis is especially insightful for head-pointing sys-
tems based on velocity mapping. Such mapping also enables
simple resting position reset strategies and is detailed in Sec-
tion 2. In addition, to account for angular discrepancies that
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can result from activation of different muscle groups when
moving one’s head in different directions, we computed the
distribution of angular bias and standard deviation over the
8 octants of the plane.

2 RELATEDWORK
Prototypes of head-based pointing controllers were first created in
the 1970s using ultrasound transmitters [26].

Later models (e.g., Orin Instrument’s Head Mouse [16]) used
a small reflective patch attached to the user’s glasses or face, re-
flecting light from an infrared illuminator. A camera attached to
the screen recorded the location of the reflective patch, which was
used to control the pointer. The need for a reflective patch can be
obviated by computer vision algorithms that detect specific features
(e.g., the nose tip [7]) in the user’s face and use the location of these
features in the image plane to control the pointer [6, 14, 28]. Indi-
vidual facial features, however, only provide a partial description of
one’s head motion. Since the head is a rigid object, its pose can be
completely described by a 3-D location vector and a 3-D orientation
representation.

The head pose can be determined from images using computer
vision [13, 29, 33]. The advent of 3-D cameras in smartphones and
tablets made head pose estimation easier and more robust [9, 10, 15].

A critical component of a head-pointing system is the mecha-
nism used to map head motion to the pointer location on the screen
(the controller.) The simplest controller design linearly maps the
location of a face feature in the image plane, or the angles of head
rotation, to the pointer location. The proportionality constants (gain
or sensitivity) can be calibrated by means of simple procedures,
e.g., by asking the user to move their head left/right and up/down,
then determining appropriate gains such that the associated pointer
movement spans the whole screen. More sophisticated approaches
for regressing appropriate gains were studied by Lin et al. [19]
and by Schaab et al. [30]. Rather than directly mapping facial fea-
tures to pointer location, one can employ a derivative controller,
mapping velocities of the image features to velocities of the screen
pointer [7, 28]. Velocity mapping integrates the mapped velocity to
obtain the pointer position at each time, enabling seamless resetting
of the resting or neutral position. If, for example, the user reposi-
tioned themselves on the chair, their resting position may move
slightly to one side. Resting position reset can be implemented via
screen edge clipping [7]: the user moves the pointer to an edge
of the screen, then moves their head as if to push it further, with
this additional head motion being discarded by the controller. A
non-linear function can be applied on the velocity, for example, to
impose a minimum motion threshold (thus minimizing the effect
of noise [7]) or to enhance pointer velocity for larger head mo-
tion (velocity-dependent gain [20]). Other proposed mechanisms
include a “joystick” mode [12, 20].

Besides pointer control, other input tasks (e.g., selection, gen-
erally accomplished with a mouse click or trackpad tap) may be
challenging without hand control. Several selection mechanisms
are available for head pointer users. Perhaps the simplest one is
selection by dwell: selection is triggered by the pointer remaining
within a certain area (e.g., a checkbox) for a certain amount of time.
Other options include using an external switch (e.g., implemented

with sip-puff) or using facial expressions [10, 35]. For interaction
with a touchscreen device, which can accept different types of
gestures, multiple facial expressions can be considered [34].

3 METHOD
3.1 Video Data Set
In this study, we used the data set described in [8]. This data set
contains videos of 9 participants (3 female, 6 male) taken by a screen
camera as they moved their heads while imagining following a
moving dot visible on the screen (target trajectory). All participants
except for P9 had no mobility impairment. P9, who has cerebral
palsy, has limited control of his limbs but regularly uses a head-
pointing system (Enable Viacam) as an interface device.

Participants in the study were shown 17 short target trajectory
videos with a small target (a white disk) moving along a predeter-
mined trajectory against a black background. They were able to
see the future path of the target (shown with dimmed brightness),
so that they would know in advance where the target would move
next. Participants were instructed to move their head while watch-
ing each video “as if” they were controlling the target with their
head motion. No other instructions (e.g., how much to move their
head, whether to rotate it vs. displace it, etc.) were given. Some
of the target trajectories shown in the videos were repeated at a
slower velocity. Some trajectories included “pause” points, where
the target would stop for one second. Examples of trajectories are
shown in Fig. 1.

Target trajectory videos were shown on a screen with a resolu-
tion of 1920 by 1080 pixels. Videos of the participants were taken
at 1280 by 720 pixels resolution and at a frame rate of 25 Hz.

Feature type RMSE (pixels)
nose_tip_xy 333.24
nose_tip_xyz 332.40

6_landmarks_xyz 296.71
Euler_angs 3324.88

Euler_angs_loc 307.66

Figure 2: The table shows the RMSE values (averaged over all
participants) for the features considered.

3.2 Features
3.2.1 Facial Landmarks. We used mediaPipe [21] for face and hand
landmark detection. We found it more practical during the im-
plementation. Moreover, the MediaPipe framework detects 468
landmarks as opposed to the alternatives like OpenFace[4], which
detects only 68 landmarks. MediaPipe uses weak perspective (scaled
orthography) to compute the (𝑥,𝑦) coordinates of each landmark.
In addition, it computes the relative depth (𝑧 coordinate) of each
feature. The (𝑥,𝑦, 𝑧) coordinates are then rescaled by a common
factor.

We consider the following features based on facial landmarks:
nose_tip_xy : This is formed by the (𝑥,𝑦) coordinates of Me-

diaPipe landmark #4. The location of the nose tip in the
image has been considered in prior systems described in the
literature [7, 14] as well as in [8].
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nose_tip_xyz : While the prior work cited above only used
the 2-D nose tip location in the image, for this feature we
considered all three (𝑥,𝑦, 𝑧) coordinates of MediaPipe land-
mark #4. Our purpose was to verify whether inclusion of
depth (the 𝑧 coordinated) could prove beneficial.

6_landmarks_xyz : This feature contains the (𝑥,𝑦, 𝑧) coordi-
nates of 6 selected MediaPipe landmarks (#4, #61, #152, #159,
#291, #386). These landmarks represent the nose tip, the left
mouth corner, the chin tip, the left outer eye corner, the right
mouth corner, and the right outer eye corner, respectively.
We selected these landmarks as they form a minimal face
shape with richer information than the nose tip. They im-
plicitly indicate the head location and rotation which are
more effective for determining the orientation and focus of
the head.

3.2.2 Head Pose Landmarks. Since one’s head can be approxi-
mately modeled as a rigid object, its pose (location + orientation)
can be considered as a feature. We computed the full pose of the par-
ticipant’s head at each frame using the Perspective-n-Point (PnP)
algorithm [18], which aligns 3D head model points to 2D facial land-
marks detected in the image, providing accurate pose estimation
with minimal computational overhead. Note that this computation
requires camera calibration, and the calibration accuracy may affect
the quality of pose estimation. We defined the following features:

Euler_angs : This feature contains the three Euler angles rep-
resenting the head rotation with respect to a fixed reference
frame.

Euler_angs_loc : In addition to the three Euler angles, we
included here the location, with respect to a fixed frame, of a
frame attached to the head, forming a 6-dimensional feature
vector.

3.3 Affine Mapping
Given a feature vector f (t) at time 𝑡 , we map it to a pixel loca-
tion p(𝑡) = (𝑝𝑥 (𝑡), 𝑝𝑦 (𝑡)) using an affine transformation: p =

𝐴f (𝑡) + b. In this equation, b is a 2-D vector, while 𝐴 is a matrix
whose dimensions vary from 2 × 4 for nose_tip_xy to 2 × 12 for
6_landmarks_xyz. The parameters 𝐴 and b are computed via least
squares regression. Specifically, given the target trajectory p̂(𝑡), we
minimize the average squared residual ∥𝐴f (𝑡) + b − p̂(𝑡)∥2.

For each feature type, the parameters were computed individu-
ally for each participant (representing a sort of “personalization”).
To minimize the risk of overfitting, we employed the leave-one-out
policy: for each participant, when evaluating the mapping for a cer-
tain trajectory, the parameters were computed on the 16 remaining
trajectories.

In addressing the jitter observed in the mapped locations, at-
tributed to fluctuations in landmark localization, we employed an
exponential smoothing technique. This method integrates the cur-
rent location data with previously smoothed values to mitigate
rapid changes, using the formula ps (𝑡) = (1 − 𝛼)ps (𝑡 − 1) + 𝛼p(𝑡),
where 𝛼 , the smoothing constant, was chosen as 0.1. This selection
of 𝛼 reflects a deliberate balance, prioritizing the stability of histori-
cal data over the volatility of new measurements, thereby ensuring
a more consistent trajectory by dampening the effects of noise.

Figure 3: The bar graph at the topRMSE for all participants us-
ing feature 6_landmarks_xyz. The table at the bottom shows
the RMSE values (averaged over all participants) for the fea-
tures considered.

3.4 Quantitative Feature Comparison
For each feature and for each participant, we considered each target
trajectory in turn, computed the affine parameters based on the
remaining trajectories, and computed the residual error ps (𝑡)− p̂(𝑡).
We then averaged the squared norm of this error over all trajectories
and took the square root of the result, obtaining one RMSE value
per feature and per participant.

At this point, we tested the null hypothesis that neither partici-
pant nor feature had an effect on the RMSE values. 2-way ANOVA
rejected this null hypothesis and found a significant effect of both
feature and participant (in this and other tests in this article, sta-
tistical significance was set at 𝑝 ≤ 0.05). Tukey’s multiple com-
parison test revealed a significant difference between the mean
MSE obtained with 6_landmarks_xyz and that obtained with any
other feature except for Euler_angs_loc. Fig. 2 shows the RMSE
values for each feature, averaged over all participants. On the ba-
sis of this result, we conducted the rest of our analysis using the
6_landmarks_xyz feature, which produced the smallest average
RMSE value (the distribution of RMSE across participants is shown
in Fig. 3). Examples of mapped trajectories for different target tra-
jectories and different participants are shown in Fig. 1.

3.5 Spatial Distribution of Location
Discrepancies

We divided the screen area into 5 × 5 regions uniformly and com-
puted the bias (average) and the total standard deviation (square
root of the trace of the covariance matrix) of the error 𝑒 (𝑡) =

ps (𝑡) − p̂(𝑡). For each participant and for each region, the error
was averaged over all 𝑡 for which any target trajectory was located
in that region. Note that while the bias is a 2-D vector, the total
standard deviation is a scalar. For each participant and each screen
region, we thus have two coordinates of bias and one value of total
standard deviation. The x (y) coordinate of the screen region was
found to have a significant effect on the x (y) coordinate of bias. No
significant effect of region location was found on the total standard
deviation. A significant effect of participants was found on the to-
tal standard deviation only. Fig. 4, left, shows the distribution of
location bias and of total standard deviation across regions.
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Figure 4: Top: The spatial distribution of location discrepancies. Location bias vectors are shown as arrows centered at each
region. The total standard deviation at a region is indicated by the region’s color. Units in the accompanying color bar are
screen pixels. Bottom: The distribution of angular discrepancies across octants. The bisector of each octant is shown rotated
by an amount equal to the angular bias in that octant. The color of the octant reflects the angular standard deviation in that
octant. Units in the accompanying color bar are in degrees.

3.6 Angular Distribution of Velocity
Discrepancies

While in the previous section we considered localization errors,
here we look at the angular discrepancy between the velocity of
the target and that of the mapped trajectory, which is an important
consideration for controllers that are based on velocity mapping.
More precisely, we considered the angular difference at each time
between the tangent to the mapped and to the target trajectories
distributed across octants. Specifically, for each octant ([𝑘 · 45◦ −
22.5◦, 𝑘 · 45◦ + 22.5◦], we considered the times 𝑡 in which any
target trajectory p̂(𝑡) had tangent with a slope that was within
that octant. For these intervals of time, we computed the angular
difference between the slope of the tangent to the target trajectories
and that to the mapped trajectories. We then computed the bias
(mean) and standard deviation of these differences. This results
in one value of angular bias and one value of angular standard
deviation per participant and per octant. Neither participant nor
octant were shown to have a significant effect on bias. Averaged
across participants, the angular bias was positive for all octants
(total average: 3.14◦). This means that participants always move
their heads in a direction slightly more counterclockwise compared
to the direction of the target.

Both participant and octant had an effect on angular standard
deviation. Multiple comparison analyses did not reveal a significant
pairwise difference in angular standard deviation across different
octants. As an additional test, we averaged together the angular
standard deviation values for even-ordered and odd-ordered octants.
We found a significant effect of the octant group (even- or odd-
ordered) on this statistic. Fig. 4, right, shows the distribution of
angular bias and standard deviation across octants.

4 DISCUSSION
4.1 Analysis of Results
Our analysis (Fig. 2) compared multiple feature types to find which
of these features could be mapped (through an affine transforma-
tion) to screen points forming a trajectory that best resembles the
target trajectory. A set of 6 facial landmarks (6_landmarks_xyz)
was shown to give significantly better results (in terms of RMSE)
than just the nose tip or the vector of Euler rotation angles. This

type of feature can be computed robustly using modern software
packages such as MediaPipe.

As shown in Fig. 4, analysis of the residual location bias (discrep-
ancy between mapped and target trajectories) revealed a distinct
spatial pattern. (Note that, although we only show results with
6_landmarks_xyz, a similar pattern was also observed when using
other features.) This clearly indicates that the simple affine transfor-
mation used tomap features to screen pointsmay not be sufficient to
reproduce the intended pointer motion. Different mapping models
(e.g., polynomial) could reduce or eliminate these localized biases.
Importantly, the total standard deviation of the error (discrepancy)
was generally very large (in excess of 200 pixels, or about 10% of
the screen width). This indicates that the participants were not
consistent in their head motion in response to the same target tra-
jectory; each participant had slightly different motions. While a
careful mapping function could potentially remove localized bias,
this will not help with poor consistency.

Spatial inconsistency could be due to multiple reasons. For ex-
ample, users may not be able to exactly replicate a certain head
pose due to proprioceptive bias [1, 2, 31]. It is also conceivable that
trying to reach a certain head position/orientation starting from
different points may result in slightly different trajectories of head
movement. If, for example, one is trying to move the pointer to
the upper left corner of the screen, different neck muscle groups
would be activated depending on whether the pointer is currently
in the lower left area (extension), in the top right area (axial rota-
tion), or in the center of the screen (motion around an oblique axis).
Activation of different muscle groups may affect the velocity and
precision of coordinated motion [27]. We conjecture that more com-
plex sequence-to-sequence maps (e.g., recurrent neural networks)
may help mitigate the lack of consistency by modeling different
trajectories of head motion, thus producing a closer approximation
to the intended pointer location at each time.

Our analysis of the distribution across octants of the angular
error revealed that its standard deviation is larger for “diagonal”
octants (Fig. 4, right). Moving the pointer along the “horizontal” or
“vertical” octants requires moving one’s head left/right (rotation) or
up/down (extension/flexion). In each of these movements, only one
group of muscles is generally activated. However, for the “diagonal”
octants (diagonal head circumduction) multiple neck muscles need
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to work in coordination, which may be the cause for the observed
reduced consistency in these movements.

4.2 Limitations
It is important to note that the data being analyzed was collected
without any feedback to the participants, who were simply moving
their heads as if controlling the target with their head motion. In
practice, the user of a head-pointing system relies on visual feedback
to make the necessary adjustments to the pointer location. For
example, if a user rotates their head to the right to move the pointer
to a checkbox, and the pointer overshoots the desired location, the
user would then slightly move their head to the left to compensate
for it. Still, it is crucial that the controller should reflect the user’s
intention as much as possible to avoid the need for continuous
adjustments, which can make the whole experience of computer
interaction slow and frustrating.

A limitation of this data set is that the data only included “smooth”
pointing tasks, with participants pretending to move a target with
constant velocity along specific trajectories. This type of motion
could be representative of tasks such as drawing or repositioning
a window on the screen. A much more common interaction task
is point-select [11], whereby the user moves the pointer from a
certain location to reach a target and then selects it (normally, via
a mouse click).

The video trajectories considered are poorly representative of
point-select tasks, and new data collection would be necessary to
study head motion in these cases.

An obvious limitation of this data set is that all participants
except for one (P9) had no mobility impairments. Since the intended
users of head-pointing systems are people with mobility limitations,
it will be important to acquire similar data for this community of
users.

5 CONCLUSIONS
We presented an analysis of the discrepancy between the intended
target trajectories and mapped trajectories using a simple affine
transformation of selected features from images of participants’
heads. This analysis was based on an existing data set with videos
of users moving their heads while following a moving target on
the screen. Our analysis has shown that a set of 6 facial landmarks
is superior, in terms of mapping error, to other commonly used
features (nose tip, head rotation). We also reported mapping errors
(in terms of bias and standard deviation) for both mapped locations
and mapped velocities (angular error). In future work, we will
consider more complex mapping using machine learning in an
effort to ensure that the mapped trajectory faithfully reflects the
user intent.
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