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ABSTRACT OF THE DISSERTATION

Joint Modeling of Longitudinal and Survival Data: Censoring Robust Estimation, Influence
Function Based Robust Variance and Shape Based Longitudinal Clustering

By

Cangao Chu

Doctor of Philosophy in Statistics

University of California, Irvine, 2024

Chancellor’s Professor Daniel Gillen, Chair

In quantifying heterogeneity in time-to-event data, potential biomarker information and

demographic status reflecting key pathophysiology at the individual level are increasingly

available. Typical analysis of time-to-event data relies on observed event data. To ensure

adequate statistical power, longer follow-up periods or additional participants are required,

adding enormously to study costs. Incorporating biomarker information can reduce the cost

of data collection and maximize statistical power.

There are, however, several drawbacks to the direct incorporation of biomarkers for identi-

fication and analysis. Specifically, most models assume time-invariant effects, independent

censoring, and complete information. Little work has been done to assess the robustness of

the currently used models beyond these assumptions.

The Cox proportional hazards model (Cox, 1972) is the most commonly used model for

time-to-event data. This model compares observed covariates to the weighted average of

covariates in the risk set. The Cox model consistently estimates a weighted time-averaged

effect under proportional hazards. However, in the field of Alzheimer’s disease, the propor-

tional hazard model often fails as the covariate effect diminishes due to disease progression.

Directly applying the model ignores the potential changes in the underlying effect. In addi-

xi



tion, the assumption of independent censoring may fail to acknowledge possible associations

between biomarkers and the missing data mechanism. As a result, the observed event in

later follow-up times may be underrepresented relative to the overall population due to cen-

soring. Currently, there is no existing research to address the above issues simultaneously

while being robust to possible violations of assumptions and adaptive to various types of

biomarker information.

Given the increasing availability of repeated biomarker measurements, there is a growing

interest in jointly modeling longitudinal and time-to-event data to maximize statistical in-

formation on the association between potential biomarkers and disease progression. Within

longitudinal data, it is often observed that subgroups exist among populations, where the

underlying development can be clustered into different patterns. These clustering patterns

offer valuable insights into the natural history of diseases, including their progression, risk

factors, and potential causes. In practice, longitudinal data frequently encounter missing

values. While typical clustering methods handles intermittent missing values through impu-

tation methods, in disease studies, monotone missingness often occurs in longitudinal data

when measurements are lost after a specific time due to terminal events and censoring. Ex-

isting imputation methods may introduce bias when attempting to recover trajectories of

similar lengths. However, there has been little examination of the currently used methods

on longitudinal clustering with monotone missingness.

This dissertation aims to develop a flexible and robust statistical model to evaluate predictors

of time-to-event data. The resulting estimator will be consistent and robust under violated

assumptions and repeated measures. In Chapter 3, we proposed a reweighted censoring ro-

bust estimator using censoring weights and conditional covariate variance. In Chapter 4, we

introduced an robust variance estimator based on the influence function for the estimator

proposed in Chapter 3. In Chapter 5, we investigated the performance of the current longi-

tudinal clustering method under the monotone missing censoring mechanism, and proposed

xii



a shape-based longitudinal partial mapping clustering method to complement the estimator

proposed in Chapter 3.
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Chapter 1

Introduction

1.1 Biomarker identification in Alzheimer’s disease

Alzheimer’s disease (AD) and related dementias (ADRD) are the most common types of de-

mentia. Dementia is not a specific disease, but an overall term that covers medical conditions

related to impaired ability to carry out daily activities. Currently, dementia affects more

than 55 million people worldwide, with nearly 10 million new cases every year. Alzheimer’s

disease is the most common form of dementia, accounting for 60% to 70% of cases, ac-

cording to the World Health Organization. The symptoms of Alzheimer’s disease include

occasional memory lapses, increased difficulty concentrating, thinking, making judgments,

and performing routine activities. In addition, it can lead to changes in personality and

behavior. There is currently no cure for Alzheimer’s disease, which places an enormous bur-

den on individuals, families and nations. Although AD is more commonly observed in older

age groups, it is not a natural result of aging. The disease is thought to be related to the

abnormal build-up of proteins in and around brain cells, but the exact cause of this process
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is unknown. Researchers have conducted extensive work to identify risk factors for the onset

of Alzheimer’s disease and to provide individual risk screening.

To accurately diagnose Alzheimer’s disease, accumulating evidence has shown that progres-

sive cerebral deposition of the 40- and 42-residue amyloid β-proteins in cerebrospinal fluid

(CSF) serves as a core biomarker to AD detection (Selkoe, 1991). Another potential diagnos-

tic biomarker is magnetic resonance imaging (MRI) (Blennow and Zetterberg, 2018), which

provides spatial resolution to assess pathological development in the brain. However, both

methods present challenges for direct interpretation due to the following reasons: (i) MRI

tissue volume changes and increased CSF concentration is not specific to AD and require

highly skilled labor to measure; (ii) acquiring CSF levels is invasive (De Leon et al., 2004).

Therefore, it is crucial to develop statistical methods to model the association between AD

and those risk factors in order to identify lower cost and lower burden biomarkers.

When quantifying heterogeneity in time-to-event data, it is increasingly common to have

access to potential biomarker information and demographic data that reflect key pathophys-

iology at the individual level. Numerous studies have consistently shown that biomarkers can

aid in the diagnostic process, early-stage screening, and risk analysis. Biomarkers provide

diagnostic information that can be obtained in a more efficient and repeatable manner. Reg-

ular time-to-event data analysis relies mostly on observed event data. To increase statistical

precision, elongated follow-up periods or additional participants are required, which tremen-

dously escalates study costs. However, incorporating biomarker information can reduce the

cost of data collection and maximize statistical information.

Due to the significance of biomarkers in disease research, there is increasing interest in jointly

modeling longitudinal and time-to-event data to maximize statistical information regarding

the association between potential biomarkers and disease progression. A typical strategy

in joint modeling involves the two-stage model approach, wherein the longitudinal mea-

surements are statistically modeled in the initial stage, followed by the analysis of survival

2



data based on the first-stage model. However, there are several drawbacks to this approach

when incorporating biomarkers for identification and analysis. Specifically, these settings

are based on the assumptions of time-invariant effects, independent censoring, and complete

information. However, little work has been done to assess the robustness of the current

model outside of those assumptions. For the analysis of survival data, The Cox proportional

hazards model (Cox, 1972) is the most commonly used model. The Cox proportional hazards

model assumes proportional hazards, where the covariate effect remains constant over time.

However, in practical applications, this strict assumption is often violated. In AD stud-

ies, for instance, the covariate effect diminishes over later follow-up times due to increased

heterogeneity among patients, resulting in non-proportional hazards (NPH). Struthers and

Kalbfleisch (1986) demonstrated that the Cox estimator yields a weighted time-average co-

variate effect dependent on an unknown censoring distribution under NPH. Consequently,

the Cox estimator’s reproducibility across studies under NPH is compromised, rendering

the results less meaningful. Current methods aimed at mitigating dependence on censoring

focus on reweighting the Cox estimator by the inverse of censoring probability, but these

are restricted to time-independent covariates(Xu and O’Quigley, 2000; Boyd et al., 2012;

Nguyen and Gillen, 2017). Currently, no existing research jointly models longitudinal and

time-to-event data under NPH while simultaneously removing dependence on censoring dis-

tribution.

In the following section, we briefly introduce a study that exemplifies the application of joint

modeling of longitudinal and survival data.

1.2 Alzheimer’s disease neuroimaging initiative

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) brings together researchers and

study data to establish the trajectory of AD. ADNI researchers gather, verify, and employ

3



various types of data, such as Magnetic Resonance Imaging (MRI) and Positron emission

tomography (PET) images, genetics, cognitive tests, cerebrospinal fluid (CSF) , and blood

biomarkers, to predict the disease. This website provides access to study resources and data

from the North American ADNI study, which includes information on Alzheimer’s disease

patients, individuals with mild cognitive impairment, and elderly controls.

This study comprises four phases. ADNI-1, ADNI-GO, ADNI-2, and ADNI-3 are four phases

of the study. The participant pool for each phase ranging from 700 to 2000 as the studies

progress. Although each study has distinct goals, the overlapping objective among all four

phases is to identify longitudinal risk factors and predict cognitive decline leading to the

terminal event, typically the conversion to AD. It is noted that ADNI is a global research

study that incorporates the tracking of AD progression over 63 sites in the US and Canada

over several years. Such variation in location and time could lead to differences in unknown

censoring mechanisms, even under the same set of standardized protocols. Without adjust-

ment for possible censoring similarity, the resulting association with AD progression could

be different from site to site, even if the underlying effects of covariates on the specific ques-

tion remain the same. Given the global impact of ADNI, it is critical to develop censoring

robust methods for identifying longitudinal risk factors and, in turn, predicting the risk of

progression to AD.

1.3 Overview of this dissertation

This chapter presents a motivating example that illustrates the necessity and application of

methodological developments presented in the rest of the dissertation. The ensuing chapter

furnishes a concise overview of the statistical foundation, either as a foundational under-

standing within the discipline or as a preparatory groundwork for introducing the proposed

methodologies. The topics include survival analysis, joint modeling of longitudinal and

4



survival data, censoring robust estimation methods, and longitudinal clustering methods.

Chapter 3 centers on the refinement of an unbiased censoring-robust estimator tailored

to accommodate longitudinal covariates. Our investigation reveals that applying existing

censoring-robust estimators to longitudinal covariates within a two-stage model yields es-

timates as weighted averages over time and conditional covariate variance, thereby mak-

ing the results challenging to interpret. To render the results interpretable as a weighted

time-average effect, we propose additional reweighting based on consistent estimates of the

conditional covariate variances.Through numerical simulations, we assessed the performance

of the proposed method compared to the naive Cox model and the existing reweighting

algorithm. Subsequently, we apply the proposed method to the ADNI data, compared to

alternative methodologies. In Chapter 4, we explore an alternative variance estimator for the

estimator introduced in Chapter 3 for robust inference. The conventional robust variance

estimator poses challenges in direct application and derivation. Consequently, we suggest

employing a semi-parametric approach based on the influence function-based robust vari-

ance estimator. We derive a series of robust variance estimators applicable to the entire

class of censoring-robust estimators. Simulation results confirm the validity of the proposed

variance estimator and highlight its advantages compared to alternative variance estimators.

In practical application, we apply the proposed variance estimator to ADNI data, drawing

comparisons with the bootstrap method. In Chapter 5, inspired by our motivating example,

we assess the effectiveness of various longitudinal clustering algorithms in addressing the

unique challenges posed by monotone missingness. Furthermore, we introduce a nonpara-

metric clustering algorithm that leverages partial mapping via the dynamic time warping

(DTW) distance. The performance of the proposed algorithm is systematically compared

with other clustering algorithms designed for imbalanced monotone missing scenarios under

various settings. Additionally, we apply the proposed algorithm to ADNI data, demonstrat-

ing its utility in real-world applications. In the concluding section, we engage in a discussion,

offering insights and reflections on the findings presented. Furthermore, we outline potential
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avenues for future research, identifying areas that warrant further exploration and investi-

gation.
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Chapter 2

Statistical background

2.1 Introduction

Due to the widespread occurrence of Alzheimer’s disease, researchers have dedicated decades

of effort to uncovering its causes and developing effective treatments. However, the current

approach to treating Alzheimer’s disease is predominantly centered on managing symptoms,

as the root cause of the condition remains elusive. One potential causal hypothesis for

Alzheimer’s disease is the amyloid hypothesis (Selkoe, 1991), which centers around the ab-

normal accumulation of senile plaques. These plaques are characterized by the presence

of amyloid fibrils, primarily composed of the amyloid β (Aβ) peptide (Glenner and Wong,

1984). In particular, Aβ 40 and Aβ 42, with the former containing 40 amino acid residues

and the latter 42 amino acid residues, represent significant constituents of the accumulated

Aβ. However, Kametani and Hasegawa (2018) point out that the onset of AD appears to be

intricately connected to impairments in the metabolism of Amyloid Precursor Protein (APP)

and the accumulation of APP C-terminal fragments, rather than the production of Aβ as

efforts to develop drugs targeting Aβ for the treatment of AD have proven unsuccessful.
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Moreover, the presence of the Aβ 40 and Aβ 42 proteins in cerebrospinal fluid (CSF) is of-

ten assessed through a procedure known as a lumbar puncture or ”spinal tap.” This involves

inserting a needle into the space between two vertebrae in the lower spine to collect CSF for

analysis. Unfortunately, this procedure is invasive, leading to a reluctance among patients to

undergo lumbar punctures. Consequently, the limited availability of data poses challenges in

obtaining comprehensive insights, as patients may refuse to undergo this procedure due to

the associated discomfort. Total tau, a protein primarily found in the central nervous system,

is a biomarker that reflects the extent of neuronal damage and degeneration (Hampel and

Teipel, 2004). Despite the fact that the Aβ biomarker has not been conclusively established

as the sole cause of AD, accumulating data from clinical research consistently supports the

significance of biomarkers such as Aβ and total tau. These biomarkers are considered reflec-

tive of key elements in the pathophysiology of AD. Additionally, there is an ongoing quest

for additional biomarkers and the enhancement of screening methods (Blennow and Zetter-

berg, 2018). This emphasis on biomarkers in AD exploration underscores the importance

of continuous efforts to deepen our understanding and refine diagnostic approaches for this

complex neurodegenerative condition.

Considering the challenges encountered by researchers in pinpointing the precise cause of

AD, the development of robust statistical methodology becomes crucial. Such a methodology

aims to identify and analyze potential biomarkers associated with AD without necessarily

unraveling the intricate underlying mechanisms. This approach recognizes the complexity

of AD and emphasizes the need for effective statistical tools to uncover and comprehend

crucial biomarkers, even when the exact causal mechanisms remain elusive. The Cox model

(Cox, 1972) stands as a widely adopted statistical method for assessing heterogeneity in

time-to-event data while accounting for multiple covariates. Facilitating a regression type

framework, it compares the risk of observed events to the average risk within the risk set.

Its popularity is further enhanced by its semiparametric nature, avoiding the need to specify
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the baseline hazard explicitly. However, a notable limitation lies in its reliance on the

proportional hazards assumption, which may not hold in real-world scenarios.

Under non-proportional hazards conditions (NPH), the Cox model’s estimator is influenced

by the censoring mechanism (Struthers and Kalbfleisch, 1986). To mitigate this dependency

on censoring mechanisms, reweighted algorithms have been developed, addressing both cat-

egorical and continuous covariates (Boyd et al., 2012; Nguyen and Gillen, 2017). In the

context of AD, where NPH and censoring due to dropouts may be pertinent, obtaining a

censoring-robust estimator incorporating longitudinal covarites for biomarkers becomes im-

perative.

To build a censoring robust estimator incorporating longitudinal covariates, a joint model-

ing approach for longitudinal and survival data is proposed. This entails a joint modeling

of longitudinal and survival data to yield an understanding of the biomarker’s association

with AD progression. By applying a censoring-robust estimator within the joint model,

this dissertation aims to provide more accurate and reliable insights into the dynamics of

biomarkers in the presence of potential non-proportional hazards and dropout effects in AD

research.

In this chapter, we present a review of joint modeling techniques for longitudinal and sur-

vival data. The primary objective of these models is to assess longitudinal covariates while

accommodating potential violations of the proportional hazards assumption and maintaining

robustness against unknown censoring mechanisms. This review aims to contribute insights

into advanced statistical approaches that can enhance the robustness and reliability of longi-

tudinal and survival data analysis, especially in settings such as Alzheimer’s disease research

where non-proportional hazards and intricate censoring mechanisms may significantly influ-

ence the outcomes. We will dissect the fundamental elements of joint modeling, beginning

with the rationale behind integrating longitudinal and survival data and the challenges asso-

ciated with potential violations of the proportional hazards assumption. This introduction
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lays the foundation for a detailed comparison and discussion of major types of joint modeling

approaches, elucidating their strengths, weaknesses, and applications.

The subsequent section delves into the realm of robust inference, a critical aspect in the

context of joint modeling. A review of the current methods for robust variance estimation will

be undertaken, focusing on their application to the Cox model and general linear regression-

type estimators. Within this framework, we particularly explore the influence function-based

approach, which is pivotal for our proposed estimator. This methodological choice aligns

with the need for robustness in the presence of potential challenges such as non-proportional

hazards and uncertain censoring mechanisms, especially relevant in the study of AD.

In the concluding part of this chapter, we shift our focus to longitudinal clustering methods.

A review of these techniques will be provided, offering a foundational understanding to

facilitate subsequent developments. This exploration is integral to our overarching goal of

establishing a robust and comprehensive framework for the joint modeling of longitudinal

and survival data in the context of AD research.

2.2 Review of survival analysis

2.2.1 Censoring

Survival analysis is a statistical method used to analyze the time until an event of interest

occurs. However, the survival data include censoring, which occurs when the exact event

time is unknown for some individuals. Censoring is an essential aspect of survival analysis

and has been the subject of several research studies. For instance, Howe et al. (2016) focused

on selection bias due to loss to follow up in cohort studies. They highlighted the potential

impact of censoring on the validity of study results and emphasized the need to account

10



for loss to follow up in the analysis of survival data. In real-world studies, censoring is a

ubiquitous phenomenon. Censoring occurs when the complete information regarding the

time until an event of interest is not available for all subjects in a study.In the context of

diseases like Alzheimer’s, where long-term observation is often necessary, and patient dropout

or loss to follow-up can occur, dealing with censoring becomes particularly pertinent.

There are multiple types of censoring, including left censoring, interval censoring and right

censoring. Left censoring occurs when the event of interest must have occurred for a subject

before they are observed in the study. In other words, the subject enters the study already

having experienced the event, but the exact time of the event is unknown because the

observation starts after the event has occurred. In the context of left censoring, researchers

are aware that the event of interest has taken place at some point, but due to the subject’s

entry into the study after the occurrence, the precise timing remains observed.

Another type of censoring is interval censoring, and it often occurs when a subject is followed

for a certain period, experiences an interruption, such as being lost to follow-up, and then

reengages with the study. This results in observed data that are represented as intervals,

rather than precise event times. In the context of interval censoring, an uncensored observa-

tion of an event translates to an observed interval that essentially consists of a single point.

This interval encompasses the time between the last known event-free point and the observed

event time, providing a time range within which the event is known to have occurred.

Perhaps the most common form of censoring encountered is right censoring. For right cen-

soring, a subject is observed up to a certain time point, and if the event of interest has not

occurred by that time, the data for that subject are considered censored. In cases where the

exact event time is known, it is observed only if the censoring time is greater than or equal

to the exact event time. Right censoring is prevalent in long-term studies or studies with

fixed observation periods where not all subjects experience the event of interest within the

study duration. The data for these subjects are censored at the last observed time point,
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indicating that the event has not occurred up to that time. The major reasons for right

censoring are diverse but often involve the termination of the study before the occurrence of

the event of interest or a subject being unable to continue participation in the study.

The characterization of censoring can be further classified based on various attributes includ-

ing random, double, independent, and non-informative censoring. Random censoring occurs

when the likelihood of a subject being censored is unrelated to the subject’s actual survival

time or the occurrence of the event. It is considered a random process and is not influenced

by any specific characteristics of the subjects. Double censoring refers to situations where

both the beginning and end of the observation period are not precisely known. This can hap-

pen, for instance, when data collection starts after the event of interest has already occurred

or when it continues after the study concludes. In the context described here, independent

censoring differs from the common understanding of censoring and survival independence.

Instead, it denotes that the censoring times for different subjects are not influenced by the

occurrence of events in other subjects. Each subject’s censoring time is independent of the

others, allowing for separate analysis of their time-to-event data. Non-informative censoring

suggests that the censoring mechanism does not carry information about the subjects’ future

event times. In other words, the censoring is not based on any knowledge or anticipation

of when the event might occur. Indeed, assuming non-informative censoring is a common

practice in survival analysis. Non-informative censoring implies that the decision to censor a

subject’s data is unrelated to the subject’s future event times. By assuming non-informative

censoring, researchers can treat censoring as a random process that does not carry informa-

tion about when the event of interest might occur. This simplifies the analysis and helps

avoid potential biases introduced by informative censoring, where the decision to censor

is related to the subject’s likelihood of experiencing the event. For further information, a

detailed review of censoring in survival analysis can be found in Turkson et al. (2021).
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2.2.2 Statistical functions of interest

We start with the scenario where there is no censoring, and the time to event of interest is

denoted as T . In this context, there are several important functions related to survival data:

• Cumulative Distribution Function (CDF) F (t):

The cumulative distribution function, denoted as F (t), represents the probability that

the event occurs on or before time t. Mathematically, F (t) = P (T ≤ t) =
∫ t

0
f(t)dt,

providing the cumulative probability distribution of event times up to t.

• Probability Density Function (PDF) f(t):

The probability density function, denoted as f(t), describes the instantaneous rate at

which the event occurs at time t. Mathematically, it is the derivative of the cumulative

distribution function, f(t) = dF (t)/dt. The PDF provides the probability of the event

occurring in an infinitely small time interval around t.

• Survival Function S(t): The survival function, denoted as S(t), represents the proba-

bility that a subject survives beyond time t. Mathematically, it is defined as S(t) =

P (T > t) = 1−F (t), which is the probability that the event has not occurred by time

t. The survival function is fundamental in survival analysis and is used to estimate the

time until an event occurs.

• Hazard Function λ(t): The hazard function represents the instantaneous rate at which

events occur at time t, given that the subject has survived up to that point. Mathemati-

cally, it is defined as λ(t) = lim△t→0+(1/△t)Pr[t ≤ T < t+△t|T ≥ t] = f(t)/S(t). The

survival function can be obtained with the transformation that S(t) = exp{−
∫
λ(t)dt}.

• Cumulative Hazard Function Λ(t): The cumulative hazard function is the integral of

the hazard function up to time t. It represents the cumulative risk of experiencing

event up to time t. Mathematically, it is defined as Λ(t) =
∫ t

0
λ(t)dt.
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The above fundamental functions used to describe time-to-event data are interrelated. Once

one of these functions is properly defined, others can be derived through transformations.

In particular, the hazard function is often preferred over the survival function because it

provides more flexibility in modeling, allows for capturing time-varying effects, facilitates

comparing groups, and handles censored data more straightforwardly.

2.2.3 Parametric modeling

In early attempts to analyze survival data, researchers often employed parametric methods

that assumed specific functional forms for the survival distribution. These parametric models

were used as an initial approach to describe the underlying distribution of event times and

estimate key parameters. While nonparametric and semiparametric methods have become

more prevalent in recent times due to their flexibility and fewer assumptions, parametric

models were instrumental in laying the groundwork for survival analysis. Some common

parametric models are listed in Table 2.1.

Table 2.1: Parametric survival distributions and properties

Distribution Hazard Density Cumulative Hazard Survival Function Mean Chararteristic
Exponential λ λe−λt λt e−λt 1/λ constant hazard
Weibull αλtα−1 αλtα−1e−λtα λtα e−λtα Γ[1 + 1/α]/λ1/α hazard as power of t

Gamma xγ−1e−x

Γ(γ)−Γx(γ)

(x−µ
β

)γ−1 exp (−x−µ
β

)

βΓ(γ)
− log (1− Γx(γ)

Γ(γ)
) 1− Γx(γ)

Γ(γ)
γ monotonic hazard

Log-normal
( 1
xσ

)ϕ( ln x
σ

)

Φ(− ln x
σ

)
e−((ln((x−θ)/m))2/(2σ2))

(x−θ)σ
√
2π

− ln(1− Φ( ln(x)
σ

)) 1− Φ( ln(x)
σ

) e0.5σ
2

unimodal, right skewed hazard and density

Log-logistic λκ(λx)κ−1

1+(λx)κ
λκ(λx)κ−1

(1+(λx)κ)2
ln[1 + (λx)κ] 1

1+(λx)κ

∫∞
0

λκxκ−1

(1+(λx)κ)2dx
similar to log-normal but heavier tail

Under the assumption of a parametric model, maximum likelihood theory is a powerful

approach for estimating the survival distribution and functionals of the distribution. The

likelihood function is constructed by considering the observed data, which includes infor-

mation about both the observed event times and the censoring times. Suppose a sample

of n subjects with underlying variable Ti ∼ FT (·) and Ci ∼ GC(·), where Ti represents the

event times and Ci represents the censoring times, i = 1, . . . , n. he observed time Xi can

be defined as the minimum of the event time Ti and the censoring time Ci, mathematically
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expressed as Xi = min(Ti, Ci). Then, The event indicator δi is commonly defined as:

δi =


1 if Ti ≤ Ci(event occured),

0 if Ti ≥ Ci(censored).

This event indicator is crucial in constructing the likelihood function for the analysis of

survival data, as it helps distinguish between observed events and censored observations.

The likelihood function is then formulated to account for the observed times and the event

indicators, allowing for the estimation of parameters in the context of survival analysis. With

censoring present, the full likelihood contribution for the ith subject assumming independent

censoring is defined as:

Li(xi, δi) = {fT (xi)[1−Gc(xi)]}δi {gc(xi)[1− FT (xi)]}1−δi ,

where each subject’s contribution to the likelihood is separated into two cases based on the

observed event time. When the event time is observed, the likelihood contribution is based

on the probability of the event at the time xi, given that the censoring time is beyond the

observed event time. When the event time is censored, the likelihood contribution is based

on the probability of censoring at time xi, given that the event time is beyond the observed

censoring time. As mentioned before, for survival data analysis, it suffices to know one

function of the distribution list in section 2.2.2, where the distribution parameter assumed

can be estimated through the maximum likelihood procedure.

Since we focus on the survival data, the likelihood contribution that only contains censoring

is omitted, and the likelihood function is reduced to

L(x, δ) =
n∏

i=1

fT (xi)
δiST (xi)

1−δi ,
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with the score equation as

U(β) =
n∑

i=1

(
δi
λ′(xi)

λ(xi)
−
∫ xi

0

λ′(u)du

)
.

The maximum likelihood estimator is obtained by setting it equal to zero and solving the

score equation. Define

I(β) = −E[ ∂
∂β

U(β)],

and it is shown that under standard regularity conditions (Van der Vaart, 2000),

√
n(β̂ − β) ∼ N(0, I(β)−1).

It is noteworthy that, due to the logarithmic property, the censoring distribution does not

directly factor into the likelihood function in survival analysis. However, the influence of

censoring on the Fisher information calculation is mediated through the event indicator. To

address this, researchers commonly opt for using the observed Fisher information, wherein

the expectation is replaced with the observed event indicator.

The above material briefly introduces the procedures and inference of parametric survival

analysis, it would be efficient due to parametric assumptions; however, when the underlying

distribution is misspecified, the result would be biased and not useful. Recognizing this

limitation, there is a distinct interest in nonparametric estimation of the survival function

S(t) when possible.
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2.2.4 Non-parametric estimation of the survival distribution

Nonparametric methods, such as the Kaplan-Meier estimator (Kaplan and Meier, 1958)

provide a flexible approach that does not rely on specific distributional assumptions, making

them robust in scenarios where the true underlying distribution is unknown or complex.

This approach enhances the applicability and reliability of survival analysis, particularly in

situations where parametric assumptions may not hold. In the following, We derive the

Kaplan-Meier estimator intuitively.

In a complete case, consider that we have a life table where time is divided into K intervals

(0, τ1], (τ1, τ2], . . . , (τK−1, τK ] by observed event time τj. Then, the conditional probability

for survival to τj upon survival to τj−1 can be estimated as follows:

P̂ [T > τi|T > τi−1] = 1− di
ni

=
si
ni

,

where di denotes the total number of events during the interval (τi−i, τi), ni denotes the total

number of subjects at risk, meaning those subjects that haven’t experienced an event at the

beginning of the interval, and si represents the number of subjects that did not experience

an event during the interval. Given the definition of conditional probability, the probability

of surviving past a particular interval can be estimated as:

P̂ [T > τi] = P̂ [T > τi|T > τi−1]× . . .× P̂ [T > τ2|T > τ1]× P̂ [T > τ1],

where P̂ [T > τ1] is estimated similarly without considering the conditional probability. By

multiplying conditional probabilities, we can introduce the Kaplan-Meier estimator. This

estimator contemplates the probability of surviving a very small time interval, given that a

subject is at risk at the beginning of the interval. The Kaplan-Meier estimator is defined as

the limit of the life table estimator as the intervals shrink to zero. For small △t, Λ(t+△t) ≈
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P [t ≤ T < t + △t|T ≥ t], then Nelson (1969) proposed the Nelson cumulative hazard

estimator as

Λ̂(t) =
∑
i:ti≤t

Di/Ȳi,

where Ȳi and Di represent the number of subjects at risk and the event occurrence count at

event times ti respectively. Given the relationship between cumulative hazard function and

survival probability, it can be shown that when Di/Ȳi ≈ 0,

Ŝ(t) =
∏
i:ti≤t

exp(−Di/Ȳi)

≈
∏
i:ti≤t

(1−Di/Ȳi),

where the last line is the Kaplan and Meier (1958) product limit estimator. For a more

formal representation of these estimators, they are often examined from the perspective of

counting processes and martingales, providing insights into their properties. Let the counting

processes Ni(t) and Yi(t) be defined by

Ni(t) = I{Xi ≤ t, δi = 1}

Yi(t) = I{Xi ≥ t}.

Denote N̄(t) =
∑

iNi(t) and Ȳ (t) =
∑

i Yi(t), then the cumulative hazard estimator can be

written as

Λ̂(t) =

∫ t

0

I{Ȳ (u) > 0}
Ȳ (u)

dN̄(u),

with the predicted process

Λ∗(t) =

∫ t

0

I{Ȳ (u) > 0}λ(u)du.
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It can be shown that

Λ̂(t)− Λ∗(t) =
∑
i

∫ t

0

I{Ȳ (u) > 0}
Ȳ (u)

dMi(u),

with

Mi(u) = Ni(u)−
∫ u

0

Yi(s)dΛ(s),

where Mi(u) represents the Martingale and plays central role in the formal development

of asymptotic properties. Within the Martingale framework, Rebolledo’s theorem demon-

strates the normal distribution of the asymptotic distribution of the Kaplan-Meier estimator

(Fleming and Harrington, 2013).

The Kaplan-Meier estimator can also be obtained via the maximum likelihood framework,

where the likelihood takes the following form:

L =
N∏
i=1

{[S(t−i )− S(ti)]
δi
∏

j∈R(i)

S(ttj)},

where R(i) represents all subjects who are at risk of experiencing an event at time ti. By the

relationship between the survival probability and the hazard function, the above likelihood

can be further expressed as

L(λ) =
D∏
i=1

λdii (1− λi)
ni−di .

This gives rise the score equation for each subject who experienced event as

U(λ) =
di
λi

− ni − di
1− λi

,

setting the score equation to zero and solving the equation gives

λ̂i =
di
ni

.
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Therefore, the MLE for survival probability is obtained as

Ŝ(t) =
∏
i:ti≤t

(
1− di

ni

)
,

which is exactly the Kaplan-Meier estimator.

For inference, the Greenwood formula (Greenwood et al., 1926) is a widely used method for

estimating the variance of a survival function, particularly in the context of Kaplan-Meier

survival analysis. This formula provides an estimate of the variance for the Kaplan-Meier

estimator at each observed event time. To derive, the Kaplan-Meier estimator at ti is defined

as:

Ŝ(ti) =
∏

j:tj≤ti

(
1− Dj

Nj

)
.

Now, the increment in the Kaplan-Meier estimator at ti is given by the product:

∆Ŝ(ti) = Ŝ(ti)− Ŝ(ti−1) =

(
1− Di

Ni

) i−1∏
j=1

(
1− Dj

Nj

)
.

Then, the variance at ti can be expressed as the sum of the variances of these increments:

Vi = Var(∆Ŝ(ti)) =
i∑

j=1

Var

((
1− Dj

Nj

)) j−1∏
k=1

(
1− Dk

Nk

)2

.

Assuming independence of increments, the variance of each increment is given by

Var

((
1− Dj

Nj

))
=

Dj

Nj(Nj −Dj)
.

Substituting this into the expression for Vi , we get

Vi =
i∑

j=1

Dj

Nj(Nj −Dj)

j−1∏
k=1

(
1− Dk

Nk

)2

.
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Now, for all distinct event times up to ti , we can get the standard error as

ŜEG{ŜKM(ti)} = Ŝ2
KM(ti)

√√√√ i∑
j=1

dj
dj(nj − dj)

.

Note that the above formula can yield values outside the range [0, 1] due to the support

of normal distribution. To fix the problem, a better confidence can be obtained using the

transformation logΛ(t) = log[−logS(t)], so that the standard error can be estimated using

delta method as

ŜEG{log[−logŜKM(ti)]} =

√√√√ i∑
j=1

dj
dj(nj − dj)

/[−logŜKM(ti)],

which results in a confidence interval in the range with both endpoints lying in the interval

[0, 1]. It is noted that such construction may also speed up convergence (Borgan and Liestøl,

1990), and thus is a standard method for confidence interval construction.

2.2.5 Cox proportional hazards model

The Kaplan-Meier estimator in Section 2.2.4 is powerful in estimating the survival distri-

bution. In observational studies, there is often a specific scientific question to address. In

such cases, using a method that can quantify the heterogeneity in survival data concerning

a prespecified variable of interest while adjusting for other potential confounding variables

is preferable. This approach allows for a more targeted and nuanced analysis, providing

insights into the impact of particular variables on survival outcomes while accounting for

the influence of other relevant factors. The Cox proportional hazards model, often referred

to as the Cox model or Cox regression, is a widely used statistical model for analyzing the

relationship between the survival time of individuals and one or more predictor variables.
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Sir David R. Cox, a statistician, first introduced it in 1972, and it has since become a crucial

tool in survival analysis.

In the study by Cox (1972), the dataset consists of one or more measurements on each

subject denoted as Z1, . . . , Zp. For the j-th individual, the values of Z are represented as

Zj = (Z1j, . . . , Zpj). Cox proposed assessing the relationship between the distribution of

event time T and covariate Z by modeling the hazard function as:

λ(t|Z) = λ0(t)exp(Zβ),

where β represents the p × 1 vector of unknown population parameters, and λ0(t) denotes

an unknown function representing the baseline hazard when all covariates are equal to 0.

It’s essential to note that β is a vector of constants that does not depend on t, indicating

that the relative risk between two subjects remains constant over time. This assumption is

known as the proportional hazards assumption.

Following the established notations, we derive the partial likelihood by defining the data for

subject i as tuples (Ti, Ci, δi), representing the true survival time, censoring time, and event

indicator. The observed time is denoted as Xi = min{Ti, Ci}.

Independence between the time to event and time to censoring is often assumed. This

is expressed as P (X > t) = P (T > t, C > t) = P (T > t)P (C > t). Alternatively,

conditional independence between time to event and time to censoring can be assumed,

where the independence is conditional on observed covariates Z. This leads to the expression

P (X > t|Z) = P (T > t, C > t|Z) = P (T > t|Z)P (C > t|Z).
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Taking conditional independence as an example, the probability contribution for each indi-

vidual can be defined as follows:

P (Xi = t|Zi, δi) = P (min{Ci, Ti} = t|Zi, δi)

= P (Ti = t, Ci > t|Zi)
δiP (Ti > t,Ci = t|Zi)

1−δi

= P (Ti = t|Zi)
δiP (Ti > t|Zi)

1−δiP (Ci > t|Zi)
δiP (Ci = t|Zi)

1−δi

= fT (Xi|Zi)
δiST (Xi|Zi)

1−δifC(Xi|Zi)
δiSC(Xi|Zi)

1−δi ,

where f∗(·) and S∗(·) represent the density function and survival function of T and C given

the subscript. The third equivalence in the above equations is based on the conditional

independence of T and C, and when independence is assumed, such equivalence is also valid.

As the association between time to event and covariates is of primary interest, we will omit

the part where T is not involved. This results in the following likelihood from the contribution

of independent triplets (Xi, δi, Zi) for i = 1, . . . , n,

L(β) =
n∏

i=1

fT (Xi|Zi)
δiST (Xi|Zi)

1−δi .

Then the score function defined as U(β) = ∂logL(β) will be as follows:

U(β) = ∂

{
n∑

i=1

δilog(fT (Xi|Zi)/ST (Xi|Zi)) + log(ST (Xi|Zi))

}
/∂β

= ∂

{
n∑

i=1

δilogλ(Xi)− Λ(Xi)

}
/∂β

=
n∑

i=1

{
δi
λ′(Xi)

λ(Xi)
−
∫ Xi

0

λ′(u)du

}
.

Evaluations of the equation above requires the full specification of the hazard function, which

is often impractical. The Cox proportional hazards model is significant in such cases, as it

assumes a baseline hazard for subgroups with all covariate values equal to 0, and focusing
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on quantifying the association between relative risk and covariates of interest. Since λ0(t)

is an unknown function without parametric specification, but we fully specify the relative

risk by adjusting for the covariate, the Cox proportional hazard model is categorized as a

semi-parametric model.

By plugging the Cox proportional hazards into the score equation above, we get:

U(β) =
n∑

i=1

δi

{
Zi −

∑
j∈Ri

Zjexp(Zjβ)∑
j∈Ri

exp(Zjβ)

}
,

where Ri(t), called the risk set, is the set of indices of individuals known to survive until time

t, such that j ∈ Ri(t) if Xj ≥ t. Note that the above score equation can also be obtained

by interpreting the likelihood as the probability that the i-th individual with covariate Zi

experiences an event, given that some individuals in the risk set Ri(t) experience an event at

time t. Taking the derivative with respect to β results in the same mathematical expression.

The partial likelihood can be expressed as:

L(i) = P{subject with x(i) fails at t(i)|some subject failed at t(i)}

=
P{subject with x(i) fails at t(j)}

Pr{some subject in R(i) failed at t(i)}

=
λ(i)(t(i)(△t)∑

j∈R(i)
λj(t(i))(△t)

.

Since the (△t)s cancel, the above equation is just

L(i) =
risk for failed subject at t(i)∑
i∈Risk Set risk for subject j at t(i)

.
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Recall that λi(t(j)) = exp(βTxi)λ0(t(j)), so

L(i) =
exp(βTx)(i)λ0(ti))∑
j∈R(i)

exp(βTxj)λ0(ti)
=

exp(βTx)(i)∑
j∈R(i)

exp(βTxj)
.

Moreover, we have the log-partial likelihood as

log(LP ) =
∑

failure times i

log

(
exp(βTx)(i)∑
j∈R(i)

exp(βTxj)

)
.

If we take the derivative with respect to β, the resulting derivative would equal the score

equation for the Cox proportional hazards. The popularity of the proportional hazard model

lies in its simple format, where the baseline hazard has been completely removed from the

problem.

It is observed that at each failure time, the partial likelihood compares the covariate values

of individuals who experience an event to a weighted average of the covariate values for those

still at risk. The Newton-Raphson technique is commonly employed to find the Maximum

Partial Likelihood Estimates (MPLE). At each iteration, the first derivative (score vector)

and the second derivative (information matrix) of the log-likelihood function with respect to

the parameters are calculated. Then parameter estimates are updated using the formula:

β(k+1) = β(k) − [
∂

∂β
U(β)|βk

]−1 · U(β(k)),

where ∂
∂β
U(β)|βk

is the Hessian matrix evalued at βk, U(β
(k)) is the score vector, and k

denotes the iteration. For inference, Rebolledo’s Theorem showed that β̂ ∼ N(β0, I
−1(β0)),

where β0 is the true value of β provided that the model specification is correct.
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2.2.6 Censoring robust estimators

In survival analysis, dealing with censorship is a common challenge. The presence of censor-

ing can impact the accuracy of parameter estimates and the validity of statistical inferences.

Therefore, it becomes essential to use censoring-robust estimators to address these challenges.

First, using counting process notation, Cox’s partial likelihood estimator can be written as

the solution to

U(β) =
n∑

i=1

∫ ∞

t=0

[
Zi −

∑n
j=1 Yj(t)Zjexp(Z

T
j β)∑n

j=1 Yj(t)exp(Z
T
j β)

]
dNi(t) = 0, (2.1)

where Yj(t) = I(Ci ≥ t, Ti ≥ t) and Ni(t) = I(Xi ≤ t, δi = 1) denotes a counting process

that counting the number of events in the interval (0, t) for ith subject.

NPH effects are commonly observed in clinical research. For example, Kasten et al. (2015)

conducted an analysis of Amyloid-β kinetics in 112 participants, examining the relationship

between participant age and the amount of amyloid deposition. The study revealed a 2.5-

fold longer half-life, indicating a significant correlation between increasing age and slowed

amyloid-beta turnover rates. The findings suggested that due to the slowing of amyloid-beta

turnover, the aging group faced a higher risk of progression to AD compared to the younger

group, despite having a similar amyloid-beta deposition level. In our AD research context,

when a biomarker that changes over time is solely evaluated at baseline, the association

between the biomarker and the outcome may manifest a more notable influence around the

measurement time due to within-subject changes in the biomarker over time. Although this

leads to a non-proportional hazards biomarker effect, accurately predicting how the hazard

ratio is expected to evolve over time poses a challenge. Consequently, there is a heightened

interest in understanding what the Cox estimator estimates under NPH. For NPH, the hazard

function is defined as

λ(t, Z) = λ0(t)exp(Zβ(t)).
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In an initial exploration, Xu and O’Quigley (2000) noted that the result of the Cox estimator

under NPH conditions without censoring can be interpreted as an approximate average

covariate effect over the observed survival times,
∫
β(t)dF (t). It is important to highlight

that in the absence of censorship, the average is determined by the time-varying function

of β and the density of T . However, in the presence of censoring, the estimation becomes

more intricate. In the presence of censorship, under the standard conditional independence

between survival and censoring assumption, Struthers and Kalbfleisch (1986) demonstrated

that the partial likelihood estimator under NPH estimates a quantity that is consistent with

the solution of the following equation:

∫ ∞

0

E

{
fT (t|Z)SC(t|Z)×

[
Z − E{ZST (t|Z)SC(t|Z)exp(βZ)}

E{ST (t|Z)SC(t|Z)exp(βZ)}

]}
dt = 0, (2.2)

where fT (t) represents the density function, FT (t) is the cumulative distribution function,

and ST (t) = 1−FT (t) is the survival distribution of the true event time T . Additionally, the

corresponding distribution functions for censoring time are denoted by changing the lower

index to C. The above estimating equation suggests that the MPLE, denoted as β̂cox, is

consistent for a quantity dependent on the distribution of covariates Z, the distribution of

the true event time T , and the censoring distribution C.

The appearance of the censoring distribution in the estimating equation implies that when

the true relative difference in hazards associated with a covariate of interest is heterogeneous,

the resulting estimates from maximum partial likelihood integrates the coefficient over the

study follow-up length with the density of survival distribution and the censoring distribu-

tion. As censoring mechanisms are unknown, the variability of β̂cox across studies can be

significant even with the same underlying covariate effect. This undesirable property renders

the results irreproducible and introduces difficulties in biomarker validation.
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To remove the dependency of β̂cox on censoring, previous literature has proposed censoring-

robust estimators under various censoring assumptions and covariate types using the reweight-

ing method. Beginning with the scenario of independent censoring, where SC(t|Z) = SC(t),

Equation 2.2 reduces to

∫ ∞

0

SC(t)E

{
fT (t|Z)×

[
Z − EZST (t|Z)exp(βZ)

EST (t|Z)exp(βZ)

]}
dt = 0, (2.3)

where the dependence on the censoring distribution acts as a multiplier at each integrand.

To obtain an estimator robust to the censoring distribution, Xu and O’Quigley (2000) pro-

posed reweighting the summands in the Cox estimator by a consistent estimate of the cen-

soring probability. Consequently, the estimating equation becomes:

n∑
i=1

∫ ∞

t=0

W a(t)

[
Zi −

∑n
j=1 Yj(t)Zjexp(Z

T
j β)∑n

j=1 Yj(t)exp(Z
T
j β)

]
dNi(t) = 0, (2.4)

where W a(t) = nŜ(t)/
∑n

i=1 Yi(t), and Ŝ(t) is chosen to be the left continuous version of

the Kaplan-Meier estimator (Kaplan and Meier, 1958) of the marginal survival function, as

required for a predictable process to retain the Martingale framework (Fleming and Harring-

ton, 2011).

The estimator in Equation 2.4 consistently estimates the solution to the following equation:

∫ ∞

0

E

{
fT (t|Z)×

[
Z − EZST (t|Z)exp(βZ)

EST (t|Z)exp(βZ)

]}
dt = 0, (2.5)
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which no longer depends on the censoring distribution. For intuition, the expectation of

risk set size divided by number of subjects equals the product of probabilities that both

censoring time and survival time are greater than t. After removing the survival probability,

the resulting weight is actually the inverse censoring probability.

The above scenario provides insight into the necessity of adjusting for censoring probability

under the independent censoring assumption and NPH. When the relative difference in haz-

ards associated with a covariate of interest is homogeneous, the comparison at each estimand

of the partial likelihood estimator would be best leveraged with the constant corresponding

to the parameter value. However, when covariate effects on the relative difference in hazards

varies with respect to time, each comparison at event time would contribute statistical infor-

mation regarding the parameter value as a function of event time. Thus, at best, we could

obtain an estimator interpreted as the population average effect over time by integrating

the coefficient over the study follow-up length with the density of survival distribution. By

construction, a regular partial likelihood estimator assigns equal weights to events, which

works fine under proportional hazards (PH); under NPH, treating each estimand with the

same importance ignores the potential events that are unobservable due to censoring. There-

fore, the average effect is further reweighted by the censoring probability. The principle for

removing dependence on the censoring distribution in this case turns out to be adjusted for

SC(t|Zi), which in this case simplifies to SC(t).

Under the more standard assumption, where independence between the event time and

censoring time is relaxed to independence conditional upon covariates, SC(t|Z) no longer

simplifies. Consequently, the estimator from Equation (2.4) no longer fully removes the

dependence on the unknown censoring distribution SC . As a result, the estimated associa-

tions might differ across studies even when the covariates remain the same due to censoring

adjustments on observed events.
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In this dissertation, the considered data types for covariates are binary covariates for group

indicators, continuous covariates for baseline measurements, and longitudinal covariates for

repeated biomarker measurements. In the case of binary covariates, Boyd et al. (2012)

proposed to remove the dependency of the estimator on the unobserved censoring distribution

by reweighting the estimating equation as

n∑
i=1

∫ ∞

t=0

W b
i (t)

[
Zi −

∑n
j=1 Yj(t)ZjW

b
i (t) exp(Z

T
j β)∑n

j=1 Yj(t)W
b
i (t) exp(Z

T
j β)

]
dNi(t) = 0, (2.6)

where W b
i (t) = {ŜC(t|Zj)}−1 is the consistent estimate of survival probability for censoring

time depending on the subject using the the left continuous version of Kaplan-Meier estima-

tor at time t. It can be shown that the estimate from the Equation 2.6 is consistent for the

root of Equation 2.5, which removes the dependence on the censoring distribution.

In the case of conditional independent censoring with only categorical covariates, removing

dependence on the censoring distribution relies on consistent estimation of SC(t|Z) and

reweighting the estimating equation accordingly. Reweighting the contribution by the inverse

of the estimated censoring probability adds the potential events at the same event times and

with the same covariate values, thus compensating for the missing data that would otherwise

be unobservable due to censoring.

This approach extends Equation 2.4 to the case of conditional independent censoring since,

when censoring does not depend on covariates, the equation simplifies to Equation 2.4 as

W b
i (t) = W b(t). In the case of independent censoring, the Kaplan-Meier estimator suffices

to provide a consistent estimate. However, when the censoring distribution is conditionally

independent of categorical covariates, applying the Kaplan-Meier estimator by group pro-
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vides consistent estimates of censoring distribution by groups and removes the dependence

on censoring distribution.

Incorporating continuous variables poses challenges as censoring groups are not readily avail-

able. To estimate the censoring probability by subject, parametric models on covariates and

censoring distribution are prone to misspecification since, unlike group treatment where the

relationship can be fully described by groups, parametric relationships with continuous vari-

ables can include possibilities of linear and nonlinear forms, making a correct parametric

model unrealistic.

Nguyen and Gillen (2017) proposed discretizing the relationship between covariates and

censoring distribution by identifying approximate censoring groups based on survival tree

method. With approximate groups identified, one can extend the method by Boyd et al.

(2012) to obtain the censoring-robust estimator. To cluster observations based on the close-

ness of censoring distribution, Nguyen and Gillen (2017) adopted a survival tree approach

described in LeBlanc and Crowley (1993). When growing the tree, each iteration generates

the best split considering all possible covariate space partitions based on chosen survival

statistics measuring the goodness of the split. At the prune step, tree complexity is con-

trolled by a parameter α so that a new node is only kept if the information provided outweighs

the complexity it adds to the tree. Since choosing an appropriate tuning parameter is key

to tree performance, cross-validation is used to approximate the real performance under

different model complexities, and α is chosen for the best score.

Comparable to tuning parameters, goodness-of-split statistics are equally crucial for assessing

the censoring differences between observations. Nguyen and Gillen (2017) considered several

weighted log-rank statistics, Kolmogorov-Smirnov type statistics, Cramer-von Mises type

statistics, and weighted Kaplan-Meier statistics. Lastly, they chose the KGρ statistic from
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Fleming et al. (1987) as

KGρ =
supt≥0

∫ t

0
Ŝ
ρ+1/2
p

(
Y1Y2

Y1+Y2

)1/2 (
dN1

Y1
− dN2

Y2

)
[∫∞

0
Ŝ2ρ+1
p

(
1− ∆N1+∆N2−1

Y1+Y2−1

)
× I{Y1Y2 > 0}d(N1+N2)

Y1+Y2

]1/2 , (2.7)

where Ŝp represents the pooled Kaplan-Meier estimator for the time outcome, and ρ ≥ 0

serves as the tuning parameter for power at different alternatives. Since formal inference

is not the primary focus for clustering, Nguyen and Gillen (2017) used ρ = 0 in their

simulations. While most statistics are capable of detecting differences in relative risk under

a proportional hazard structure, the KGρ statistic can detect differences between groups

even when the relative hazard is non-proportional and crossing, as it record the maximum

deviation.

Given the censoring robust estimator in previous scenarios, a robust variance estimator is

also necessary for inference. A commonly used robust variance estimator for MLE is the

sandwich estimator Freedman (2006).

Define A(θ) = −n−1
∑
∂2li(θ)/∂θ

2, where li(θ) is the log-likelihood contribution from ith

subject. A represents the variance under the correctly specified model by information the-

ory of MLE. Additionally, define B(θ) = n−1
∑
Ui(θ)U

T
i (θ), where Ui(θ) = ∂li(θ)/∂θ and

n−1/2
∑
Ui(θ) is asymptotically zero-mean normal with covariance matrix B(θ) if Ui(θ) is

i.i.d.. Then the robust variance is given by V (θ) = limn→∞A−1(θ)B(θ)A−1(θ) and the esti-

matd variance is given by V̂ (θ̂) = Â−1(θ̂)B̂(θ̂)Â−1(θ̂), by replacing A(θ) and B(θ) by their

estimate Â(θ̂) and B̂(θ̂) respectively.

For the Cox proportional hazards model, if the hazard is accurately specified, according to

theorem 2.1 of Struthers and Kalbfleisch (1986), n1/2(β̂cox − β0) converges to a zero-mean
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Gaussian distribution with variance A(β) defined as

A(β) =

∫ ∞

0

{
s2(β, t)

s0(β, t)
− s1(β, t)⊗2

s0(β, t)2

}
s0(t)dt,

where Sr(β, t) = n−1
∑n

i=1 Yi(t)Z
r
i exp(βZj), s

r(β, t) = E(Sr(β, t)). The estimated variance

Â−1(β) is given by replacing the sr(β, t) by Sr(β, t) as

Â(β̂) =
n∑

i=1

∫ ∞

0

{
S2(β̂, t)

S0(β̂, t)
− S1(β̂, t)⊗2

S0(β̂, t)2

}
dNi(t).

For Cox proportional hazards model, Equation 2.1 can not be expressed as summation of

i.i.d score contribution by subject for B(β) due to the partial likelihood construction. To

solve the issue, Lin and Wei (1989) showed in theorem 2.1 that n−1/2U(β0) is asymptotically

equivalent to n−1/2
∑
wi(β

0), where β0 is the true covariate effect. wi(β) is defined as

wi(β) =

∫ ∞

0

{
Zi(t)−

s(1)(t, β)

s(0)(t, β)

}
dNi(t)−

∫ ∞

0

Yi(t)exp(βZi(t))

s(0)(t, β)

{
Zi(t)−

s(1)(t, β)

s(0)(t, β)

}
dG̃(t),

where G̃(t) = E{
∑
Ni(t)/n}. Since wi’s are i.i.d contribution from subjects, we can con-

struct B(β) = n−1
∑
wi(β)wi(β)

T with estimation as

nB̂(β̂) =
n∑

i=1

∫ ∞

0

{
Zi(t)−

S(1)(t, β̂)

S(0)(t, β̂)

}
dNi(t)

−
n∑

i=1

∫ ∞

0

Yi(t)exp(β̂Zi(t))

S(0)(t, β̂)

{
Zi(t)−

S(1)(t, β̂)

S(0)(t, β̂)

}
dĜ(t),

where Ĝ(t) =
∑
Ni(t)/n.

For censoring robust estimator with categorical and continuous covariates, the robust vari-

ance of censoring robust estimator can be obtained by adding consistent estimator of cen-

33



soring probability as (Boyd et al., 2012; Nguyen and Gillen, 2017)

−nÂ(β̂) =
n∑

i=1

∫ ∞

0

Ŵ b
i (t|Zi)

{
S2
W (β̂, t)

S0
W (β̂, t)

− S1
W (β̂, t)⊗2

S0
W (β̂, t)2

}
dNi(t),

and

nB̂(β̂) =
n∑

i=1

∫ ∞

0

Ŵ b
i (t|Zi)

{
Zi(t)−

S
(1)
W (t, β̂)

S
(0)
W (t, β̂)

}
dNi(t)

−
n∑

i=1

∫ ∞

0

Ŵ b
i (t|Zi)Yi(t)exp(β̂Zi(t))

S
(0)
W (t, β̂)

{
Zi(t)−

S
(1)
W (t, β̂)

S
(0)
W (t, β̂)

}
dĜW (t),

where

Sr
W (t, β) = n−1

n∑
j=1

W b
j (t)Yj(t)Z

r
j exp(βZj), srW (t, β) = E[Sr

W (t, β)],

and ĜW (t) =
∑
Ŵ b

i (t|Zi)Ni(t)/n, accounting for modifications in the estimating equation.

2.2.7 Joint modeling of longitudinal and survival data

As longitudinal biomarker information becomes increasingly available, the demand for joint

models of longitudinal and survival data has grown in recent years. Wu et al. (2012) provided

a thorough review on current joint modeling approaches, inference methods, and related

issues concerning the analysis of longitudinal and survival data under the proportional hazard

assumption.

There are two main approaches to joint modeling: (i) the full-likelihood method and (ii)

the two-step method. In both approaches, longitudinal data are statistically modeled to

maximize the available statistical information. For modeling longitudinal data, two primary

models are commonly used: (i) the linear mixed-effect model (LME) and (ii) the generalized
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estimating equation (GEE) method. The LME assumes a parametric formulation that allows

for subject deviation from the population average, while the GEE employs a marginal model

focusing on the average covariate effect at the population level, which is robust to model

misspecification.

In joint modeling of longitudinal and survival data, it’s necessary to adjust for individual

deviation from the population average to explain the variation at observed event time. This

adjustment can be achieved by either predicting the longitudinal covariate at the event time

on the subject level or by jointly modeling longitudinal and time-to-event data based on

common latent random effects. In either case, the LME is a natural choice for joint modeling.

This is because the GEE only facilitates population-wise prediction under marginal modeling,

while joint modeling on latent random effects naturally assumes the use of LME.

The two stage method involves analyzing longitudinal and survival data separately in two

stages (Wu et al., 2012). In the first stage, an LME model is fitted based on longitudinal

data. In the second stage, a separate survival model analysis is conducted, where unobserved

longitudinal covariate values at event times are replaced with predictions from the models

in the first stage.

The main advantages of this approach include the flexibility of model construction as the two

stages are separated. It also simplifies estimation, as algorithms for both the LME model

and the Cox proportional hazards model are readily available. However, it is noted that the

estimator from the two-stage model may suffer from biased prediction due to misspecification

in the first-stage model, and failure to account for the uncertainty of the estimation in the

first stage in the second stage of the Cox proportional hazards model.

To assess the impact of possible deviation between predicted covariate values and unobserved

covariate values at event times, Tsiatis et al. (1995) suggest that bias can be greatly reduced
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if the predicted longitudinal covariate values at event times are close to the unobserved true

values. However, this method does not fully address the potential deviation.

For inference, the Cox model in the second stage ignores the variation in estimates con-

tributed by first-stage modeling and predictions. To incorporate the uncertainty of estima-

tion in the first stage, Wu et al. (2012) proposed a parametric bootstrap method, which

involves the following steps:

Step 1: Regard the assumed model as truth and generate covariate values for each subject

based on the fitted model in the first stage.

Step 2: Simulate survival times from the fitted survival model based on the generated longitu-

dinal covariate values.

Step 3: Fit models using the same two-stage method and obtain new parameter estimates using

the consistent analyzing model for all generated datasets.

On the contrary, the full-likelihood method aims to jointly model longitudinal and survival

data with the full likelihood to avoid covariate prediction, as in the two stage method. The

full likelihood is decomposed into three parts using the conditional likelihood method. Fol-

lowing the notation from Wu et al. (2012), we define the observed data in tubes (ti, δi, zi, xi),

where i = 1, . . . ,m, and let θ = (β, α, σ,A, λ0(t)) denote the collection of parameters in the

models. Under conditional independent assumption, the full likelihood is given by

L(β) =
n∏

i=1

∫
f(ti, δi|z∗i , λ0, β)f(zi|ai, α, σ2)f(ai|A)dai,
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where

f(ti, δi|z∗i , λ0, β) = {λ0(ti)exp(z∗i (ti)β1 + xTi β2)}δi

× exp

{
−
∫ ti

0

λ0(t)exp(z
∗
i (ti)β1 + xTi β2)dx

}
,

f(zi|ai, α, σ2) = (2πσ2)−m/2exp

{
−(zi − z∗i )

T (zi − z∗i )

2σ2

}
,

f(ai|A) = (2π|A|)−1/2exp

{
−a

T
i A

−1ai
2

}
.

It is assumed that zi = Uiα+Viai+ ϵ = z∗i + ϵi, so that longitudinal covariate is modeled via

LME model with design matrix Ui and Vi for fixed effect and random effect respectively. We

further denote fixed effect coefficient α and random effect coefficient ai assuming ai ∼ N(0, A)

and ϵi ∼ N(0, σ2I). The full likelihood consists of three components: (i) the likelihood of

time-to-event data conditional on the assumed true longitudinal covariate at event time, (ii)

the conditional likelihood of the true longitudinal covariate at event time based on the LME

model conditional on the latent random effect, and (iii) the likelihood of random effects

for individuals. As the third likelihood contains the unobservable random effect, ai’s are

integrated out.

It is observed that the full likelihood decomposition for survival data still involves the un-

known baseline hazard λ0(t). In addition, the joint likelihood method introduces a prior

distribution of the random effect that is integrated out. Such likelihood construction com-

plicates parameter estimation. Kalbfleisch and Prentice (1980) proposed estimating the

baseline hazard λ0(t) using a nonparametric approach by assigning mass only to discrete

times of death. However, the infinitely dimensional nature of λ0(t) violates the assump-

tion for developing standard asymptotic distributions of maximum likelihood estimators. To

maximize the full likelihood over model parameters, one could directly maximize it or use

the EM algorithm. Direct maximization of observed likelihood requires numerical integra-

tion due to the intractable integration over the random effects. On the other hand, the
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computation cost of the EM algorithm is comparable to that of the direct maximization

method, even though the M step could use an efficient gradient descent algorithm. However,

since the EM algorithm still requires numerical integration in the E step and the algorithm

alternates between steps until convergence. On the contrary, the two stage method allows

for the estimation of the longitudinal model through closed-form likelihood estimation and

time-to-event data through the Cox semi-parametric partial likelihood method, avoiding the

estimation of unspecified baseline hazards that could be of infinite dimensions, and greatly

reduce the computational burden.

Despite the heavy computation, the full likelihood can incorporate longitudinal model un-

certainty. However, Hsieh et al. (2006) noted that even with the full likelihood approach,

inference using Fisher information encounters problems. Direct maximization is unavailable

due to λ0(t). Assuming a discrete mass at event time transfers the nonparametric estimation

of λ0(t) to the parametric model, but standard MLE asymptotic development arguments do

not apply. Furthermore, since λ0(t) is replaced with estimated point mass λ̂0(tj), the expec-

tation step involves β, which disallows the regular Fisher information method. Additionally,

as the longitudinal data are censored, the Fisher information matrix also suffers from unre-

coverable data loss, deviating from the true Hessian matrix. Therefore, bootstrap seems to

be the best strategy for the full-likelihood approach.

2.3 Influence function-based robust variance estimator

2.3.1 Influence function

In statistical analysis, robust variance estimation plays a crucial role in providing reliable

inference, especially in the presence of outliers, influential observations, or model misspec-

ifications. One prominent method for robust variance estimation is the influence function-
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based approach, which offers robustness against various forms of data perturbations while

providing valid standard errors for parameter estimates.

The influence function, introduced by Hampel in 1968 (Law et al., 1986), measures the

impact of an individual observation on a statistical estimator. It quantifies how a small

perturbation in the data affects the estimate of a parameter, thereby characterizing the

sensitivity of the estimator to changes in the data. Leveraging the influence function, robust

variance estimation methods assess the stability of parameter estimates by examining their

behavior under data perturbations.

Robust variance estimators based on the influence function are particularly appealing due to

their flexibility and robustness properties. Unlike traditional variance estimators that rely

on specific distributional assumptions, influence function-based approaches provide robust

estimates of variance without requiring stringent model assumptions. This makes them well-

suited for analyzing data with complex or unknown distributions, where traditional methods

may fail to capture the underlying variability accurately.

Moreover, influence function-based robust variance estimators offer robustness against out-

liers and leverage points, which can heavily influence the results of statistical analysis. By

down weighting the influence of extreme observations, these methods mitigate the impact of

outliers on parameter estimates and standard errors, leading to more reliable inference.

In recent years, the influence function-based approach has gained popularity across various

fields of statistics, including regression analysis, survival analysis, and machine learning. Its

versatility and robustness make it a valuable tool for researchers and practitioners seeking

accurate and reliable statistical inference in the presence of data uncertainty and model

misspecifications.

The influence function (IF) is an infinitesimal approach to accessing the robustness of an

estimator. For a formal definition, suppose we have observations X1, . . . , Xn, which are inde-
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pendent and identically distributed (i.i.d). A parametric model contains a family of proba-

bility distributions Fθ on the sample space, where the unknown parameter θ belongs to some

parameter space Θ. In robustness theory, {Fθ; θ ∈ Θ} is only an idealized approximation

of reality. To relax the assumption, we define the sample (X1, . . . , Xn) with its empirical

distribution Fn, where Fn is given by (1/n)
∑n

i=1 △xi
, and △x is the point mass 1 in X.

Thus, the limiting distribution G, given by limn→∞ Fn, identify the real distribution contain

shape deviation from specified model {Fθ; θ ∈ Θ}. The estimators considered are function-

als, which denote maps that map distributions to real numbers or vectors. It is also assumed

that there exists a functional T : domain(T ) → R so that Tn(X1, . . . , Xn) →n→∞ T (G), and

T (G) is referred as the asymptotic value of Tn at G. The influence function of a statistic that

can be regarded as a functional is the first derivative of the functional evaluated at some

point in the space of distribution functions. The differentiation of statistical functionals

was originally proposed by Mises (1947), and a von Mises functional is a functional that is

sufficiently smooth to allow a series expansion. If T is a von Mises functional, then there

exists a real function a such that for all G in the domain of T , we have

lim
ϵ↓0

T{(1− ϵ)F + ϵG}
t

=
∂

∂ϵ
[T{(1− ϵ)F + ϵG}]ϵ=0 =

∫
a(x)dG(x).

Setting G = F in the previous equation to get that

∫
a(x)dF (x) =

∂

∂ϵ
[T{(1− ϵ)F + ϵF}]ϵ=0 = 0.

This kernel function a is the influence function with the definition given by

Definition 2.1. The influence function (IF ) of T at F is given by

IF (x;T, F ) = lim
ϵ↓0

T{(1− ϵ)F + ϵG}
t

(2.8)

for those x in support and where this limit exists.
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For now, the IF is a function to evaluate the robustness of estimator. For influence function-

based robust variance estimator, more derivations are needed. If some distribution G is near

F, then the first-order von Mises expansion of T at F evaluated in G is given by:

T (G) = T (F +G− F ) = T (F )−
∫

IF(x, T, F )d(G− F )(x) + remainder, (2.9)

provided that the distribution G is in small neighborhood of distribution F . Then, the

behavior of T (G) may be described by the first two terms, which is the basis for further

applications. For application, when X ′
is are i.i.d from F , the empirical distribution Fn will

converge to G for sufficiently large n. Therefore, we can substitute G by Fn in Equation

2.9 for sufficiently large n. We also assume that Tn(Fn) can be sufficiently approximated by

T (Fn). Then, we can rewrite Equation 2.9 as

Tn(Fn) ≈ T (Fn) = T (F + Fn − F ) = T (F ) +

∫
IF(x;T, F )dFn(x) + reminder. (2.10)

Note that we applied the property that
∫
IF(x;T, F )dF (x) = 0 to reduce d(Fn − F )(x) to

dFn(x) in the last equality in the above equation.

Utilizing the above property, the influence function can be conceptualized as the change

functional affected by minor contamination, standardized by the quantity of contamination.

Returning to Equation 2.9, then evaluating the integral over the empirical distribution Fn,

we obtain

√
n(Tn − T (F )) ≈ 1√

n

n∑
i=1

IF(xi;T, F ) + remainder.

Hence, the distribution on the left side of the equation can be approximated by the right-

hand side, which tends to become asymptotically normal according to the central limit

theorem. Furthermore,
√
n(Tn − T (F )) converges in probability to N{0, V (T, F )}, where
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the asymptotic variance is given by:

V (T, F ) =

∫
IF(x;T, F )2dF (x),

which can be estimated by

V̂ (T, F ) =
1

n

n∑
i=1

IF (xi;T, F )
2.

The distribution G has remained arbitrary up to this point. Therefore, a practical expression

for the influence function is obtained by replacing the arbitrary G with △x.

Example 2.1. Consider the simple example where the underlying distribution is the standard

normal distribution with the density function f(x) = (2π)−1/2exp(−1
2
x2). To estimate the

mean, we consider the arithmetic mean where Tn = (1/n)
∑n

i=1 xi. Following equation 2.8,

we can derive the IF of arithmetic mean as

IF(x;T, F ) = lim
ϵ↓0

∫
ud[(1− ϵ)F + ϵ△x](u)−

∫
udF (u)

ϵ

= lim
ϵ↓0

(1− ϵ)
∫
udF (u) + t

∫
ud△x(u)−

∫
udF (u)

ϵ

= lim
ϵ↓0

ϵx

ϵ

= x.

Thus V (T, F ) =
∫
IF(x;T, F )2dF (x) =

∫
x2dF (x) = 1 since F (x) is standard normal dis-

tribution.

In the previous example, deriving the influence function was straightforward because the

functional could be explicitly expressed. However, in more general cases, the functional

may not be directly expressible, especially with M -estimators. In 1964, Peter J. Huber

introduced the concept ofM -estimators, defined as solutions to the minimization problem of

an objective function
∑n

i=1 ρ(xi; θ), where the solutions θ̂ = argminθ

∑n
i=1 ρ(xi, θ) are termed
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M -estimators, with M standing for maximum likelihood-type (Huber, 2011). Although

maximum likelihood is one type of M -estimators, least squares estimators also fall under

this category. For M -estimators, the estimator θ̂ can be defined as the maximization over

the objective function.

θ̂ = argmaxθE[G(X, θ)].

If assuming G is differentiable with respect to θ, the the functional Tn(Fn) can be written

as the solution to the following equations

E[g(X, θ)] = 0,

where g(X, θ) = ∇θG(X, θ). In this setting, functional expression is not directly available,

but the IF can be obtained similarly as mentioned in multiple sources Kahn (2022); Law

et al. (1986). For contaminated distribution, the functional θ is the solution to the following

equation:

∫
g(u, θ)d[(1− ϵ)F + ϵ△x](u) = 0

(1− ϵ)

∫
g(u, θ)dF (u) + ϵ

∫
g(u, θ)d△x(u) = 0

(1− ϵ)

∫
g(u, θ)dF (u) + ϵg(x, θ) = 0

To obtain IF, we can apply total differentiation to figure out the effect of changing ϵ. It

should also be aware that θ also varies as the solution to the new equation when ϵ changes.

d

dθ
(1− ϵ)

∫
g(u, θ)dF (u) +

d

dϵ
ϵg(x, θ) =

d

dϵ
0

−
∫
g(u, θ)dF (u) + (1− ϵ)

∫
∇θg(u, θ)dF (u)

dθ

dϵ
+ g(x, θ) + ϵ∇θg(x, θ) = 0

[−(1− ϵ)

∫
∇θg(u, θ)dF (u)]

−1[−
∫
g(u, θ)dF (u) + g(x, θ) + ϵ∇θg(x, θ)] =

dθ

dϵ
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Thus, the IF of M -estimator can be defined as

IF(x; θ, F ) = lim
ϵ↓0

dθ

dϵ

= lim
ϵ↓0

[−(1− ϵ)

∫
∇θg(u, θ)dF (u)]

−1[−
∫
g(u, θ)dF (u) + g(x, θ) + ϵ∇θg(x, θ)]

= −[

∫
∇θg(u, θ)dF (u)]

−1g(x, θ),

(2.11)

since ϵ ↓ 0 and g(u, θ)dF (u) = 0 by the definition of functional.

2.3.2 Influence function for MLE and comparison to sandwich es-

timator

To derive the influence function (IF) for the Maximum Likelihood Estimator (MLE) and

compare it to the robust sandwich estimator, another common alternative for robust variance

estimation, let’s start by considering the MLE as one type of M -estimator, widely used in

practice. To derive the IF of the MLE, we can explicitly define G(x, θ) as the log-likelihood,

typically denoted as l(θ;x), where l(θ;x) = log[f(θ;x)] and f(θ;x) is the likelihood function.

Substituting the above expression into the equation:

IF(F, θ) = − 1

n

n∑
i=1

[
∂

∂θ
l(θ;xi)

]

we obtain:

IF(x; θ, F ) = −[

∫
∇θg(u, θ)dF (u)]

−1g(x, θ)

= [−
∫

d2

dθ2
{l(θ;u)}dF (u)]−1∇θl(θ, x).

(2.12)
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The result can be decomposed into two components, where the first term in the bracket is

the fisher information, and the second term is the score function, the first derivative of the

log-likelihood function, evaluated at the covariate value x. Then to give an estimate, we use

the weak law of convergence by

n∑
i=1

ÎF(xi; θ, F )
T ÎF(xi; θ, F ) =

n∑
i=1

ÊF [
d2

dθ2
l(θ;u)]−1∇θl(θ, xi)

T∇θl(θ, xi)ÊF [
d2

dθ2
l(θ;u)]−1

= ÊF [
d2

dθ2
l(θ;u)]−1[

n∑
i=1

∇θl(θ, xi)
T∇θl(θ, xi)]ÊF [

d2

dθ2
l(θ;u)]−1,

where the expectation is with respect to the assumed distribution F , and the fisher informa-

tion matrix is approximated by observed fisher information as common practice. If define

A = ÊF [
d2

dθ2
l(θ;u)] and B =

∑n
i=1∇θl(θ, xi)

T∇θl(θ, xi), then the robust variance estimator

from IF approach can be written as A−1BA−1, which is exactly the Huber-White robust

sandwich variance estimator.

2.3.3 Influence function for censored data

In the case of survival analysis, where times to terminal events, also called survival time, serve

as the response variable, the associations between the survival time and potential predictors

are often of interest. In disease studies, it is expected that accurate survival times are not

observed. Among frequent types of censoring, we often deal with right censoring, where we

only know that the subject survives up to the last observation and thus, the survival time is

only partially known. In the presence of censoring, complete case analysis by disregarding

censored cases would waste statistical information. Thus, it is significant to incorporate

censored cases and draw statistical information for maximum efficiency.

For survival probability estimation, the Kaplan-Meier estimator estimates the conditional

probability of survival at time t incorporating censored cases (Kaplan and Meier, 1958).
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When all true survival times are observed, the survival probability can be estimated easily.

Let T1, T2, . . . , Tn be i.i.d random variables with distribution function FT . Then, by the weak

law of convergence, the empirical distribution function defined as Fn(t) = 1/n
∑n

i=1 I{Ti ≤ t}

consistently estimates the underlying distribution function FT . With the introduction of

censoring, the survival time is obscured by censoring time and is thus not directly observable.

Similarly, Define C1, C2, . . . , Cn as i.i.d. random variable with distribution function FC .The

observations are n pairs (X1, δ1).(X2.δ2), . . . , (Xn, δn), where Xi = min(Ti, Ci) and δi =

I{Ti ≤ Ci}, the indication function for the event Ti ≤ Ci, namely that the true survival

time is observed for subject i. For new observed data, the empirical distribution Fn(t) =

1/n
∑n

i=1 I{Xi ≤ t} is consistent for underlying distribution of Xi’s, where the conditional

survival probability equals [1−FT (t)][1−FC(t)]. To estimate the probability that the survival

time is longer than the specified time, the Kaplan-Meier estimator is given by:

Ŝ(t) =
∏
i:ti≤t

(
1− di

ni

)

with ti is a time when at least one event happened, di describes the number of events that

happened at timeti, and ni records the number of individuals known to have not yet had an

event or been censored up to time ti. When the number of individual in the study approach

infinity, we can have the following approximation by Taylor approximation of the exponential

function:

Ŝ(t) =
∏
i:ti≤t

(
1− di

ni

)
≈
∏
i:ti≤t

exp(−di/ni)
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The last part of the equation is referred to as the Nelson cumulative hazard estimator (Nelson,

1969). To explain, we first define the hazard function as

λ(t) = lim△t↓0
1

△t
P{t ≤ T < t+△t|T ≥ t}

= −
[
d

dt
{S(t)}

]
/S(t)

= f(t)/S(t).

The hazard function can be viewed as the instantaneous rate of the event at time t, given that

the individual was known to survive until that time. Then the function Λ(t) =
∫ t

0
λ(u)du

is called the cumulative hazard function for T . and Thus, it can be shown by differential

equation fitting that for continuous T , S(t) = exp{−Λ(t)}. When the hazard function

is constant, the distribution of T simplifies to an exponential distribution with the rate

parameter being that constant. Nelson’s cumulative hazard function assumed a constant

rate of hazard between events. It estimated the instantaneous rate of the event by the

fraction of the number of events divided by the number of individuals known to survive until

the time. Kaplan-Meier estimator is preferred over Nelson cumulative hazard function as

it is less restrictive on distribution assumptions, and it is interesting to note that since two

equations are approximately equal when the number of individuals in the study approaches

infinity, it is called product limit estimator.

With censoring in presence, the derivation of IF can also be complicated. If Ti’s are observed,

then conditional distribution probability can be estimated by empirical distribution function

Fn(t), then the infinitesimal representation can be expressed as T (F, t) =
∫ t

0
dF (u). Applying

definition of IF gives IF(x;T, F, t) = I(x ≤ t). Under right censoring, IF calculate involves a

chain rule for two subdistribution functions(Reid, 2007). The two subdistribution functions

F u and F c are defined as

F u(t) = P{Xi ≤ t, δi = 1},
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and

F c(t) = P{Xi ≤ t, δi = 0},

where superscripts are used to avoid confusion with lower scripts for survival time and censor-

ing time. The relationship between sub-distribution function F u and unobserved distribution

function FT and FC can be summarized as

1− F = (1− FT )(1− FC),

and

F u(t) =

∫ t

0

[1− FC(u)]dFT (u).

Given such a relationship, the Kaplan-Meier estimator can be written in another format for

IF derivation (Breslow and Crowley, 1974). The empirical cumulative hazard process of the

Kaplan-Meier estimator can be written as

Λn(t) =

∫ t

0

[1− Fn(u)]
−1dF u

n (u),

where Fn and F u
n are empirical distribution function that converge to F and F u. By the

previous relationships, Λn(t) converge to

Λ(t) =

∫ t

0

[1− F (u)]−1dF u(u)

=

∫ t

0

[1− F (u)]−1[1− FC(u)]dFT (u)

=

∫ t

0

[1− FT (u)]
−1dFT (u)

= −log[1− FT (t)].
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The above equation established the consistency of the Kaplan-Meier estimator to true sur-

vival time distribution and that the sub-distribution representation that the Kaplan-Meier

estimator is consistent to can be written as

1− FT (t) = exp[

∫ t

0

d[1− F u(u)]

1− F u(u) + 1− F c(u)
].

It is pointed out that the above equation holds only when the underlying distribution func-

tions FT and FC are continuous. If unfortunately, FT and FC have jumps, then the above

expression does not hold as the integrand and integrator may have common jump points.

To include possible jumps in underlying distribution, the representation is extended to (Pe-

terson, 1977)

ST (t) = exp

∫ t

0

dSu(u)

Su(u) + Sc(u)
× exp

∑
u≤t

log
Su(u+) + Sc(u+)

Su(u−) + Sc(u−)
, (2.13)

where S·(t) = 1− F·(t) to simplify equation. The connection to the previous representation

can be seen that if the underlying distribution function is continuous, then the second term

in Equation 2.13 equals 0 and the expression back to the original representation. Under this

representation, the functional for cumulative hazard would be

T (Su, Sc, t) = −
∫ t

0

dSu

Su(u) + Sc(u)
+
∑
u≤t

−log
Su(u+) + Sc(u+)

Su(u−) + Sc(u−)
. (2.14)

With the presence of two distribution functions, the influence functions are defined through

bivariate von Mises expansion for an arbitrary bivariate functional T (F1, F2)

T (G1, G2) = T (F1, F2) +

∫
IF1(u;T, F1, F2)d(G1 − F1)(u)

+

∫
IF2(u;T, F1, F2)d(G2 − F2)(u) + higher order terms,

(2.15)
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and the two IFs are defined by

∂

∂ϵ
T (F1 + ϵ(G1 − F1), F2 + δ(G2 − F2))|ϵ=0;δ=0 =

∫
IF1(u;T, F1, F2)d(G1 − F1)(u)

∂

∂δ
T (F1 + ϵ(G1 − F1), F2 + δ(G2 − F2))|ϵ=0;δ=0 =

∫
IF2(u;T, F1, F2)d(G2 − F2)(u)

Then, following similar logistics of von Mises approximation in the case of single distribution,

the approximation works similarly in the bivariate case

√
n[Tn(G1, G2)− T (F1, F2)] ≈

1√
n

n∑
i=1

IF1(xi;T, F1, F2)

+
1√
n

n∑
i=1

IF2(xi;T, F1, F2) + higher order terms.

(2.16)

For application toward the Kaplan-Meier estimator, F1 and F2 are substituted with sub-

distributions F u and F c, and then G1 and G2 are replaced with corresponding empirical

distribution functions Su
n and Sc

n. It is shown in further detail that the two IFs can be

written as (Reid, 2007)

IF1(x;T, S
u, Sc)(t) =

∫ x∧t

0

dSu(u)

[Su(u) + Sc(u)]2
+

I{x ≤ t}
Su(x) + Sc(x)

IF2(x;T, S
u, Sc)(t) =

∫ x∧t

0

dSu(u)

[Su(u) + Sc(u)]2
.

Since IF1(x;T, S
u, Sc) is with respect to sub-distribution Su and IF2(x;T, S

u, Sc) is with

respect to sub-distribution Sc, the two IFs can be combined to give

IF(x;T, F )(t) =

∫ x∧t

0

dSu(u)

[S(u)]2
− δxI{x ≤ t}

S(x)
, (2.17)

where the first term of Equation 2.17 corresponds to the summation of first term of IF1(x;T, S
u, Sc)(t)

and the IF2(x;T, S
u, Sc)(t), and the second term of equation 2.17 corresponds to the second

term of IF1(x;T, S
u, Sc)(t) adjusted for sub-distribution function. The justification can be
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given by Equation 2.15

T (F u
n , F

c
n)− T (F u, F c) ≈

∫ ∫ x∧t

0

dSu(u)

[Su(u) + Sc(u)]2
+

I{x ≤ t}
Su(x) + Sc(x)

dF u
n

+

∫ ∫ x∧t

0

dSu(u)

[Su(u) + Sc(u)]2
dF c

n

=

∫ ∫ x∧t

0

dSu(u)

[S(u)]2
− δxI{x ≤ t}

S(x)
d(Fn − F ),

Using the fact that F u
n (t) =

1
n

∑n
i=1 I{xi ≤ t, δi = 1} = 1

n

∑n
i=1 I{xi ≤ t}I{δi = 1}. Then the

IF for the Kaplan-Meier estimator can be found using ŜT (t) = exp− Λ̂(t) as

IF(x;T, F )(t) = ŜT (t)

{∫ x∧t

0

dF u(u)

[S(u)]2
− δxI{x ≤ t}

S(x)

}
. (2.18)

As we can see with the involvement of censoring, the IF becomes much more complicated,

indicating possible sources of variation due to model misspecification and outliers.

2.3.4 Influence function for proportional hazards regression

In terms of proportional hazards regression, the Cox model is perhaps the most used among

all life-table models. A robust variance estimator has been derived using an approxima-

tion to the Huber-White sandwich estimator (Lin and Wei, 1989). For the convenience of

explanation, define:

S(r)(t) = n−1

n∑
i=1

Yi(t)λi(t)Zi(t)
⊗r

s(r)(t) = E{S(r)(t)}

S(r)(β, t) = n−1

n∑
i=1

Yi(t)Zi(t)
⊗rexp{βZi(t)}

s(r)(β, t) = E{S(r)(β, t)}
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for r = 0, 1, 2, where λi(t) is the true hazard function, Yi(t) = I{Xi ≥ t} and expectations

are taken with respect to the triple tube of (Xi, δi, Zi), i = 1, . . . , n. Following the notation,

the logarithm of the partial likelihood function can be written as

l(β) =
n∑

i=1

δi[βZi(Xi)− log{S(0)(β,Xi)}],

and the score function as

U(β) =
n∑

i=1

δi

{
Zi(Xi)−

S(1)(β,Xi)

S(0)(β,Xi)

}
.

It has been shown that the solution of the Cox estimator under non-proportional hazards has

a solution consistent to the root of the following equation(Struthers and Kalbfleisch, 1986):

∫ ∞

0

s1(t)dt−
∫ ∞

0

s1(β, t)

s0(β, t)
s0(t)dt = 0.

When the underlying hazard function is correctly specified, the asymptotic variance can be

described by

A(β) =

∫ ∞

0

{
s(2)(β, t)

s(0)(β, t)
− s(1)(β, t)⊗2

s(0)(β, t)2

}
s(0)(t)dt

For the usual Huber-White sandwich estimator, B(β) consists of the independent observed

score function. For the partial likelihood estimator, the score contributions at event times

are correlated for S(r)(β, t). Thus, they are replaced with asymptotically equivalent term∑
wi(β), where wi(β)s are independent,

wi(β) =

∫ ∞

0

{
Zi(t)−

s(1)(t, β)

s(0)(t, β)

}
dNi(t)−

∫ ∞

0

Yi(t)exp(βZi(t))

s(0)(t, β)

{
Zi(t)−

s(1)(t, β)

s(0)(t, β)

}
dG̃(t),

and G̃(t) = E{
∑
Ni(t)/n}.
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As an alternative for robust variance estimator, IF for proportional hazards regression is

derived (Reid and Crépeau, 1985). Let H(X, δ, Z) be the joint cumulative distribution

function. Let H(X,Z) be the joint marginal distribution function of (X,Z). Denote the

empirical distribution functions as Hn(x, z, δ) and Hn(x, z). Then the Cox estimator can be

expressed

∫
δ

{
z −

∫
z̃ez̃βI{x̃ ≥ x}dHn(x̃, z̃)}∫
ez̃βI{x̃ ≥ x}dHn(x̃, z̃)}

}
dHn(x, z, δ) = 0

. Then, the infinitesimal functional T (H) is the solution to

∫
δ

{
z −

∫
z̃ez̃βI{x̃ ≥ x}dH(x̃, z̃)}∫
ez̃βI{x̃ ≥ x}dH(x̃, z̃)}

}
dH(x, z, δ) = 0

The derivation of IF follows the same principle and can be done through the sub-distribution

technique. Given the complexity of the functional, further complications through the sub-

distribution functions shall be avoided unless necessary. The derivation through implicit

derivation is outlined(Knafl, 1978) for simplicity. To derive the IF, it suffices to calculate the

limit of ϵ−1[T (H+ϵI{x, δ, z})−T (H)] as ϵ→ 0. Using the implicit function theoremFilippova

(1962), we take derivation with respect to terms related to ϵ. Define

Ψ(β, w,H) = δ

[
z − EH(Ze

βzI{x̃ ≥ x})
EH(eβzI{x̃ ≥ x})

]
,

where β is the functional T (H) and δw represents the point mass distribution at (x, δ, z).

Then define Hϵ = (1 − ϵ)H + ϵδw. Then, βϵ represents the functional under distribution

function Hϵ. Thus, the infinitesimal representation can be expressed as

∫
Ψ(βϵ, w,Hϵ)dHϵ = 0
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. Then it becomes clear that differentiation with respect to ϵ gives

∫
Ψ(β, w,H)d[δw̄−H](w)+

∫
∂

∂β
Ψ(β, w,H)dH(w)

∂β

∂ϵ
+

∫
∂

∂Hϵ

Ψ(β, w,Hϵ)dH(w) = 0,

where the three parts correspond to implicit differentiation with respect to ϵ for Hϵ in the out

integral, βϵ in Ψ(βϵ, w,Hϵ) and Hϵ in Ψ(βϵ, w,Hϵ). It can be seen that
∫

∂
∂β
Ψ(β, w,H)dH(w)

is A(β), the variance matrix assuming model correctness and that limϵ↓0 ∂β/∂ϵ is the IF.

Then the calculation of ∂
∂Hϵ

Ψ(β, w,Hϵ) gives

∂

∂Hϵ

Ψ(β, w,Hϵ) =
∂

∂Hϵ

δ

{
z −

∫
zeβzI(x̃ ≥ x)d[H + ϵ(δw −H)]∫
eβzI(x̃ ≥ x)d[H + ϵ(δw −H)]

}
= −δ

{
Ew̄ze

βzI(x̃ ≥ x)

EHeβzI(x̃ ≥ x)
− EHze

βzI(x̃ ≥ x)Ew̄e
βzI(x̃ ≥ x)

[EHeβzI(x̃ ≥ x)]2

}
= −δ̃

{
zeβzI(x̃ ≤ x)

s(0)(x̃, β)
− s(1)(x̃, β)eβzI(x̃ ≤ x)

[s(0)(x̃, β)]2

}
.

IF are obtained by arranging terms as

A(β)×IF(w;T,H) = δ

{
z − s(1)(x, β)

s(0)(x, β)

}
−
[
eβz
∫
δ̃I(x̃ ≤ x)

s(0)(x̃, β)

{
z − s(1)(x̃, β)

s(0)(x̃, β)

}]
dH(x̃, δ̃, z̃),

(2.19)

where the first term is a regular Huber-White robust variance estimator if the terms are

independent and similar to the IF ofM -estimators. The second term represents the influence

from the risk sets. Comparing IF with the previous approximation to Huber-White robust

variance estimator, they are the same even if the approaches are quite different.

2.3.5 Influence function for two-stage model

Many estimators are obtained through a two-stage model, in which the first stage provides

input for the second stage. For instance, in our proposed censoring robust estimator, the
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first stage model helps approximate the exact hazard by predicting longitudinal covariate

value at event time. For mathematical representation, the two-stage estimation problem can

be characterized by (Hardin, 2002)

Model 1 : E{y1|x1, θ1}

Model 2 : E{y2|x2, θ2, E{y1|x1, θ1}},

where the parameter vectors to be estimated are θ1 and θ2. Instead of working on the full

information maximum likelihood f(y1, y2|x1, x2, θ1, θ2), θ1 can be directly estimated indepen-

dent from θ2. Then, conditional on the estimations from the first stage, θ2 can be estimated

and thus finish the estimation process in two steps. For robust variance estimation, the

influence function has been derived for the special cases where both stages consist of estima-

tion equations (Hardin, 2002). The result is found to be similar to the Huber-White robust

variance estimator. Among more general M -estimators, the Huber-White robust variance

estimator may not exist as estimating equation representation is unavailable. The influence

function still exists, and a general framework for the analysis of the robustness property was

given considering the class of two-stage models defined as (Zhelonkin et al., 2012)

EF

[
Ψ1

(
z(1);S(F )

)]
= 0

EF

[
Ψ2

(
z(2);h

(
z(1);S(F )

)
, T (F )

)]
= 0

,

Where Ψ1(·; ·) and Ψ2(·; ·, ·) denote the score functions of the first and second stage esti-

mators, respectively, h(·; ·) is a given continuously piecewise differentiable function in the

second variable. Here S is the functional for the parameters of the first stage, such that

S (FN) = β̂1 and at the model S(F ) = β1, while T is the functional for the second stage,

such that T (FN) = β̂2 and at the model T (F ) = β2. T (F ) depends directly on F and

indirectly on F through S(F ). Define Fϵ = (1− ϵ)F + ϵ∆z and ∆z is the probability measure

which puts mass one at the point z. Then the infinitesimal representation of functional of
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the second stage can be written as

∫
Ψ2

(
z(2);h

(
z(1);S (Fϵ)

)
, T (Fϵ)

)
dFϵ = 0.

Taking the derivative with respect to ϵ gives

∂

∂ϵ
(1− ϵ)

∫
Ψ2

(
z̃(2);h

(
z̃(1);S (Fϵ)

)
, T (Fϵ)

)
dF (z̃)

∣∣∣∣
ϵ=0

+
∂

∂ϵ
ϵ

∫
Ψ2

(
z̃(2);h

(
z̃(1);S (Fϵ)

)
, T (Fϵ)

)
d∆z

∣∣∣∣
ϵ=0

= 0.

The second terms give the point mass distribution, and the first term can be obtained through

implicit differentiation with respect to the functionals S(F ) and T (F ). Arrange terms gives

the following general equation for the influence function of the second stage estimator:

IF(z;T, F ) =M−1(Ψ2

(
z(2);h

(
z(1);S(F )

)
, T (F )

)
+

∫
∂

∂θ
Ψ2

(
z̃(2); θ, T (F )

) ∂
∂η
h
(
z̃(1); η

)
dF (z̃) · IF(z;S, F )),

where M = −
∫

∂
∂ξ
Ψ2

(
z̃(2);h

(
z̃(1);S(F )

)
, ξ
)
dF (z̃).

It can be noticed that the above formula does not consider the complex estimator, but the

method still applies towards our proposed two-stage estimator. The above formula consists

of three parts. The multiplier M outside the parenthesis is the second derivative common

to influence function for score equations. The first term in the parenthesis denotes the point

mass at the observed point. The second term represents the differentiation with respect to ϵ

through the functional of the first stage functional, where the chain rule starts from function

h(·; ·) to functional S(F ), and finally involves the influence function of first stage estimator.

Given the decomposition, the influence function proposed without considering influence from

the first stage would be M−1(Ψ2

(
z(2);h

(
z(1);S(F )

)
, T (F )

)
. This simple influence function

may come from a simple MLE in the second-stage model. Still, the influence function can

be more complex after including the influence from factors such as partial likelihood and
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other potential variations. Nevertheless, given the influence function of the second-stage

model without considering the variation from the first stage, the modification to include the

variation from the first-stage model is similar. It is expected that there will be additional

terms corresponding to the partial differential with respect to the functionals of the first

stage. When the dependence over the first-stage model relies on function h(·; ·), the last

term in the parenthesis can be added for direct application. For dependency on multiple

functions, the chain rule can be further applied so that if the class of the two-stage models

is defined as:

EF

[
Ψ1

(
z(1);S(F )

)]
= 0

EF

[
Ψ2

(
z(2);h1

(
z(1);S(F )

)
, . . . , hk

(
z(1);S(F )

)
, T (F )

)]
= 0

,

where there are k continuously piecewise differentiable functions defined similarly. Then the

influence function of the second stage estimator can be represented as:

IF(z;T, F ) =M−1(Ψ2

(
z(2);h

(
z(1);S(F )

)
, T (F )

)
+

k∑
j=1

∫
∂

∂θ
Ψ2

(
z̃(2); θ, T (F )

) ∂
∂η
hj
(
z̃(1); η

)
dF (z̃) · IF(z;S, F )),

2.4 Longitudinal clustering

Longitudinal clustering is a data analysis technique used to uncover latent structures and

patterns within longitudinal data, where multiple measurements are collected from the same

individuals over time. This approach goes beyond traditional clustering methods by con-

sidering the temporal nature of the data and identifying clusters based on similarity in

longitudinal trajectories rather than static features. By segmenting individuals into distinct

subgroups with similar longitudinal profiles, longitudinal clustering facilitates the exploration

of complex temporal dynamics, heterogeneity, and underlying patterns within the data.
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One of the primary challenges in longitudinal clustering is the high dimensionality of the

data, which arises from the large number of variables measured at multiple time points.

Analyzing such high-dimensional longitudinal data requires robust statistical methods ca-

pable of handling the complexity and extracting meaningful information from the temporal

structure of the data.

Temporal dynamics play a crucial role in longitudinal clustering, as observations collected

at different time points are often correlated within individuals. Clustering algorithms must

account for these temporal dependencies and capture the dynamic nature of longitudinal

trajectories. Methods such as dynamic time warping, functional data analysis, or latent

trajectory models are commonly used to model and cluster longitudinal data while preserving

the temporal relationships between observations.

Furthermore, longitudinal data often exhibit heterogeneity, where different individuals may

follow distinct trajectory patterns or exhibit varying rates of change over time. Longitudinal

clustering aims to identify and characterize this heterogeneity by partitioning the data into

homogeneous subgroups with similar trajectory patterns. However, determining the optimal

number of clusters and selecting appropriate clustering algorithms and distance measures

are critical tasks in longitudinal clustering analysis.

Several clustering algorithms have been adapted or developed specifically for longitudinal

data analysis, including hierarchical clustering, k-means clustering, mixture models, and

trajectory-based methods such as growth mixture modeling and latent class trajectory anal-

ysis. These methods offer different approaches to partitioning the data and identifying clus-

ters based on various criteria, such as similarity in trajectory shapes, cluster compactness,

and interpretability of cluster profiles.

In practice, longitudinal clustering has applications across various domains, including health-

care, psychology, sociology, economics, and ecology. In healthcare, longitudinal clustering

58



can help identify subgroups of patients with similar disease progression patterns or treat-

ment responses, leading to more personalized and effective healthcare interventions. In social

sciences, longitudinal clustering can uncover distinct developmental trajectories, behavioral

patterns, or life course pathways among individuals, shedding light on important social and

demographic phenomena.

Overall, longitudinal clustering is a powerful tool for exploring and uncovering hidden struc-

tures within longitudinal data, providing researchers with valuable insights into the dynamic

nature of temporal processes and individual differences over time. By effectively cluster-

ing longitudinal data, researchers can better understand complex longitudinal phenomena,

inform decision-making, and tailor interventions or policies to specific subpopulations. In

the subsequent sections, we will provide a more detailed examination of various longitudinal

clustering methods. Here, we offer a concise overview of these methods, setting the stage for

deeper exploration in later sections.

K-means clustering, a widely-used technique, partitions data into a predetermined number

of clusters based on similarity. In longitudinal data analysis, K-means extends to group

trajectories by their shapes or profiles. The algorithm iteratively assigns data points to the

nearest cluster centroid and updates centroids until convergence, minimizing within-cluster

sum of squares. While intuitive and computationally efficient, K-means assumes clusters of

similar size and shape, which may not hold in longitudinal data. Moreover, determining

the appropriate number of clusters remains a challenge. Nonetheless, K-means serves as a

foundational method in clustering analysis (Hartigan and Wong, 1979).

Two-step longitudinal clustering using random effect variables with K-means is a long-

standing approach for clustering longitudinal data that incorporates subject-specific random

effects first mentioned in MacQueen et al. (1967). This method combines the flexibility of

mixed-effects modeling with the simplicity and efficiency of K-means clustering to identify

meaningful subgroups within longitudinal datasets. In the first step, individual longitudinal
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trajectories are modeled using mixed-effects models. These models account for the overall

trend of each subject’s trajectory while capturing subject-specific random effects that repre-

sent deviations from the population trend. The random effects capture the unique character-

istics of each subject’s data that cannot be explained by the population-level trend. Once the

mixed-effects models are fitted to the data, the subject-specific random effects are extracted.

These random effects represent the unique variability in each subject’s trajectory and serve

as the basis for clustering. With the subject-specific random effects extracted, traditional

K-means clustering is applied to group subjects into clusters based on the similarities in

their random effects profiles. K-means clustering aims to minimize the within-cluster sum

of squares by iteratively assigning subjects to clusters and updating the cluster centroids

until convergence. By including subject-specific random effects in the clustering process,

two-step K-means can capture individual variability in longitudinal trajectories, leading to

more accurate and interpretable cluster assignments.

Group-based longitudinal clustering is a powerful analytical approach used to identify dis-

tinct subgroups or clusters within longitudinal data, where individuals share similar tra-

jectories over time. This method is invaluable for uncovering heterogeneity in longitudinal

datasets and understanding how different groups of individuals evolve over time. One seminal

work in group-based longitudinal clustering is the study by Nagin (1999), where the author

introduced the Group-Based Trajectory Modeling (GBTM) framework. GBTM is widely

used for identifying latent groups with distinct developmental trajectories in longitudinal

data.

The Growth Mixture Model (GMM) serves as an extension to the GBTM method which

allows researchers to capture the heterogeneity in developmental trajectories that may exist

among individuals within a population. One seminal work in the development and appli-

cation of Growth Mixture Models is the study by Muthén and Shedden (1999), where they

introduced GMM as a flexible approach for modeling longitudinal data with latent classes.
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Spline-based longitudinal clustering methods provide a powerful framework for analyzing

longitudinal data by capturing complex and nonlinear patterns of change over time. Unlike

traditional parametric models that assume specific functional forms for growth trajectories,

spline-based methods offer more flexibility and adaptability to diverse longitudinal data

structures. In spline-based clustering, piecewise polynomial functions, known as splines, are

fitted to the observed longitudinal trajectories. These splines allow for local flexibility in

modeling the data, enabling the identification of distinct subgroups with unique trajectory

shapes. By partitioning the time axis into intervals and fitting splines within each interval,

spline-based clustering methods can effectively capture the heterogeneity in growth patterns

across individuals or groups. One of the key advantages of spline-based methods is their

ability to accommodate irregularly spaced and unequally sampled longitudinal data, which

is common in longitudinal studies. Moreover, spline-based clustering approaches are robust

to missing data and can handle data with varying observation times.
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Chapter 3

Censoring robust estimation in joint

longitudinal and survival modeling

3.1 Introduction

In many studies, particularly in the context of Alzheimer’s disease (AD) research, under-

standing the timing of terminal events has become a primary focus. Survival analysis tech-

niques provide a robust framework for investigating the intricate relationship between co-

variates and the risk of these terminal events under PH. This work is motivated by the need

to explore such relationships, especially in the realm of AD biomarkers.

Longitudinally sampled AD biomarkers play a crucial role in understanding the disease’s

progression and identifying individuals at risk of developing AD or transitioning through

its various stages over time. However, acquiring and analyzing these biomarkers, such as

phosphorylated tau (P-tau) and amyloid-beta (Aβ), can be both costly and burdensome for

study participants. These proteins, associated with the formation of plaques and tangles in

the brain, are hallmark features of AD pathology (Selkoe, 1991).
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Given the expense and complexity associated with obtaining biomarker data, it is imperative

to employ statistical methods that robustly identify potential biomarkers associated with

AD. By doing so, researchers can streamline disease pathology research and identify new

avenues for potential intervention. The application of statistical methods, particularly joint

longitudinal and survival analysis techniques, allows researchers to identify longitudinally

sampled biomarkers that are most strongly associated with AD risk and progression.

The Cox proportional hazards model is frequently employed to investigate the association

between potential biomarkers and the progression of AD. Its semi-parametric framework

allows for the adjustment of multiple confounding covariates while also remaining robust

to mis-specification of unknown baseline hazard functions and censoring mechanisms, all

under the assumption of proportional hazards. However, despite its merits, the assumption

of proportional hazards is frequently violated in practice, leading to scenarios characterized

by (non-proportional hazards) NPH. It has been demonstrated that under NPH the Cox

model consistently estimates a quantity that can be interpreted as the average covariate

effect over the range of observed event times, weighted by both the survival and censoring

distributions (Struthers and Kalbfleisch, 1986). This can lead to statistical conclusions that

are not replicable across studies solely due to changes in patient censoring patterns. In an

effort to restore robustness to the censoring distribution under NPH, Chapter 2 introduced

several attempts that have been made to remove the dependency on censoring distribution.

These attempts are based on settings ranging from independent censoring to conditional

independent censoring with categorical and continuous covariates (Xu and O’Quigley, 2000;

Boyd et al., 2012; Nguyen and Gillen, 2017). All the aforementioned methods utilize a similar

idea of reweighting the estimands of Cox proportional hazards by the inverse of censoring

probability to remove the dependency on the censoring mechanism. Our aim in Chapter 3

is to extend such methods to incorporate longitudinal covariates, thereby developing a joint

modeling of longitudinal and survival data that can be robust to censoring mechanisms under

NPH. In this chapter we develop a two-stage model using the censoring robust estimators
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in the second stage that incorporates longitudinal covariates. The complete algorithm is

provided in Section 3.2. Section 3.3 presents simulated results to illustrate the performance

of the proposed estimators compared to the direct application of previous methods. In

Section 3.4, we apply the estimators to ADNI data where we consider the estimation of

longitudinally measured biomarker effects on the risk of progression of dementia. Section

3.4.1 concludes with a discussion of the scientific relevance of the methodology and avenues

for future research.

3.2 Method

To develop a censoring-robust estimator incorporating longitudinal covariates under NPH,

we opt for a two-stage approach over a full-likelihood approach due to its flexibility and ease

of implementation. When comparing the two methods, the two-stage method offers great

flexibility with independent choices of models in each stage. For instance, one can construct

the two-stage method with a parametric LME model in the first stage and a semi-parametric

Cox model in the second stage. In exchange for model flexibility, the full-likelihood method

incorporates the uncertainty of the longitudinal model with the conditional likelihood, which

is ignored in the regular Cox variance estimator in the second stage. However, such a con-

struction inevitably leads to a tremendous computational burden, even after approximating

the hazard through numerical techniques.

Using the predicted longitudinal covariate value at each observed event time, direct ap-

plication of previous censoring-robust estimators in the second stage introduces additional

dependence on conditional covariate variance, complicating the interpretation of the estima-

tor. Xu and O’Quigley (2000) suggests that even in the absence of censoring and with the

true longitudinal covariate at event time, the Cox estimator represents a weighted average

of β(t) over both the true survival function F (t) and the conditional covariate variance v(t).

64



Under categorical and baseline continuous variables, where the conditional covariate variance

is approximately constant over time t, the interpretation of the estimator can be approxi-

mated by β̂Cox ≈
∫∞
0
β(t)dF (t). In this scenario, the estimator approximate the weighted

average covariate effect depending on the survival function S(t), with the interpretation

of the weighted time-average coefficient. However, for time-varying variables with varying

variance with respect to time, the change conditional covariate variance is non-negligible,

the Cox estimates is a weighted average covariate effect based on the true survival function

and the conditional covariate variance function over time, making the estimator difficult to

interpret. As the estimates are no longer approximated by a weighted time-average effect,

the resulting findings may lack clinical significance.

Our goal is to develop a clinically meaningful estimator that is censoring-robust with the

interpretation as the weighted time-average covariate effect. To focus on the interpretation

of the censoring-robust estimator in the second stage, we will treat the substituted longi-

tudinal covariate as the truth and consider similar techniques in Xu and O’Quigley (2000)

to investigate the approximation of the quantity to which the censoring robust estimator

in the second stage converges. Xu and O’Quigley (2000) provided the estimator interpreta-

tion under independent censorship, and we will extend the interpretation to the context of

conditional independent censorship with time-varying covariates.

3.2.1 Censoring robust estimation with a time-varying covariate

Recall the hazard function under NPH setting:

λ(t, Z(t)) = λ0(t)exp(β(t)Z(t)). (3.1)
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Let us define:

πi(β(t), t) =
W b

i (t)Yi(t)exp(β(t)Zi(t))∑n
j=1W

b
j (t)Yj(t)exp(β(t)Zj(t))

, (3.2)

where W b
i (t) is a consistent estimator of censoring survival probability of ith subject at time

t. The follwoing proposition states that {πi(β(t), t)}i provides a consistent estimate of the

conditional distribution of Z(t) given T = t under Model 3.1.

Proposition 1. Under Model 3.1 and a conditional independent censorship, assuming β(t)

known, given a consistent estimator of censoring survival probability at time t as W b
· (t), the

conditional distribution function of Z(t) given T = t is consistently estimated by

P̂ (Z(t) ≤ z|T = t) =
∑

{j:Zj(t)≤z}

πj(β(t), t).

Proof. The theorem presented above is an extension of Theorem II.1 from Xu and O’Quigley

(2000) to accommodate censoring dependent on covariates. In the original derivation, inde-

pendent censoring is assumed, so that the censoring probability remains the same at time

t regardless of the covariate and thus cancels out in the derivation. Under the conditional

independent assumption, however, the censoring probability does not cancel out due to its

dependence on covariates. Nevertheless, with the provision of a consistent estimate W b
i (t)

of 1/SC(t|Z), the censoring probability is canceled out by W b
i (t). The subsequent derivation

then follows exactly as in Xu and O’Quigley (2000).

Proposition 1 is an extension of Theorem 1 in Xu and O’Quigley (2000) for conditional

independent censorship. As β(t) is often unknown, the major implication of Proposi-

tion 1 is the of expectation and variance conditional upon time t. Define S
(r)
W (β(t), t) =

ZrW b
i (t)Yi(t)exp(β(t)Zi(t))∑n

j=1 W
b
j (t)Yj(t)exp(β(t)Zj(t))

, S
(r)
W (β, t) =

ZrW b
i (t)Yi(t)exp(βZi(t))∑n

j=1 W
b
j (t)Yj(t)exp(βZj(t))

, and s
(r)
W (·, t) = E[S

(r)
W (·, t)] for

r = 0, 1, 2. Then we have s
(1)
W (β(t), t)/s

(0)
W (β(t), t) = E{Z(t)|T = t} and s

(1)
W (β, t)/s

(0)
W (β, t)
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is what we obtain when we force a constant β in place of β(t). Both do not involve the

censoring distribution, which leads to the following proposition:

Proposition 2. Define estimator β̂ as the solution to the estimating equation

n∑
i=1

∫ ∞

t=0

W b
i (t)

[
Zi(t)−

∑n
j=1W

b
j (t)Yj(t)Zj(t)exp(Zj(t)

Tβ)∑n
j=1W

b
i (t)Yj(t)exp(Zj(t)Tβ)

]
dNi(t) = 0. (3.3)

Then under model 3.1 and conditional independent censorship, the estimator β̂ converges in

probability to a constant β0, where β0 is the unique solution to the following equation

∫ ∞

0

{
s
(1)
W (β(t), t)

s
(0)
W (β(t), t)

− s
(1)
W (β, t)

s
(0)
W (β, t)

}
dF (t) = 0. (3.4)

Proof. Given a consistent estimator W b
i (t) of 1/SC(t|Zi(t)), which is the left continuous ver-

sion of Kaplan-Meier estimate of censoring survival distribution, following similar techniques

as in Struthers and Kalbfleisch (1986) gives that our estimator in Equation 3.3 is consistent

for the solution to

∫ ∞

0

1

SC(t|Z(t))
SC(t|Z(t))E

{
fT (t|Z(t))×[

Z(t)−
EZ(t) 1

SC(t|Z(t))
SC(t|Z)ST (t|Z(t))exp(βZ(t))

E 1
SC(t|Z(t))

SC(t|Z(t))ST (t|Z(t))exp(βZ(t))

]}
dt

=

∫ ∞

0

E

{
fT (t|Z(t))×

[
Z(t)− EZ(t)ST (t|Z(t))exp(βZ(t))

EST (t|Z(t))exp(βZ(t))

]}
dt = 0,

which does not depend on censoring distribution. To show that β̂ is consistently for β0 ,Since

the only change is the additional reweighting of consistent estimate of inverse censoring

probability, it suffices to show the conditions hold for derivation in Ringhui (1996), which

is similar to those in Andersen and Gill (1982). This requires that there exists an open

neighborbood B of β0 and s
(r)(β, t), r = 0, 1, 2 defined on B× [0, τ ] that satisfy the following:

1.
∫ t

0
λ0(u)du <∞;
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2. Zi is bounded ∀t ∈ [0, τ ];

3.
∑

(β, t) =
∫ τ

0
v(β, u)s

(0)
W (β, u)λ0(u)du is positive definite ∀β ∈ B;

4. supβ∈B,t∈[0,τ ]||S
(r)
W (β, t)− s

(r)
W (β, t)|| p−→ 0 as n→ ∞;

5. s
(0)
W (β, t) is bounded away from 0 for t ∈ [0, τ ];

6. For r = 0, 1, 2, s
(r)
W (β, t) is a continuous function of β uniformly in t ∈ [0, τ ], s

(1)
W (β, t) =

∂/∂β{s(0)W (β, t)} and s
(2)
W (β, t) = ∂/∂β{s(1)W (β, t)}.

The assumption that there is positive probability that subject i is at risk over the support

interval implies that the conditions 1 and 5 holds. The conditions 2 and 3 are assumed.

Then condition 2 together with the dominated convergence theorem shows that condition

6 holds. The assumption of i.i.d observations together with condition 2 implies that the

S
(r)
W (β, t) are comprised of independent terms so that by the strong law of large numbers

S
(r)
W (β, t) converges to s

(r)
W (β, t). Given that the conditions 1-6 hold, application of theorem

II.3 in Ringhui (1996) gives that β̂
p−→ β0 by replacing S(r)(·) with S

(r)
W (·) and s(r)(·) with

s
(r)
W (·).

Proposition 2 gives a result similar to that of Theorem 2 in Xu and O’Quigley (2000) but

under conditional independent censoring and time-varying covariates. With the aid of Propo-

sition 1, Proposition 2 implies that the direct application of the previous censoring robust

estimator removes the dependence on censorship as both fractions do not involve the cen-

soring distribution. Next we consider the interpretation of the estimand targeted by solving

Equation 3.4.

Proposition 3. Under the same conditions as in Proposition 3.1 and 3.2, define g(x) =

s
(1)
W (x, t)/s

(0)
W (x, t). Then equation 3.4 can be written as

∫∞
0

{g(β(t))− g(β)} dF (t) = 0.
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Applying a first-order Taylor series approximation to the integrand gives

∫ ∞

0

v(t){β(t)− β0}dF (t) ≈ 0,

where v(t) = v(β(t), t) = ∂g(x)
∂x |β(t) = V ar(Z(t)|T = t).

Proof. Given the condition 6, s
(1)
W (β, t) = ∂/∂β{s(0)W (β, t)} and s

(2)
W (β, t) = ∂/∂β{s(1)W (β, t)},

applying the first order taylor expansion of g(β) around β(t) gives

g(β) ≈ g(β(t)) +

s(2)W (β, t)

s
(0)
W (β, t)

−

[
s
(1)
W (β, t)

s
(0)
W (β, t)

]2 {β(t)− β},

where the second term is, by definition, in Proposition 1 the conditional covariate variance

at time t, denoted by v(t) = V ar(Z(t)|T = t).

Rearranging terms, we obtain β0 ≈
∫∞
0
v(t)β(t)dF (t)/

∫∞
0
v(t)dF (t), representing a weighted

average of β(t) over time by both the survival distribution and the conditional covariate

variance. Importantly, the interpretability of the resulting estimand, β0, is complicated by

its reliance on the conditional covariate variances.

The extent of dependence is negligible in cases where only time-invariant covariates are con-

sidered, as the conditional covariance remains approximately constant (Xu and O’Quigley,

2000). Consequently, β0 ≈
∫
β(t)dF (t) can be interpreted as a weighted time average covari-

ate effect. It is, however, common for the variance of conditional covariates for biomarkers to

exhibit temporal variability. Hence, it is possible for two studies that share the same under-

lying covariate effect function over time to yield disparate outcomes as a result of variations

in conditional covariate variances in longitudinal covariates.

To better understand the above ideas, we designed a sequence of numerical studies. First,

we aim to demonstrate that we can retrieve the treatment effect in the case of constant
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conditional covariance. Subsequently, we will investigate the scenario of changing conditional

covariance by incorporating random effects. To demonstrate the necessity of reducing bias

in estimation through predicting the longitudinal covariate at event time, we designed a

simulation study where the longitudinal covariate is measured at fixed intervals of 6 months,

3 months, and 0.01 years, with a maximum follow-up length of 4 years.

Figure 3.1: Effect of measuring frequency by treating longitudinal covariate constant between
measurements

From Figure 3.1, we observe that as the measurement frequency decreases, there is less bias

in the longitudinal covariate of using last observation carried forward method for imputing

the missing longitudinal covariate values at event times, resulting in reduced bias overall. In

our simulation study, we assume that the data comes from the following hazard model:

λi(t) = λ0 exp(β1X1i + β2X2i(t))

Here, X1i represents the baseline categorical covariates for subject i following Bernoulli

distribution with probability of (0.4, 0.6), and X2i(t) denotes the underlying longitudinal

covariate value at time t for subject i, consisting of two groups underlying longitudinal

trajectories as depicted in Figure 3.2. The randomness of X2i(t) is introduced with i.i.d

measurement error following N(0, 0.02). For simplicity, we set λ0(t) to a fixed constant λ0.

The population parameters are specified as follows: λ0 = 0.3, β1 = 1, and β2 = −1.
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Figure 3.2: Two groups with underlying longitudinal trajectories are presented, where one
group exhibits a higher intercept with slower increases, while the group with a lower intercept
shows faster increases.

Long. Meas. Mean Model SE Emp. SE Cov. Prob.

Spacing β̂1 β̂2 β̂1 β̂2 β̂1 β̂2 β̂1 β̂2
Baseline Only -0.74 0.75 0.10 0.10 0.11 0.09 0.00 0.00
6 Months 0.99 -1.07 0.11 0.05 0.12 0.06 0.91 0.70
3 Months 1.00 -1.02 0.10 0.04 0.12 0.04 0.94 0.92
0.01 Year 1.01 -1.00 0.11 0.05 0.11 0.05 0.94 0.97

Table 3.1: Simulated coefficient estimates from the Cox proportional hazards model when
a longitudinal covariate is included as a time-varying covariate (last observation carried
forward). Density of longitudinal measures are varied from having only a single baseline
measurement up to every 0.01 years. In each case, the true value of β1 is 1.0 and the true
value of β2 is -1.0.

From Table 3.1, we observe that when only the baseline measurement of the longitudinal

covariate is used, the bias in the coefficient is significant enough to alter its direction. How-

ever, as the longitudinal measurement become frequent, the imputed longitudinal covariate

value approaches the true value at event times, the bias diminishes, and the coverage prob-

ability returns to 0.95. It’s noteworthy that the model-based standard error remains similar
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to the truth, as the robust variance estimator is incorporated in the coxph() function in R.

Therefore, it is crucial to predict the longitudinal covariate to reduce bias.

In the subsequent simulation, we maintain the same model setup but introduce a longitudinal

covariate effect under the NPH scenario. Specifically, we set β(t) to 0 if t < T0 and -1

if t ≥ T0. For censoring, we employ the power function distribution with a cumulative

distribution function defined as F (x) =
(
x
θ

)r
, where θ determines the maximum follow-

up length and r governs the location of predominant censoring. A higher r implies more

censoring in later stages. To ensure a minimum 1-year follow-up duration for simulation

stability, we define the cumulative density function as F ∗(x) =
(
x−1
θ

)r
, where 1 ≤ x ≤ 4

and θ = 3. We considered the two-stage modeling to exhibit that we can mitigate the

effect of longitudinal measurement frequency and the censoring distribution on regular Cox

estimator using last observation carrying forward method in NPH setting. Specifically, in the

first stage, longitudinal data is modeled with the LME model, giving subject-wise predictions

of longitudinal covaraite at event time. Then in the second stage, coefficient is estimated via

the censoring robust estimator in Equation 3.3.

Figure 3.3: Surface plot comparing longitudinal coefficient estimates from naive Cox model
and reweighted method after longitudinal prediction. T0 = 1

One can observe from Figure 3.3-3.6 that in the left panels, which depict results from the

naive Cox proportional hazards model, the surface tilts with respect to both the measurement

interval size and the choice of r in the power function distribution. Conversely, in the right
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Figure 3.4: Surface plot comparing longitudinal coefficient estimates from naive Cox model
and reweighted method after longitudinal prediction. T0 = 2

Figure 3.5: Surface plot comparing longitudinal coefficient estimates from naive Cox model
and reweighted method after longitudinal prediction. T0 = 3

Figure 3.6: Surface plot comparing longitudinal coefficient estimates from naive Cox model
and reweighted method after longitudinal prediction. T0 = 3.5

panels, our estimator is approximately a flat surface, demonstrating robustness to both

censoring distribution and measurement interval, except in cases of extreme censoring where
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most subjects are censored before T = 2, resulting in less information being available for the

longitudinal covariate effect in later follow-up times.

With the addition of a random effect in the underlying longitudinal trend, the subsequent

simulation demonstrated that previous estimated results are also influenced by the condi-

tional covariate variance.

Consider the following effect of the longitudinal covariate value

β2(t) =


0, for 0 ≤ t < 1

log(0.3), for 1 ≤ t ≤ 4,

where the diverging effect manifests as a negative effect after t = 1. The data is generated

through the hazard function as

λi(t) = 0.3exp(X1i + β2X2i(t)).

The censoring distribution is set to be C ∼ Power(4, r), F (x) =
(
x
θ

)r
. We estimate the

coefficient via the same two-stage model with the except that the underlying longitudinal

trajectories follow the LMEmodel with random slope that followsN(0, vslope). The covariates

are generated such that

X1 ∼ Bin(1, 0.4),

X2(t)|b ∼ N(f(t) + b1 + b2 ∗ t2, verror ∗ ID),b1
b2

 = b ∼ N


0
0

 ,
vinter 0

0 vslope


 ,

(3.5)

where X1 is generated through Bin(1, 0.4) and X2(t) is generated using underlying longi-

tudinal trajectories with the addition of independent random intercept with vinter = 0.01,
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random slope with vslope = 0.08 and normal measurement error with verror = 0.02. The

underlying longitudinal trajectories without random effect follows the function

f(t) =


−0.03956718 ∗ t2 + 0.2942684 ∗ t+ 0.343545, for Group1,

−0.026718 ∗ t2 + 0.142684 ∗ t+ 0.603545, for Group2,

as depicted in Figure 3.2, where the two subgroups have the probabilities of (0.4, 0.6). For

this simulation, instead of varying the measuring frequency and the censoring distribution,

we vary the random slope variance ranging from 0 to 0.9.

The result from Figure 3.7 illustrates that the mean estimated effect of the longitudinal

covariate fluctuates according to the underlying random slope variance. It is observed that

as the random slope variance increases, the estimated mean longitudinal covariate effect

converges towards log(0.3), suggesting that more weight is attributed to the covariate effect

value in the later follow-up time.

To mitigate the dependency on conditional covariance variance and restore interpretability

as approximately average time-weighted covariate effect, variance reweighting and scaling

methods were explored as potential solutions. In case of previous simulation, with the

random intercept of variance vinter, random slope of variance vslope and measurement error

of variance verror, the conditional variance can be expressed as v(t) = verror + vinter + vslope ∗

t2, which increase quadratically with respect to time, rendering the average time-weighted

covariate effect with significant more focus in later follow-up times. By utilizing an inverse

of a consistent estimator of conditional covariate variance, we can reweight the estimand,

effectively removing the influence of v(t) in the interpretation.

Proposition 4. Define estimator β̂R as the solution to the estimating equation

n∑
i=1

∫ ∞

t=0

V̂i(t)
−1W b

i (t)

[
Zi(t)−

∑n
j=1W

b
j (t)Yj(t)Zj(t)exp(Zj(t)

Tβ)∑n
j=1W

b
j (t)Yj(t)exp(Zj(t)Tβ)

]
dNi(t) = 0, (3.6)
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Figure 3.7: The mean treatment effect using regular censoring robust estimator with longi-
tudinal prediction by varying random slope variance

where V̂ (t) is a consistent estimator of conditional covariate variance v(t). Under model

3.1 and conditional independent censorship, the estimator β̂R converges in probability to a

constant β0, where β0 is the unique solution to the following equation

∫ ∞

0

v(t)−1

{
s
(1)
W (β(t), t)

s
(0)
W (β(t), t)

− s
(1)
W (β, t)

s
(0)
W (β, t)

}
dF (t) = 0. (3.7)

Applying the first-order Taylor series approximation gives
∫∞
0
(β(t)− β)dF (t) ≈ 0.

Proof. Under similar conditions, since V̂ (t) is a consistent estimator of conditional covaraite

variance v(t), applying the continuous mapping gives that V̂ (t)−1 is a consistent estimator
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of conditional covariate variance v(t)−1. Following the proof in Ringhui (1996), the β̂R

is consistent to β0. When applying the first-order Taylor series approximation of g(x) =

s
(1)
W (x, t)/s

(0)
W (x, t), the approximation is given as

∫ ∞

0

v(t)−1v(t)(β(t)− β)dF (t) =

∫ ∞

0

(β(t)− β)dF (t) ≈ 0

The reweighting estimator β̂R is censoring robust with interpretation as average covaraite

effect. It is, however, evident that the weight W b
i is assigned exclusively to time-varying

covariates, while the weight is set to 1 for all time-invariant covariates. The discrepancy in

the multiplier results in an asymmetric Hessian matrix, thereby disrupting the fundamental

likelihood framework that facilitates variance estimation via the likelihood information the-

orem. It should be noted that the positive definiteness of the Hessian matrix is maintained,

as the Hessian matrix without multipliers is positive definite. Consequently, the gradient

descent method is anticipated to converge towards a local minimum. Still, we prefer the

scaling method due to the preservation of the likelihood framework for variance estimation.

Before moving on to the scaling method, we want to first demonstrate that the proposed

variance reweighting estimator, βR actually removes the dependency on longitudinal condi-

tional variance through a simulation study. The simulation setting is the same as in the

previous simulation study with covariates generated as depicted in Equation 3.5. For this

simulation, the random slope variance and censoring distribution will be varied.

The results from the naive Cox model, the censoring robust reweight method, and the cen-

soring robust reweight method adjusted for conditional variance are shown in Figure 3.8 as

contour plots. The color in the graph indicates the mean estimates from three estimators.

In the left panel, the results from the Cox model show sloped steps, indicating a dependency
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Figure 3.8: Contour plots comparing naive Cox model, censoring robust reweight method,
and censoring robust reweight method adjusted for conditional variance

on both the censoring distribution and the random slope variance. The regular reweight

method results, which can be seen in the middle panel, are shown as vertical strips. These

show that the method is robust to variation in censoring distribution, but it still depends

on conditional covariate variance. In the right panel, the results from our proposed method

exhibit no obvious trend upon changes in the censoring distribution or the random slope

variance.

The scaling method reinstates the interpretation of the average covariate effect by multiplying

the longitudinal covariate by the inverse of a consistent estimate of conditional covariate vari-

ance. By scaling the longitudinal covariate with conditional covariate variance, the partial

likelihood is equivalent to the previous censoring robust estimator using scaled longitudinal

covarite, which maintains the likelihood framework. While both the scaling method and the

reweighting method adjust the estimating equations based on the weight assigned to the

covariate at risk, they solely differ in terms of this weighting adjustment. Both methods in-

corporate a scaling factor of Vi(t)
−1 to mitigate the impact of conditional covariate variance

at the front of the integrand. However, in the scaling procedure, the weights in S(r)(β, t) are

further adjusted by the conditional covariate variance at time t by rescaling the predicted

covariate value with estimates of conditional covariate variance. The estimating equation
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for scaling method is

n∑
i=1

∫ ∞

t=0

W b
i (t)

[
Zi(t)V̂i(t)

−1

−
∑

j∈R(i)
W b

j (t)Yj(t)Zj(t)V̂i(t)
−1exp(Zj(t)

T V̂i(t)
−1β)∑

j∈R(i)
W b

j (t)Yj(t)exp(Zj(t)T V̂i(t)−1β)

]
dNi(t) = 0. (3.8)

In comparison to the reweighting method, the only distinction in the estimating equation

lies in the weight assigned to the covariate value in the risk set. The weight for Zj(t) in

the risk set changed from
W b

j (t)Yj(t)exp(Zj(t)β)∑n
k=1 W

b
k (t)Yk(t)exp(Zk(t)β)

to
W b

j (t)Yj(t)exp(Zj(t)V̂j(t)
−1β)∑n

k=1 W
b
k (t)Yk(t)exp(Zk(t)V̂j(t)−1β)

. Thus, at

each failure time, the replacement of Zj with V̂j(t)
−1Zj results in standardizing the covariate

effect contribution, so that the estimated coefficient contribution at time t with original lon-

gitudinal covariate is scaled to βV̂j(t)
−1. Furthermore, since the weighting scheme employed

in Equation 3.8 assigns weights to each integrand byW b
i (t)V̂j(t)

−1. Consequently, the results

obtained from the scaling method expected to be a weighted average of βVi(t). To obtain an

estimator that is consistent with the average time-weighted effect as in Equation 3.6, one can

multiply the estimates from Equation 3.8 by
∑

iW
b
i (t)V̂j(t)

−1/
∑

iW
b
i (t). Currently, we pos-

sess an estimator that exhibits robustness against censoring and allows for the interpretation

of average regression effects for the single longitudinal group scenario.

When confronted with multiple longitudinal groups, it becomes necessary to stratify the

data according to these groups and then combine the estimating equations to determine

the relationship between estimates from the scaling method and the reweighting method.

Recalling that all previous estimators for survival data compare the observed covariate with

the expected covariate at the event time, when multiple longitudinal groups are present, the

subjects in the risk set are likely to consist of subjects from different longitudinal groups

with different longitudinal trajectories. Comparing the expected covariate from a mixture

of groups with the observed covariate value from a specific group would introduce bias in

the contribution to the covariate effect at each observed event. Even if the underlying
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longitudinal trajectory is similar, at each event time, the first-order approximation of the

quantity that the estimator is consistent to rely on consistent estimation of the conditional

covariate variance of Zj, and a mixture of covariates from different groups would compromise

the interpretation. Through simulation, the outcome exhibited significant bias and instability

as a consequence of mismatched conditional covariate variance. In our simulation, when using

all subjects in the risk set, we experimented with reweighting conditional covariate variance

by longitudinal group and by the entire population. Both methods exhibited bias in the mean

estimated covariate coefficients. Specifically, the biases were found to be -0.15 (equivalent to

a 38% bias) for variance calculation by group and 0.25 (equivalent to a 64% bias) for variance

calculation by entire population, respectively. It is important to note that the true value

of the main estimated covariate coefficient is -0.39, far from the estimated mean covariate

effect. To address this issue, we suggest implementing a data stratification approach based

on the longitudinal group so that the risk set is modified to be the subjects not experiencing

an event or censoring and is within the same longitudinal group as the subject experiencing

the event at the event time. Since the covariate effect at each time would be the same across

the stratum, we propose to combine the estimating equation of strata in the usual fashion.

This method implicitly recognizes the potential variation in the coefficient across different

strata. So far, we have obtained a two-stage censoring estimator for longitudinal covariates

with the interpretation of a weighted time-average covariate effect, as shown in the following

proposition.

Proposition 5. Define the estimator for longitudinal covariate β̂S as the solution to the

estimating equation

n∑
i=1

∫ ∞

t=0

W b
i (t)

[
Zi(t)V̂i(t)

−1−∑n
j=1 I(Gi = Gj)W

b
j (t)Yj(t)Zj(t)V̂i(t)

−1exp{Zj(t)
T V̂i(t)

−1β}∑n
j=1 I(Gi = Gj)W b

j (t)Yj(t)exp{Zj(t)T V̂i(t)−1β)}

]
dNi(t) = 0, (3.9)
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where V̂i(t) is a consistent estimator of conditional covariate effect vi(t) and Gi represents

the longitudinal group that the ith subject belongs to. Under Model 3.1 and conditional

independent censorship, the estimator β̂S converges in probability to a constant β0, where β0

is the unique solution to the following equation

∫ ∞

0

vi(t)
−1

{
s
(1)
W (β(t), t, Gi)

s
(0)
W (β(t), t, Gi)

− s
(1)
W (v−1

i (t)β0, t, Gi)

s
(0)
W (v−1

i (t)β0, t, Gi)

}
dF (t) = 0, (3.10)

and β0 can be approximated by
∫∞
0
[β(t)− v−1

i (t)β0]dF (t) ≈ 0.

Proof. Define

S
(r)
W (β, t, Gi) = n−1

n∑
j=1

I(Gi = Gj)Z
r
j (t)W

b
j (t)Yi(t)exp(Zj(t)β)

and

s
(r)
W (β, t, Gi) = E[S

(r)
W (β, t, Gi)],

where the S
(r)
W (β, t, Gi) and s

(r)
W (β, t, Gi) are defined for the data strata that the ith subject

belongs to for stratification. Since the modification is based on proper longitudinal clustering,

the conditions 1-6 still hold. Note that the above estimating equation could also be written

as

n∑
i=1

∫ ∞

t=0

W b
i (t)V̂i(t)

−1

[
Zi(t)

−
∑n

j=1 I(Gi = Gj)W
b
j (t)Yj(t)Zj(t)exp{Zj(t)

T V̂i(t)
−1β}∑n

j=1 I(Gi = Gj)W b
j (t)Yj(t)exp{Zj(t)T V̂i(t)−1β)}

]
dNi(t)

=
n∑

i=1

∫ ∞

t=0

W b
i (t)V̂i(t)

−1

[
Zi(t)−

S
(r)
W (V̂i(t)

−1β, t, Gi)

S
(r)
W (V̂i(t)−1β, t, Gi)

]
dNi(t) = 0.

Applying similar techniques as in Proposition 2, it can be shown that β̂S converges to β0.

The result from Proposition 1 still applies to s
(r)
W (β(t), t)/s

(0)
W (β(t), t), which consistently
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estimates E(Zr|T = t). It follow that the first-order Taylor series expansion of g(vi(t)
−1β) =

s
(1)
W (vi(t)

−1β,t,Gi)

s
(0)
W (vi(t)−1β,t,Gi)

around β0 gives

g(vi(t)
−1β) ≈ s

(1)
WV (β(t), t, Gi)

s
(0)
WV (β(t), t, Gi)

+ vi(t)[β(t)− vi(t)
−1β0].

Applying the approximation to integrand of Equation 3.10 gives

∫ ∞

0

vi(t)
−1

{
s
(1)
W (β(t), t, Gi)

s
(0)
W (β(t), t, Gi)

− s
(1)
W (v−1

i (t)β0, t, Gi)

s
(0)
W (v−1

i (t)β0, t, Gi)

}
dF (t)

=

∫ ∞

0

vi(t)
−1

{
s
(1)
W (β(t), t, Gi)

s
(0)
W (β(t), t, Gi)

− s
(1)
W (β(t), t, Gi)

s
(0)
W (β(t), t, Gi)

− vi(t)[β(t)− vi(t)
−1β0]

}
dF (t)

=

∫ ∞

0

[β(t) − vi(t)
−1β0]dF (t) = 0

After rearranging terms, the approximation in Proposition 5 indicates
∫∞
0
β(t)dF (t) =

β0
∫∞
0
vi(t)

−1dF (t). Thus, to retrieve an estimator approximated by the weighted time-

average effect, we need to multiply the β̂S by estimates of
∫∞
0
vi(t)

−1dF (t). To adjust for

censoring, the resulting estimate is
∑
W b

i (t)V̂
−1
i (t)/

∑
W b

i (t).

Proposition 6. For the modified partial likelihood model in Proposition 5, assume that the

Anderson and Gill regularity conditions hold. Under Model 3.1 and conditional independent

censorship, n1/2(β̂S − β0) has an asymptotic normal distribution with mean zero.

Proof. The consistency of β̂S to β0 is established in Proposition 5; it remains to show the

asymptotic normality of β̂S. Define

S
(r)
W (β, t, Gi, Z

∗) = n−1

n∑
j=1

I(Gi = Gj)[Z
∗
j (t)]

rW b
j (t)Yi(t)exp(Z

∗
j (t)β)
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and

s
(r)
W (β, t, Gi, Z

∗) = E[S
(r)
W (β, t, Gi, Z

∗)],

where

Z∗
i (t) = Zi(t)/V̂ (t).

It can be seen that β̂S is exactly the same as the estimator in Boyd et al. (2012) using scaled

longitudinal covariate values. The conditions 1-6 are also the assumptions for Theorem 5.3 of

Kalbfleisch and Prentice (2011), which implies Rebolledo’s martingale central limit theorem.

Using a similar argument to that given in Boyd et al. (2012), it can be shown that the

estimating equation in Equation 3.9 can be written as a sum over stochastic integrals of a

predictable process with respect to a martingale, giving the asymptotic normality of β̂S.

3.2.2 Estimating the conditional variance of a longitudinally sam-

pled covariate

Returning to the first stage of the two-stage model, since longitudinal covariate values at

each event time are typically missing, we propose to predict covariate values using the LME

model and estimate conditional covariate variance through empirical variance. For our study,

the prediction of Zi(t) at event time is not of direct scientific interest, but it is necessary to

reduce potential bias due to incorrect hazards. Our goal for this prediction problem is to

develop a prediction procedure that retrieves a longitudinal covariate value reasonably close

to the unknown truth at the event time. As mentioned, two approaches toward longitudinal

data modeling are the LME model and the GEE model. For our specific purpose of predicting

the longitudinal value at the individual level with the imbalanced data, the GEE model may

not be appropriate. Even though this semi-parametric model has the advantage of a robust

variance estimator using the sandwich estimator, the GEE model is based on the marginal

model, where only population-level predictions are available. The LME model is preferred
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since it also captures individual characteristics through random effects, and those random

effects can be estimated through the Naive Bayes method.

To estimate the conditional longitudinal variance, we considered two empirical methods: (i)

empirical variance at a small window using the observed covariate value; and (ii) empirical

variance using the predicted covariate value. For the first method, we propose to estimate

the conditional covariate variance at time t using the available observed covariate value

within a small window around t for those in the risk set. The first method is expected to be

robust to model misspecification since it does not rely on predicted longitudinal covariate

values. However, it suffers from the limited amount of data available. In addition, borrowing

information from covariates at nearby times relies on the strong assumption that the covariate

variance remains similar. In data simulations, this method shows sensitivity to window size

selection and abrupt changes in conditional variance. The second method calculates empirical

variance using the predicted covariate values of all subjects in the risk set. Even though it

is subject to model misspecification, the second method is preferred in data simulation for

its stability from the tenfold of samples compared to the numbers of the first method. In

data simulations, the conditional longitudinal variance from the first method deviates from

the true longitudinal variance, and the results are biased. We also conducted a simulation

with a true longitudinal value at event time for each subject in comparison to predict the

longitudinal value using the Naive-Bayes method under the LME model. We found that

when the conditional variance is estimated by empirical methods, as mentioned above, the

mean estimated variance centers closely around the Monte Carlo average. In contrast, the

mean estimated variance using the unobserved true longitudinal value exhibited consistent

bias based on the underlying longitudinal design.
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3.2.3 An algorithm for computing censoring robust estimators

with longitudinally sampled covariates

Given the above, we propose an algorithm for censoring robust estimation that incorporates

longitudinal covariates in Algorithm 1.

Algorithm 1 Censoring Robust Algorithm For Estimating Longitudinal Covariate Average
Effect

1: Specify the prior scientific model:
λ(t|Z) = λ0(t)exp(Z

Tβ).
2: Identify Longitudinal Clusters:
i : i = 1, . . . , n→ LongGroup j : j = 1, . . . ,m . ▷ m < n

3: Identify censoring-specific groups using survival trees with longitudinal covariates re-
placed by a dummy variable indicating group assignment:
MC(Z) → {1, . . . , k}. ▷ k < n

4: Estimate SC(·|MC(Z)) using the left-continuous Kaplan-Meier estimator for each group
{1, . . . , k}:
ŜC(·|MC(Z)).

5: Estimate V (t(i)|MC(Z)) using individual-level prediction from lin-
ear mixed effect model built from only subject in the longitudinal
group where the individual experienced an event at t(j) belongs to:

V̂ (t(i)|MC(Z)).
6: Plug in the inverse probability of censoring, inverse conditional variance, and redefined

risk set consisting of people who have not experienced the event nor truncation from
the same longitudinal group as the one who experienced the event to form a weighted
estimating equation:

UW (β) =
n∑

i=1

∫ ∞

t=0

Ŵ (t|Zi)V̂i(t)
−1

[
Zi(t)

−
∑n

j=1 I(Gi = Gj)Ŵ (t|Zj)Yj(t)Zj(t)exp{Zj(t)
T V̂i(t)

−1β}∑n
j=1 I(Gi = Gj)Ŵ (t|Zj)Yj(t)exp{Zj(t)T V̂i(t)−1β)}

]
dNi(t),

where Ŵ (t|Zi) = 1/ŜC(t|MC(Zi)) and Gi(t) defines longitudinal group that subject i
belongs to.

7: Solve UW (β) = 0 and rescale the longitudinal estimator by∑
V̂ (t|Zi)

−1Ŵ (t|Zi)/
∑
Ŵ (t|Zi) to obtain the censoring-robust estimator, β̂S.
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In the context of inference, directly applying the robust variance estimator, as discussed

in the previous section, may underestimate the potential variance resulting from variation

in longitudinal prediction, even if the longitudinal model is correctly specified. Moreover,

when dealing with multiple longitudinal groups, misclassification of longitudinal covariates

can further exacerbate the variation in the resulting estimates. Since there is no assurance

of proper clustering, a prudent approach would be to employ the widely-used nonparametric

robust variance estimator, namely the bootstrap method (Tibshirani and Efron, 1993). While

some literature, such as Hsieh et al. (2006), recommend a parametric bootstrap two-stage

joint modeling approach under the proportional hazard model, which involves simulating a

large number of copies of data B by fitting the longitudinal component using the LME model

and subsequently proceeding with Cox model estimation. The parametric bootstrap method

may offer efficiency but could suffer from potential misspecification of the longitudinal model.

Therefore, we propose utilizing a case resampling bootstrap for inference. In this approach,

each copy comprises random draws from the original data with replacement, maintaining the

same sample size. By employing case resampling bootstrap, we can effectively incorporate

variance resulting from LME model misspecification and longitudinal clustering errors into

our analysis.

3.3 Numerical studies

3.3.1 Simulation setup

In this section, we compare the performance of three estimators: (i) the naive Cox estimator

βCox proposed by Cox (1972); (ii) the censoring robust estimator βCR as introduced by Boyd

et al. (2012) and Nguyen et al. (2017); and (iii) the proposed revised censoring robust

estimator βS. Since all three estimators approximate the hazard functions by substituting
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unknown longitudinal covariates at event times with predicted values, they assume the same

linear mixed-effects (LME) model in the first stage. Therefore, we will not delve further into

the first modeling stage, as the focus of this study is on the second modeling stage, specif-

ically the development of an estimator with censoring robust properties under misspecified

hazards and an average covariate effect for time-varying covariates, even under time-varying

conditional variance.

To distinguish the covariate interpretations between our proposed estimator and the other

two estimators under various scenarios, three specific scenarios are designed to exemplify

the boundaries that previous estimators could handle. We are particularly interested in

quantifying the association between the time to the event and the longitudinal covariate

Z1 ∈ R, with β1 being the corresponding parameter of interest. To assess the performance of

the estimators, a confounding covariate Z2 ∼ Bernoulli(0.4) is included to simulate a more

general regression situation.

The simulation studies presented here consider a combination of one categorical and one

longitudinal covariate, although the algorithm has the capability to handle combinations of

categorical, continuous, and longitudinal covariates. Incorporating multiple covariates in-

creases computational complexity significantly. Since the proposed estimator involves a sur-

vival tree algorithm to identify approximate censoring groups by optimal splitting, adding

another continuous covariate can lead to a computational complexity increase of O(n). Con-

sidering these computational constraints, we focus solely on longitudinal covariates in this

study.

For comparison purposes, we evaluate the estimators based on bias and coverage probability

of 95% confidence intervals under each scenario. We also vary the censoring distributions to

assess dependence on the censoring mechanism.
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Due to the specific interest, we focus on longitudinal covariates in this study. We assess

the performance of the estimators based on bias and coverage probability of 95% confidence

intervals under each scenario. Additionally, we vary the censoring distributions to assess

dependence on the censoring mechanism.

Following the brief overview, we introduce the logistic for the simulations. We assume

there are two longitudinal subgroups with probabilities of (0.4, 0.6), and these subgroups

follow underlying longitudinal trajectories where the group with a higher starting biomarker

value generally experiences slow increments and vice versa, as depicted in Figure 3.2. Both

covariates are generated as in Equation 3.5.

It’s worth noting that Figure 3.2 only displays the underlying trajectory up to time four

since it’s common practice to limit the length of the study, also known as the maximum

follow-up length. Such a predetermined maximum study length is a form of administrative

censoring or truncation. In the following simulations, we set τ = 4. The three scenarios we

consider correspond to the proportional hazard model, the non-proportional hazard model

with a constant marginal variance longitudinal covariate, and the non-proportional hazard

model where the longitudinal covariate varies with respect to time. The first scenario is the

proportional hazard model, where we generate survival time according to

λ(t|Z) = exp{−0.8× Z1(t)− 0.4× Z2}.

For this scenario, our intention is to compare the performances of the naive Cox estimator

βCox and that of the proposed revised censoring robust estimator βS. Since the naive Cox

estimator βCox is censoring robust with correct interpretation under the proportional hazard

model, the above comparison aims to establish the effectiveness of the proposed revised

censoring robust estimator βCRV when the model is not misspecified. The comparison of
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performance between the censoring robust estimator βCR and the naive Cox estimator βCox

was discussed in Nguyen and Gillen (2017) and thus is not of primary interest in this scenario.

The second scenario is the non-proportional hazard model with constant marginal variance

longitudinal covariate, where we generate the survival time according to

λ(t|Z) = exp{log(0.3)I{t > 1} × Z1(t)− 0.1× Z2}.

In this scenario, we compared the performance of the proposed revised censoring robust

estimator βS to that of the censoring robust estimator βCR and the naive Cox estimator

βCox. Ideally, we expect to observe similar results as shown in Nguyen and Gillen (2017),

where the naive Cox estimator βCox estimates a quantity different from those estimated by

the censoring robust estimator βCR and the proposed revised censoring robust estimator

βS. Additionally, we anticipate that the performance of the censoring robust estimator βCR

and that of the proposed revised censoring robust estimator βS will be similar due to the

longitudinal covariate with constant marginal variance. However, the interpretation of the

covariate is modified by the conditional covariate variance instead of the underlying covariate

variance. Thus, the unknown censoring mechanism can affect the distribution of observed

covariate values conditional upon time, leading to variation in conditional variance even if

the underlying longitudinal variance is constant over time. Nevertheless, this second scenario

is designed to contrast the differences between estimated quantities comparing βS to βCR

and βS to βCox.

The third scenario involves a non-proportional hazard model with longitudinal covariate

variance varying over time. We generate the survival time according to the same hazard as the

second scenario, with the difference being the addition of a random slope to the longitudinal

covariate. In this scenario, we compare the performance of the proposed revised censoring

robust estimator βS to that of the censoring robust estimator βCR. With the addition of the
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random slope, the variance of the longitudinal covariate increases quadratically over time,

placing more emphasis on the later follow-up time covariate effect. As we formally introduce

variation in conditional covariate variance, we expect that the difference between quantities

estimated by the two estimators will increase significantly compared to the previous scenario.

Case Censoring Distribution
C:1 Power(4,0.6+0.8*I{Gi = 1}
C:2 Power(4,0.6+0.8*I{Z2 = 1}
C:3 Power(4,0.6+0.8*I{Gi*Z2 = 1}

Table 3.2: The three scenarios of censoring distributions are considered based on longitudinal
grouping, categorical grouping, and their interactions.

For each hazard scenario, three censoring scenarios are utilized to generate censoring times,

aiming to test the effect of censoring distribution on estimators. Table 3.2 provides a de-

scription of the censoring scenarios: censoring by categorical covariate (Case 1), censoring by

longitudinal covariate (Case 2), and censoring by the interaction between covariates (Case

3). In all cases, administrative censoring at time τ = 4 is required to maintain a constant

observable time support and ensure meaningful comparison of the average covariate effect

between scenarios. For all cases, the censoring times by group are generated according to

the power-function distribution with parameters (b, r), where 0 < C < b and r ≥ 0. When

r = 1, C follows a uniform distribution over (0, b). When r → 0, more weight is concentrated

toward 0; when r → ∞, more probability is concentrated toward b. We repeated simulations

on each combination of the data-generating scenario and censoring scenario 1000 times for

replicable results.

Next, we will provide further details about the simulation setting. For non-proportional

hazards scenarios, due to a lack of an analytic expression for
∫∞
0
β1(t)dF (t), we approximate

it with the Monte Carlo average of βCox (with administrative censoring at τ = 4) for n = 2000.

To clarify, we use the average of the maximum partial likelihood estimator for large samples

without intermittent censoring as the target quantity in each scenario.
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For the longitudinal covariate, we incorporate variance through the mixed effect model. In

the first two scenarios, we assume a random intercept following N(0, 0.08) so that the con-

ditional variance of the longitudinal covariate remains constant without censoring. Moving

on to the last scenario, we add an random slope following N(0, 0.08) and assume indepen-

dence between the random intercept and random slope for simplicity. Even if the random

intercept and the random slope follow the same distribution, the contribution of conditional

variance from the random slope outweighs that from the random intercept. The conditional

covariate variance is proportional with a multiplier of 0.08t2 due to the random slope, so the

conditional variance increases quadratically with respect to time, whereas the conditional

covariate variance only increases by a constant of 0.08 due to the random intercept. Lastly,

we assume identically and independently distributed measurement error following N(0, 0.02)

throughout the study.

Even with the model explicitly written out, mentioning the data generation mechanism is

worthwhile. When generating time-to-event data according to specified hazards that depend

on a longitudinal covariate, we cannot simply utilize existing functions to make random

draws from the exponential distribution as the hazard changes constantly. Nevertheless, it

is also nearly impossible to draw directly from the target distribution due to the lack of an

analytic expression. Thus, the closest solution involves using a grid approximation of the

target hazard.

For grid approximation, we partitioned the entire follow-up length into intervals of a grid

size. We assumed that the hazard within each interval remains constant, so a piecewise

exponential distribution can approximate the survival distribution. There are two methods to

draw from piecewise exponential distributions, where one may derive the cumulative density

function of the target distribution and make draws using the probability integration theorem.

The other approach utilizes the memoryless property of the exponential distribution, where

P (Ti > t + s|Ti > t) = P (Ti > s) ∼ Exponential(λi(t)). By discretizing continuous time
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into small intervals of 0.01 years, we can easily calculate the survival probability by P (Ti >

t) =
∏t−0.01

ti
P (Ti > ti + 0.01|Ti > ti). To generate the data, we draw randomly from

the exponential distribution according to the grid size and the corresponding hazard at the

start time point of each interval. Then, the survival time is obtained through the first

random draw that does not exceed the grid length. Furthermore, note that the longitudinal

covariate values are generated before survival time generation so that the simulated covariate

is external and allows for the prediction of survival probability.

In this method, the grid size controls the performance of the approximation, and a smaller

grid size gives a better approximation but requires more computational power. In our case,

the grid size was chosen to be 0.01 depending on the available computational power and

used for the entire simulations for consistency.

For calculating coverage probability using 95% confidence intervals, in addition to the es-

timated mean, the variance of β̂S is estimated through the bootstrap method for reasons

discussed in the Discussion section. When applying the bootstrap method for variance esti-

mation, it is inevitable to encounter ties in the data. Common approaches for handling tied

survival times include the average partial likelihood, Breslow approximation, and Efron’s

formula.

The average partial likelihood naturally arises under the assumption of true continuous sur-

vival time and treats all possible combinations equally. This method provides the most

precise likelihood representation but involves computationally intensive bookkeeping. The

Breslow approximation aims to reduce computational burden by approximating the denom-

inator of each likelihood by the complete case, but it introduces bias as the denominator is

always larger than the truth. To mitigate such bias, Efron’s formula deducts the average

contribution to the denominator by a single subject from the denominator.
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In practice, when the number of ties is manageable, the average partial likelihood method is

preferred for its accuracy. However, when ties are common, Efron’s formula is preferred. In

our case, we choose to use the average partial likelihood approach, even though a moderate

number of ties exists. The bookkeeping process can be avoided as the tied survival times are

associated with subjects of the same covariate value at any time, i.e., the bootstrap data.

The variances of the other two estimators are calculated through the robust variance formula

in original paper mentioned in Chapter 2 (Lin and Wei, 1989; Nguyen and Gillen, 2017).

While using the bootstrap method to estimate the variance of the other two estimators is also

possible, we would like to assess the performance based on the original estimators without

modification.

3.3.2 Simulation results

Table 3.3: Results of the simulation study with random intercepts and random slopes under
non-proportional hazards, n=800. Each scenario is repeated 1000 times. The Truth refers
to the Monte Carlo average of β̂Cox under simulation with administrative censoring at time
year 4 and subject in each trial increased to n = 2000.

Naive Cox Estimator Robust Est. - Survival Trees Robust Est. - Variance Adj.

Scenario β̂Cox β̂CR β̂S
(Truth:-0.395) Mean ESE MSE CP Mean ESE MSE CP Mean ESE MSE CP

C:1 -0.216 0.351 0.347 0.864 -0.592 0.388 0.384 0.849 -0.404 0.537 0.553 0.938
C:2 -0.218 0.333 0.344 0.856 -0.362 0.381 0.379 0.902 -0.385 0.556 0.586 0.931
C:3 -0.195 0.340 0.337 -0.819 -0.407 0.385 0.372 0.890 -0.390 0.516 0.520 0.919

ESE = empirical standard error of the coefficient of interest; MSE = model-based standard error of the

coefficient of interest; CP = coverage probability of 95% confidence intervals based on the MSE.

The remaining parts of this subsection focus on comparing the performances of the three

estimators. We assess their performance based on desired properties such as unbiasedness,

consistency, and type-I error across three types of hazard functions, as per the simulation

design.

When the underlying model is misspecified and there are fluctuations in conditional covariate

variance, we observe higher bias in β̂Cox and β̂CR compared to β̂S, as expected. As demon-
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Table 3.4: Results of the simulation study with random intercepts only under non-
proportional hazards, n=800. Each scenario is repeated 1000 times. The Truth refers to
the Monte Carlo average of β̂Cox under simulation with administrative censoring at time
year 4 and subject in each trial increased to n = 2000.

Naive Cox Estimator Robust Est. - Survival Trees Robust Est. - Variance Adj.

Scenario β̂Cox β̂CR β̂S
(Truth:-0.381) Mean ESE MSE CP Mean ESE MSE CP Mean ESE MSE CP

C:1 -0.116 0.348 0.350 0.864 -0.186 0.380 0.376 0.846 -0.387 0.801 0.789 0.945
C:2 -0.130 0.350 0.348 0.856 -0.501 0.380 0.378 0.887 -0.377 0.709 0.689 0.934
C:3 -0.130 0.339 0.342 0.805 -0.287 0.368 0.367 0.885 -0.365 0.625 0.642 0.958

ESE = empirical standard error of the coefficient of interest; MSE = model-based standard error of the

coefficient of interest; CP = coverage probability of 95% confidence intervals based on the MSE.

Table 3.5: Results of the simulation study with random intercepts and random slopes under
proportional hazards, n=800. Each scenario is repeated 1000 times. The Truth refers to the
Monte Carlo average of β̂Cox under simulation with administrative censoring at time year 4
and subject in each trial increased to n = 2000.

Naive Cox Estimator Robust Est. - Survival Trees Robust Est. - Variance Adj.

Scenario β̂Cox β̂CR β̂S
(Truth:-0.800) Mean ESE MSE CP Mean ESE MSE CP Mean ESE MSE CP

C:1 -0.825 0.368 0.365 0.942 -0.828 0.456 0.442 0.921 -0.811 0.534 0.596 0.929
C:2 -0.808 0.375 0.370 0.941 -0.802 0.477 0.444 0.935 -0.798 0.544 0.525 0.932
C:3 -0.792 0.362 0.360 0.942 -0.819 0.380 0.378 0.890 -0.791 0.520 0.552 0.951

ESE = empirical standard error of the coefficient of interest; MSE = model-based standard error of the

coefficient of interest; CP = coverage probability of 95% confidence intervals based on the MSE.

strated in previous sections, with the presence of random intercept and random slope in the

longitudinal covariate, the conditional covariate variance tends to increase as time progresses.

Without adjustment, β(t) is weighted according to the conditional covariate variance, leading

to a higher contribution from β(t) in the later follow-up time to the estimated quantity.

As shown in Table 3.3, for all three censoring scenarios, β̂S has mean estimates around the

truth, while the estimated means of β̂Cox are biased from the truth by 0.20, almost 50% of

the truth. Such a significant deviation from the truth can also be attributed to the failure

to adjust for censoring weight. The equal weight assigned by β̂Cox to each event fails to

acknowledge the uneven number of unobserved events due to censoring. Even though the

censoring mechanism is generally unknown, the censoring weight would only increase with

respect to time, with differences existing only in the rate of increment. As a result of the
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high rate of censoring in the later stages, β(t) in the later follow-up time is underestimated,

further exaggerating the bias.

This influence is supported by the results of β̂CR, where the deviation from the truth de-

creases. However, the mean estimates are still biased from the truth, indicating that adjust-

ing for the unobserved events due to censoring alone is not sufficient. For the coverage prob-

ability (CP), the three estimators perform similarly across the censoring scenarios. While

β̂S achieves almost 95% coverage for all three scenarios, β̂CR achieves coverage between 85%

and 90%, and β̂Cox only achieves coverage between 82% and 86%.

If we remove the random slope from longitudinal trajectories, we initially expected that β̂CR

would perform similarly to β̂S, as the longitudinal covariate variance remains marginally

constant. However, the result differs from our expectations. While β̂S still achieved nearly

unbiasedness and 95% coverage, β̂CR showed better performance but still deviated from the

truth and had lower coverage.

The presence of bias and low coverage of β̂CR contradicts our expectation. Further explo-

ration indicates the difference between conditional covariate variance and covariate variance.

Even though the marginal covariate variance is constant, the conditional covariate variance

still varies due to survival, where E(Z(t)|T = t) is conditional on T , and the expectation

builds on the triple (δ, z, x). Even after adjusting for the censoring mechanism, when pa-

tients with lower initial longitudinal covariate values experience events earlier, subjects that

remain in the study in the later follow-up times have lower variation in biomarker values.

Thus, although the difference in variance decreases, fluctuations still exist, and it remains

necessary to adjust for conditional covariate variance.

In this scenario, the random effect of data is magnified, as the subtle differences in conditional

covariate variance can be quite distinct between samples, compared to the variation brought

by the random slope. The mean estimate of β̂CR varies significantly across the scenarios,
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and the variance of β̂S is also higher compared to that of the other two cases. This incidence

indicates the possible dependence between conditional covariate variance and longitudinal

variance if not adjusted simultaneously.

When the model is correctly specified, the results in Table 3.5 indicate that all three estima-

tors are unbiased and attain consistency. When the underlying covariate effect is constant,

all methods should estimate the correct quantity, as all adjustments are made to reweight

the constant coefficient, resulting in the same constant. It is still observable that the vari-

ances of β̂S are larger than those of β̂CR in all three cases, and similarly, the variances of

β̂CR are larger than those of β̂Cox. Such a trade-off between bias and variance is beneficial

considering the reduction in bias from the unknown censoring mechanism and the retrieval

of the weighted time-average covariate effect interpretation.

Lastly, it is also noted that β̂CR does not achieve a 95% coverage probability in all scenarios.

In addition to the limitation of sample size, the failure to attain nominal coverage could

also be due to possible variations from censoring group clustering and longitudinal group

clustering. From the tables, the coverage probability is still above 90% and is expected to

increase with a larger sample size. Additionally, the proposed procedure is flexible to changes

in the clustering method. Given a more precise longitudinal clustering method, it can be

seamlessly integrated into the existing framework with minimal adjustments.

3.4 Application

In this section, we apply the proposed estimator to ADNI data to explore the relationship

between longitudinal cortical thickness and the progression of Alzheimer’s disease (AD).

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) is a longitudinal study aimed at

developing clinical, imaging, genetic, and biochemical markers for the early detection and
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monitoring of Alzheimer’s disease. The dataset used here combines data from the initial

five-year study (ADNI-1), the two-year follow-up study (ADNI-GO), and the subsequent

renewal study (ADNI-2). More information about the study designs and data collection

methods can be found at http://ida.loni.ucla.edu.

The ADNI-1 dataset consists of a significant number of participants and a wide range of

clinical and biological data. Initially, it included 1213 subjects scheduled for assessments at

the initial visit and subsequent exams every 6 months, with a maximum follow-up duration

of 120 months. However, some subjects may have missed appointments or discontinued their

participation in the study.

The dataset encompasses demographic information such as age, gender, education level, race,

and marital status, recorded at the baseline visit. Additionally, genetic data, specifically the

APOE-ϵ4 carrier status, is included.

Clinical variables cover neuropsychological assessments, functional and behavioral evalua-

tions, neuroimaging data from magnetic resonance imaging (MRI), and cerebrospinal fluid

(CSF) biomarkers. Neuropsychological assessments consist of various tests including the

Alzheimer Disease Assessment Scale-Cognitive (ADAS-Cog), Rey Auditory Verbal Learning

Test (RAVLT), Montreal Cognitive Assessment (MoCA), Mini Mental State Examination

(MMSE), and Clinical Dementia Rating Sum of Boxes (CDR-SB). Notably, ADAS-Cog 11

and ADAS-Cog 13 are available, with ADAS-Cog 13 assessing additional domains relevant

to treatment targets. RAVLT scores are transformed to represent immediate recall, learning

curve, and forgetting score. Functional and behavioral assessments include the Functional

Assessment Questionnaire (FAQ) and Everyday Cognition questionnaires filled out by both

patients (ECogPT) and their study partners (ECogSP), covering various domains.
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MRI data provide volume measurements segmented by brain regions such as Ventricles, Hip-

pocampus, Entorhinal cortex, Fusiform gyrus, middle temporal gyrus, intracerebral volume

(ICV), and the whole brain.

Unfortunately, the CSF biomarker data only contain baseline measurements for amyloid-

beta, t-tau, and p-tau.

Table 3.6: Table of number of visits comparing full ADNI data and adjusted ADNI data

Full Data
Number of Visits 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Counts 41 72 200 239 246 213 79 26 23 24 28 16 4 1 1
Adjusted Data

Number of Visits 3 4 5 6 7 8 9 10 11 12 13
Counts 144 115 114 161 59 5 6 5 7 5 1

We narrow our focus to a subset of the original data to address the specific scientific question

at hand. Table 3.6 indicates the number of visits for each subject. Among these subjects,

41 have only baseline measurements, while 72 have only one follow-up visit. Since our

scientific inquiry revolves around the association between longitudinal measurements and the

progression to AD diagnosis, subjects with only baseline measurements do not contribute

statistical information to determine this association. Similarly, subjects with only one follow-

up visit are not suitable for prediction with a random intercept and a random slope in the

LME model, as they pose a risk of singular systems. As a result, subjects with two or fewer

visits were excluded from the data analysis. Additionally, visits with incomplete cortical

thickness measurements were omitted. If the first or last visit contained missing MRI data,

the subject was removed to avoid extrapolation. Furthermore, if the total number of data

entries per subject fell below 3 due to these procedures, the subject was also excluded from

the analysis. Subjects diagnosed with AD at the study’s onset were also excluded, leaving 478

subjects for further analysis. A comparison between the two tables highlights that subjects

with a high number of visits predominantly consist of healthy individuals at the initial

visit. Conversely, subjects diagnosed with MCI, including early mild cognitive impairment
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(EMCI), late mild cognitive impairment (LMCI), and significant memory concern (SMC),

typically had fewer visits, with a median of four visits.

It is worth noting that the outcome covariate for diagnosis results (DX) at each visit was

recorded in the format of transitions from the previous stage. Six subjects experienced

transitions from MCI to dementia, immediately followed by transitions from dementia back

to MCI. To simplify the analysis, these subjects were classified as having dementia, as the

diagnosis transition to dementia contains pertinent statistical information regarding AD con-

version. Additionally, observations after dementia diagnosis were removed from the dataset,

as they do not align with our definition of terminal events.

For comparison, the application to the ADNI dataset is intentionally designed to align with

a similar study that adopts a two-stage model for joint modeling of longitudinal and survival

data (Li et al., 2017). The original study seeks to assess the predictive capacity of markers

for AD conversion within the framework of joint modeling. This joint model comprises two

stages:

1. The longitudinal stage models the repeated measurements over time using a Linear

Mixed Effects (LME) model with random intercept and random slope. This stage

adjusts for baseline age and the presence of the APOE-ϵ4 allele.

2. The survival stage utilizes the predicted longitudinal covariate at the event time as a

time-dependent covariate and get coefficient estimate via naive Cox estimator. This

stage adjusts for gender, years of education, baseline age, and APOE-ϵ4.

Although not explicitly stated, the model approximates the hazard using the predicted lon-

gitudinal covariate at event time, and assumes proportional hazard for all biomarkers. Addi-

tionally, the model implicitly assumes a linear relationship between repeated measurements

and time, with individual variation in baseline measurements and the rate of change.
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In our analysis, we employ precise time intervals between dates to reduce tied survival times.

However, in instances where ties persist despite these efforts, we introduce adaptive noise

jittering. This method effectively breaks the ties while maintaining the chronological order

of survival times.

To facilitate comparison, we apply our proposed variance reweighted two-stage model to the

data with a matched regression setup. Then, we replace the model-based standard deviation

used in the original paper with bootstrap standard deviation. This adjustment allows us to

uncover any differences in the mean and standard error of estimates between the two models.

The dataset comprises additional ongoing studies, ADNI-GO and ADNI-2, and Table 3.7

presents the fundamental characteristics of the study participants. Participants remained

enrolled in the study until experiencing the terminal event or being censored, with an average

duration of 3.03 years (SD 1.62). Consistent with previous research on risk factors for AD

conversion, individuals who progressed to AD during the study were older (mean=73.45,

SD=7.43), exhibited a higher prevalence of positive APOE-ϵ4 carrier status (n=111, 63%),

had fewer years of education (mean=15.95, SD=2.77), and included a lower proportion of

females (n=70, 40%).

Table 3.7: Baseline characteristics of ADNI participants with mild cognitive impairment
(MCI). Continuous covariates are summarized via mean (SD). Discrete covariates are sum-
marized via frequency (%).

Progressed to AD Did not progress to AD Combined
(n=177, 28%) (n=445, 72%) (n=622)

Female Sex 70 (40%) 208 (47%) 278 (45%)
Age (yrs) 73.45 (7.43) 71.74 (7.26) 72.23 (7.34)
APOE4 Present 111 (63%) 177 (40%) 288 (46%)
Education (yrs) 15.95 (2.77) 16.30 (2.70) 16.20 (2.72)
Time before progression (yrs) 2.40 (1.62) 3.28 (1.54) 3.03 (1.62)

Table 3.8 illustrates the association of biomarkers with AD progression, contrasting our pro-

posed method with the particular model procedure outlined previously. Comparing to the

naive two-stage model in Li et al. (2017), the proposed method generally yields smaller abso-
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lute Z-values. Notably, the naive Cox model produces larger Z-values for all predictors, while

the proposed model offers more moderate values that align with consensus. For instance,

predictors like MMSE, being a non-AD-specific questionnaire, show lower associations with

AD progression risk. Similarly, ICV exhibits no statistically significant association with AD

progression due to its non-specific nature. Regarding estimates, there exists a discrepancy

between the two methods, with an average percentage difference exceeding 10% across all

predictors. Although both approaches may lead to similar conclusions, the discrepancy is

likely to persist across repeated studies as they estimate distinct quantities. Results from

the naive method may lack replicability due to censoring mechanisms and potentially dif-

ferent estimated quantities. In contrast, results from the proposed method can be more

reliably tested across studies and locations. Figure 3.9 provides a visual comparison of the

estimated log-relative risk and the corresponding 95% confidence interval for each estimator

and variable combination, showcasing similar observations.

Table 3.8: Association with AD progression: model results (controlled for age, APOE in
the longitudinal model and controlled for age, gender, years of education, and APOE in the
survival model)

Naive Cox Estimator Proposed Estimator

Variable Participants Events Estimate 95% CI |Z| value Estimate 95% CI |Z| value
RAVLT.learning 622 177 -0.63 (-0.75,-0.52) 10.81 -0.64 (-0.81,-0.48) 7.68
MidTemp* 532 151 -2.80 (-3.40,-2.25) 9.58 -3.01 (-3.75,-2.27) 7.34
Entorhinal* 532 151 -10.31 (-12.76,-7.86) 8.24 -9.99 (-12.73,-7.26) 7.16
Hippocampus* 558 156 -7.72 (-9.22,-6.21) 10.06 -8.19 (-10.20,-6.13) 7.14
CDRSB 622 177 0.68 (0.62,0.76) 18.79 0.78 (0.55,0.99) 6.78
RAVLT.immediate 622 177 -0.14 (-0.16,-0.12) 13.45 -0.14 (-0.18,-0.09) 6.01
Fusiform* 532 151 -3.25 (-3.97,-2.53) 8.87 -3.22 (-4.28,-2.16) 5.63
ADAS13 622 177 0.042 (0.030,0.054) 6.66 0.021 (0.013,0.029) 5.35
Ventricles* 574 173 0.16 (0.11,0.21) 5.74 0.19 (0.11,0.26) 4.76
ADAS11 622 177 0.14 (0.13,0.16) 15.67 0.15 (0.09,0.22) 4.57
FAQ 622 177 0.20 (0.18,0.22) 17.70 0.30 (0.17,0.43) 4.45
WholeBrain* 588 175 -0.059 (-0.078,-0.040) 6.14 -0.065 (-0.095,-0.035) 4.25
FDG 287 81 -9.58 (-11.66,07.50) 9.03 -8.76 (-13.44,-4.09) 3.68
MMSE 622 177 -0.26 (-0.29,-0.23) 15.28 -0.27 (-0.48,-0.06) 2.50
RAVLT.forgetting 622 177 0.17 (0.095,0.240) 4.53 0.18 (-0.0043,0.3678) 1.91
ICV* 602 176 0.013 (0.0020,0.0245) 2.31 0.005 (-0.014,0.025) 0.56

* variable value is multiplied by 10000 for the ease of displaying
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Figure 3.9: Confidence interval side-by-side comparison for all longitudinal covariates. Vari-
ables are scaled by baseline empirical standard error for comparable scales.

3.4.1 Discussion

Under NPH conditions, the traditional maximum partial likelihood estimator (MPLE) has

been found to consistently estimate a quantity that relies on survival distribution, censoring

distribution, and conditional covariate variance. This leads to two deficiencies with this

estimator: i) Results can vary across studies even when the underlying effect remains the

same, making them difficult to replicate and rendering them meaningless; ii) Even without

dependency on the censoring distribution, the estimator consistently estimates a quantity

that can be approximated by the average longitudinal covariate effect over the support of

observed event time weighted by the conditional covariate effect. This renders the results

challenging to interpret and not clinically meaningful.

In this chapter, we have introduced a two-stage reweighted censoring robust estimator that

incorporates categorical, continuous, and longitudinal covariates. Our proposed estimator

addresses potential bias resulting from not observing longitudinal covariate values at event

times for other subjects in the risk set by predicting these values using a linear mixed effects
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(LME) model. In the second stage, we apply regular censoring robust estimator techniques

to remove dependence on censoring by reweighting using the inverse of censoring weights.

To enhance the interpretability of the resulting estimator, we add additional reweighting by

the inverse of the estimated conditional covariate variance at the integrand and scaled the

covariate by the inverse of the estimated conditional covariate variance. This adjustment

allows our estimator to be interpreted as the weighted time-average covariate effect for the

longitudinal covariate.

In the numerical simulations, we validate our method under the assumption of independent

censoring and demonstrated its necessity for restoring an interpretable quantity. Applying

the method to the ADNI data yields different results compared to conventional approaches.

However, deriving a robust variance estimator poses nontrivial challenges, and the bootstrap

method imposes a heavy computational burden. Furthermore, accurate longitudinal cluster-

ing is essential when multiple underlying longitudinal groups exist to estimate longitudinal

conditional covariate variance accurately.

These challenges motivate the exploration in the following chapters. Chapter 4 aims to derive

a robust variance estimator for the entire class of censoring robust estimators using a different

approach than the sandwich estimator. Chapter 5 review current longitudinal clustering

methods, with a focus on addressing the unique challenge of monotone missingness.
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Chapter 4

Influence function-based robust

variance estimator for

censoring-robust reweight algorithms

4.1 Introduction

Survival analysis is a prevalent statistical method employed across diverse fields, such as

medicine and epidemiology. With the advancement of information collection and manage-

ment systems, researchers now have easier access to repeated measurements collected over

time from individual subjects. Consequently, there is a growing emphasis on integrating

longitudinal and survival data through joint modeling approaches. Henderson et al. (2000)

offer insights into scenarios where simultaneous modeling of longitudinal and survival data is

required, providing a comprehensive overview of existing methodologies developed for such

models.
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Ibrahim et al. (2010) highlight the significance of employing joint modeling techniques in

longitudinal studies focusing on biomarkers. Their research sheds light on the presence of bias

in the naive Cox model and reveals that both full likelihood and two-stage models can exhibit

such bias. They emphasize that the integration of survival and longitudinal analysis inherits

the challenges associated with survival data, particularly the potential misspecification issues

arising from the assumption of proportional hazards in the Cox model.

As discussed in preceding chapters, the standard Cox estimator faces challenges under NPH,

primarily due to its reliance on unknown censoring mechanisms. To address this dependency,

reweighted partial likelihood estimators have been proposed, aiming to reweight subjects

in the risk set by the inverse of their censoring weights(Xu and O’Quigley, 2000; Boyd

et al., 2012; Nguyen and Gillen, 2017). This approach seeks to emulate the scenario of

complete data, thereby mitigating bias introduced by censoring. However, a key challenge

lies in accurately estimating the censoring weights. For categorical covariates, estimating

the censoring distribution by categorical group suffices. However, for continuous covariates,

an approach involving the identification of approximate censoring groups using survival tree

methods has been proposed.

In Chapter 3, we extended the previously introduced censoring robust framework to incor-

porate longitudinal covariates. To align with existing literature, we adopted a two-step joint

modeling approach for longitudinal covariates. In the first stage, we predicted the longitudi-

nal covariate values at event times, and in the second stage, we substituted these predicted

values into the model. However, we discovered that the interpretability of the resulting

estimator was compromised by variations in conditional covariance variance.

To restore clinical meaningfulness to the estimator, we proposed scaling the longitudinal

covariate at each event time by the inverse of the estimated conditional covariate variance.

This method yielded a flexible censoring robust estimator with an interpretation as the

average covariate effect incorporating longitudinal covariate variables. However, deriving
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robust inference for such an estimator proved challenging, necessitating the use of bootstrap

methods.

The bootstrap method involves creating a large number of random copies of the original data

using case resampling and generating a distribution of the estimator to estimate variance.

While effective, this method is computationally intensive, particularly when dealing with a

large number of subjects. To address this issue, we sought an alternative approach to derive

a robust variance estimator to alleviate computational burden.

The original approach to robust variance estimation for censoring robust estimators relies on

the Huber-White robust variance estimator, which is based on two methods of calculating

variance(Freedman, 2006). The variance estimated using the product of independent score

equations is sandwiched by the variance estimated by the model-based Fisher information

matrix. This method has been demonstrated as a powerful robust variance estimator in the

context of linear regression-related methods.

In survival analysis, however, the Cox model introduces correlations between score equations

arising from the weighted expectation of covariate values at event times. To address this

issue, Lin and Wei (1989) approximated the score equations using independent summation

asymptotically, forming the basis of the censoring robust variance estimator. Previous cen-

soring robust variance estimators directly apply this method. However, in our case, we have

additional variance information that would induce further correlation, making the derivation

of the robust variance estimator a nontrivial task. For other types of robust variance estima-

tors, Hardin (2002) established a relationship between the Murphy-Topel variance estimator

Webel (2011) and the Huber-White robust variance estimator. However, the Murphy-Topel

variance estimator does not account for partial correlation. Another approach to robust

variance estimation is the influence function-based variance estimation introduced in Law

et al. (1986). The influence function method offers the advantage of being easily applicable

and not being constrained by partial correlation.
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The influence function has been previously computed for various models, including the fixed

effect of linear mixed effect model (Demidenko and Stukel, 2005), censored data (Reid, 2007),

and regular Cox regression model (Reid and Crépeau, 1985). The modification to the new

estimation equation is relatively straightforward compared to previous robust methods and

has been implemented in scenarios of independent censoring (Xu and Harrington, 2001).

Regarding the two-stage model, Zhelonkin et al. (2012) presents the formula for the uncor-

related case in our two-stage model, where the two stages of the model are connected solely

through a single term. However, there is still a gap in the establishment of a robust variance

estimator for a two-stage model with correlated score equations, particularly concerning the

set of censoring robust variance estimators.

For the remaining part of this study, Section 4.2 focuses on the development of robust

variance estimators using the influence function based method. Subsequently, a numeri-

cal investigation is conducted to evaluate the performance in various scenarios, while also

comparing it to an existing method. In the Section 4.4, a data analysis is conducted using

the influence function method and compared to an analysis performed using the bootstrap

method.

4.2 Method

4.2.1 Statistical setup

As discussed in Chapter 2 (Section 2.3.2), we focus on an infinitesimal representation of the

partial likelihood estimator, where the Cox estimator can be expressed as a functional of the
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following:

Ψ(β, w,H) = δ

[
z − EH(Ze

βzI{x̃ ≥ x})
EH(eβzI{x̃ ≥ x})

]
,

where β is the functional T (H) and δw represents the point mass distribution at (x, δ, z).

Then define Hϵ = (1 − ϵ)H + ϵδw. Then, βϵ represents the functional under distribution

function Hϵ. Thus, the infinitesimal representation can be expressed as

∫
Ψ(βϵ, w,Hϵ)dHϵ = 0.

Then the calculation of ∂
∂Hϵ

Ψ(β, w,Hϵ) gives

∂

∂Hϵ

Ψ(β, w,Hϵ) =
∂

∂Hϵ

δ

{
z −

∫
zeβzI(x̃ ≥ x)d[H + ϵ(δw −H)]∫
eβzI(x̃ ≥ x)d[H + ϵ(δw −H)]

}
= −δ

{
Ew̄ze

βzI(x̃ ≥ x)

EHeβzI(x̃ ≥ x)
− EHze

βzI(x̃ ≥ x)Ew̄e
βzI(x̃ ≥ x)

[EHeβzI(x̃ ≥ x)]2

}
= −δ̃

{
zeβzI(x̃ ≤ x)

s(0)(x̃, β)
− s(1)(x̃, β)eβzI(x̃ ≤ x)

[s(0)(x̃, β)]2

}
.

IF are obtained by arranging terms:

A(β)×IF(w;T,H) = δ

{
z − s(1)(x, β)

s(0)(x, β)

}
−
[
eβz
∫
δ̃I(x̃ ≤ x)

s(0)(x̃, β)

{
z − s(1)(x̃, β)

s(0)(x̃, β)

}]
dH(x̃, δ̃, z̃).

(4.1)

With the fundamental framework of the influence function for the proportional hazard func-

tion established, we will now proceed with the derivation of the entire class of censoring

robust variance estimators in the remaining part of this section.
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4.2.2 Influence function for censoring robust estimators under in-

dependent censoring

Under independent Censoring, given the minor change to the estimating equation, the in-

finitesimal representation can be written as

∫
δS(x)−1

{
z −

∫
z̃ez̃βI{x̃ ≥ x}dH(x̃, z̃)}∫
ez̃βI{x̃ ≥ x}dH(x̃, z̃)}

}
dH(x, z, δ) = 0.

Given that the estimating equation was only multiplied by S(x)−1, we expect that only∫
∂
∂ϵ
Ψ(β, w,Hϵ) dH(w) will change and have an additional term related to the influence of

S(x). Applying the chain rule along with the previous result of the influence function for

the Kaplan-Meier estimator, we have:

IF(w;S(x)−1, H) = −S(x̃)−2IF(w;S(x), H)

= S(x̃)−1

{
−
∫ x∧x̃

0

dF u(u)

[S(u)]2
+
δI{x ≤ x̃}
S(x̃)

}
= S(x̃)−1

{
−
∫ x∧x̃

0

dF u(u)

[s(0)(u, 0)]2
+
δI{x ≤ x̃}
s(0)(x, 0)

}
,

where S(x) = s(0)(x, 0). Combining the previous result of IF for regular Cox estimator, we

obtain IF for censoring robust estimator under independent censoring as

A(β)× IF(w;T,H) = δS(x)−1

{
z − s(1)(x, β)

s(0)(x, β)

}
−
∫
δ̃S(x̃)−1

[
eβzI(x̃ ≤ x)

s(0)(x̃, β)

{
z − s(1)(x̃, β)

s(0)(x̃, β)

}
+

{
z̃ − s(1)(x̃, β)

s(0)(x̃, β)

}
×
{∫ x∧x̃

0

dF u(u)

[s(0)(u, 0)]2
− δI{x ≤ x̃}

s(0)(x, 0)

}]
dH(x̃, δ̃, z̃).

(4.2)
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Comparing Equation 4.2 with Equation 4.1, the first two terms are similar with slight mod-

ifications according to the alternation in estimand, while the additional term accounts for

uncertainty in censoring weight estimation.

Substituting β̂ and the empirical distribution function into the expression for the influence

function, we obtain the empirical influence function. The empirical influence function eval-

uated at (xi, δi, zi) can be written as

Ii = Â(β̂)−1 ×

[
δiŜ(xi)

−1

{
zi −

S(1)(xi, β̂)

S(0)(xi, β̂)

}
−Di(β̂)

]
,

where

Di(β̂) =
n∑

j=1

δjŜ(xj)
−1 ×

[
eβ

′ziI(xj ≤ xi)

S(0)(xj, β̂)

{
zi −

S(1)(xj, β̂)

S(0)(xj, β̂)

}

+

{
zj −

S(1)(xj, β̂)

S(0)(xj, β̂)

}
×Gij(β̂)

]
,

and

Gij(β̂) =
∑

xl≤(xi∧xj)

δl
nS(0)(xl, 0)2

− δiI{xi ≤ xj}
S(0)(xj, 0)

.

Then the estimated covariance matrix of n1/2(β̂ − β∗) is n−1
∑
IiI

′
i. The empirical influence

function consists of three layers of summations.
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4.2.3 Influence function for censoring robust estimators under

conditional independent censoring without longitudinal co-

variates

Under conditional independent censoring, the estimator from the previous subsection en-

counters difficulty in the direct estimation of censoring distribution and fails to completely

remove dependency on censoring. To address this, when only categorical covariates exist,

the conditional independent censoring distribution can be categorized by the power set of

categorical covariates. Within each categorical combination, the censoring distribution is

homogeneous and can be estimated using the Kaplan-Meier estimator. To fully eliminate

the dependency on censoring in the weight used to estimate the expected covariate value,

the covariate weight in the fraction is further reweighted by the inverse of censoring weights.

In the case of continuous covariates, approximate censoring groups are identified through

the survival tree approach, and the estimation proceeds in the same manner. With further

alternation in the estimating equation, the infinitesimal representation can be written as

∫
δSz(x)

−1

{
z −

∫
Sz̃(x)

−1z̃ez̃βI{x̃ ≥ x}dH(x̃, z̃)}∫
Sz̃(x)−1ez̃βI{x̃ ≥ x}dH(x̃, z̃)}

}
dH(x, z, δ) = 0,

where Sz(x) denotes the censoring distribution conditional on the covariate value z.

Even though the estimating equation becomes more complicated, estimating equation can

still be expressed as

∫
Ψ∗(βϵ, w,Hϵ)dHϵ = 0.

. Then implicit differentiation with respect to ϵ still gives

∫
Ψ∗(β, w,H)d[δw̄−H](w)+

∫
∂

∂β
Ψ∗(β, w,H)dH(w)

∂β

∂ϵ
+

∫
∂

∂Hϵ

Ψ∗(β, w,Hϵ)dH(w) = 0,
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where the only changes to first two terms are the addition of censoring weights to remove

the dependence on censoring. The major change due to additional censoring weight lies

in third term. For independent censoring, an additional term corresponds to influence from

censoring weights estimation in the multiplication. When censoring weights are incorporated

into fractions, it is expected that the influence on the risk set would be further adjusted for

the influence from Incorporated censoring weights. Combining previous result of IF for Sz(x),

we have

∂

∂Hϵ

Ψ∗(β, w,Hϵ) =
∂

∂ϵ
Sz(x)

−1 ×
{
z −

∫
Sz̃(x)

−1z̃ez̃βI{x̃ ≥ x}dH(x̃, z̃)}∫
Sz̃(x)−1ez̃βI{x̃ ≥ x}dH(x̃, z̃)}

}
+ Sz(x)

−1 × ∂

∂ϵ

{
z −

∫
Sz̃(x)

−1z̃ez̃βI{x̃ ≥ x}dH(x̃, z̃)}∫
Sz̃(x)−1ez̃βI{x̃ ≥ x}dH(x̃, z̃)}

}.

where the first part is similar to the previous independent censoring case. For the second

part, we have

∂

∂Hϵ

Ψ∗∗(β, w,Hϵ) =
∂

∂ϵ

{
z −

∫
Sz̃(x)

−1z̃ez̃βI{x̃ ≥ x}d[H + ϵ(δw −H)]∫
Sz̃(x)−1ez̃βI{x̃ ≥ x}d[H + ϵ(δw −H)]

}
=− Ew̄Sz̃(x̃)

−1zeβzI(x̃ ≥ x) + EHIF(w̃, S,H)zeβzI(x̃ ≥ x)

EHSz̃(x̃)−1eβzI(x̃ ≥ x)

+
EHSz̃(x̃)

−1zeβzI(x̃ ≥ x)[Ew̄e
βzI(x̃ ≥ x) + EHIF(w̃, S,H)eβzI(x̃ ≥ x)]

[EHSz̃(x̃)−1eβzI(x̃ ≥ x)]2

=− Sz(x)
−1zeβzI(x̃ ≤ x) + EHIF(w̃, S,H)zeβzI(x̃ ≥ x)

s
(0)
W (x̃, β)

+
s(1)(x̃, β)[Sz(x)

−1eβzI(x̃ ≤ x) + EHIF(w̃, S,H)eβzI(x̃ ≥ x)]

[s
(0)
W (x̃, β)]2

,

where IF(w̃, S,H) stands for the influence function of censoring weight function, and s
(j)
W (x, β)

is defined as same as in the previous section with the addition of censoring weights. Com-

bining all parts of the equation, we can derive the influence function for the censoring robust
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estimator under categorical covariates as

A(β̂)× IF(w;T,H) = δSz(x)
−1

{
z − s

(1)
W (x, β̂)

s
(0)
W (x, β̂)

}

−
∫
δ̃Sz̃(x)

−1

[
Sz(x)

−1eβ̂zI(x̃ ≤ x)

s
(0)
W (x̃, β̂)

{
z − s

(1)
W (x̃, β̂)

s
(0)
W (x̃, β̂)

}

+
1

s
(0)
W (x̃, β̂)

{
EHIF(w̃, S,H)z̃eβ̂z̃I(x̃ ≥ x)

− s
(1)
W (x̃, β̂)EHIF(w̃, S,H)eβ̂z̃I(x̃ ≥ x)]

s
(0)
W (x, β̂)

}

+

{
z̃ − s

(1)
W (x̃, β̂)

s
(0)
W (x̃, β̂)

}
×
{∫ x∧x̃

0

dF u(u)

[s(0)(u, 0)]2
− δI{x ≤ x̃}

s(0)(x, 0)

}]
dH(x̃, δ̃, z̃),

(4.3)

where A(β) is updated with the addition of censoring weight. Terms in equation 4.3 are

similar to equation 4.2 with slight changes in notation. The first term remains analogous to

the usual influence function for M -estimators, while the fourth term represents the influence

from reweighting the estimand through censoring weights. The middle terms represent the

influence of the ith observation on the risk sets when combined. Such influence can be further

separated into the influence of reweighting from the ith observation on the integrand, as in

the third term, and the influence on the risk set as in the second term.

For conditional independent censoring distribution on the combination of categorical and con-

tinuous covariates, assuming the correctness of approximate grouping, the influence function

remains unchanged as the estimating equation is not altered. The approximate grouping

is assumed to be correct as the grouping procedure cannot be expressed in an infinitesimal

format and therefore cannot be incorporated into the influence function through implicit

differentiation. However, the effect of misclassification on the censoring group is expected to

be reflected in the influence function.
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When deriving the influence function for the censoring robust estimator, the influence func-

tion for the Kaplan-Meier estimator is utilized which account for misspecified censoring

distribution. The influence function for censoring weights is included for both reweighting

the entire integrand and reweighting for the expected covariate value at event time. Since

these are the locations where censoring weights occur in the estimating equation, they are

vulnerable to misspecification of censoring weights. By adding the influence function of the

Kaplan-Meier estimator at these locations, the robust property is expected to be preserved.

Substituting β̂ and the empirical distribution function into the expression for the influence

function, we obtain the empirical influence function. The empirical influence funciton eval-

uated at (xi, δi, zi) can be written

Ii = Â(β̂)−1 ×

[
δiŜ(xi)

−1

{
zi −

S(1)(xi, β̂)

S(0)(xi, β̂)

}
−Di(β̂)

]
,

where

Di(β̂) =
n∑

j=1

δjŜ(xj)
−1 ×

[
eβ

′ziI(xj ≤ xi)

S
(0)
W (xj, β̂)

{
zi(xj)−

S
(1)
W (xj, β̂)

S
(0)
W (xj, β̂)

}

+

{
zj(xj)−

S
(1)
W (xj, β̂)

S
(0)
W (xj, β̂)

}
×Gij(β̂)

−
Gij(β̂)S

−1
zk

(xj)

S
(0)
W (xj, β̂)

{ nzk∑
k=1

Gk
i

nzk

zk(xj)e
β̂zk(xj)I(xk ≥ xj)

−
S
(1)
W (xj, β̂)

∑nzk
k=1

Gk
i

nzk
eβ̂zk(xj)I(xk ≥ xj)

S
(0)
W (xj, β̂)

}]
,

Gij(β̂) =
∑

xl≤(xi∧xj)

Gj
l (1− δl)

nc
lS

(0)(xl, 0)2
− Gj

i (1− δi)I{xi ≤ xj}
S(0)(xj, 0)

,

where Gi
m is an indicator function that gives value one only if subject m and subject i belong

to the same censoring group, nc
l indicates the number of subjects of the censoring group that
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the subject l belongs to, and nzk indicates the number of subjects of the longitudinal variance

group that the subject k belongs to.

4.2.4 Influence function for censoring robust estimators under

conditional independent censoring with a longitudinal co-

variate

In the case of conditional independent censoring with longitudinal covariates, it is useful

to initially consider a heuristic scenario where the exact longitudinal covariate values at

event time are available. With the inclusion of longitudinal covariates, the complexity of

the influence function doubles due to the uncertainty stemming from unknown longitudinal

covariate values at event time. To address this uncertainty, we employ a two-stage model

where we predict the longitudinal covariate values at event time using a LME model.

The estimator derived from this two-stage model inherits the influence from the previous

censoring robust estimator while also facing potential influence from the correctness of the

model used in the first stage. As observed in previous cases, the influence function accu-

mulates from various sources of misspecification. Therefore, beginning with the assumption

of known longitudinal values at event time lays the groundwork for the final result and

streamlines the process.

Without considering the subgroups of longitudinal trajectories, the estimating equation for

longitudinal covariate can be written in an infinitesimal form as

∫
δSz(x)

−1

{
V (x)−1z −

∫
Sz̃(x̃)

−1z̃V (x)−1eV (x)−1z̃βI{x̃ ≥ x}dH(x̃, z̃)}∫
Sz̃(x̃)−1eV (x)−1z̃βI{x̃ ≥ x}dH(x̃, z̃)}

}
dH(x, z, δ) = 0,

where the V (x) represents the conditional variance of longitudinal covariate with respect to

the distribution H. To derive the influence function given covariate value at event time, it is
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foreseeable that the influence function for the conditional variance of longitudinal covariate

is required. The influence function of V (x) can be obtained through a slight modification

of the variance function, which is readily available (Zhang et al., 2019). Since Var[X|T ] =

E[X2|T ]− E[X|T ]2, then by the chain rule for influence function we have

IF (w, V,H) =
∂

∂ϵ

{∫
x̃2I{x̃ ≥ x}dHϵ −

(∫
x̃I{x̃ ≥ x}dHϵ

)2
}

= x2I{x ≥ x̃} − EH [X
2|T ]− 2EH [X|T ](xI{x ≥ x̃} − EH [X|T ])

= (xI{x ≥ x̃} − EH [X|T ])2 − V ar[X|T ],

where Ej
H [X|T ] are just regular moment with indicator in risk set.

The empirical influence function for the empirical variance estimator can be obtained by

Ii{V (xj)} =
{
zi(xj)I(xi ≥ xj)− ÊH [X|T ]

}2

− ˆV ar[X|T ],

where

ÊH [X|T ] =
∑
l

zlI(xl ≥ xi),

and

ÊH [X
2|T ] =

∑
l

z2l I(xl ≥ xi).

To derive IF, two more terms will be associated with the influence from the variance estima-

tor. The derived IF for the censoring robust estimator with longitudinal covariate assuming
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covariate at event time known is

A(β)× IF(w;T,H) = δS(x)−1

{
V (x)−1z − s

(1)
WV (x, β)

s
(0)
WV (x, β)

}

−
∫
δ̃S(x̃)−1

[
eβzI(x̃ ≤ x)

s
(0)
WV (x̃, β)

{
V (x)−1z − s

(1)
WV (x̃, β)

s
(0)
WV (x̃, β)

}

− S(x̃)

s
(0)
WV (x, β)

{
EHIF1(w̃)ze

βzI(x̃ ≥ x)

− s
(1)
WV (x̃, β)EHIF1(w̃)e

βzI(x̃ ≥ x)]

s
(0)
WV (x, β)

}

+

{
V (x̃)−1z̃ − s

(1)
WV (x̃, β)

s
(0)
WV (x̃, β)

}
×

{∫ x∧x̃

0

dF u(u)

[s
(0)
V (u, 0)]2

− δI{x ≤ x̃}
s
(0)
V (x, 0)

}

+ IF2(w̃)V (x̃)−2

 0

z̃L


− 1

s
(0)
WV (x̃, β)

{EHIF2(w̃)V (x̃)−2

 0

z̃L

S(x̃)−1eβzI(x̃ ≥ x)

+ EHV (x̃)−1z̃S(x̃)−1eβz̃β′IF2(w̃)V (x̃)−2

 0

z̃L

 I(x̃ ≥ x)

−

s
(1)
WV (x̃, β)EHS(x̃)

−1eβz̃β′IF2(w̃)V (x̃)−2

 0

z̃L

 I(x̃ ≥ x)

s
(0)
WV (x̃, β)

}
]
dH(x̃, δ̃, z̃),

(4.4)

where IF1 denotes the influence function for S(x) and IF2 denotes the influence function for

V (x) respectively for simplicity. Even with many terms, the additional items come from the

influence of reweighting the observed covariate value and the influence of reweighting the

expected covariate value with the conditional covariance variance.
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Substituting β̂ and the empirical distribution function into the expression for the influence

function, we obtain the empirical influence function. The empirical influence function eval-

uated at (xi, δi, zi) can be written as

Ii = Â(β̂)−1 ×

[
δiŜ(xi)

−1

{
ziV̂

−1(xi)−
S
(1)
WV (xi, β̂)

S
(0)
WV (xi, β̂)

}
−Di(β̂)

]
,

where

Di(β̂) =
n∑

j=1

δjŜ(xj)
−1 ×

[
eβ

′z∗i (xi)I(xj ≤ xi)

S
(0)
WV (xj, β̂)

{
z∗i (xj)−

S
(1)
WV (xj, β̂)

S
(0)
WV (xj, β̂)

}

+

{
z∗j (xj)−

S
(1)
WV (xj, β̂)

S
(0)
WV (xj, β̂)

}
×Gij(β̂)

−
Gij(β̂)S

−1
zk

(xj)

S
(0)
WV (xj, β̂)

{ nzk∑
k=1

Gk
i

nzk

z∗k(xj)e
β̂′z∗k(xj)I(xk ≥ xj)

−
S
(1)
W (xj, β̂)

∑nzk
k=1

Gk
i

nzk
eβ̂

′z∗k(xj)I(xk ≥ xj)

S
(0)
W (xj, β̂)

}

+

 0

z∗jL(xj)

 V̂ −1(xj) ∗ Ii{V (xj)}

− Ii{V (xj)}V̂ −1(xj)

S
(0)
WV (xj, β̂)

{ nzk∑
k=1

1

nzk

S−1
zk

(xj)

 0

z∗kL(xj)

 eβ̂
′z∗k(xj)I(xk ≥ xj)

+

nzk∑
k=1

1

nzk

S−1
zk

(xj)z
∗
k(xj)e

β̂′z∗k(xj)β̂′

 0

z∗kL(xj)

 I(xk ≥ xj)

−

S
(1)
WV (xj, β̂)×

∑nzk
k=1

1
nzk
S−1
zk

(xj)e
β̂′z∗k(xj)β̂′

 0

z∗kL(xj)

 I(xk ≥ xj)

S
(0)
WV (xj, β̂)

}]
,
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and

Gij(β̂) =
∑

xl≤(xi∧xj)

Gj
l (1− δl)

nc
lS

(0)(xl, 0)2
− Gj

i (1− δi)I{xi ≤ xj}
S(0)(xj, 0)

.

where z∗k(xj) indicates the scaled covariate value of subject k at the event time of subject j,

and z∗kL(xj) specifies the scaled longitudinal covariate value.

4.2.5 Influence function for two-stage model

Many estimators are obtained through a two-stage model, in which the first stage provides

input for the second stage. For instance, in our proposed censoring robust estimator, the

first stage model helps approximate the exact hazard by predicting longitudinal covariate

value at event time. For mathematical representation, the two-stage estimation problem can

be characterized by Hardin (2002):

Model 1 : E{y1|x1, θ1}

Model 2 : E{y2|x2, θ2, E{y1|x1, θ1}},

Instead of dealing with the full information maximum likelihood f(y1, y2|x1, x2, θ1, θ2), where

the parameter vectors to be estimated are θ1 and θ2, θ1 can be directly estimated indepen-

dently of θ2. Then, conditional on the estimations from the first stage, θ2 can be estimated,

thus completing the estimation process in two steps.

For robust variance estimation, the influence function has been derived for special cases

where both stages consist of estimation equations (Hardin, 2002). The result is akin to

the Huber-White robust variance estimator. However, for more general M -estimators, the

Huber-White robust variance estimator may not exist as the representation as estimating

equations may not unavailable. Nonetheless, the influence function still exists, and a general
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framework for the analysis of the robustness property was provided, considering the class of

two-stage models as defined by Zhelonkin et al. (2012):

EF

[
Ψ1

(
z(1);S(F )

)]
= 0

EF

[
Ψ2

(
z(2);h

(
z(1);S(F )

)
, T (F )

)]
= 0

,

Where Ψ1(·; ·) and Ψ2(·; ·, ·) denote the score functions of the first and second stage estima-

tors, respectively, and h(·; ·) is a given continuously piecewise differentiable function in the

second variable. Here, S is the functional for the parameters of the first stage, such that

S (FN) = β̂1 and at the model S(F ) = β1, while T is the functional for the second stage,

such that T (FN) = β̂2 and at the model T (F ) = β2. Here, T (F ) depends directly on F and

indirectly on F through S(F ).

Define Fϵ = (1− ϵ)F + ϵ∆z and ∆z as the probability measure which puts mass one at the

point z. Then, the infinitesimal representation of the functional of the second stage can be

written as ∫
Ψ2

(
z(2);h

(
z(1);S (Fϵ)

)
, T (Fϵ)

)
dFϵ = 0.

Taking the derivative with respect to ϵ gives

∂

∂ϵ
(1− ϵ)

∫
Ψ2

(
z̃(2);h

(
z̃(1);S (Fϵ)

)
, T (Fϵ)

)
dF (z̃)

∣∣∣∣
ϵ=0

+
∂

∂ϵ
ϵ

∫
Ψ2

(
z̃(2);h

(
z̃(1);S (Fϵ)

)
, T (Fϵ)

)
d∆z

∣∣∣∣
ϵ=0

= 0.

The second terms give the point mass distribution, and the first term can be obtained through

implicit differentiation with respect to the functionals S(F ) and T (F ). Arrange terms gives

the following general equation for the influence function of the second stage estimator:

IF(z;T, F ) =M−1(Ψ2

(
z(2);h

(
z(1);S(F )

)
, T (F )

)
+

∫
∂

∂θ
Ψ2

(
z̃(2); θ, T (F )

) ∂
∂η
h
(
z̃(1); η

)
dF (z̃) · IF(z;S, F )),
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where M = −
∫

∂
∂ξ
Ψ2

(
z̃(2);h

(
z̃(1);S(F )

)
, ξ
)
dF (z̃).

It can be observed that the above formula does not account for the complexity of the estima-

tor, but the method remains applicable to our proposed two-stage estimator. The formula

consists of three parts. The multiplier M outside the parentheses is the second derivative

common to the influence function for score equations. The first term within the parentheses

denotes the point mass at the observed point. The second term represents the differentiation

with respect to ϵ through the functional of the first stage, where the chain rule starts from

the function h(·; ·) to the functional S(F ), and ultimately involves the influence function of

the first stage estimator.

Given this decomposition, the influence function proposed without considering influence from

the first stage would be M−1(Ψ2

(
z(2);h

(
z(1);S(F )

)
, T (F )

)
. Such simple terms differ from

our previous result of the censoring robust estimator given longitudinal covariate values.

This simplified influence function may arise from a simple MLE in the second-stage model.

However, the influence function can become more complex after including the influence from

factors such as partial likelihood and other potential variations.

Nevertheless, given the influence function of the second-stage model without considering the

variation from the first stage, the modification to include the variation from the first-stage

model is similar. It is expected that there will be additional terms corresponding to the

partial differential with respect to the functionals of the first stage. When the dependence

over the first-stage model relies on single function h(·; ·), the last term within the parentheses

can be added for direct application. For dependencies on multiple functions, the chain rule

can be further applied, so that if the class of the two-stage models is defined as:

EF

[
Ψ1

(
z(1);S(F )

)]
= 0

EF

[
Ψ2

(
z(2);h1

(
z(1);S(F )

)
, . . . , hk

(
z(1);S(F )

)
, T (F )

)]
= 0

,
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where there are k continuously piecewise differentiable functions defined similarly. Then the

influence function of the second stage estimator can be represented as:

IF(z;T, F ) =M−1(Ψ2

(
z(2);h

(
z(1);S(F )

)
, T (F )

)
+

k∑
j=1

∫
∂

∂θ
Ψ2

(
z̃(2); θ, T (F )

) ∂
∂η
hj
(
z̃(1); η

)
dF (z̃) · IF(z;S, F )).

Simple linear regression

To derive the IF for our two-stage model, it’s beneficial to begin with the IF for the simple

regression, which involves a single-variable linear regression with a slope and an intercept.

Understanding this derivation will provide insights into extending it to the LME model

used in the first stage of our two-stage model. In this case, β = T (F ) = Cov(X,Y )
Var(X)

. Given

the infinitesimal representation, the chain rule gives the influence function of the regression

estimator of SLR:

ψθ̂(x, y) =
(x− E[X])(y − E[Y ])− Cov(X, Y )

Var(X)
− ((x− E[X])2 − Var(X)) Cov(X, Y )

(Var(X))2

=
(x− E[X])(y − E[Y ])− β(x− E[X])2

Var(X)

=
(x− E[X])

Var(X)
[(y − E[Y ])− β(x− E[X])]

Multiple linear regression

In multiple regression, it is assumed that

yi = Xβ + ϵi,

where instead of single covariate x, X = (x1, . . . , xk), and that β = (β1, . . . , βk). When

adjusting for multiple covariates, we cannot simplify to the previous formulation as the co-
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variance between y and (x1, . . . , xk) is not defined. To derive the influence function under

multiple regression, the derivative of the functional β would suffice. To estimate β for mul-

tiple regression, it is common to adopt the least square method or the maximum likelihood

method. For the estimation of β, both methods result in the same target function, and the

following will proceed with the maximum likelihood approach.

For MLE of multiple linear regression, we seek to minimize the following objective function:

n∑
i=1

(yi −Xiβ)
2.

Thus, it is an M -estimator with G(X, y, β) = (y −Xβ)2 as the infinitesimal representation

of objective function is E[y −Xβ2]. We can further obtain that

g(X, y, β) = ∇βG(X, y, β) = −2X ′(y −Xβ)

∇βg(X, y, β) = 2X ′X

Using the previous formula, we obtained that

IF(X, y; β, F ) = −E[∇βg(X, y, β)]
−1g(X, y, β) = E[X ′X]−1X ′(y −Xβ).

Weighted multiple linear regression

When the homoscedasticity assumption doesn’t hold, there is a variation of variance. It is

common to assume the same formulation of yi, but ϵ doesn’t follow the identical normal

distribution. With the presence of heteroscedasticity, the original estimator would still be

unbiased but not the best linear predictor. Instead, according to the Gauss-Markov theorem,

the best unbiased linear estimator would be the original predictor weighted by the inverse

of the variance. Define wi be the inverse of Var(yi) = Var(ϵi), then the modified objective
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function is

n∑
i=1

wi(yi −Xiβ)
2.

Using similar techniques, we find that

G(X, y, w, β) = w(y −Xβ)2

g(X, y, w, β) = ∇βG(X, y, w, β) = −2X ′w(y −Xβ)

∇βg(X, y, β) = 2X ′wX

The influence function of weighted multiple linear regression is obtained as

IF(X, y; β, F ) = −E[∇βg(X, y, β)]
−1g(X, y, β) = E[X ′wX]−1X ′w(y −Xβ),

where E[X ′wX] = 1/n
∑n

i=1X
′
iwiXi. This result is similar to the one obtained in Jann

(2019), and the only difference would be the degree-of-freedom correction term
√

n−1
n−k−1

,

where k represents the number of covariates. Since the influence function is an infinitesimal

approach, the focus would be on a situation with a large number of observations. As the

number of observations increases, the correction term will approach 1 quickly. Thus, the

effect of ignoring the correction terms would only be significant with an insufficient degree

of freedom.
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Influence function for the linear mixed effects model

The influence function for the full LME model is quite complex to derive. Assuming the

general format that

y = Xβ + Zu+ ϵ,

u ∼ N(0, G),

ϵ ∼ N(0,Σ),

V = Σ+ Z ′GZ.

Then the distribution of y has a density function given by:

p(y|β, V ) = (
1

2π
)−

n
2 |V |−

1
2 exp

{
−1

2
(y −Xβ)′V −1(y −Xβ)

}
,

so the likelihood and the log-likelihood functions can be expressed respectively as

L(β, V ) ∝ |V |−
1
2 exp

{
−1

2
(y −Xβ)′V −1(y −Xβ)

}
,

and

l(β, V ) ∝ −1

2
|V | − 1

2
(y −Xβ)′V −1(y −Xβ).

For parameter estimation, there is no closed-form solution. Assuming V is known, then

taking the first derivative of log-likelihood with respect to β and setting it to zero gives the

solution as

β̂ = (X ′V −1X)−1X ′V −1y.
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To estimate the random effect, we can use the joint distribution of y and u as:

 y

u

 ∼ MVN


 Xβ

0

 ,
 V ZG

GZT G


 .

Given information about β and V , then an estimate of random effect can be obtained using

the property of conditional expectation of multivariate normal distribution.

E[u | y] = E[u] + Cov
[
u,yT

]
Var−1[y](y − E[y])

= GZTV−1(y −Xβ) = GZT
(
ZGZT +Σ

)−1
(y −Xβ),

then replace fixed effect β by estimatorβ̂ to have the prediction

û = GZT
(
ZGZT +Σ

)−1
(y −Xβ̂).

It can be seen that the estimators of β and u both depend on V . Currently, solutions to

variance components still rely on the iterative or numerical method. So far, all the derivation

indicates the complexity of the functional. Due to iterative estimation, the influence function

becomes even harder to derive as it includes all possible sources of variation. To reduce the

complexity, we propose to assume V is known by substituting it with the estimates. We

argue that the change in influence function would be minimal as the fluctuation of the β

estimate resulting from the misspecified variance-covariance matrix is small compared to

that from the misspecified mean structure. A simulation has been done to assess the impact

of the misspecified variance component on fixed effect estimates, and it is found that the

fixed effect coverage remains stable with a moderate number of observations, whereas the

coverage probability deviates far from standard as soon as the mean form is misspecified.
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Given V̂ as true V , we returned to the multivariate case of weighted regression, where the

objective function is:

n∑
i=1

(yi −Xiβ)V
−1
i (yi −Xiβ),

giving the derivation to the influence function of β as

G(X, y, V, β) = (y −Xβ)V −1(y −Xβ),

g(X, y, V, β) = ∇βG(X, y, V, β) = −2X ′V −1(y −Xβ),

∇βg(X, y, β) = 2X ′V −1X,

and thus

IF(X, y; β, F ) = −E[∇βg(X, y, β)]
−1g(X, y, β) = E[X ′V −1X]−1X ′V −1(y −Xβ).

Notice that even though Xi’s are of various dimensions due to the number of observations

and that even if the number of observations is the same for two subjects, the data may not

be comparable as the measurement time may differ. Still, the X ′V −1X may be recognized

as leverage standardized by variance at each measurement so that it is still of dimension

p× p, where p is the number of fixed covariates. Then it acts as the weight for standardized

covariate value X ′V −1 to assess the influence of a specific subject.

4.2.6 Influence function for censoring robust estimators under

conditional independent censoring with a predicted longi-

tudinal covariate

With the addition of the predicted longitudinal covariate, it is expected that the influence

function would have additional terms corresponding to fluctuations in predicted values. For
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derivation, the implicit differentiation indicates the necessity of deriving the influence func-

tion for the predicted longitudinal covariate value as the second stage model only depends

on the first stage model through the predicted longitudinal covariates. For an arbitrary

predicted longitudinal covariate value for subject j, we define the covariate X(i) to indicate

the fixed effect covariate for prediction at event time i corresponding to ith subject and let

Z(i) to indicate the random effect covariate for prediction at event time i corresponding to

ith subject. Then the predicted value at the event time would be

Ẑi(Xj) = X
(1)
i (Xj)β + Z

(1)
i (Xj)ûi

= X
(1)
i (Xj)β + Z

(1)
i (Xj)GZ(1)T

(
Z(1)GZ(1)T +Σ

)−1

(y −X(1)β)

=

{
X

(1)
i (Xj)− Z

(1)
i (Xj)GZ(1)T

(
Z(1)GZ(1)T +Σ

)−1

X(1)

}
β

+ Z
(1)
i (Xj)GZ(1)T

(
Z(1)GZ(1)T +Σ

)−1

y,

where only the first term is associated with β in the first stage. Thus, by vector differentia-

tion, the implicit differentiation down through Ẑ
(2)
ij would be

Ẑ
(2)
ij

∂ϵ
=
∂Ẑ

(2)
ij

∂β
× ∂β

∂ϵ

=

{
X

(2)
i (Xj)− Z

(2)
i (Xj)GZ(1)T

(
Z(1)GZ(1)T +Σ

)−1

X(1)

}
× IF(X, y; β, F ).

To reduce redundancy in representation, we focus on the additional terms corresponding

to influence from the first stage model. From the previous derivation, it is expected that

the additional term can be obtained through the partial derivative of integrand through the

predicted longitudinal covariate values at event time.

∂

∂Hϵ

Ψ∗∗(β, w,Hϵ) =
∂

∂Hϵ

{
V (x)−1z̃ −

∫
Sz̃(x̃)

−1z̃V (x)−1eV (x)−1z̃βI{x̃ ≥ x}dH(x̃, z̃)}∫
Sz̃(x̃)−1eV (x)−1z̃βI{x̃ ≥ x}dH(x̃, z̃)}

}
.

In the above equation, z represents the observed covariate value at event time, while z̃

represents the predicted longitudinal covariate values at event time. It is commonly assumed
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that the exact event time is known to avoid further complications. However, obtaining the

longitudinal covariate value at event time is rare in practice, so it is typically predicted from

the fitted LME model. If only z̃ values involve imputations through the LME model, then

the partial derivative only applies to the z̃ values for the expected covariate value at event

time.

It’s important to note that the censoring weight estimator S(xj) doesn’t contain influence

through predicted longitudinal covariate values, as it only uses the observed time and status.

However, the conditional variance estimator V̂ (xj) involves influence from the ith subject

through the predicted values in the risk set. Since V (xj) follows z̃j at every occurrence,

pre-calculating IF (xi;V (xj)) in advance can reduce computation complexity.

IF (xi; V̂ (xj)) =
∂V̂ (xj)

∂ϵ

=
∂

∂ϵ
{E(Z2|T )− [E(Z|T )]2}

=
∂

∂ϵ
{ 1
n

∑
z2(xj)− [

1

n

∑
z(xj)]

2}

=
2

n

∑
z(xj)

∂z(xj)

∂ϵ
− 2

n

∑
z(xj)×

1

n

∑ ∂z(xj)

∂ϵ

=
2

n

{∑[
z(xj)−

1

n

∑
z(xj)

]
∂z(xj)

∂ϵ

}
.

Then the additional terms related to influence from first stage model prediction are as follows

∂

∂Hϵ

Ψ∗∗(β, w,Hϵ) =IF3

− 1

s
(0)
WV (x̃, β)

{∫
Sz̃(x)

−1IF3exp(β
′z∗(x))I{x̃ ≥ x}dH(x̃, z̃)

+

∫
Sz̃(x)

−1z∗(x)exp(β′z∗(x))β′IF3I{x̃ ≥ x}dH(x̃, z̃)

−
s
(1)
WV (x̃, β)

∫
Sz̃(x)

−1exp(β′z∗(x))β′IF3I{x̃ ≥ x}dH(x̃, z̃)

s
(0)
WV (x̃, β)

}
,
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where

IF3 =

 0

V −1(x)∂zL(x)
∂ϵ

− V −2(x)zL(x)
∂V (x)
∂ϵ

 .

When predicted longitudinal covariates at event time are not treated as provided, the in-

fluence function contribution from the previous section can also be updated. As predicted

longitudinal covariates at event time can deviate from the true distribution of longitudinal

covariates at event time, the influence function contributed from the inverse of variance

would have additional terms including the fluctuation of the first-stage model. The influence

function from the inverse of variance needs to be updated since predicted covariate values

depend on the first-stage model, whereas the Kaplan-Meier estimate only takes inputs of the

observed times and thus possesses no dependence on the first-stage model.

Substituting β̂ and the empirical distribution function into the expression for the influence

function, we obtain the empirical influence function. The empirical influence funciton eval-

uated at (xi, δi, zi) can be written

Ii = Â(β̂)−1 ×

[
δiŜ(xi)

−1

{
ziV̂

−1(xi)−
S
(1)
WV (xi, β̂)

S
(0)
WV (xi, β̂)

}
−Di(β̂)

]
,
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where

Di(β̂) =
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with

Gij(β̂) =
∑

xl≤(xi∧xj)

Gj
l (1− δl)

nc
lS

(0)(xl, 0)2
− Gj

i (1− δi)I{xi ≤ xj}
S(0)(xj, 0)

,
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4.2.7 Influence calculation

The computational efficiency of the R programming language may be compromised when

executing complex or nested loop functions, leading to longer running times. Therefore,

computation is conducted using RcppArmadillo, which integrates C++ within the R envi-

ronment. Through simulation, it has been observed that the average execution duration has

significantly decreased from approximately two hours to just 10.31 seconds, compared to the

R forloop.
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4.3 Numerical studies

4.3.1 Simulation setup

In this section, we compare the performances of the three variance estimators: (i)the naive

variance estimator using Fisher’s information Vcox by Cox (1972); (ii) the robust variance

estimator VRobust as in Boyd et al. (2012); Nguyen and Gillen (2017) modified from Lin and

Wei (1989);(iii) the proposed robust variance estimator VIF . The application of all three

variance estimators will be utilized in the context of the censoring robust estimator within

the framework of joint modeling of survival and longitudinal data, and the simulation setup

will be replicated from the previous paper in order to maintain consistency. In accordance

with the established framework, three distinct scenarios have been devised to facilitate a

comparative analysis of the performance exhibited by the three variance estimators. For

the covariate setting, we are interested in quantifying the association between the time to

the event and longitudinal covariate Z1 ∈ R for each scenario. Subsequently, β1 shall serve

as the parameter corresponding to our evaluations and the primary focus of our analysis

and only a confounding covariate Z2 ∼ Bernoulli(0.4) was adjusted to simulate a general

regression situation. The covariates are generated such that

Z2 ∼ Bin(1, 0.4),

Z1(t)|b ∼ N(f(t) + b1 + b2 ∗ t2, verror ∗ ID),b1
b2

 = b ∼ N


0
0

 ,
vinter 0

0 vslope


 ,

where Z2 is generated through Bin(1, 0.4) and Z1(t) is generated using underlying longi-

tudinal trajectories with the addition of independent random intercept with vinter = 0.01,

random slope with vslope = 0.08 and normal measurement error with verror = 0.02. The
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underlying longitudinal trajectories without random effect follows the function

f(t) =


−0.03956718 ∗ t2 + 0.2942684 ∗ t+ 0.343545, for Group1,

−0.026718 ∗ t2 + 0.142684 ∗ t+ 0.603545, for Group2,

as depicted in Figure 3.2. For comparison, we evaluate the variance estimators based on

the mean of empirical standard error and coverage probability of 95 % confidence intervals

under each scenario. In each given scenario, it is assumed that there exist two longitudinal

subgroups, with respective probabilities of (0.4, 0.6). These subgroups adhere to an under-

lying longitudinal pattern, wherein the group with a higher initial biomarker value typically

exhibits a slower rate of increase, while the group with a lower initial biomarker value gen-

erally experiences a faster rate of increase. The three scenarios we considered correspond

to the proportional hazard model, the non-proportional hazard model with constant vari-

ance longitudinal covariate, and the non-proportional hazard model, where the longitudinal

covariate varies with respect to time. The first scenario is the proportional hazard model,

where we generate survival time according to

λ(t|Z) = exp{−0.8× Z1(t)− 0.4× Z2}.

The second scenario is the non-proportional hazard model with constant variance longitudi-

nal covariate, where we generate the survival time according to

λ(t|Z) = exp{log(0.3)I{t > 1} × Z1(t)− 0.1× Z2}.

The third scenario is the non-proportional hazard model with longitudinal covariate variance

varying over time. The survival time is generated based on the same hazard as the second

scenario, except that a random slope is incorporated into the longitudinal covariate. To

examine the impact of censoring distribution on estimators, three censoring scenarios are
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employed to generate the censoring time for each scenario. The censoring scenarios differ as

follows : censoring based on a categorical covariate (case 1), censoring based on a longitudinal

covariate (case 2), and censoring based on the interaction between covariates (case 3). The

censoring time is generated through power function distribution with a maximum follow-

up time of 4 years. For replicable results, the data-generating scenario and the censoring

scenario were each run 1000 times.

For non-proportional hazard, due to a lack of an analytic expression for
∫∞
0
β1(t)dF (t), we

approximate with the Monte Carlo average of βCox with administrative censoring at τ = 4) for

n = 2000. For the longitudinal covariate, the LME model incorporates the desired variance

structure. In the first two scenarios, we assumed a random intercept following N(0, 0.08).

In the last scenario, we add an independent random slope following N(0, 0.04) and assume

the independence between the random intercept and random slope for simplicity. Finally,

we assume that our study’s measurement error is identically and independently distributed,

following N(0, 0.02) throughout the study. For NPH cases, survival time was generated by

discretizing continuous time to small intervals of 0.01 years using the memoryless property

of exponential distribution.

4.3.2 Simulation results

Table 4.1: Results of the simulation study with random intercept and random slope under
non-proportional hazard, n = 800

Naive Estimator Regular Robust Variance Influence Based Variance

Scenario Mean V̂cox V̂Robust V̂Inf
(Truth:-0.395) ESE CP ESE CP ESE CP

C:1 -0.396 0.469 0.90 0.454 0.89 0.534 0.95
C:2 -0.392 0.471 0.92 0.456 0.90 0.530 0.94
C:3 -0.398 0.474 0.92 0.459 0.91 0.530 0.97

The subsequent sections of this subsection are dedicated to the comparative analysis of the

performances exhibited by the three estimators. Given the objective of developing a robust
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Table 4.2: Results of the simulation study with random intercept under non-proportional
hazard, n=800

Naive Estimator Regular Robust Variance Influence Based Variance

Scenario Mean V̂cox V̂Robust V̂Inf
(Truth:-0.381) ESE CP ESE CP ESE CP

C:1 -0.379 0.432 0.90 0.445 0.88 0.598 0.96
C:2 -0.380 0.434 0.89 0.433 0.87 0.561 0.92
C:3 -0.422 0.474 0.93 0.459 0.91 0.530 0.97

Table 4.3: Results of the simulation study under proportional hazard, n=800

Naive Estimator Regular Robust Variance Influence Based Variance

Scenario Mean V̂cox V̂Robust V̂Inf
(Truth:-0.800) ESE CP ESE CP ESE CP

C:1 -0.812 0.474 0.86 0.459 0.89 0.530 0.95
C:2 -0.838 0.420 0.88 0.446 0.90 0.614 0.94
C:3 -0.823 0.445 0.87 0.463 0.88 0.543 0.95

variance estimator, it is natural to evaluate the three estimators by examining their coverage

probability.

We initiate our comparison by assessing the influence-based robust variance estimator (V̂IF )

against the bootstrap technique, following the approach of prior research. Our examination

reveals that both variance estimators displayed similar magnitudes for the mean standard

error across all scenario combinations. However, when it came to coverage probability, V̂IF

outperforms the bootstrap method by consistently achieving higher coverage probabilities,

tightly centered around the target value of 0.95 across all scenarios.

In contrast, the preceding study, which evaluates the coverage probabilities of the bootstrap

variance estimator in the context of NPH with random slopes, reports slightly lower coverage

probabilities ranging from 0.92 to 0.94 across all censoring cases. However, our analysis of

V̂IF demonstrate notably improved and more consistent coverage probabilities, ranging from

0.94 to 0.97 across the three censoring scenarios. This enhanced consistency in achieving the

target coverage probability of 0.95 underscores the robustness of V̂IF across diverse scenarios.
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Before delving into the comparison involving V̂IF and the other two variance estimators, it’s

essential to elucidate the disparity between the naive estimator V̂cox and the standard robust

variance estimator V̂Robust. Previous investigations (Nguyen and Gillen, 2017; Boyd et al.,

2012) have indicated that V̂IF typically yields higher estimates compared to V̂cox. However,

our specific analysis reveals this trend primarily in the proportional hazard model scenario.

In cases where the hazard coefficient varies, we observed that V̂Robust tends to yield smaller

estimates than V̂cox.

This discrepancy in the magnitudes of V̂Robust and V̂cox hinges on the correlation between the

parameter and the covariate. When this relationship remains stable, the inclusion of addi-

tional observations may not proportionally augment statistical information. Consequently,

the naive variance estimator may overestimate the information contribution, leading to an

underestimation of the actual underlying variance.

In the context of NPH, where the instantaneous parameter is solely influenced by the covari-

ate value at the event time, the statistical information provided is typically greater compared

to the proportional hazards case. Hence, it’s anticipated that V̂Robust would be lower than

V̂cox in scenarios employing the NPH model with either only a random intercept or with

a random slope. Conversely, in the case of the PH model, a higher estimated variance is

expected.

It’s noteworthy that V̂Robust is akin to the variance estimator obtained by assuming that

the subject’s influence is confined to partial correlation. It’s presumed that the population

parameter encapsulates the predicted longitudinal covariate value, the estimated censoring

weight, and the estimated conditional covariate variance, all considered independent of in-

dividual influences.

In our evaluation of the proposed variance estimator V̂IF , we observed notable enhance-

ments in coverage probability and a noticeable increase in the average estimated standard
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error across nine different scenarios. The coverage probabilities achieved using V̂IF were

consistently close to 0.95 across all three scenarios. Notably, the scenario featuring propor-

tional hazards exhibited the least variability in coverage, whereas the scenario with non-

proportional hazards and only a random intercept displayed the highest variability. This

variability can be attributed to the challenge of distinguishing between the variance stem-

ming from the random intercept and that resulting from measurement error. Despite some

slight variation observed within individual variance estimators, it is evident that V̂Inf demon-

strated substantial improvement compared to the other two estimators.

The coverage of V̂Cox was centered around 0.91, while that of V̂Robust was centered around 0.89.

It’s important to emphasize that V̂Robust is essentially equivalent to the proposed variance

estimator, with the exception of potential variations in censoring weight estimation, covariate

prediction, and variance estimation.

The average estimated standard error of V̂IF was observed to be 18% higher than that

of V̂Robust. This increase primarily stems from the considerations mentioned above. The

significance of accounting for the potential impact of these variations is apparent and is

reflected in the coverage probability.

4.4 Application

In this section, we apply the proposed variance estimator to ADNI data to assess the associa-

tion between longitudinal cortical thickness and progression to AD compared to the previous

study using the bootstrap variance estimator. A detailed introduction to the dataset can be

found in Section 3.4. In Table 4.4, the outcomes obtained from the proposed robust variance

estimator generally align with those from the bootstrap variance estimator.
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Table 4.4: Association with AD progression: model results (controlled for age, APOE in
the longitudinal model and controlled for age, gender, years of education, and APOE in the
survival model)

Influence Variance Estimator Bootstrap Variance Estimator
Variable Participants Events Estimate SE 95% CI |Z| value SE 95% CI |Z| value

MidTemp* 532 151 -3.01 0.39 (-3.77,-2.25) 9.58 0.41 (-3.75,-2.27) 7.72
RAVLT.learning 622 177 -0.64 0.076 (-0.79,-0.49) 8.39 0.083 (-0.81,-0.48) 7.68
Hippocampus* 558 156 -8.19 1.20 (-10.54,-5.84) 6.83 1.15 (-10.20,-6.13) 7.14
Entorhinal* 532 151 -9.99 1.53 (-12.99,-6.99) 6.53 1.40 (-12.73,-7.26) 7.16
RAVLT.immediate 622 177 -0.14 0.024 (-0.19,-0.09) 5.83 0.023 (-0.18,-0.09) 6.01
CDRSB 622 177 0.78 0.14 (0.50,1.06) 5.48 0.12 (0.55,0.99) 6.78
Fusiform* 532 151 -3.22 0.60 (-4.40,-2.04) 5.36 0.57 (-4.28,-2.16) 5.63
ADAS13 622 177 0.021 0.0040 (0.013,0.029) 5.32 0.0041 (0.013,0.029) 5.35
FAQ 622 177 0.30 0.060 (0.18,0.42) 4.97 0.067 (0.17,0.43) 4.45
Ventricles* 574 173 0.19 0.04 (0.10,0.27) 4.75 0.04 (0.11,0.26) 4.76
ADAS11 622 177 0.15 0.036 (0.08,0.22) 4.17 0.033 (0.09,0.22) 4.57
FDG 287 81 -8.76 2.46 (-13.58,3.92) 4.03 2.38 (-13.44,-4.09) 3.68
WholeBrain* 588 175 -0.065 0.017 (-0.098,-0.032) 3.83 0.015 (-0.095,-0.035) 4.25
MMSE 622 177 -0.27 0.055 (-0.38,-0.16) 2.49 0.055 (-0.38,-0.16) 2.50
RAVLT.forgetting 622 177 0.18 0.14 (-0.0944,0.4544) 1.29 0.09 (-0.0043,0.3678) 1.91
ICV* 602 176 0.005 0.011 (-0.021,0.022) 0.45 0.009 (-0.014,0.025) 0.56

* variable value is multiplied by 10000 for the ease of displaying

4.5 Discussion

The current Chapter provides a comprehensive overview and comparison of existing methods

for estimating robust variance in survival analysis, particularly in scenarios involving both

adherence to and deviation from the proportional assumption. We observed a correspon-

dence between the prevailing approaches when considering scenarios with categorical and

continuous covariates exclusively. Additionally, we proposed an extension of the existing

variance estimator to accommodate a censoring robust estimator while incorporating lon-

gitudinal covariates. Our simulation study results showcased that our proposed estimator

demonstrated improved consistency in accurately estimating coverage probability. Moreover,

it exhibited enhanced stability compared to the bootstrap method. The robust variance

method displayed resilience against misspecification of the hazard function and potential er-

rors in longitudinal prediction. Nonetheless, there remains a potential concern regarding the

potential misclassification of longitudinal and censoring clusters. However, the infinitesimal

approach demonstrates a semiparametric property that may confer robustness to our esti-
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mator in the face of misclassification, as evidenced by its superior performance in coverage

probability relative to the bootstrap variance estimator.
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Chapter 5

Review of longitudinal clustering

method and comparison for

application in monotone missing data

5.1 Introduction

Longitudinal clustering, a subset of clustering analysis, addresses the challenge of extract-

ing meaningful insights from datasets characterized by temporal dependencies and evolving

trajectories. Unlike traditional clustering methods that operate on static snapshots of data,

longitudinal clustering considers the time dimension, enabling the identification of temporal

patterns, trends, and subgroups within longitudinal datasets. Longitudinal datasets often

exhibit intricate temporal dynamics and evolutionary patterns, where observations at dif-

ferent time points are interrelated and display dependencies over time. For instance, in

healthcare data, patient trajectories may evolve as diseases progress or treatment regimens
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change. Longitudinal clustering facilitates the identification of meaningful patterns or groups

of trajectories based on their temporal behavior or evolution (Golub et al., 1979).

By clustering trajectories over time, researchers can discern latent structures or subpopu-

lations with similar longitudinal profiles. Longitudinal clustering finds applications across

diverse fields, including healthcare, finance, ecology, and social sciences. In healthcare, longi-

tudinal clustering aids in patient stratification, disease progression modeling, and treatment

response prediction (Teuling et al., 2021). Unlike traditional clustering methods, which

treat data as static entities, longitudinal clustering integrates time as a key variable. This

integration allows for the detection of patterns that evolve over time or exhibit specific tem-

poral characteristics. In summary, longitudinal clustering offers a powerful framework for

uncovering temporal patterns and structures in longitudinal datasets, thereby enhancing our

understanding of complex phenomena that evolve over time.

The necessity for longitudinal clustering is also pervasive within the realm of AD research.

For instance, a study was conducted to compare the progression of memory, general cognition

tasks, and functional scales over time between patients with behavioral-variant frontotempo-

ral dementia (bvFTD) and AD (Schubert et al., 2016). Despite similar baseline performance,

bvFTD patients exhibited a more rapid functional decline and greater cognitive deteriora-

tion compared to AD patients. This underscores the challenge of accurately distinguishing

between these conditions based solely on neuropsychological profiles. Utilizing longitudinal

clustering methods could offer a more precise means of categorizing patients, facilitating

tailored care strategies that address the distinct needs of bvFTD and AD patients. In our

proposed method, where we aim to derive a censoring-robust estimator with an interpreta-

tion akin to the average treatment effect even under non-proportional hazards (NPH), the

necessity of proper longitudinal clustering becomes apparent. This is crucial for accurately

estimating the conditional covariate variance. Studies have shown that in scenarios with

multiple longitudinal groups, an erroneous longitudinal clustering approach can yield incor-
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rectly estimated conditional covariate variance, ultimately leading to biased results based on

the characteristics of longitudinal clustering.

The utilization of shape-based longitudinal clustering is imperative due to its ability to cap-

ture the nuanced variations in longitudinal trajectories over time. Traditional clustering

methods often rely solely on endpoint measurements or summary statistics, which may over-

look important temporal patterns in the data. Shape-based clustering, on the other hand,

considers the entire longitudinal profile, enabling the detection of subtle changes and com-

plex patterns in individual trajectories. This approach is particularly valuable in scenarios

where the timing and rate of change in longitudinal measurements hold diagnostic or prog-

nostic significance, such as in neurodegenerative diseases like Alzheimer’s or in monitoring

disease progression over time. Shape-based longitudinal clustering thus offers a more compre-

hensive and nuanced understanding of longitudinal data, making it essential for uncovering

meaningful insights and informing personalized interventions or treatments.

In joint modeling of longitudinal and survival analysis, we encounter monotone missingness

in longitudinal data resulting from censoring events. The challenge of monotone missingness

in longitudinal clustering arises when data are systematically missing in a consistent pattern

over time for each individual. This poses a significant hurdle in longitudinal data analysis

because traditional methods for handling missing data may not be suitable due to their

assumptions of randomness or ignorable missingness. Monotone missingness can introduce

bias into parameter estimates and lead to incorrect cluster assignments if not appropriately

addressed. When missing data are systematically related to the underlying longitudinal

trajectories, failing to account for this pattern can result in biased clustering solutions and

inaccurate inference.

In the upcoming section of this chapter, we will provide a comprehensive overview of current

clustering algorithms designed for longitudinal data. Subsequently, we will delve into the

challenges and potential solutions regarding the handling of monotone missing data within
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these methods. Following the discussion of existing clustering approaches, we will introduce

a novel shape-based longitudinal clustering method tailored specifically to address imbal-

anced monotone missingness in longitudinal data. In the numerical study section, we will

conduct simulations to compare the performance of each method across various scenarios.

Furthermore, we will apply the algorithm to the ADNI dataset to demonstrate its practical

utility. Finally, we will conclude with a brief discussion on potential future directions for

longitudinal clustering methods dealing with monotone missingness.

5.2 Method

5.2.1 Review of longitudinal clustering methods

K-means

The k-means algorithm, a fundamental clustering technique, partitions data into k clusters

based on their feature similarity. First proposed by MacQueen et al. (1967) and later refined

by Lloyd (1982), it remains one of the most widely used clustering methods due to its

simplicity and effectiveness.

At the core of the k-means algorithm is the minimization of the within-cluster sum of squares

(WCSS), also known as inertia. Given a datasetX consisting of n observations and p features,

and an initial set of k cluster centroids, the algorithm iteratively assigns each observation to

the nearest centroid and updates the centroids to minimize the WCSS. This process continues

until convergence, typically defined by either a maximum number of iterations or when the

centroids no longer change significantly.
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Despite its simplicity, k-means has shown remarkable performance in various applications,

including image segmentation, customer segmentation, and anomaly detection. However,

it has some limitations, such as sensitivity to initial centroid positions, dependence on the

number of clusters specified (k), and the assumption of spherical clusters with equal variance.

Numerous extensions and variations of the k-means algorithm have been proposed to address

these limitations and adapt it to specific data characteristics and applications. These include

k-means++, which improves the selection of initial centroids, and k-medoids, which uses

actual data points as centroids to enhance robustness to outliers.

In summary, the k-means algorithm serves as a cornerstone in the field of clustering, providing

a simple yet powerful tool for partitioning data into coherent groups based on their similarity,

with numerous applications across various domains.

KML

Longitduinal K-means (KML) is a variant of the traditional K-means clustering algorithm

designed specifically for longitudinal data analysis. Introduced by Genolini and Falissard

(2010), KML extends the standard K-means algorithm to handle longitudinal data, which

consists of repeated measurements taken over time for each individual or subject.

The KML algorithm operates by clustering individuals based on the trajectories of their

longitudinal measurements rather than on individual data points. It leverages the temporal

structure inherent in longitudinal data to identify clusters of individuals with similar patterns

of change over time.

Mathematically, the KML objective function can be formulated as follows:
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min
C,Z

n∑
i=1

T∑
t=1

k∑
j=1

zitj∥xit − cj∥2

where C = {c1, c2, ..., ck} are the cluster centroids representing the average trajectory for

each cluster, Z = {zitj} is an indicator matrix indicating the assignment of each individual

i at time t to cluster j, xit represents the longitudinal measurement for individual i at time

t, k is the number of clusters, n is the number of individuals, and T is the number of time

points.

The advantages of KML include its ability to capture complex longitudinal patterns and

its flexibility in handling irregularly sampled longitudinal data. By clustering individuals

based on their longitudinal trajectories, KML can identify distinct subgroups with similar

patterns of change over time, facilitating the exploration of underlying trends and hetero-

geneity in longitudinal data. When it comes to defining cluster centroids, the conventional

approach typically involves computing the average of subject covariate values at each time

point j. However, there’s an alternative method that incorporates kernel functions. By

leveraging kernel functions, KML can capture nonlinear relationships and intricate patterns

within longitudinal data, resulting in more precise and expressive cluster representations.

This flexibility equips KML to handle diverse data distributions and effectively uncover the

inherent structure of longitudinal trajectories.

However, KML also has limitations. The choice of distance metric and kernel function can

influence the clustering results, and selecting appropriate parameters for these functions may

require careful tuning. Additionally, KML may be sensitive to outliers and missing data,

which can affect the quality of the clustering solution. KML typically requires complete data

at balanced time points to format the data into a matrix, where each column represents the

data for all subjects at a specific time. However, missing data can often occur at specific time
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points. In such cases, traditional methods are employed to handle the missing data. These

methods include multiple imputation, last observation carried forward (LOCF), baseline ob-

servation carried forward (BOCF), mean substitution, and regression imputation. Multiple

imputation involves imputing multiple sets of plausible values for missing data (Little and

Rubin, 2019). LOCF involves carrying forward the last observed value to replace missing

values at subsequent time points (Mallinckrodt et al., 2001). BOCF involves carrying for-

ward the baseline (initial) observation to replace missing values at subsequent time points

(Lachin, 2000). Mean substitution involves replacing missing values with the mean value

of the variable across all participants at the same time point (Schafer, 1999). Regression

imputation involves building a regression model based on observed values of other variables

and using this model to predict missing values (Enders, 2022). The missing values are then

filled in with either the mean of the predicted values or with random values generated from

the conditional distribution of the model. These methods are particularly useful for ad-

dressing the challenge of missing data in longitudinal studies, especially when the number

of missing values is relatively small compared to the total number of observations in the

dataset. However, as the number of missing data increases, biases in the results may also

increase. Moreover, none of these methods effectively handle the issue of monotone miss-

ing data, where data is missing due to censoring or events occurring after a certain time

point, primarily because of the block of missing data. Additionally, a limitation of KML is

its requirement for balanced data, which is often not met in practice. As a result, various

k-means-based methods have been developed in an attempt to address this issue.

Two-step K-means

A direct and intuitive extension to regular KML is the two-step k-means mentioned in

Twisk and Hoekstra (2012) and Shek et al. (2011). The two-step longitudinal K-means

clustering algorithm, incorporating random effects from linear mixed-effects models (LME),
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is a powerful technique used in the analysis of longitudinal data. This method involves

two key steps: (i) fitting an LME model to the longitudinal data to estimate subject-specific

random effects capturing individual variability, and (ii) performing K-means clustering on the

estimated random effects to identify clusters of subjects with similar longitudinal trajectories.

In the first step, the LME model is specified as:

In the context of linear mixed-effects models (LME), the model can be represented in matrix

form as follows:

y = Xβ + Zb+ ε,

where y is the n × 1 vector of observed outcomes, X is the n × p design matrix for fixed

effects, where p is the number of fixed effects parameters, β is the p×1 vector of fixed effects

coefficients, Z is the n×q design matrix for random effects, where q is the number of random

effects parameters, b is the q × 1 vector of random effects, ε is the n× 1 vector of residual

errors.

The random effects are assumed to follow a multivariate normal distribution:

b ∼ N(0,D),

where D is the variance-covariance matrix for the random effects. The model parameters β

and D are estimated by maximizing the likelihood function based on the observed data y.

In the second step, the subject-specific random effects (b̂i) estimated from the LME model

are used as input for K-means clustering. The K-means algorithm aims to partition the

subjects into K clusters based on the similarity of their random effects. The centroids of the

clusters represent typical trajectories of the underlying longitudinal process.

148



This two-step approach combines the flexibility of LME models in capturing complex lon-

gitudinal trajectories with the simplicity and interpretability of K-means clustering. More

importantly, the use of LME enables the accommodation of imbalanced data where obser-

vations are scattered across different time points. Additionally, it facilitates handling data

with monotone missingness, ensuring that the random effect outcomes of equal size can be

utilized for clustering purposes regardless of variations in data length. As a supplementary

note, if prior knowledge of grouping at a higher stage is available, it is also feasible to define

further subgroupings by incorporating both the fixed effects and random effects.

Group-based trajectory modeling

Group-based trajectory modeling is a statistical technique used to identify distinct sub-

groups, or trajectories, within a population based on their longitudinal data. It aims to

characterize the heterogeneity in longitudinal trajectories of individuals over time, often in

the context of behavioral or developmental studies. The method involves fitting a finite

mixture model to the longitudinal data, where each mixture component represents a distinct

trajectory group. Mathematically, the model can be represented as follows. Define Y is

matrix of observed longitudinal data with dimensions N × J , where N is the number of

individuals and J is the number of time points. C is vector of trajectory group assignments

with length N , and µ is vector of group-specific means with length K × J , where K is

the number of trajectory groups. Then, further define Σ represent the variance-covariance

matrix in a presepcified format, and that π is the vector of group probabilities with length

K. Then the probability density function (PDF) for the observed data Y can be written in

matrix form as:

f(Y|C) =
1

(2π)J/2|Σ|1/2
exp

(
−1

2
(Y − µC)TΣ−1(Y − µC)

)
.
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where µC represents the matrix multiplication of µ and an indicator matrix C, which has

dimensions N ×J and is constructed such that each row corresponds to the mean trajectory

for the assigned group.

The joint likelihood function for the entire sample is then given by:

L(θ) =
N∏
i=1

K∑
k=1

πk · f(Y|C),

where θ represents the set of parameters including µ, Σ, and π.

The estimation of parameters θ involves maximizing the joint likelihood function L(θ) with

respect to µ, Σ, and π, typically using iterative optimization techniques such as expectation-

maximization (EM) algorithm.

This mathematical framework forms the basis of group-based trajectory modeling, allowing

researchers to uncover latent longitudinal patterns within their data and make inferences

about the underlying population dynamics. Due to this characteristic, this method is com-

monly referred to as latent class growth analysis (LCGA). For a more in-depth understand-

ing, Nagin (1999) and Jones and Nagin (2007) offer comprehensive introductions to these

methods. Additionally, it’s worth mentioning that a polynomial formulation with random

error can also be employed, as demonstrated by Nagin and Land (1993).

The fundamental concept of the group-based trajectory approach is that individuals within

each group share a common trajectory. Still, it is capable of accommodating imbalanced data

with monotone missingness through the group characteristics. The modeling method em-

ployed to describe these groups can take various forms, including parametric, non-parametric,

and semi-parametric approaches, offering flexibility in capturing the underlying trajectory

patterns.
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Growth mixture modeling

The growth mixture model (GMM) is a statistical framework used to identify latent sub-

groups within a population that exhibit distinct trajectories of change over time(Marcoulides

and Schumacker, 2001; Ram and Grimm, 2009). Mathematically, the GMM can be expressed

as:

yij = γkizij + βk · xij + ϵij

where yij represents the observed outcome for individual i at time j, γki denotes the random

effect realization for the ith subject in the kth latent subgroup, zij represents the vector of

covariates correspond to random effect for ith subject at time j, βk represents the vector of

regression coefficients for the kth subgroup, xij is the vector of covariates for individual i at

time j, and ϵij is the error term.

The growth mixture model allows for the estimation of parameters specific to each latent

subgroup, capturing heterogeneity in trajectory shapes and developmental patterns within

the population. This method is particularly useful when the population consists of dis-

tinct subgroups with different developmental trajectories over time. The GMM serves as

an extension of previous GBTM. However, unlike GBTM, GMM not only accommodates

group-specific trajectories but also permits individuals to deviate from these trajectories,

thus offering a more comprehensive explanation for within-cluster heterogeneity.

The GMM method inherits the advantages of the GBTM approach in handling imbalanced

data and monotone missingness. Furthermore, it offers improved clustering by accounting

for within-cluster variation. However, specifying the prior format of the cluster distribution

is still required.
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Spline-based clustering

In recent years, there has been growing interest in utilizing spline-based methods for longi-

tudinal clustering, which offer flexibility in capturing nonlinear trajectories and identifying

distinct patterns of change over time.

Spline-based longitudinal clustering methods leverage the concept of splines, which are piece-

wise polynomial functions that provide a flexible framework for modeling smooth curves. By

fitting spline models to individual trajectories, these methods enable the detection of under-

lying patterns and heterogeneity within longitudinal datasets.

One of the key advantages of spline-based longitudinal clustering is its ability to capture

complex relationships and non-linear trends in longitudinal data. Unlike traditional linear

models, spline-based methods can accommodate irregularly sampled data, handle missing

values, and effectively model trajectories with nonlinear patterns or abrupt changes.

The general formula for spline-based longitudinal clustering can be expressed as follows:

Yij = fj(tij) + ϵij,

whereYij represents the observed response for the i-th subject at time tij, fj(tij) is the smooth

function capturing the trajectory for the j-th cluster, ϵij is the random error term.

Spline-based methods typically involve fitting spline models to individual trajectories, where

the smooth function fj(·) is estimated using basis functions such as B-splines, natural splines,

or penalized splines. These basis functions allow for the flexible representation of the under-

lying trajectories while ensuring smoothness and continuity.

B-splines are piecewise polynomial functions defined on a set of knots. They offer flexibility

in modeling smooth curves by dividing the range of the predictor variable into segments and
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fitting low-degree polynomials within each segment. The general formula for B-splines can

be expressed as follows (De Boor and De Boor, 1978)

S(x) =
K∑
i=1

βiBi(x),

where S(x) represents the B-spline function, βi are the coefficients to be estimated, Bi(x)

are the basis functions, often defined recursively using Cox-de Boor recursion formula, and

K is the number of basis functions.

Natural splines are a variation of B-splines that impose additional boundary constraints,

ensuring smoothness at the endpoints of the curve. These constraints eliminate the need for

specifying boundary knots, leading to a more stable and interpretable model. The formula

for natural splines is similar to that of B-splines, with the additional boundary constraints

(Hastie, 2017) as

S(x) =
K∑
i=1

βiBi(x) + λ · (f ′′(x1) + f ′′(xK)),

where λ is the penalty parameter controlling the degree of smoothness, and f ′′(x1) and

f ′′(xK) represent the second derivatives of the spline function at the boundary points x1 and

xK .

Penalized splines, also known as P-splines, combine the flexibility of B-splines with the idea

of penalization to control the smoothness of the fitted curve. The penalty term is added to

the likelihood function, penalizing deviations from smoothness. The formula for penalized

splines can be expressed as follows (Eilers and Marx, 1996):

S(x) =
K∑
i=1

βiBi(x) + λ ·
K∑
j=3

(∆2βj)
2,

153



where ∆2 represents the second-order difference operator and λ is the smoothing parameter

controlling the amount of penalization.

Various approaches have been developed for longitudinal clustering based on spline methods.

Abraham et al. (2003) utilized B-splines as a basis and employed the k-means algorithm on

the basis parameters. Similarly, Coffey et al. (2014) applied the P-spline technique as a basis

expansion method within the linear mixed-effect model framework, conducting clustering

based on the resulting model . Additionally, the P-spline method has shown increasing

utility by empowering researchers to smooth individual trajectories, cluster groups, and

concurrently ascertain the number of groups (Zhu and Qu, 2018). In summary, spline-

based methods excel in efficiently handling irregularly sampled data and aiding in subgroup

identification. However, owing to their nonparametric nature, clustering methods based on

splines can pose computational challenges and may be sensitive to the selection of knots or

basis functions. Additionally, violations of the smoothness assumption or small sample sizes

can result in inadequate fitting.

Shape-based clustering

All previous methods assumed uniform time progression across all subjects. In practice, this

assumption may not hold true, especially in longitudinal studies where subjects may progress

at different rates or speeds despite sharing similar underlying trajectories. This phenomenon

is particularly evident in diseases like AD, where individuals may exhibit similar patterns of

cognitive decline but progress at different rates. For instance, subjects may follow similar

cognitive decline trajectories, but the pace at which this decline occurs varies from one

individual to another.

To tackle this issue, two approaches are worth considering. The first approach involves

addressing time shifting before performing clustering, while the second approach involves
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addressing time shifting simultaneously with the clustering process. The k-mean alignment

algorithm introduced by Sangalli et al. (2010) simultaneously conducts clustering and align-

ment by integrating a warping function. This function facilitates alignment during the cluster

assignment step. On the other hand, Liu and Yang (2009) proposed an alternative method

to address the issue simultaneously. They apply Taylor expansion to the shifted B-spline

basis, obtaining a standard time scale. In two-step methods, the emphasis typically lies

on utilizing shape-respecting distances, with the most commonly employed ones being the

Frechet distance and the Dynamic Time Warping distance (DTW).

The Frechet distance measures the similarity between two curves by considering the ”walk”

of two points along each curve while maintaining their temporal ordering. It computes the

minimum leash length required for a dog (representing one curve) and its owner (representing

the other curve) to traverse their respective paths simultaneously. Mathematically, the

Frechet distance between two curves P and Q is defined as:

F (P,Q) = inf
γ∈Γ

max
t∈[0,1]

{dist(P (γ(t)), Q(t))},

where Γ is the set of all possible parameterizations of the curves, P (γ(t)) represents the

position of the point on curve P parameterized by γ, and dist denotes the Euclidean distance

between two points.

DTW is another shape-respecting distance measure that accommodates variations in the

alignment and pacing of temporal sequences. Unlike traditional distance measures, DTW

allows for local stretching and compressing of the time axis, enabling more flexible matching

of temporal patterns. The DTW distance between two sequences A and B is computed by

finding the alignment that minimizes the total distance between corresponding points:

DTW (A,B) = min
path

∑
(i,j)∈path

d(A[i], B[j])
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where d(·, ·) represents the local distance between points, and the minimum is taken over all

possible alignments.

The Frechet distance and DTW distance are significant in shape-respecting longitudinal data

analysis due to their ability to capture the intrinsic shape similarity between temporal trajec-

tories. By incorporating temporal dependencies and considering variations in the alignment

of sequences, these distances enable more accurate comparisons and clustering of longitudinal

data. A generalized shape distance-based method is proposed by Genolini et al. (2016) using

the generalized Fréchet distance. The approach based on shape-respecting distances holds

promise in addressing potential time-stretching issues in longitudinal clustering. However,

it encounters a challenge wherein the comparison of curves assumes that the starting and

ending points of the curves are consistent, a condition often violated due to censoring.

5.2.2 Partial-mapping DTW clustering method

DTW and Frechet distance have been employed for clustering based on shape. Although

both methods can accommodate missing data and irregularly sampled data, they share a

fundamental assumption: the trajectories should represent the same longitudinal pattern

but at different progression rates. In AD studies, the complete longitudinal trend is fre-

quently unobservable due to terminal events or censoring. In such scenarios, we propose

a partial-mapping DTW clustering method, which explores the mapping of curves onto a

target curve for clustering purposes. In the process of selecting the distance metric for clus-

tering following partial mapping, we take into account insights from Agarwal et al. (2015).

The DTW distance is noted for its sensitivity to sampling, as it solely considers vertices.

Conversely, the Frechet distance often demands substantially more computational resources

and is prone to sensitivity towards outliers, given its computation involving the minimum of

the maximum. Furthermore, considering the method of clustering given the distance, Geno-
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lini et al. (2016) utilizes k-means, which necessitates the calculation of the cluster centroid.

In cases of time stretching, however, determining the cluster mean becomes more intricate

than merely averaging the cluster. As outlined by Genolini et al. (2016), the mean of two

curves is defined as the midpoint of the leash. Extending this concept to multiple curves

introduces complexity, rendering exact computation impractical. Consequently, a compro-

mise is reached, and only a subset of the data is computed, resulting in an approximation

of the true cluster centroid. Given the computational burden associated with this approach,

we opt to employ hierarchical clustering, pre-computing the distance matrix for all pairs of

curves in advance to avoid cluster mean calculation.

To determine the segment of a curve onto the target curve, we assume that the starting point

of all trajectories is the same, a characteristic common in AD studies. However, the endpoint

may vary due to censoring and terminal events. It’s also important to note that precisely

determining the time point to be mapped onto is challenging since the underlying trajectory

is unknown. Therefore, a technique similar to that depicted in Witowski et al. (2011) is

employed. In the referenced paper, a shorter curve is glided through a longer curve with

offset to find the best match, ensuring that the mapped curve maintains the same length

as the original curve. However, in our context, we propose stretching the original curve

with a multiplier to match the length of the longer curve, thus exploring possible endpoint

variations. To prevent overfitting to the data, we opt to employ a different similarity measure

to evaluate the fitting, namely the area between the curves. The proposed algorithm is listed

below with reference to Figure 5.1.
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Figure 5.1: Partial curve mapping of curve a onto curve a’ with multiplier λ.

5.3 Numerical studies

5.3.1 Simulation setup

Models compared

To evaluate the efficacy of our proposed partial-mapping DTW longitudinal clustering algo-

rithm, we conducted a comparative analysis against several established methods previously

mentioned in the literature. These methods are specifically designed to handle monotonous

missing data with irregular sampling and include two-step k-means, growth mixture model,
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Algorithm 2 Parital-mapping DTW longitudinal clustering algorithm

1: For each pair of longitudinal curves, a and a’, ensure that curve a is shorter than mapped
curve a’; if not, swap two curves.

2: Calculate the total length of the shorter polygon a, denoted as S. Additionally, compute
the length of each segment, represented as δSi:

δSi =
√

(ti+1 − ti)2 + (yi+1 − yi)2 for i = 2, . . . ,m

3: Calculate the ratio of each segment to the total length:

S̃i = δSi/S for i = 1, . . . ,m− 1

4: Calculate the total length of the longer polygon a′, denoted as T .
5: Define a stretch parameter λp to use only part of the longer longitudinal curve for com-

parison. λp searches a uniformly spaced grid for the difference between two curves. For

p = 1 . . . P , λp =
[
S + p(T−S)

P

]
/S.

6: Given the stretch parameter λp, set the new point on the curve a′ mapped from the curve
a so that δTi = λpδSi for each new segment.

7: Calculate the pairwise distance between curve a and mapped curve a′′ by

di =
√

(ti − tj′)2 + (yi − yj′)2

, then calculate the total mismatch measurement

ϵp =
m−1∑
i=1

(di + di+1) ∗ S̃i

2

8: Find p that minimize ϵp and obtain the best matching partial curve.
9: Obtain the distance matrix for all pairs of curves.
10: Perform hierarchical clustering algorithm utilizing the distance matrix and trim the result

based on the desired number of clusters.

and spline-based longitudinal clustering. Two-step k-means is often considered a simplistic

approach to longitudinal clustering, yet we included it as a baseline for comparison with

other methods. For our implementation, we utilized the lmer package in R to model the

initial stage, followed by passing the random effect estimates to the k-means package in R

for clustering. When employing finite mixture modeling, we favor the growth mixture model

over the group trajectory-based model. This preference stems from the growth mixture

model serving as an extension to the latter, with the key distinction being that the growth
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mixture model permits subject-wise deviations from the group trajectory. For implemen-

tation, we utilize the lcmm package, which relies on the hlme package. This method falls

under the growth mixture model within the framework of linear mixed model theory. For

the spline-based approach, we opted to utilize the clustra package. This package is specifi-

cally designed for clustering longitudinal trajectories (time series) on a shared time axis. It

accommodates observations that are unequally spaced, of unequal length, and only partially

overlapping. The clustering process involves an EM algorithm, which iteratively switches

between fitting a thin plate spline (TPS) to combined responses within each cluster (M-step)

and reassigning cluster membership based on the nearest fitted B-spline (E-step).

Simulated longitudinal trajectories

For simulations, we considered various types of commonly encountered trajectories: quadratic

longitudinal trajectory, normal density, normal cumulative distribution function (CDF), and

log-normal distribution. The quadratic longitudinal trend follows the Linear Mixed Effects

(LME) model, where the fixed effect is in the form f(x) = ax2 + bx+ c, and for the random

effect, we assume random slope and random intercept.

The longitudinal trajectory with a normal distribution density follows the form f(x, µ, σ2) =

1√
2πσ2 exp

(
−1

2

(
x−µ
σ2

)2)
, where Φ represents the CDF of the normal distribution.

On the other hand, we have the longitudinal trajectory with log-normal distribution, which

follows the density function as f(x, µ, σ) = 1
xσ

√
2π
exp

(
− (lnx−µ)2

2σ2

)
. The log-normal distribu-

tion is a log transformation of the normal distribution. While the normal distribution is

symmetric, the log-normal distribution exhibits skewness and a heavier tail. It is especially

suitable for cases where the increase in the distribution yields unproportioned returns.
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While the probability density function (PDF) and CDF of the normal distribution tend to

diverge later, comparing the normal PDF to the log-normal PDF can serve as an excellent

example of shape change.

To introduce randomness into our data, we apply distortion to all longitudinal trajectories.

In the LME model, randomness arises naturally through the use of random intercept and

random slope. For all other types of trajectories, we introduce multiple distortions using

the formula f ∗(x) = a2f(a1x + b1) + b2, where a1, a2 ∼ U(1 − σ, 1 + σ)2 and b1, b2 ∼

U(−σ, σ). Here, (a1, a2) serves as the scaling parameter, and (b1, b2) serves as the location

shift. The magnitude of their distortion is commonly controlled by the tuning parameter σ.

For comparison, we considered five case as depicted in Figure 5.2.

• Case 1: two groups A and B, with

fA(x) = −0.0396x2 + 0.294x+ 0.344 and fB(x) = −0.0267x2 + 0.143x+ 0.604.

• Case 2: two groups C and D, with

fC(x) = Φ(x, 1.5, 1)× 2.5 and fD = ϕ(x, 2, 1)× 2.5.

• Case 3: three groups C, D, and E, with

fE(x) = Φ(x, 1.5, 1)× 2.5.

• Case 4: four groups C, D, E, and F, with

fF (x) = ϕ(x, 2, 1)× 1.5.

• Case 5: three groups C, D, and G, with

fG(x) = log-normal(0.7, 1)× 2.5.

For groups A and B, we assume that the random intercept follows a normal distribution with

mean 0 and standard deviation 0.1, while the random slope follows a normal distribution with
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mean 0 and standard deviation 0.08. For other types of longitudinal trajectories, we set the

tuning parameter σ to 0.1. To induce monotone missingness, we employ the power function

distribution with the cumulative distribution function (CDF) given by F (x) = (x/θ)r, where

the support is determined by the parameter θ and the parameter r governs the mode of

censoring. Following the simulation, we set θ = 4 for a common support range and generated

r from a uniform distribution U(0.8, 1.4) for each group.
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(a)Case 1 (b)Case 2

(c)Case 3 (d)Case 4

(e)Case 5

Figure 5.2: (a) Case 1:fA is in red, fB in blue; (b) Case 2:fC is in red, fD in blue; (c) Case
3:fC is in red, fD in blue, fE in green; (d) Case 4:fC is in red, fD in blue, fE in green, fF
in magenta; (e) Case 5:fC is in red, fD in blue, fG in green.
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Performance assessment

To evaluate the effectiveness of longitudinal clustering methods during simulation, we employ

two commonly used indices from the literature (Genolini et al., 2016; Verboon and Pat-El,

2022; Den Teuling et al., 2023): i) the percentage error; and ii) the adjusted Rand index.

The correct classification rate is defined as the percentage of agreement between the found

partitions and the true partitions, considering the true clustering and the clustering result. In

scenarios involving multiple groups, the correct classification rate is computed by considering

the highest number of true partitions within each clustered partition. Fhe the method, it is

noted that the adjusted randon index (Hubert and Arabie, 1985) is a variation of random

index (Rand, 1971). Given two partitions, the Rand Index calculates the percentage of

agreements between pairs of samples with respect to their clustering assignments. It is

defined as:

RI =
a+ b(

n
2

) ,
where a represents the number of pairs of elements that are in the same cluster in both

the true and predicted partitions, b represents the number of pairs of elements that are in

different clusters in both the true and predicted partitions and n is the total number of

samples.

The Adjusted Rand Index (ARI) adjusts the Rand Index for chance. It corrects for the

expected similarity between two random clusterings, producing a score between -1 and 1,

where 1 indicates perfect similarity between the clusterings, 0 indicates the expected sim-

ilarity under random chance, and negative values indicate dissimilarity. The formula for
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Adjusted Rand Index is given by:

ARI =

∑
ij

(
nij

2

)
−
[∑

i

(
ai
2

)∑
j

(
bj
2

)]
/
(
n
2

)
1
2

[∑
i

(
ai
2

)
+
∑

j

(
bj
2

)]
−
[∑

i

(
ai
2

)∑
j

(
bj
2

)]
/
(
n
2

) ,
where nij is the number of pairs of elements that are in the same cluster in the true partition

and in the same cluster in the predicted partition for clusters i and j, ai is the number of

elements in cluster i in the true partition, bj is the number of elements in cluster j in the

predicted partition, and n is the total number of samples.

In terms of their relationship, the Adjusted Rand Index (ARI) can be seen as a standardized

version of the Rand Index (RI). It’s calculated as follows:

ARI =
RI − E[RI]

Max(RI)− E[RI]
,

where RI is the Rand Index, E[RI] is the expected Rand Index under random chance, and

Max(RI) is the maximum possible Rand Index. This standardization ensures that the ARI

eliminates cases where the solution yields a Rand Index lower than expected, preventing the

Rand Index from becoming negative.

5.3.2 Simulation results

The correct classification rates for the four methods across the five cases are presented in

Table 5.1. In Case 1, both the shape-based method and the spline-based method exhibit lower

performance compared to the growth mixture model and the two-step k-means method. This

can be attributed to the underlying trajectory fitting well within the domain of parametric

models, where clustering based on parametric models proves to be more effective. Starting

from Case 2, the shape-based and spline-based methods perform better than the growth

mixture model as well as the two-step method. It is worth noting that in Case 2, where
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the normal PDF and CDF are compared, the parametric model-based method performed

much worse than the nonparametric-based method. However, in Case 3, with the addition

of another PDF of normal distribution, the growth mixture model obtained much higher

accuracy, perhaps due to the fact that the added curve is well separated from the first two

curves, making the task easier for the growth mixture model. Such conjecture may be proven

in Case 4, where another normal density is added, resulting in two PDFs and two CDFs.

Within each pair of PDF and CDF, they are hard to distinguish, but it is easy to distinguish

the two sets of pairs. As we can see, the decrease in performance of the shape-based method

is much less than the increase in error rate in the growth mixture model compared to the

previous case. In Case 5, which should be the most challenging case to distinguish, as

the difference not only lies in the later stage but also in the first stage, the nonparametric

model performs remarkably well, even better than in Case 1. However, the parametric-based

model performs much worse compared to its performance in Case 1. Note that in all cases,

the methods within each realm share similar performance compared to other realms, but the

shape-based method is slightly better than the spline-based method, and the growth mixture

model shows more robust results compared to the two-step k-means method. In Table 5.2,

the Adjusted Rand Index (ARI) for each method under each case is shown. The results

generally align with Table 5.1, but the ARI shows larger differences, where small differences

in percentage error become much bigger differences in ARI.

Method
Trajectory Shape Based Growth Mixture Model Two-Step K-means Spline Method

Type Mean Error Rate Mean Error Rate Mean Error Rate Mean Error Rate
Case 1 0.096 0.066 0.047 0.111
Case 2 0.163 0.330 0.254 0.215
Case 3 0.215 0.224 0.317 0.241
Case 4 0.239 0.276 0.336 0.290
Case 5 0.079 0.192 0.265 0.085

Table 5.1: Correct classification rate of shape-based partial mapping, growth mixture model,
two-step k-means, and spline-based clustering methods.
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Method
Trajectory Shape Based Growth Mixture Model Two-Step K-means Spline Method

Type Mean ARI Mean ARI Mean ARI Mean ARI
Case 1 0.659 0.810 0.819 0.609
Case 2 0.454 0.070 0.243 0.376
Case 3 0.468 0.354 0.269 0.443
Case 4 0.476 0.397 0.336 0.449
Case 5 0.792 0.385 0.363 0.761

Table 5.2: ARI of shape-based partial mapping, growth mixture model, two-step k-means,
and spline-based clustering methods.

5.4 Application

For practical application, we employ the methods on the ADNI dataset as outlined in pre-

vious sections. To determine the number of groups, we utilize gap statistics. Figure 5.3

illustrates the resulting clustering based on the ADAS13 covariate. It is evident that all

methods detect one group with an obvious upward trend, comprising a small portion of the

entire dataset. However, for the remaining subjects, the growth mixture model only identifies

two groups. On the other hand, all three other methods are able to detect two subgroups,

which, upon visual inspection, differ by their intercept and exhibit slight flat trends.
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(a)Shape-based partial mapping

(b)Growth mixture model

(c)Two-step K-means

(d)Spline-based clustering

Figure 5.3: ADNI clustering based on ADAS13
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5.5 Discussion

In this chapter, we have compiled and compared various types of longitudinal clustering

algorithms, discussing their capabilities in handling monotonous missing data with irregular

sampling. Additionally, we introduce a novel shape-based partial mapping method. This

approach enables us to group individuals whose trajectories exhibit similar shapes but with

shifts in their time positions due to interruptions in data collection.

When compared to other methods applicable to longitudinal data with irregular sampling

and monotone missingness, the shape-based partial mapping method demonstrates superior

performance, particularly when the underlying trajectory contains distortion noise. Al-

though the selection of partial mapping lacks conclusive assurance due to informational

constraints, our method remains flexible as the indices utilized at the partial mapping stage

can be adapted to other criteria based on domain knowledge. Compared to existing shape-

based methods, our approach offers the advantage of effectively handling irregular data with

monotone missingness. Furthermore, in contrast to shape-based methods that utilize Frechet

distance, our method imposes significantly less computational burden. Local Variables: ***
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Chapter 6

Discussion

Motivated by the potential irreproducible outcomes stemming from multi-center Alzheimer’s

disease studies due to potential model misspecification, we have developed a censoring robust

estimator for jointly modeling longitudinal and survival data. In Chapter 3, we introduce

a censoring robust estimator for this joint modeling task, with its interpretation centered

around the average covariate effect under the non-proportional hazards assumption. For our

inference process, we utilize a bootstrap method, as detailed in Chapter 3. Chapters 4 and

5 are dedicated to implementing the methodology proposed in Chapter 3. In Chapter 4,

we examine the constraints of the robust variance estimator when applied to the proposed

censoring robust estimator. We then develop a comprehensive range of robust variance

estimators for censoring robust estimators using an influence function-based approach. The

estimator discussed in Chapter 4 can significantly alleviate the computational burden caused

by the bootstrap method, thereby enhancing the utility of our proposed approach in handling

large datasets. In Chapter 5, we identify the necessity for a shaped-based longitudinal

clustering method in the context of irregular sampling and monotone missingness, drawing

inspiration from our proposed approach. We examine the existing approach of longitudinal

clustering and analyze its capacity to handle distinct types of longitudinal data. In addition,
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we have developed a shape-based partial mapping longitudinal clustering technique capable

of managing monotone missingness caused by censoring, which is frequently encountered in

disease studies.

There are numerous promising avenues for future research stemming from the proposed work

outlined here. Our proposed censoring robust estimator exhibits flexibility owing to its two-

stage modeling approach. While much of the emphasis in existing censoring robust estimators

lies on the second stage, there is potential for enhancing the precision of longitudinal covariate

value prediction at the event time by modifying the first stage model. The utilization of spline

methods shows considerable promise in accurately fitting longitudinal curves, prompting

interest in substituting the current first-stage model with a spline-based approach. Moreover,

the method of generating the censoring group currently involves using fixed and random

effects from the linear mixed model as grouping factors in the survival tree method. However,

this approach may lead to information loss. Therefore, exploring alternative methods for

incorporating longitudinal data into censoring clustering is warranted. Additionally, our

simulations in Chapter 5 have revealed that spline-based longitudinal clustering methods

perform admirably in shape detection tasks. This prompts further exploration into the

feasibility of employing penalized splines with specific penalties for partial mapping and

shape recognition. Each of these possibilities warrants thorough investigation to advance

our understanding and application of censoring robust estimation methodologies.

171



Bibliography

Abraham, C., Cornillon, P.-A., Matzner-Løber, E., and Molinari, N. (2003). Unsupervised
curve clustering using b-splines. Scandinavian journal of statistics 30, 581–595.

Agarwal, P. K., Fox, K., Pan, J., and Ying, R. (2015). Approximating dynamic time warping
and edit distance for a pair of point sequences. arXiv preprint arXiv:1512.01876 .

Andersen, P. K. and Gill, R. D. (1982). Cox’s regression model for counting processes: a
large sample study. The annals of statistics pages 1100–1120.

Blennow, K. and Zetterberg, H. (2018). Biomarkers for alzheimer’s disease: current status
and prospects for the future. Journal of internal medicine 284, 643–663.

Borgan, Ø. and Liestøl, K. (1990). A note on confidence intervals and bands for the survival
function based on transformations. Scandinavian Journal of Statistics pages 35–41.

Boyd, A. P., Kittelson, J. M., and Gillen, D. L. (2012). Estimation of treatment effect under
non-proportional hazards and conditionally independent censoring. Statistics in medicine
31, 3504–3515.

Breslow, N. and Crowley, J. (1974). A large sample study of the life table and product limit
estimates under random censorship. The Annals of statistics pages 437–453.

Coffey, N., Hinde, J., and Holian, E. (2014). Clustering longitudinal profiles using p-splines
and mixed effects models applied to time-course gene expression data. Computational
Statistics & Data Analysis 71, 14–29.

Cox, D. R. (1972). Regression models and life-tables. Journal of the Royal Statistical Society:
Series B (Methodological) 34, 187–202.

De Boor, C. and De Boor, C. (1978). A practical guide to splines, volume 27. springer-verlag
New York.

De Leon, M., DeSanti, S., Zinkowski, R., Mehta, P., Pratico, D., Segal, S., Clark, C.,
Kerkman, D., DeBernardis, J., Li, J., et al. (2004). Mri and csf studies in the early
diagnosis of alzheimer’s disease. Journal of internal medicine 256, 205–223.

Demidenko, E. and Stukel, T. A. (2005). Influence analysis for linear mixed-effects models.
Statistics in Medicine 24,. influence function for lme, but only use yi or xi but not
distribution misspecification.

172



Den Teuling, N., Pauws, S., and van den Heuvel, E. (2023). A comparison of methods for
clustering longitudinal data with slowly changing trends. Communications in Statistics-
Simulation and Computation 52, 621–648.

Eilers, P. H. and Marx, B. D. (1996). Flexible smoothing with b-splines and penalties.
Statistical science 11, 89–121.

Enders, C. K. (2022). Applied missing data analysis. Guilford Publications.

Filippova, A. (1962). Mises’ theorem on the asymptotic behavior of functionals of empir-
ical distribution functions and its statistical applications. Theory of Probability & Its
Applications 7, 24–57.

Fleming, T. R. and Harrington, D. P. (2011). Counting processes and survival analysis. John
Wiley & Sons.

Fleming, T. R. and Harrington, D. P. (2013). Counting processes and survival analysis,
volume 625. John Wiley & Sons.

Fleming, T. R., Harrington, D. P., and O’sullivan, M. (1987). Supremum versions of the log-
rank and generalized wilcoxon statistics. Journal of the American Statistical Association
82, 312–320.

Freedman, D. A. (2006). On the so-called “huber sandwich estimator” and “robust standard
errors”. The American Statistician 60, 299–302.

Genolini, C., Ecochard, R., Benghezal, M., Driss, T., Andrieu, S., and Subtil, F. (2016).
kmlshape: an efficient method to cluster longitudinal data (time-series) according to their
shapes. Plos one 11, e0150738.

Genolini, C. and Falissard, B. (2010). Kml: k-means for longitudinal data. Computational
Statistics 25, 317–328.

Glenner, G. G. and Wong, C. W. (1984). Alzheimer’s disease: initial report of the purifi-
cation and characterization of a novel cerebrovascular amyloid protein. Biochemical and
biophysical research communications 120, 885–890.

Golub, G. H., Heath, M., and Wahba, G. (1979). Generalized cross-validation as a method
for choosing a good ridge parameter. Technometrics 21, 215–223.

Greenwood, M. et al. (1926). A report on the natural duration of cancer. A Report on the
Natural Duration of Cancer. .

Hampel, H. and Teipel, S. J. (2004). Total and phosphorylated tau proteins: evaluation as
core biomarker candidates in frontotemporal dementia. Dementia and geriatric cognitive
disorders 17, 350–354.

Hardin, J. W. (2002). The robust variance estimator for two-stage models. The Stata Journal:
Promoting communications on statistics and Stata 2,. replace morphy by sandwitch, but
assume model right, but mention morphy require full likelihood.

173



Hartigan, J. A. and Wong, M. A. (1979). Algorithm as 136: A k-means clustering algorithm.
Journal of the royal statistical society. series c (applied statistics) 28, 100–108.

Hastie, T. J. (2017). Generalized additive models. In Statistical models in S, pages 249–307.
Routledge.

Henderson, R., Diggle, P., and Dobson, A. (2000). Joint modelling of longitudinal measure-
ments and event time data. Biostatistics 1, 465–480.

Howe, C. J., Cole, S. R., Lau, B., Napravnik, S., and Eron Jr, J. J. (2016). Selection bias
due to loss to follow up in cohort studies. Epidemiology (Cambridge, Mass.) 27, 91.

Hsieh, F., Tseng, Y.-K., and Wang, J.-L. (2006). Joint modeling of survival and longitudinal
data: likelihood approach revisited. Biometrics 62, 1037–1043.

Huber, P. J. (2011). Robust statistics. In International encyclopedia of statistical science,
pages 1248–1251. Springer.

Hubert, L. and Arabie, P. (1985). Comparing partitions. Journal of classification 2, 193–218.

Ibrahim, J. G., Chu, H., and Chen, L. M. (2010). Basic concepts and methods for joint
models of longitudinal and survival data. Journal of Clinical Oncology 28, 2796.

Jann, B. (2019). Influence functions for linear regression (with an application to regression
adjustment). University of Bern Social Sciences Working Paper 41,.

Jones, B. L. and Nagin, D. S. (2007). Advances in group-based trajectory modeling and an
sas procedure for estimating them. Sociological methods & research 35, 542–571.

Kahn, J. (2022). Influence function for fun and profit.

Kalbfleisch, J. D. and Prentice, R. (1980). Survival analysis.

Kalbfleisch, J. D. and Prentice, R. L. (2011). The statistical analysis of failure time data.
John Wiley & Sons.

Kametani, F. and Hasegawa, M. (2018). Reconsideration of amyloid hypothesis and tau
hypothesis in alzheimer’s disease. Frontiers in neuroscience 12, 25.

Kaplan, E. L. and Meier, P. (1958). Nonparametric estimation from incomplete observations.
Journal of the American statistical association 53, 457–481.

Kasten, T., Zhang, L., Goate, A., Morris, J. C., Holtzman, D., and Bateman, R. J. (2015).
Age and amyloid effects on human cns amyloid-beta kinetics.

Knafl, G. (1978). Regression with censored data. PhD dissertation, Northwestern University.

Lachin, J. M. (2000). Statistical considerations in the intent-to-treat principle. Controlled
clinical trials 21, 167–189.

174



Law, J., Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J., and Stahel, W. A. (1986).
Robust statistics-the approach based on influence functions. The Statistician 35,.

LeBlanc, M. and Crowley, J. (1993). Survival trees by goodness of split. Journal of the
American Statistical Association 88, 457–467.

Li, K., Chan, W., Doody, R. S., Quinn, J., Luo, S., Initiative, A. D. N., et al. (2017).
Prediction of conversion to alzheimer’s disease with longitudinal measures and time-to-
event data. Journal of Alzheimer’s Disease 58, 361–371.

Lin, D. Y. and Wei, L.-J. (1989). The robust inference for the cox proportional hazards
model. Journal of the American statistical Association 84, 1074–1078.

Little, R. J. and Rubin, D. B. (2019). Statistical analysis with missing data, volume 793.
John Wiley & Sons.

Liu, X. and Yang, M. C. (2009). Simultaneous curve registration and clustering for functional
data. Computational Statistics & Data Analysis 53, 1361–1376.

Lloyd, S. (1982). Least squares quantization in pcm. IEEE transactions on information
theory 28, 129–137.

MacQueen, J. et al. (1967). Some methods for classification and analysis of multivariate
observations. In Proceedings of the fifth Berkeley symposium on mathematical statistics
and probability, volume 1, pages 281–297. Oakland, CA, USA.

Mallinckrodt, C. H., Clark, W. S., and David, S. R. (2001). Accounting for dropout bias
using mixed-effects models. Journal of biopharmaceutical statistics 11, 9–21.

Marcoulides, G. A. and Schumacker, R. E. (2001). New developments and techniques in
structural equation modeling. Psychology Press.

Mises, R. v. (1947). On the asymptotic distribution of differentiable statistical functions.
The annals of mathematical statistics 18, 309–348.

Muthén, B. and Shedden, K. (1999). Finite mixture modeling with mixture outcomes using
the em algorithm. Biometrics 55, 463–469.

Nagin, D. S. (1999). Analyzing developmental trajectories: a semiparametric, group-based
approach. Psychological methods 4, 139.

Nagin, D. S. and Land, K. C. (1993). Age, criminal careers, and population heterogeneity:
Specification and estimation of a nonparametric, mixed poisson model. Criminology 31,
327–362.

Nelson, W. (1969). Hazard plotting for incomplete failure data. Journal of Quality Technology
1, 27–52.

175



Nguyen, V. Q. and Gillen, D. L. (2017). Censoring-robust estimation in observational survival
studies: Assessing the relative effectiveness of vascular access type on patency among end-
stage renal disease patients. Statistics in biosciences 9, 406–430.

Peterson, A. V. (1977). Expressing the kaplan-meier estimator as a function of empirical
subsurvival functions. Journal of the American Statistical Association 72,.

Ram, N. and Grimm, K. J. (2009). Methods and measures: Growth mixture modeling:
A method for identifying differences in longitudinal change among unobserved groups.
International journal of behavioral development 33, 565–576.

Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods. Journal of
the American Statistical association 66, 846–850.

Reid, N. (2007). Influence functions for censored data. The Annals of Statistics 9,.
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