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Recent applications of simultaneous scalp electroencephalography (EEG) and
transcranial magnetic stimulation (TMS) suggest that adapting stimulation to underlying
brain states may enhance neuroplastic effects of TMS. It is often assumed that longer-
lasting effects of TMS on brain function may be mediated by phasic interactions between
TMS pulses and endogenous cortical oscillatory dynamics. The mechanisms by which
TMS exerts its neuromodulatory effects, however, remain unknown. Here, we discuss
evidence concerning the functional effects on synaptic plasticity of oscillatory cross-
frequency coupling in cortical networks as a potential framework for understanding the
neuromodulatory effects of TMS. We first discuss evidence for interactions between
endogenous oscillatory brain dynamics and externally induced electromagnetic field
activity. Alpha band (8–12 Hz) activities are of special interest here because of
the wide application and therapeutic effectiveness of rhythmic TMS (rTMS) using
a stimulus repetition frequency at or near 10 Hz. We discuss the large body of
literature on alpha oscillations suggesting that alpha oscillatory cycles produce periodic
inhibition or excitation of neuronal processing through phase-amplitude coupling (PAC)
of low-frequency oscillations with high-frequency broadband (or gamma) bursting.
Such alpha-gamma coupling may reflect excitability of neuronal ensembles underlying
neuroplasticity effects of TMS. We propose that TMS delivery with simultaneous EEG
recording and near real-time estimation of source-resolved alpha-gamma PAC might
be used to select the precise timing of TMS pulse deliveries so as to enhance the
neuroplastic effects of TMS therapies.

Keywords: transcranial magnetic stimulation, TMS, phase-amplitude coupling, PAC, neurostimulation,
oscillations, EEG

INTRODUCTION

Non-invasive transcranial magnetic stimulation (TMS) of the human brain has gained increasing
popularity over the last decades and today is being widely used in both research and clinical
applications. In TMS, brief, high-intensity electromagnetic pulses are produced in one or
more wire coils (transducers) placed tangential to the scalp, inducing electrical currents
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in the underlying brain area. TMS can be applied as single,
isolated pulses or as trains of stimuli [termed repetitive or
rhythmic TMS (rTMS)], producing effects on the brain that
can accumulate with repeated exposure and outlast the course
of treatment (Rossi and Rossini, 2004; Ridding and Rothwell,
2007; Thut and Pascual-Leone, 2010). The effects of rTMS
on brain activity can be observed near the site of maximal
cortical stimulation as well as at anatomically remote but
functionally connected cortical and subcortical areas (Strafella
et al., 2001; Pogarell et al., 2006; Tik et al., 2017) suggesting
that rTMS may modulate the dynamics of affected brain
circuits (Medaglia et al., 2017; Vöröslakos et al., 2018). Possible
long-lasting neuromodulatory effects of rTMS on brain circuits
are of great interest in the clinical therapeutic arena, as
they are thought to have potential benefit for a wide range
of neurological and psychiatric pathologies thought to be
characterized by disturbance in functional connectivity among
brain regions (for reviews, see Schnitzler and Gross, 2005;
Uhlhaas and Singer, 2010).

The precise mechanisms by which TMS exerts its
neuromodulatory effects remain unknown. Research in humans
suggests that both immediate and longer-term effects of rTMS
are mediated by the interaction of the induced electrical
current with endogenous oscillatory dynamics (Klimesch et al.,
2003; Thut et al., 2011). These studies show that targeting
subject- and task-specific oscillatory frequency bands can
increase the effects on oscillatory band power as measured by
scalp electroencephalography (EEG) and also, subsequent
cognitive and behavioral performance (Klimesch et al.,
2003; Thut et al., 2011; Veniero et al., 2011; for reviews, see
Bergmann et al., 2016; Thut et al., 2017; Hanslmayr et al.,
2019). Timing TMS pulse presentations to specific phases
of ongoing oscillatory activity has also been demonstrated
to increase subsequent corticospinal excitability—a measure
of cortical plasticity (Bergmann et al., 2012; Zrenner et al.,
2018). This suggests that electric field activity in the brain
produced by TMS pulses may enhance underlying cortical
excitability which is modulated by oscillatory field activity
occurring within distributed brain networks, thereby affecting
basic synaptic mechanisms producing long-term potentiation
(LTP) and/or depression (LTD) within those networks
(Ridding and Rothwell, 2007).

Here, we first review evidence for interactions between
externally induced brain electric field potentials and endogenous
cortical field activity. We then discuss how high and low
excitability states relate to the phase of oscillatory field
potentials, and how phase controls excitability states through
cross-frequency coupling. Based on this body of research we
argue that brain stimulation timed to particular phases of
spontaneous low-frequency oscillations may enhance neural
excitability, by increasing occurrence of appropriately timed
high-frequency gamma oscillations through the mechanism
of cross-frequency phase-amplitude coupling (PAC). The
neurophysiological properties of oscillatory coupling may
explain oscillatory-phase-guided rTMS neuroplasticity effects
and thereby help to identify high-excitability phases to best target
with TMS.

BASIC UNDERSTANDING OF
INTERACTIONS BETWEEN ENDOGENOUS
OSCILLATIONS AND EXTERNALLY
INDUCED BRAIN ELECTRIC
FIELD ACTIVITY

Direct evidence for interaction between externally-induced brain
electric field activity and endogenous cortical oscillations comes
from recordings of local field potentials and multiunit activity
in animals. In vitro recordings in animal brain slices have
shown that applied weak oscillatory electric fields affect the
transmembrane voltage of nearby neurons, biasing neuronal
spike timing (Anastassiou et al., 2011; Anastassiou and Koch,
2014). Fröhlich and McCormick (2010) induced weak sinusoidal
currents in vitro leading to concentrated bursts of neural firing
in affected neuropile in the applied current low-frequency
oscillation pattern. This occurred for levels of induced current
well below those needed to increase the net firing rate of the
involved neurons, but comparable to levels of in vivo endogenous
local field potential in the same tissues.

Results of Ali et al. (2013) suggest that matching stimulation
frequency to endogenous brain activity is a crucial requirement
for weak oscillatory electric fields to have an effect on network
dynamics since the depolarization caused by a weak supplied
electric field is too small to activate neurons at rest. Weak
electric fields applied at the endogenous oscillation frequency
may enhance endogenous oscillations but fail to induce a
frequency shift when the stimulation frequency is not matched
to the endogenous oscillation (Schmidt et al., 2014). In essence,
neurons need to be close to their firing threshold for a
stimulation-induced sub-millivolt perturbation in membrane
voltage to effectively modulate endogenous network neural
spiking statistics and affect brain network dynamics.

Research in humans has shown that rTMS tuned to
endogenous EEG oscillations enhances cortical oscillations in
the targeted band and may also produce behavioral changes
(Sauseng et al., 2009b; Romei et al., 2010). Thut et al. (2011),
for example, reported phase-locking of EEG activity to magnetic
pulse trains of participant- and task-specific alpha-frequency
rTMS. Entrained rTMS-evoked EEG activity may also outlast
the stimulation, suggesting that an endogenous, rTMS-induced
mode of brain activity has been produced by the stimulation
(Hanslmayr et al., 2014). As reported by Klimesch et al. (2003),
increased alpha power following rTMS pulse trains delivered
at a subject’s individual alpha frequency was associated with a
significant improvement in subsequent performance of a mental
rotation task.

Other research supports the concept that ongoing oscillations
create periodic ‘‘windows of excitability’’ that can be targeted
with TMS. Dugué et al. (2011), for example, showed that the
phase of ongoing (8–12 Hz) alpha oscillations, within the 400 ms
before a TMS pulse applied over visual cortex, significantly
co-varied with the pulse-induced visual illusions (phosphenes).
Similar observations have been described in the sensorimotor
system for which the most dominant oscillatory frequency is
the (8–12 Hz) mu rhythm. Zrenner et al. (2018) triggered TMS
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pulse triplets (three pulses at 100 Hz) at varying intervals (longer
than 0.75 s) targeted to occur at negative or positive peaks
of healthy participants’ spontaneous EEG mu rhythms. Only
stimulation at the surface negative peak of the mu-rhythm cycles
resulted in a LTP like increase in corticospinal excitability [as
measured by subsequent increase of the motor-evoked potential
(MEP) amplitude]. Bergmann et al. (2012) triggered single-pulse
TMS over the primary motor cortical hand area within EEG
relative (surface-negative) ‘‘up-states’’ and (surface-positive)
‘‘down-states’’ during sleep. Both TMS-evoked and subsequent
MEPs were consistently larger when stimulation occurred during
slow oscillatory (negative-going) up-states than during (surface-
positive) down-states. These results can be explained by direct
effects of local field activity on neural excitability, including little
understood ephaptic (non-synaptic) effects on the intra-neuronal
environment (Fröhlich andMcCormick, 2010; Anastassiou et al.,
2011; Anastassiou and Koch, 2014). This work raises the
intriguing possibility that real-time information on current brain
state derived from EEG recording can be used to maximize TMS
induction of cortical plasticity in humans.

EVIDENCE FOR CORTICAL EXCITABILITY
STATES CHANGES WITH ALPHA
OSCILLATORY CYCLES

Understanding how cortical excitability is affected by
endogenous local field potentials, therefore, seems crucial
to further development and optimization of TMS stimulation
protocols. As outlined above, oscillations in local cortical field
potentials are now seen to both reflect and induce cyclical
variation in the excitability of involved cortical neuronal
ensembles (Bishop, 1933; Freeman and Rogers, 2002; Vanhatalo
et al., 2004), making them more likely to fire in one phase of
the cycle than in another (Klausberger et al., 2003; Haider and
McCormick, 2009; Canolty and Knight, 2010; Canolty et al.,
2010). Targeting oscillations in the (8–12 Hz) alpha frequency
band is of special interest, as most current clinical TMS protocols
involve some form of stimulation in this frequency range. For
example, 10-Hz rTMS over frontal brain areas has proven to
have therapeutic benefit in treatment-resistant depression;
accordingly, most rTMS protocols approved to date by the
United States Food and Drug Administration (FDA) involve
10-Hz stimulation (O’Reardon et al., 2007; George et al., 2010;
Perera et al., 2016).

There is growing evidence that 8–12 Hz posterior alpha
and sensorimotor (mu) oscillations play a significant role
in modulating brain information processing in humans by
providing a periodic inhibitory influence within their generator
regions (Klimesch et al., 2007; Jensen and Mazaheri, 2010;
Mathewson et al., 2011). Recent findings suggest that mu
rhythms exercise strong inhibitory influence on local neuronal
spike timing firing rate. Haegens et al. (2011) reported a
rhythmic relation between mu-rhythm oscillations in monkey
sensorimotor cortex and neuronal spiking, with neuronal firing
highest at the (surface-negative) trough of the mu-rhythm cycle.
Ai and Ro (2014) demonstrated that humans’ ability to perceive

a weak tactile stimulus was predicted by the mu phase angle
at stimulus onset in the EEG, suggesting that sensorimotor mu
rhythms wield a strong inhibitory control on tactile perception.

A similar relationship seems to hold for alpha oscillations in
the visual cortex. Mercier et al. (2015) for example, showed using
ECoG data that reaction times are faster when local auditory
and visual cortical theta/low alpha rhythms (5–8 Hz) are both
in phase with the onset of an audiovisual stimulus. Other studies
demonstrated that both phase and power of pre-stimulus alpha
oscillations affect visual detection (van Dijk et al., 2008; Busch
et al., 2009; Mathewson et al., 2009). Visual discrimination ability
decreases with an increase in pre-stimulus alpha power (van Dijk
et al., 2008) while detection performance for attended stimuli
fluctuates in time with the pre-stimulus phase of spontaneous
alpha oscillations (Busch and VanRullen, 2010). This phasic
modulation of detection performance increases with stronger
alpha entrainment to a rhythmic stimulus presentation (Spaak
et al., 2014). Other research demonstrates that the phase of
EEG alpha rhythm over posterior brain regions can reliably
predict both stimulus-elicited cortical activation levels and
subsequent visual detection (Mathewson et al., 2009). As well,
blood oxygenation-level-dependent (BOLD) responses to brief
fixation events have also been shown to vary as a function of
the alpha phase of EEG independent component effective source
processes (Scheeringa et al., 2011).

Research also shows that alpha oscillations influence the
temporal resolution of perception. Two briefly presented visual
stimuli may be perceived as a single stimulus or as two separate
stimuli depending on whether they fall in one or two separate
alpha cycles depending on the frequency of the alpha oscillation
(Samaha and Postle, 2015). These and related findings (Varela
et al., 1981; Zauner et al., 2012) have led to the conclusion that the
frequency of the alpha cycle indexes the duration of ‘‘perceptual
windows’’ (e.g., during the surface-negative phase of the alpha
cycle), and controls variation in both the sensitivity and temporal
resolution of visual perception (for reviews, see Hanslmayr et al.,
2011; Mathewson et al., 2011; Shapiro et al., 2017).

Note that the direction of the relationship between cortical
surface negative and positive peaks is ambiguous for sulcal
rhythms since the polarity of alpha negative/positive peaks
depends on the orientation of the vortical source patch in
relation to the cortical surface. In addition, many of the above
cited studies have analyzed EEG channel data (Mathewson
et al., 2009; Busch and VanRullen, 2010; Samaha and Postle,
2015; Zrenner et al., 2018) which adds additional ambiguity
in terms of oscillatory phase. By the broad spread of brain
volume conduction, each EEG channel signal sums potentials
from many effective brain sources (for example, see Makeig
et al., 2004; Onton et al., 2005, 2006; Brunner et al., 2016). This
needs to be considered when targeting alpha negative/positive
peaks with TMS. Source-resolved estimation of EEG oscillatory
phase, for example using Independent Component Analysis (Bell
and Sejnowski, 1995; Makeig et al., 1996), can help to resolve
this ambiguity.

Nevertheless, the here discussed studies suggest that mu
and alpha rhythm cycles constrain neural spikes into occurring
during brief time windows, leading to periodic suppression of
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neural processing with cortical surface negative and positive
peaks in the mu/alpha cycle representing high and low
excitability states respectively. Zrenner et al. (2018) provide
deterministic evidence for this long-held belief, proposed by
Elbert and Rockstroh (1987).

RELATIONSHIP TO CROSS-FREQUENCY
PHASE-AMPLITUDE COUPLING OF
NEURONAL OSCILLATIONS

What are the underlying functional mechanisms by which
oscillatory phase changes the excitability of the local cortical
area and state? Nested hierarchical cross-frequency PAC
of cortical potentials, wherein phase in lower frequency
bands modulates amplitude in respectively higher bands,
has been proposed as a general mechanism supporting the
encoding, storage, and retrieval of information in neural
networks (Schroeder and Lakatos, 2009; Canolty and Knight,
2010; Fell and Axmacher, 2011; Bergmann and Born, 2018;
Reinhart and Nguyen, 2019). Slow oscillations consist of
alternating states of synchronized depolarization (up-state)
and hyperpolarization (down-state) that propagate throughout
the cortex, also reaching the thalamus via cortico-thalamic
projections. Note that cortico-thalamic feedback may play
a key role in the temporal control of cortical excitability
by mediating phase alignment of neuronal firing and slow
oscillatory peak depolarization.

Themost-studied example of PAC is theta-gamma PAC in the
hippocampus and cortex during working memory, information
encoding, and retrieval (Fell and Axmacher, 2011) that is linked

to theta phase-dependent processes of synaptic potentiation
and depotentiation (Huerta and Lisman, 1995). It is hereby
assumed that the phase of these spontaneous low-frequency
oscillations control the excitability of local cortical neuronal
ensembles, making them more likely to fire (Klausberger et al.,
2003; Haider and McCormick, 2009; Canolty and Knight, 2010).
This results in a systematic enhancement of responses to
events occurring during high-excitability phases concurrent with
broadband (30–200 Hz) gamma oscillatory bursts in cortical
recordings, and suppression of responses to events occurring
during low-excitability phases (Large and Kolen, 1994; Lakatos
et al., 2005, 2008). Broadband gamma (30–200 Hz) activity has
been suggested to reflect and index local neuronal population
activity (Miller et al., 2009, 2014) indicating a state of high
neuronal excitability (Fries et al., 2007).

Studies have demonstrated that timing of gamma bursts
in the EEG is commonly modulated by alpha phase (Osipova
et al., 2008; Voytek et al., 2010; for a review, see Canolty
and Knight, 2010). The alpha cycle supposedly acts here
as periodic inhibition—gamma bursts occur only during the
cortical surface-negative troughs of the alpha cycle, and when
the amplitude of alpha oscillations is sufficiently low. The
strength of this relationship may change with movement or
other cortical activation states (see Figure 1). A recent study
(Herring et al., 2019) has provided deterministic evidence for
the modulation of stimulus-induced gamma-band oscillations
through alpha oscillatory phase. The authors applied weak
alternating currents at subject’s individual alpha frequency
±4 Hz to the occipital cortex to mimic the functional effects of
periodic inhibition during spontaneous alpha oscillations. The

FIGURE 1 | Possible mechanism of how alpha oscillations act on gating neural excitability: red color periods indicate periods of inhibition (alpha positive peak), while
blue color indicates periods of activation (alpha trough). Transcranial magnetic stimulation (TMS) pulses are represented by vertical lines in the upper part of the
figure. The bursts of gamma at each alpha cycle trough represent windows of neuronal processing. Left Panel: TMS pulses are delivered at alpha troughs. They thus
coincide with gamma bursts that are coupled to alpha troughs, enhancing them. If TMS pulses arrive during high excitability phases at alpha troughs (blue colored
periods), they occur simultaneously with gamma bursts and are able to enhance local brain processing. Right Panel: TMS pulses are delivered at alpha positive
peaks. They thus occur at periods of relative inhibition when gamma bursts are absent and no enhancement of neural activity may occur. When alpha oscillations are
sufficiently suppressed neurons can fire freely and TMS pulses delivered during this period can enhance gamma bursts irrespective of the phase of alpha oscillations.
Adapted from Osipova et al. (2008) and Jensen and Mazaheri (2010).
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authors found that in fact the induced currents rhythmically
suppressed visual stimulus-induced gamma-band power. The
degree of gamma-band suppression predicted the reduction in
visual detection performance, suggesting a direct modulation
of cortical excitability by rhythmically shifting the neurons’
membrane potential. The here outlined ideas are supported by
research showing that 10-Hz rTMS strengthened alpha–gamma
cross-frequency phase synchrony and predicted changes in task
accuracy in a visual working memory task (Hamidi et al., 2009).

Many EEG and ECoG studies show that a decrease in mu
power in motor cortices is related to increased activation of
the cortical area (Pfurtscheller et al., 1997; Crone et al., 1998;
Pfurtscheller and Lopes da Silva, 1999; Miller et al., 2007). During
movement as well as other activation states known to transiently
block mu rhythm amplitude (Pfurtscheller and Neuper, 1997;
Crone et al., 1998), alpha-gamma PAC may be diminished or
eliminated (as also shown for beta-gamma coupling by Miller
et al., 2007), and gamma bursts may occur freely throughout the
alpha cycle. Other studies investigating the relationship between
corticospinal excitability (as measured with MEPs) and alpha
power showed thatMEPs are larger when pre-stimulusmu power
is lower (Zarkowski et al., 2006; Sauseng et al., 2009a), and
pre-stimulus gamma power is higher (Zarkowski et al., 2006).
Sauseng et al. (2009a) also showed that this effect was specific
for local EEG alpha activity at sites overlying the cortical motor
areas to which the TMS pulses were applied (as verified using
source localization).

Thus, during a cortical activation state where alpha/mu
power is suppressed, TMS pulses delivered at any phase of
mu/alpha cycles may increase neuronal firing thus increasing
subsequently cortical excitability. Instead during periods of
increased mu/alpha power TMS pulses may best be delivered
during surface negative alpha troughs to increase cortical
activation states to be most effective.

CONCLUSION

The studies discussed above suggest that mechanisms
of PAC in local cortical brain field activities, the most
prominent of which may dominate scalp EEG signals, could

be exploited as a tool for more efficient TMS stimulation
by incorporating information on the timing of neuronal
excitability states.

Clinical TMS therapy has not changed much over the last
30 years with similar treatment protocols applied across different
patient groups and a variety of disorders. One of the main
practical issues in TMS therapy is that TMS after-effects are
notoriously inconsistent, the same stimulation protocol inducing
neural plasticity effects in opposite directions (Müller-Dahlhaus
et al., 2008; Ziemann and Siebner, 2015). Bergmann et al.’s
(2012) and Zrenner et al.’s (2018) studies provide insight
into how stimulation protocols can be improved by increasing
neuroplasticity through timing TMS pulses to oscillatory high
excitability phases. These results were obtained in the motor
cortex, however high and low excitability oscillatory phases likely
differ over brain areas and frequency bands. This raises the
question of how we can reliably identify high excitability phases
of oscillations to target with TMS. Estimation of PAC may help
to determine which exact phase of a given oscillation in the target
brain area has the highest excitability. Methods for the estimation
of event-related and time-resolved PAC (Voytek et al., 2013;
Martínez-Cancino et al., 2019)may be either implemented before
TMS stimulation or integrated into a real-time system to adapt
timing of TMS pulses. Real-time estimation of PAC during TMS
stimulation might be used to index of neuroplasticity and help
determine the efficiency of the stimulation or predict the success
of TMS therapy.
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