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Coccidioidomycosis (Valley fever) is a fungal disease caused by the inhalation of

Coccidioides posadasii or C. immitis. This neglected disease occurs in the desert areas

of the western United States, most notably in California and Arizona, where infections

continue to rise. Clinically, coccidioidomycosis ranges from asymptomatic to severe

pulmonary disease and can disseminate to the brain, skin, bones, and elsewhere. New

estimates suggest as many as 350,000 new cases of coccidioidomycosis occur in the

United States each year. Thus, there is an urgent need for the development of a vaccine

and new therapeutic drugs against Coccidioides infection. In this review, we discuss the

battle against Coccidioides including the development of potential vaccines, the quest

for new therapeutic drugs, and our current understanding of the protective host immune

response to Coccidioides infection.
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INTRODUCTION

The Coccidioides genus contains C. immitis and C. posadasii, the etiological agents of Valley
fever. This neglected disease occurs primarily in the southwestern United States, most notably
in California and Arizona; however, cases have appeared in Washington pointing to an
underappreciation of the geographic distribution of this organism (1, 2). Furthermore, cases outside
the United States have been occurring in the northern region of Mexico (3) and areas of Central
and South America (4, 5). Coccidioides is considered both a primary and opportunistic fungal
pathogen occurring in both immunocompetent and immunocompromised individuals causing
a spectrum of coccidioidomycosis. Most cases (∼60%) are asymptomatic. For the remainder,
pulmonary symptoms from underlying acute or progressive pneumonia are the most common
reason patients seekmedical help (6, 7). Additionally, dissemination can occur affecting amultitude
of organs (Figure 1) and lead to the most severe complication, coccidioidal meningitis. Originally,
the literature stated that an estimated 150,000 infections occur each year in the United States, and
about 1% lead to disseminated disease with a third of those being fatal (7). Host factors strongly
influence risk of disseminated disease such as immunosuppression, third trimester of pregnancy,
old age, and ethnicity (i.e., African Americans and Filipinos) (6–12). Additionally, host response
to treatment varies, current antifungals cause potential adverse side effects, and resistance to
antifungals has recently become a concern (13, 14). Furthermore, infections caused by Coccidioides
are on the rise (15), and new estimates of the annual number of new U.S. infections are more
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FIGURE 1 | Potential Organs Infected by Coccidioides. Since inhalation is the most common route of infection, the lungs are the most common organ that becomes

infected with Coccidioides; however, dissemination can occur allowing for multiple organs, highlighted above, to become infected but are uncommon (Illustration

created with BioRender).

than twice (350,000) that of previous estimates (16). The reason
for the increase in Coccidioides cases is largely unknown;
however, factors such as changes in the environment and
surveillance methodology could be contributing factors (15).
Taken together, there is an urgent need for new antifungal agents,
a better of understanding of host response to infection, and
the development of a vaccine to combat coccidioidomycosis.
Here, we review the current understanding of the host
immune response to infection and protection, advances in drug
development, and discuss promising approaches to developing
a Coccidioides vaccine; a one stop-shop to understand current
research in the battle against the Dust Devil.

HOST IMMUNE RESPONSE TO
COCCIDIOIDES

Coccidioides grow in the soil as fungal mycelia which
segment into arthroconidia (spores) that can then become
aerosolized, inhaled, and cause infection. Once a host is infected,
arthroconidia transition into mature rupturing spherules
within 5 days of infection (17). Therefore, during the early
days of infection, morphological variation of Coccidioides is
high as the organism is switching from arthroconidia to its
parasitic stage, the spherule. In this section, we will discuss
what is known about the host immune response to Coccidioides
infection, first focusing on the early immune response, and
then discussing the protective host immune response to
battle coccidioidomycosis.

Early Innate Immune Response to
Coccidioides
The innate immune response is the first line of defense against
fungal pathogens and clearance relies heavily on phagocytosis
by macrophages and neutrophils (18). Phagocytosis can occur
on inhaled arthroconidia (3–5µm) (17) and endospores (2–
7µm); however, mature spherules are too large (15–80µm)
(19) and phagocytic cells fail to engulf these fungal organisms
(20). Neutrophils for example can only partially engulf cells
that are about 11µm (21) which is below the threshold of the
size of a mature spherule. Studies have shown an influx of
neutrophils during infection with Coccidioides (22) and when
spherules burst releasing hundreds of endospores (23, 24). Past
reports have shown C57BL/6 mice depleted of neutrophils are
as susceptible as wild-type mice when infected with wild type
Coccidioides (19). Conversely, when mice are vaccinated with a
live-attenuated strain of Coccidioides (1T, genetically engineered
mutant originally designated ∆cts2/ard1/cts3), protection relies
on the presence of neutrophils (19). Additionally, studies
conducted by Gonzalez et al. showed that mice deficient in
NADPH oxidase (NOX2) weremore susceptible to infection with
C. posadasii compared to wild type mice while inducible nitric
oxide synthase (iNOS) knock-out mice demonstrated that iNOS
does not play a significant role in the control of Coccidioides
infection (25, 26). Interestingly, NOX2−/− mice had substantially
more infiltration of neutrophils in the lungs compared to wild
type mice while iNOS−/− mice had a significant increase of
neutrophils at day 7 but not day 11 post challenge. Overall these
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studies demonstrate that neutrophils play a role in the proper
inflammatory response during a Coccidioides infection, and
dysregulation of an inflammatory response can be detrimental to
the host.

Coccidioides spherules can also escape phagocytosis from
macrophages (23). Macrophages vary in size depending on
location in the host: 5µm spleen, 10µm peritoneal surface, and
15µm alveoli (27). Studies have demonstrated an evolutionary
conserved particle/pathogen size ratio contributes to pathogen
clearance and recognition (28), suggesting the inability of
macrophages to phagocytose mature spherules. Vaccination
studies have demonstrated the influx of macrophages to
the lungs of vaccinated mice compared to unvaccinated
mice after challenge with Coccidioides (22). However, the
role of macrophage subsets (i.e., classically and alternatively
activated macrophages or M1 and M2 macrophages) in the
protective host immune response against Coccidioides has yet
to be elucidated. Studies have shown that mouse peritoneal
macrophages stimulated with Coccidioides spherules produce
tumor necrosis factor alpha (TNF-α) (29). Furthermore, studies
have shown increases in cytokines such as interferon gamma
(IFNγ), tumor necrosis factor alpha (TNFα), and interleukin
(IL)-17 in mononuclear cells from bronchoalveolar lavage fluid
(BALF) from patients with pulmonary coccidioidomycosis (30).

Studies further determined which pattern recognition
receptors (PRRs) on peritoneal macrophages were important
for recognition of C. posadasii spherules. Using peritoneal
macrophages from wild-type cells compared to different
knockout mice (i.e., TLR2−/− and MyD88−/−), results
demonstrate the response to spherules is dependent on
Toll-like receptor 2 (TRL2), myeloid differentiation factor
88 (MyD88), and Dectin-1 (31). Dectin-1 is a C-type lectin
receptor shown to interact with components of the fungal cell
wall. Studies have shown the importance of this C-type lectin
receptor where Dectin1−/− mice infected with Coccidioides
demonstrated increased pulmonary fungal burden and decreased
Th17 cytokines (32). Studies further suggest that increased
susceptibility of C57BL/6 mice to coccidioidomycosis is due
to alternative splicing of the Dectin-1 gene (33). Furthermore,
studies have identified that null mutations in Dectin-1 predispose
hosts to chronic mucosal candidiasis (34). Additionally, people
with mutations in the CARD9 gene, Dectin-1, and other C-type
lectin receptors signaling through this gene have increased
susceptibility to fungal infections (35). Another C-type lectin
receptor, the mannose receptor, has been shown to be important
in the immune response of human coccidioidomycosis but does
not play a role in a murine model of coccidioidomycosis (36–38).
Studies demonstrated an association with low mannose-binding
lectin (MBL), a collectin that is part of the innate immune system,
serum levels among patients exhibiting an active Coccidioides
infection compared to otherwise healthy individuals; however,
the role of MBL in the pathogenesis of Coccidioides has yet
to be determined (37). Recent studies further investigated
the role of multiple receptors that use MyD88 to determine
which of these receptors are required for resistance against
coccidioidomycosis. Of all the surface receptors investigated,
results from the studies determined IL-1R1 signaling to be

important for protection against coccidioidomycosis (39).
Overall, these studies demonstrate the potentially crucial role
of C-type lectin receptors and certain TLRs to protect against
coccidioidomycosis, but much remains to be done.

Dendritic cells (DCs) act as a bridge between the innate
and adaptive immune response. DCs initiate the immune
response by capturing antigens and then activate and modulate
lymphocytes. Mature DCs have the ability prime naïve T
cells toward phenotypes (Th1 and Th17) protective against
coccidioidomycosis (discussed below) (40). Studies have
demonstrated that DCs pulsed with Coccidioides antigen
(spherulin, spherule lysate) can activate DC maturation and
lymphocyte proliferation in non-immune individual cells (41).
Furthermore, studies investigated the effects of DCs pulsed with
a coccidioidal antigen preparation, T27K, using PBMCs from
patients with disseminated coccidioidomycosis compared to
healthy individuals (42). Results from these studies demonstrate
that DCs can be generated by patients with disseminated
coccidioidomycosis, and stimulation with T27K led to increased
IFN-γ levels in both disseminated and healthy patient samples.
Furthermore, studies have demonstrated that suppressing DC
responses led to defective T cell responses. BALB/c mice are
highly susceptible to infection with Coccidioides, whereas DBA/2
mice are more resistant. Bone-marrow derived DCs (BMDCs)
from DBA/2 mice infected with Coccidioides demonstrated an
increase in IL-12 secretion and T cell co-stimulatory cell surface
molecules compared to BALB/c mice (43). Thus, these studies
suggest BALB/c mice could be more susceptible due to impaired
DC responses; however, more studies are needed using other
mouse strains that are susceptible to infection with Coccidioides.

Despite species divergence of C. immitis and C. posadasii
about 5.1 million years ago (44), many studies state that these
two species cause similar disease clinically. However, studies
from our laboratory allude to differential early host innate
responses among species of Coccidioides in a murine model of
coccidioidomycosis (45). Since host responses strongly influence
clinical disease, differences in the first line of defense against
coccidioidomycosis could attribute to differences in outcome
of disease. Mice were infected with 1 × 105 arthroconidia of
either a C. immitis pure strain (2006), C. immitis hybrid strain
(RS), or a C. posadasii pure strain (Silveira). Real-time RT-
PCR analysis of mouse lungs shows differential responses across
strains. Expression of proinflammatory cytokine levels (IL-1α
and IL-17α) were significantly increased in the mice infected with
the 2006 strain (C. immitis) at day 5 post infection compared
to all other infected mice. Silveira (C. posadasii) infected mice
demonstrated an increase in proinflammatory cytokine IL-1β at
day 1 post infection and immunoregulatory cytokine IL-10 at day
5 post infection compared to other strains (45).

Coccidioides has other means of avoiding phagocytosis
and evading the immune response. Spherule outer wall
glycoprotein (SOWgp) is a major antigen present on the cell
surface of Coccidioides (46, 47). This glycoprotein is highly
expressed during the transition to spherules, and demonstrates
immunogenic properties (46, 47). Interestingly, studies have
shown that a specific metalloproteinase (Mep1) is secreted
during endosporulation, which then digests SOWgp to prevent
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host recognition (48). Furthermore, mice vaccinated with
recombinant SOWgp and then challenged with a C. posadasii
strain with the MEP1 gene disrupted demonstrated increased
survival compared to the parental or revertant strain (48). Other
studies have demonstrated that Coccidioides can suppress nitric
oxide (NO) production in macrophages; however, these studies
show NO is not critical for in vitro killing of Coccidioides
(49). Although these studies give us insights into Coccidioides
pathogenesis, more studies are needed to understand the immune
evasion strategies of this pathogen.

Protective T-Cell Host Immune Response
to Combat Coccidioides
Results from both clinical data and mouse models of
coccidioidomycosis have demonstrated that T cell immunity is
crucial for protection against coccidioidomycosis. Additionally,
deficiency in CD4+ T cells results in increased susceptibility to
infection with Coccidioides (50). CD4+ T cells can differentiate
into distinct lineages that produce certain cytokines in response
to a pathogen. Cytokines such as IL-12 and IFN-γ are associated
with T cell helper 1 (Th1) responses, which has been shown to be
important for protection in mouse models of coccidioidomycosis
(51, 52) and in vitro studies using human PBMCs (53).
Additionally, patients with IL-12 and IL-1 receptor deficiencies
demonstrate increased dissemination of Coccidioides (54, 55).
A Th2 immune response is activated by cytokines such as IL-4
and IL-5 and has been shown to downregulate the host immune
response during infection with Coccidioides (51). On the other
hand, these cytokines can induce B cell responses which have
been shown to play a role in protection in a mouse model of
coccidioidomycosis (51, 56, 57). However, the role of Th2 and
antibodies in the clearance of Coccidioides has yet to be resolved
and requires further study. Additionally, the detection of anti-
Coccidioides antibodies for the diagnosis of coccidioidomycosis is
not reliable in humans (58). Recently, the role of Th17 responses
which produce proinflammatory cytokines such as IL-17 and IL-
22 has been investigated (59). Vaccination studies by Hung et al.
demonstrate the critical role of Th17 responses in protection
against coccidioidomycosis (22). In these studies, mice lacking
the IL-17 receptor that were vaccinated with the 1T strain were
highly susceptible to challenge with Coccidioides. Furthermore,
mice deficient in IFN-γ and IL-4 receptors were still protected
against challenge with Coccidioides equivalent to wild-type
mice. Thus, demonstrating conflicting results of the importance
of IFN-γ in the protection against coccidioidomycosis. These
studies also demonstrate the immune response of 1T vaccinated
mice challenged with Coccidioides is a mixed Th1, Th2, and Th17
response (22). Overall, studies demonstrate that each of these
subsets play a role in the protection against coccidioidomycosis.

Along with CD4+ T cells, mouse studies show that CD8+ T
cells play a role in protection against infection with Coccidioides
(60). Studies have shown an increased percentage of CD8+

T cells were present post challenge among 1T vaccinated
mice compared to non-vaccinated mice (22). Importantly,
BALF from patients with coccidioidomycosis demonstrated an
increased proportion of CD8+ T cells in patients with acute

pulmonary Coccidioides infection compared to all other groups
(30). Additionally, studies have shown that CD8+ T cells
can compensate for the lack of CD4+ T cells and confer
protection against fungal pathogens (60–63). Studies analyzing
pediatric patients with coccidioidomycosis demonstrated an
overall lower adaptive immune response in persistent disease
patients with a trend toward lower CD4+ and CD8+ T cells,
and significantly fewer B cells compared to control and resolved
patients (64). Additionally, these studies found no difference in
Th1 frequencies among patient populations; however, patients
with persistent disease had a lower frequency of Th17 and
higher T regulatory (Treg) frequencies compared to patients with
resolved disease. Therefore, studies from both human and mouse
models of coccidioidomycosis have demonstrated an association
between increased Th17 responses and resolution of infection.

DEVELOPMENT OF A COCCIDIOIDES

VACCINE

Despite earnest efforts, there is currently no clinically available
vaccine against any fungal organism; although, early results have
been favorable in the development of a Candida vaccine (65). The
overall goal of an anti-coccidioidal vaccine is to prevent disease.
Immunization against coccidioidomycosis appears possible since
patients who have recovered from an initial coccidioidal infection
rarely become ill from a second infection and additional
exposure (66). The first experimental anti-Coccidioides vaccine
developed was the formalin-killed spherule (FKS) vaccine that
demonstrated promising results in mice (67). However, human
trails established no differences between FKS-vaccinated group
and the placebo group (68). Additionally, the FKS-vaccinated
group experienced severe side effects at the local injection site.
Herein, we discuss various strategies to develop a vaccine to
combat coccidioidomycosis.

Live Attenuated Vaccines
Live attenuated strains have proven to be successful in
stimulating the immune response similar to a naturally
occurring infection (69–72). However, an ideal vaccine candidate
needs to have an impeccable safety profile in all populations
such as the immunocompromised (73). Although a live vaccine
may not be useful in a human clinical setting, understanding
the protective host immune response against Coccidioides is
imperative to design a suitable and effective recombinant vaccine
to combat coccidioidomycosis. For example, chitinase activity
in C. posadasii was inhibited by disrupting two chitinase genes
(CTS2 and CTS3) and a third gene contiguous to CTS3, to obtain
an attenuated mutant that was no longer able to endosporulate,
1cts2/ard1/cts3 (51). This genetically engineered strain
demonstrated protection in mice against coccidioidomycosis
and is now designated as the 1T vaccine strain (51, 74). Using
this vaccine strain, studies have demonstrated the important
parameters for eliciting a protective host immune response
against coccidioidomycosis. As discussed above, the 1T
vaccine helped to elucidate the important role of CD4+ T cells,
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particularly Th1 and Th17 immune responses that are critical for
protection (22).

More recently, a homolog of the gene CPS1, a virulence
factor found in a maize pathogen (75), was deleted in a
strain of C. posadasii (76). This deletion resulted in essentially
complete attenuation of pathogenicity in both wild type and
immunodeficient mice. Furthermore, mice vaccinated with live
1CPS1 were protected against an otherwise lethal infection
with wild type C. posadasii and C. immitis (76, 77). Further
studies demonstrated a primarily Th1-type response in mice
vaccinated with 1CPS1 and challenged with wild-type C.
posadasii compared to unvaccinated mice (77). Both the 1T
and 1CPS1 strains are vital tools needed to determine the
protective host immune response needed to battle Coccidioides.
Interestingly, both of these mutant strains undergo initial
spherulation in the host before arresting growth.

A practical attraction of a live attenuated Coccidioides vaccine
candidate is that manufacturing costs to make a clinically
feasible product should be low. Production costs have been a
road block for an earlier recombinant vaccine (78); however,
as with any live vaccine, safety is a critical consideration.
Since 1CPS1 is a complete gene-deletion, reversion is hard to
imagine. On the other hand, new mutations in other genes might
compensate for the missing gene and result in gain-of-function
and cause disease, especially in more immunosuppressed
individuals (73, 79). 1CPS1 is currently being developed as
a live vaccine candidate to prevent Valley fever in dogs (80).
Should this prove successful, it would provide a proof-of-
concept supporting further development to prevent Valley fever
in humans. The exact path for this vaccine candidate to humans
has yet to be determined. There is no precedent since a live
attenuated eukaryotic vaccine has yet to be given FDA approval.
Furthermore, the market for a vaccine to prevent Valley fever
is relatively small. While there is a very strong public case for
preventing this disease (81), it is much more challenging to make
a business model with a return on investment competitive with
other opportunities for investors. It is likely that a Valley fever
vaccine will only be developed if public resources, state or federal,
are deemed appropriate for this purpose.

Novel Adjuvants and Protein Vaccines
A safer alternative to attenuated vaccines is the use of
recombinant proteins; yet, these may require an adjuvant to
strengthen the immune response and optimize efficacy (82).
Studies sought to characterize a novel adjuvant, a peptide
agonist of the biologically active C-terminal region of human
complement C5a referred to as EP67, conjugated to the live
1T vaccine strain (83). These studies found that BALB/c mice
immunized with the EP67-conjugated vaccine demonstrated
increased survival rates and reduced fungal burden compared
to the non-conjugated vaccine. Additionally, mice given the
conjugated vaccine had increased infiltration of macrophages
and DCs by day 7 post challenge while neutrophil numbers
were decreased by 11 days post challenge compared to the non-
conjugated vaccinated mice. Furthermore, the novel adjuvant
EP67 increased Th1 and Th17 immune responses; therefore,

augmenting T cell immunity and enhancing protective efficacy
of the live 1T vaccine strain (83).

Early studies suggest multivalent vaccines are more effective
against coccidioidomycosis compared to a single peptide vaccine
(84–86). Early studies introduced rAg2/Pra as a potential
vaccine candidate; however, varying routes of challenge led
to conflicting results (87, 88). Thus, improved protection
efficacy against Coccidioides infection in mice by adding
an Coccidioides-specific antigen (CSA) to the rAg2/Pra were
completed (84). The inclusion of another antigen Prp2, and
development of a combined vaccination of rAg2/Pra+rPrp2,
produced significantly improved protection compared to either
of the recombinant proteins alone (89). Additionally, recent
studies have demonstrated a Ag2/Pra-specific response in mice
using a DC-based vaccine which was prepared by transfecting
primary bone marrow-derived DCs with a plasmid encoding
Ag2/Pra (90). Prior studies demonstrated that the DC-based
vaccine reduced fungal burden and increased IFNγ levels in the
lung homogeneates from vaccinated mice compared to control
mice (91).

Using two-dimensional gel electrophoresis and high-
performance liquid chromatography-tandem mass spectrometry
(HPLC-MS/MS), studies identified another protein, PMP1
(peroxisomal matrix protein 1), which also demonstrated
protection in a mouse model of coccidioidomycosis (92).
Additional protective antigens that were used as potential
vaccine candidates include PEP1, PLB, and AMN1, which
demonstrated enhanced protection as a multivalent vaccine
compared to a single antigen alone (85). An alternative approach
to a multivalent vaccine to lower cost is the used of epitope-based
vaccines (EBV) which has been shown to effectively induce an
immune response, is relatively easy to produce, and expected to
be safe to use in humans (93, 94). Studies conducted by Hurtgen
et al. created a recombinant EBV (rEBV) which incorporated
PEP1, AMN1, and PLB into a single epitope-based vaccine which
was either admixed with an adjuvant or loaded into glucan
particles (GPs) (95). Overall, these studies demonstrated that
the rEBV plus GP vaccination was superior to all formulations
tested in this study showing enhanced survival, reduced fungal
burden, and robust Th1 and Th17 immune responses compared
to control mice with GPs alone. GPs are purified, hollow, porous
yeast cell-wall particles derived from Saccharomyces cerevisiae.
There have been several types of yeast particles created for
vaccine development (96).

Recently, studies created a recombinant chimeric polypeptide
antigen, rCPa1, that consist of Ag2/Pra, Cs-Ag, Pmp1, and 5 T
cell epitopes from PEP1, PLB, and AMN1 from C. posadasii
(97). Additionally, they tested the efficacy of rCpa1 encapsulated
in differently formulated yeast cell-wall particles. These studies
identified a promising vaccine candidate, rCpa1, encapsulated
in glucan-chitin particles (GCP-rCpa1) that showed increased
survival, significantly reduced fungal burden, and a mixed
protective Th1 and Th17 response (97). Additionally, recent
studies conducted by Hayden et al. demonstrated that mice
immunized with recombinant Ag2 expressed in maize and
loaded into GCPs had reduced fungal burden in Coccidioides
challengedmice similar to Ag2 derived from Escherichia coli (98).
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Furthermore, oral administration of Ag2 fused onto a DC carrier
peptide (DCpep) demonstrated protective Th17 responses. More
studies are needed to characterize these new vaccine candidates
to determine if clinical trials are on the horizon. To move into
clinical trials, we need to test potential vaccine candidates in
multiple animal models including transgenic mice expressing
human receptors.

CURRENT TREATMENTS AND DRUG
DISCOVERY

Coccidioidomycosis represents a spectrum of illness ranging
from asymptomatic acquisition with resultant immunity to
severe and life-threatening disseminated infections. Even in
otherwise uncomplicated primary pulmonary infection the
symptoms of fever, chills, cough, joint pain, and malaise can last
weeks tomonths (99). Severe cases including dissemination to the
skin, bone, or brain (Figure 1) can be difficult to treat and in some
cases require life-long antifungal therapy. Currently, the most
commonmanagement of coccidioidomycosis includes antifungal
agents such as fluconazole or itraconazole; however, guidelines
suggest an individualized approach to patient management (13).
Nevertheless, new concerns of toxicities and side effects, with
either acute or long-term use, caused by these agents have
seen renewed interest in the development of new agents to
combat this disease. Herein, we discuss briefly the current and
future treatment options for patients with coccidioidomycosis.
A comprehensive review of current treatment options against
coccidioidomycosis has recently been published (100).

Polyenes
Amphotericin B has been a widely used agent in the treatment of
coccidioidomycosis over the last 50 years (101) and is currently
available in multiple intravenous formulations: amphotericin
B deoxycholate (AmBd), liposomal amphotericin B (L-AMB),
amphotericin B colloidal dispersion (ABCD), and amphotericin
B lipid complex (ABLC) (Table 1) (100). Overall, these
formulations are met with adverse effects such as nephrotoxicity,
hypokalaemia, phlebitis, fever, chills, hepatotoxicity, and anemia
(102–105). Historically, long courses of amphotericin B therapy
was prescribed in an attempt to provide curative therapy given
the lack of an orally available efficacious agent. With the
availability of the less toxic triazole antifungals, amphotericin
B therapy is reserved for the treatment of patients who are
intolerant or refractory to the other available antifungal agents
or those with severe disease.

There have been numerous studies using animal models
that have demonstrated the efficacy of the lipid formulations
of amphotericin B therapy against coccidioidomycosis (106–
109). Although clinical studies have been sparse, the use of
amphotericin B against multiple forms of coccidioidomycosis has
demonstrated its efficacy. A retrospective study demonstrated
similar efficacy of ABLC and L-AMB in the treatment of severe
coccidioidomycosis; however, L-AMBmay be the preferred agent
with less renal toxicity during treatment compared to ABLC
(110). Studies have shown that coccidioidal meningitis treated

with amphotericin B deoxycholate via the intrathecal route
demonstrates a much more successful treatment compared to
the intravenous route (111). However, discussion with those
experienced in the treatment of intrathecal therapy is highly
recommended if intrathecal therapy is needed during clinical
care given the potential morbidity with treatment via this
approach (112, 113).

Triazoles
The triazoles used to combat coccidioidomycosis include:
fluconazole, itraconazole, voriconazole, posaconazole, and
isavuconazole. These triazoles prevent the conversion of
lanosterol to ergosterol thus affecting ergosterol synthesis. More
specifically, these agents, with significant affinity differences,
inhibit cytochrome P450 (CYP)-dependent 14-α-demethylase
(114). This affinity difference leads to variability among the
antifungal agents in their efficacy, spectrum of activity, and
side effect profile. Despite the commercial availability of the
triazoles, few have been evaluated in prospective clinical trials
due to the regional nature of the disease and the high financial
burden of these types of studies. However, the designation of
coccidioidomycosis as an orphan disease may facilitate these
efforts and allow future antifungal agents to be fully evaluated in
prospective fashion.

Fluconazole

Fluconazole is the most frequently prescribed antifungal agent
and clinical guidelines suggest it to be a first line agent
against multiple forms of coccidioidomycosis (13). Advantages
of this agent include low cost, tolerability, the availability of
both an oral and intravenous formulations, long half-life, and
excellent bioavailability (see Table 1 for an overview of benefits,
weaknesses, and adverse effects) [for pharmacokinetics of
antifungal agents see recent review article (100)]. Fluconazole has
the ability to penetrate most tissues with adequate concentrations
within the cerebrospinal (CSF) fluid allowing for the treatment
of coccidioidal meningitis (CM) (13, 115). Although adverse
effects from the use of fluconazole are largely benign, patients
have experienced hepatotoxicity, heart corrected QT interval
prolongation, alopecia, xerosis, and cheilitis (100, 116).

A recent study performed a large-scale susceptibility test
to understand triazole minimum inhibitory concentrations
(MICs) of Coccidioides isolates. These results revealed increased
fluconazole MICs across multiple Coccidioides isolates tested
(≥16µg/ml, 37.3% of isolates; ≥32µg/ml, 7.9% of isolates)
(14). This decreased in vitro susceptibility of fluconazole may
explain the need for higher fluconazole doses during treatment
of coccidioidomycosis (13) and a dose-dependent response
to fluconazole has been observed using a murine model of
systemic coccidioidomycosis (117); however, this in vitro data
has yet to be correlated with clinical outcomes. At this time, no
comparative trial has evaluated the dose-dependent response of
fluconazole in a randomized study; although, efficacy has been
definitively demonstrated (118). Recently, tolerability of long-
term fluconazole therapy was assessed, and it was demonstrated
that out of 124 patients∼50% had adverse effects (116). Themost
common adverse effects patients experienced included xerosis,
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TABLE 1 | A brief overview of antifungal agents benefits, weaknesses, and adverse effects in the treatment of coccidioidomycosis.

Antifungal agent Benefits Weaknesses Adverse effects

Triazoles

Fluconazole Low cost/tolerable High MIC values in vitro Hepatotoxicity, QTc prolongation, alopecia,

xerosis, and cheilitis

Itraconazole Highly efficacious and tolerable CSF and bone penetration,

TDM

Hepatotoxicity, gastrointestinal distress,

hypertension, hypokalemia, negative

inotrope, and peripheral edema

Voriconazole High CSF penetration Variable bioavailability and TDM Hepatotoxicity, photopsia, and photoxic skin

reactions, visual hallucinations,

rashes/long-term use lead to skin

carcinoma, alopecia, and xerosis

Posaconazole Penetrates most body sites and

effective against nonmeningeal

coccidioidomycosis

Therapeutic drug monitoring

advised, low/variable CSF

penetration

Gastrointestinal distress, hypokalemia,

hypertension, peripheral edema

Isavuconazole Efficacious against primary

coccidioidomycosis, prolonged

half-life, and tolerable

Limited clinical data against

meningeal coccidioidomycosis

Gastrointestinal distress and hypokalemia

Polyenes-Amphotericin B

AmBd Intrathecal route Highly toxic Nephrotoxicity, hepatotoxicity, hypokalemia,

phlebitis, fever, chills, dyspnea, chest/back

pain

ABCD N/A

ABLC N/A

L-AMB Less renal toxicity

AmBd, amphotericin B deoxycholate; ABCD, amphotericin B colloidal dispersion; ABLC, amphotericin B lipid complex; L-AMB, liposomal amphotericin B.

alopecia, and fatigue, which resulted in 65% of patients requiring
a therapeutic change.

Itraconazole

Itraconazole is also frequently prescribed to treat
coccidioidomycosis (13). This antifungal agent is available
primarily as a capsule or oral solution (100). Advantages of
using itraconazole include long half-life, efficacy, and tolerability
(Table 1), although gastrointestinal side-effects are common with
the oral solution, negative inotropic effects on cardiac output
have been reported (119). Also, recent reports describe the
development of hypertension following itraconazole initiation
(120). However, the bioavailability is highly variable and studies
have shown itraconazole to exhibit poor CSF (121, 122) and bone
penetration (123). Additionally, due to variable bioavailability,
therapeutic drugmonitoring is recommended to ensure adequate
absorption (124).

Despite poor CSF and bone penetration, studies have shown
itraconazole to be highly efficacious in the treatment of both
osseous coccidioidomycosis and coccidioidal meningitis (118,
125–127). Galgiani et al. compared fluconazole and itraconazole
therapy in non-meningeal coccidioidal infections. These studies
demonstrated an enhanced response in itraconazole treated
patients compared to fluconazole treated patients with osseous
coccidioidomycosis (118). Overall, they found itraconazole
tended to be slightly more efficacious with fewer relapses
compared to fluconazole treated patients. Studies using a murine
model of CM demonstrated prolonged survival of mice infected
with Coccidioides treated with either 50 mg/kg of itraconazole or
fluconazole (125). At this same dose, they found equal clearing

of fungi from both brain and kidney; however, itraconazole
demonstrated an enhanced clearing of fungi in spinal cord
and lungs.

Voriconazole

Voriconazole is often used for patients who are intolerant
or refractory to other triazoles in the treatments of
coccidioidomycosis (128, 129). The advantages of this antifungal
agent include the availability of in both intravenous and
oral formulations, high oral bioavailability, wide distribution
throughout body, and the ability to penetrate the CSF (Table 1)
(100). Nevertheless, voriconazole exhibits many attributes
necessitating a working knowledge of its differences compared to
other agents. Voriconazole possesses a variable half-life (patient
dependent), many drug-drug interactions, hepatotoxicity, visual
disturbances, rashes, alopecia, xerosis, and long-term toxicity
concerns including cutaneous malignancy (129–134). Due
to the variable half-life and the contraindication in patients
with renal dysfunction, therapeutic drug monitoring is highly
recommended (135).

The efficacy of voriconazole in the treatment of
coccidioidomycosis has been demonstrated in retrospective
series with favorable outcomes observed in the majority of
reported cases including those with bone meningeal and
non-meningeal disease (129, 130).

Posaconazole

Posaconazole was initially available only as an oral solution;
however, bioavailability was a problem (136). Currently, an
intravenous formulation and delayed release oral tablet are now
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available and the latter demonstrates significant improvement
of absorption (137). Posaconazole has been shown to penetrate
most sites of the body, but exhibits poor CSF penetration (138,
139). Common adverse effects caused by posaconazole treatment
include gastrointestinal distress, hypokalemia, hypertension,
peripheral edema, dry mouth, and headache (140, 141).
Additionally, there are concerns of potential toxicity with high
posaconazole concentrations (142); therefore, therapeutic drug
monitoring is suggested (Table 1) (143).

Studies have shown the efficacy of posaconazole for the
treatment of coccidioidomycosis in murine models (144, 145).
One study demonstrated that mice treated with 10mg of
posaconazole showed >70% sterilization in the spleens and
livers of Coccidioides infected mice while itraconazole treated
mice resulted in no sterilization in the same tissues tested
(144). Clinically, posaconazole treatment has shown efficiency
in the treatment of refractory cases of coccidioidomycosis
(129, 140, 146, 147).

Isavuconazole

Isavuconazole exist as a prodrug, isavuconazonium sulfate, which
is cleaved by plasma esterases into the active moiety. This
novel triazole is available in both oral and IV formulations,
has a prolonged half-life (∼130 h), high bioavailability, and is

widely distributed through-out the body (Table 1). Additionally,
isavuconazole has shown efficacy clinically against multiple
disparate fungal pathogens including the endemic mycoses (148–
152). Isavuconazole has been shown to cause adverse effects;
the most commonly observed include gastrointestinal disorders
(diarrhea and nausea/vomiting) and hypokalaemia (149).

Thus far, there is limited clinical data for the use of
isavuconazole therapy on patients with coccidioidomycosis. A
prospective study has demonstrated efficacy in the treatment of
primary infection with Coccidioides (151) and a retrospective
study has demonstrated the potential use of isavuconazole in
coccidioidal meningitis in the salvage setting (153).

Combination Therapy
It stands to reason that targeting multiple pathways using a
combination of drugs would improve efficacy. However, clinical
trials are lacking in the case of combination therapy against
coccidioidomycosis. Interestingly, studies using a murine model
of coccidioidomycosis have demonstrated the synergistic effects
of combination therapy with caspofungin and amphotericin B
deoxycholate increasing survival and decreasing fungal burden of
mice compared tomonotherapy with either treatment (154). This
is noteworthy as the echinocandins have little activity against
Coccidioides species and should not be used as monotherapy or

FIGURE 2 | Three Arsenals to Combat Coccidioides. Here we highlight the current battle against Coccidioides from antifungals, potential vaccines, and the protective

host immune response. Bolded terms: important for host protection, most common antifungal drug, and most promising current vaccine candidates against

coccidioidomycosis. Color coding for antifungal drug classes: purple, Azoles; blue, drugs in development; and orange, Polyenes (Illustration created with BioRender).
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outside of the salvage setting. Additional reports on the potential
utility of combination therapy against coccidioidomycosis is
scant, and includes murine models of infection and a single
case reports/case series in the salvage setting (111, 155–157).
Overall, these cases demonstrate the potential promise of the use
of combination therapy against refractory coccidioidomycosis.

New Drug Development
Although recent development of new and less toxic triazoles
have been a welcome advance, there is a clear need for more
effective and less toxic antifungal agents/therapies, particularly
fungicidal oral agents. There are numerous agents currently
in development with new modes of action and potentially
reduced toxicity. A new formulation of itraconazole (SUBA-
itraconazole) (158) has recently become available and clinical
studies are ongoing. Novel amphotericin B formulations
are currently in development (159). Additionally, some of
the drugs in development exhibit broad-spectrum activity
against multiple mycoses. Olorofim (formerly F901318) is an
orotomide (inhibitor of dihydroorotate dehydrogenase) and has
shown excellent in vitro activity against a number of fungal
pathogens including Coccidioides, and murine models have
suggested fungicidal activity (160) with a phase II clinical
trial currently ongoing. Fosmanogepix (formerly APX001),
a GPI-anchor inhibitor, has shown activity against a broad
spectrum of fungal pathogens (161–166). A recent study
evaluated the activity of prodrug APX001 and prodrug analogs
against C. immitis and treatment with APX001 in Coccidioides
infected mice resulted in significantly longer survival rates
and reduced fungal burden than fluconazole or control treated
mice (167). Another potential new drug, nikkomycin Z, a
chitin synthase inhibitor, is nearing phase 2 clinical trials
(168) and has shown similar promise in murine models of
infection (169). Also in development are new glucan synthase
inhibitors [rezafungin and ibrexafungerp (formerly SCY-078)]
(170), a fungal mitochondrial inhibitor (T2307), and a histone
deacetylase inhibitor (MGCD290), some with an unknownmode
of action (ASP2397), and some repurposed from cancer therapy
(sertraline and auranofin) (100, 159, 171, 172).

CONCLUSION

Due to the rise of Coccidioides infections and concerns regarding
toxicity of current antifungals, further research is needed to
understand the protective host immune response, new less toxic
antifungal drugs, and development of an effective vaccine to
prevent coccidioidomycosis. Figure 2 demonstrates each of the
three arsenals discussed in this paper in the battle against
Coccidioides: host immunity, vaccines, and antifungal drugs.
A prophylactic anti-Coccidioides vaccine would help to reduce
cost associated with long term medical care and frequently
needed life-long antifungal drugs. Live attenuated strains have
been useful to elucidate our understanding of the protective
host immune response against Coccidioides which requires T
cell mediated immunity, particularly a Th1 and Th17 response.
Novel formulations of adjuvants/delivery systems along with
immunogenic Coccidioides antigens have also been discovered
as vaccine candidates. Either could potentially be developed
for clinical use. While fluconazole is currently the main
antifungal of choice to battle coccidioidomycosis, studies are
underway to find less toxic and effective drugs. Altogether,
there remains a battle at hand to combat Coccidioides, the
Dust Devil.
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