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ARTICLE

A simple method for detecting chaos in nature
Daniel Toker 1*, Friedrich T. Sommer1 & Mark D’Esposito1

Chaos, or exponential sensitivity to small perturbations, appears everywhere in nature.

Moreover, chaos is predicted to play diverse functional roles in living systems. A method for

detecting chaos from empirical measurements should therefore be a key component of the

biologist’s toolkit. But, classic chaos-detection tools are highly sensitive to measurement

noise and break down for common edge cases, making it difficult to detect chaos in domains,

like biology, where measurements are noisy. However, newer tools promise to overcome

these limitations. Here, we combine several such tools into an automated processing pipeline,

and show that our pipeline can detect the presence (or absence) of chaos in noisy recordings,

even for difficult edge cases. As a first-pass application of our pipeline, we show that heart

rate variability is not chaotic as some have proposed, and instead reflects a stochastic

process in both health and disease. Our tool is easy-to-use and freely available.
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A remarkable diversity of natural phenomena are thought
to be chaotic. Formally, a system is chaotic if it is bounded
(meaning that, like a planet circling a star, its dynamics

stay inside an orbit rather than escaping off to infinity), and if it is
deterministic (meaning that, with the exact same initial condi-
tions, it will always evolve over time in the same way), and if tiny
perturbations to the system get exponentially amplified (Glos-
sary (Supplementary Information), Supplementary Figs. 1, 2).
The meteorologist Edward Lorenz famously described this phe-
nomenon as the butterfly effect: in a chaotic system, something as
small as the flapping of a butterfly’s wings can cause an effect as
big as a tornado. This conceptually simple phenomenon—i.e.,
extreme sensitivity to small perturbations—is thought to appear
everywhere in nature, from cosmic inflation1, to the orbit of
Hyperion2, to the Belousov–Zhabotinskii chemical reaction3, to
the electrodynamics of the stimulated squid giant axon4. These
are only a few examples of the many places in nature where chaos
has been found.

It is relatively simple to determine if a simulated system is
chaotic: just run the simulation a few times, with very slightly
different initial conditions, and see how quickly the simulations
diverge (Supplementary Fig. 1). But, if all that is available are
measurements of how a real, non-simulated system evolves over
time—for e.g., how a neuron’s membrane potential changes
over time, or how the brightness of a star changes over time—
how can it be determined if those observations come from a
chaotic system? Or if they are just noise? Or if the system is in fact
periodic (Glossary, Supplementary Figs. 1, 2), meaning that, like a
clock, small perturbations do not appreciably influence its
dynamics?

While a reliable method for detecting chaos using empirical
recordings should be an essential part of any scientist’s toolbox,
such a tool might be especially helpful to biologists, as chaos is
predicted to play an important functional role in a wide variety of
biological processes (that said, we note that real biological systems
cannot be purely chaotic in the strict mathematical since, since
they certainly contain some level of dynamic noise—see Glossary
—but that researchers have long speculated that many biological
processes are still predominantly deterministic, but chaotic5). For
example, following early speculations about the presence of chaos
in the electrodynamics of both cardiac6 and neural7 tissue, the
science writer Robert Pool posited in 1989 that “chaos may
provide a healthy flexibility for the heart, brain, and other parts of
the body.”8 Though this point has been intensely debated since
the 1980s5,9, a range of more specific possible biological functions
for chaos have since been proposed, including potentially max-
imizing the information processing capacity of both neural sys-
tems10 and gene regulatory networks11, enabling multistable
perception12, allowing neural systems to flexibly transition
between different activity patterns13, and boosting cellular sur-
vival rates through the promotion of heterogeneous gene
expression14. And there is good reason to expect chaos to exist in
biological systems, as a large range of simulations of biological
processes15, and in particular of neural systems9, show clear
evidence of chaos. Moreover, unambiguous evidence of biological
chaos has been found in a very small number of real cases that
were amenable to comparison to good theoretical models; these
include periodically stimulated squid giant axons4 and cardiac
cells16, as well as the discharges of the Onchidium pacemaker
neuron17 and the Nitella flexillis internodal cell18. But, beyond
simulations and these select empirical cases, most attempts to test
the presence or predicted functions of chaos in biology have fallen
short due to high levels of measurement noise (Glossary) in
biological recordings. For this reason, it has long been recognized
that biologists need a noise-robust tool for detecting the presence
(or absence) of chaos in their noisy empirical data9,15.

Researchers also need a tool that can detect varying degrees of
chaos (Glossary) in noisy recordings. In strongly chaotic systems,
initially similar system states diverge faster than they do in weakly
chaotic systems. And such varying degrees of chaos are predicted
to occur in biology, with functional consequences. For example, a
model of white blood cell concentrations in chronic granulocytic
leukemia can display varying levels of chaos, and knowing how
chaotic those concentrations are in actual leukemia patients could
have important implications for health outcomes19. As another
example, models of the human cortex predict that macro-scale
cortical electrodynamics should be weakly chaotic during waking
states and should be strongly chaotic under propofol anesthesia20;
if this prediction is true, then detecting changing levels of chaos in
large-scale brain activity could be useful for monitoring depth of
anesthesia and for basic anesthesia research. Thus, it is imperative
to develop tools that can not only determine that an experimental
system is chaotic, but also tools to assess changing levels of chaos
in a system.

Although classic tools for detecting the presence and degree of
chaos in data are slow, require large amounts of data, are highly
sensitive to measurement noise, and break down for common
edge cases, more recent mathematical research has provided new,
more robust tools for detecting chaos or a lack thereof in noisy
time-series recordings. Here, for the first time (to our knowledge),
we combine several key mathematical tools into a single, fully
automated Matlab processing pipeline, which we call the Chaos
Decision Tree Algorithm21 (Fig. 1). The Chaos Decision Tree
Algorithm takes a single time-series of any type—be it recordings
of neural spikes, time-varying transcription levels of a particular
gene, fluctuating oil prices, or recordings of stellar flux - and
classifies those recorded data as coming from a system that is
predominantly (or “operationally”22) stochastic, periodic, or
chaotic. The algorithm requires no input from the user other than
a time-series recording, though we have structured our code such
that users can also select from among a number of alternative
subroutines (see Methods section, Fig. 1).

In this paper, we show that the Chaos Decision Tree Algo-
rithm performs with very high accuracy across a wide variety of
both real and simulated systems, even in the presence of rela-
tively high levels of measurement noise. Moreover, our pipeline
can accurately track changing degrees of chaos (for e.g., transi-
tions from weak to strong chaos). With an eye toward applica-
tions to biology, the simulated systems we tested included a
high-dimensional mean-field model of cortical electrodynamics,
a model of a spiking neuron, a model of white blood cell con-
centrations in chronic granulocytic leukemia, and a model of the
transcription of the NF-κB protein complex. We also tested the
algorithm on a wide variety of non-biological simulations,
including several difficult edge cases; these included strange non-
chaotic systems, quasi-periodic systems, colored noise, and
nonlinear stochastic systems (see Glossary for definitions of these
terms), which are all classically difficult to distinguish from
chaotic systems23–26. We also tested the algorithm on a
hyperchaotic system (Glossary), which can be difficult to dis-
tinguish from noise25, as well as on several non-stationary pro-
cesses (Glossary) in order to test the robustness of the algorithm
against non-stationarity. Finally, we tested the Chaos Decision
Tree Algorithm on several empirical (i.e. non-simulated) datasets
for which the ground-truth presence or absence of chaos has
been previously established by other studies. These included an
electronic circuit in periodic, strange non-chaotic, and chaotic
states27, a chaotic laser28, the stellar flux of a strange non-chaotic
star29, the linear/stochastic North Atlantic Oscillation index30,
and nonlinear/stochastic Parkinson’s and essential tremors26.
Overall, our pipeline performed with near-perfect accuracy in
classifying these data as stochastic, periodic, or chaotic, as well as
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in tracking changing degrees of chaos in both real and simulated
systems. Finally, we applied our algorithm to electrocardiogram
recordings from healthy subjects, patients with congestive heart
failure, and patients with atrial fibrillation31, and provide

evidence that heart rate variability reflects a predominantly
stochastic, rather than chaotic process.

We have made our Matlab code freely and publicly available at
https://figshare.com/s/80891dfb34c6ee9c8b34.

Fig. 1 The Chaos Decision Tree Algorithm21. The first step of the algorithm is to test if data are stochastic. The Chaos Decision Tree Algorithm uses a
surrogate-based approach to test for stochasticity, by comparing the permutation entropy of the original time-series to the permutation entropies of random
surrogates of that time series. If the user does not specify which surrogate algorithms to use, the Chaos Decision Tree Algorithm automatically picks a
combination of Amplitude Adjusted Fourier Transform33 surrogates and Cyclic Phase Permutation35 surrogates—see Supplementary Tables 2, 3. If the
permutation entropy of the original time-series falls within either surrogate distribution, the time-series is classified as stochastic; if the permutation entropy
falls outside the surrogate distributions, then the algorithm proceeds to denoise the inputted signal. Several de-noising subroutines are available, but if the
user does not specify a subroutine, the pipeline will use Schreiber’s noise-reduction algorithm36 (Supplementary Table 5). The pipeline then checks for signal
oversampling; if data are oversampled, the pipeline iteratively downsamples the data until they are no longer oversampled (note that an alternative
downsampling method proposed by Eyébé Fouda and colleagues68 may be selected instead—see Supplementary Table 6). Finally, the Chaos Decision Tree
Algorithm performs the 0–1 chaos test on the input data, which has been modified from the original 0–1 test to be less sensitive to noise, suppress
correlations arising from quasi-periodicity, and normalize the standard deviation of the test signal (see Methods section). The value for the parameter that
suppresses signal correlations can be specified by the user, but is otherwise automatically chosen based on ROC analyses performed here (Supplementary
Fig. 4). The modified 0–1 test provides a single statistic, K, which approaches 1 for chaotic systems and approaches 0 for periodic systems. Any cutoff for K
may be inputted to the pipeline, and if no cutoff is provided, the pipeline will use a cutoff based on the length of the time-series (Supplementary Fig. 6). If K is
greater than the cutoff, the data are classified as chaotic, and if they are less than or equal to the cutoff, they are classified as periodic.
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Results
The Chaos Decision Tree Algorithm21 is depicted graphically in
Fig. 1. The pipeline consists of four steps: (1) Determine if the
data are stochastic using permutation entropy32 and a combi-
nation of Amplitude Adjusted Fourier transform surrogates33,34

and Cyclic Phase Permutation surrogates34,35 (Glossary), (2) De-
noise the data using the Schreiber de-noising algorithm36

(Glossary), (3) Correct for possible signal oversampling, and (4)
Test for chaos using a modified 0–1 test for chaos23,37–40

(Glossary). For each step of the processing pipeline, we compared
the performance of different available tools (i.e., different
surrogate-based tests for stochasticity, different de-noising
methods, different downsampling methods, and different chaos-
detection methods), and chose the tools with the highest classi-
fication performance (Supplementary Tables 1–14). Note that
with user input, the Chaos Decision Tree Algorithm can use any
of the alternative tools tested here, and that with no user input
other than a time-series recording, the algorithm will auto-
matically use the tools we found maximized its performance. All
results reported in the main body of this paper are for this
automated set of high-performing tools. See Supplementary Fig. 3
for example time-traces illustrating each step of the algorithm.

We tested the performance of the (automated) Chaos Decision
Tree Algorithm in detecting the presence and degree of chaos in a
wide range of simulated and empirical systems for which the
ground-truth presence of chaos, periodicity, or stochasticity has
already been established. Details about each dataset and how the
ground-truth presence or absence of chaos in those systems was
previously determined are included in the Methods. Note that
some systems are labeled “SNA,” which is an abbreviation for
“strange non-chaotic attractor” (Glossary). These are systems
whose attractors in phase space (Glossary) are fractal (like chaotic
systems), but which are periodic (i.e., non-chaotic). Among these,
we included the only known non-artificial strange non-chaotic
system, the stellar flux of the so-called golden star KIC 5520878,
as recorded by the Kepler space telescope29. All simulated data-
sets consisted of 10,000 time-points, and all initial conditions
were randomized. For systems with more than one variable, we
here report results for linear combinations of those variables (see
Methods section), under the assumption that in most real-life
cases, empirical recordings will contain features of multiple
components of the system of study; that said, we also confirmed
that the Chaos Decision Tree Algorithm has very high perfor-
mance for individual system variables (Supplementary Table 15).

Results for simulations of biological systems are reported in
Table 1, and results for non-biological simulations are reported in
Table 2. Note that no measurement noise was added to the
colored noise signals in Table 2, as doing so would flatten their
power spectra. Because the datasets in Tables 1 and 2 were used to
choose between alternative methods for detecting stochasticity
(Supplementary Tables 1–4), de-noising (Supplementary
Table 5), downsampling (Supplementary Table 6), and alternative

tests of chaos (Supplementary Tables 8–13), as well as to optimize
the 0–1 test for chaos (Supplementary Figs. 4–6), we further
tested the Chaos Decision Tree Algorithm on held out datasets,
which were not used to adjudicate between alternative tools.
These held out datasets included both simulated systems
(Table 3) and recordings from real (non-simulated) systems
(Table 4). Several of these held out datasets were of direct bio-
logical relevance: the periodically stimulated Poincaré oscillator in
Table 3 is thought to be a good model of cardiac cell electro-
dynamics41, which, like the Poincaré oscillator, are chaotic when
periodically stimulated with certain delays between stimulation
pulses16; the integrated circuit in Table 4 is a physical imple-
mentation of equations that are based on the Hodgkin-Huxley
neuron model42; and the tremor signals in Table 4 are direct
recordings from patients. The Chaos Decision Tree Algorithm
classified the systems in Tables 1–4 as stochastic, periodic, or
chaotic with near-perfect accuracy even at high levels of mea-
surement noise, with the exception of the noise-driven sine map
(Table 2)—see Discussion section. Finally, we tested the perfor-
mance of the Chaos Decision Tree Algorithm on sub-samples of
all systems in Tables 1–3, and confirmed that it is still highly
accurate for data with just 1000 time-points (Supplementary
Table 16) or 5000 time-points (Supplementary Table 17), though
we note that performance for some systems did go down with less
data, which is to be expected40.

Table 5 reports the accuracy of the Chaos Decision Tree
Algorithm in detecting degree of chaos. Formally, a system’s
degree of chaos is quantified by the magnitude of its largest
Lyapunov exponent (Glossary). Unfortunately, largest Lyapu-
nov exponents are very difficult to estimate from finite, noisy
time-series recordings. But, directly estimating largest Lyapu-
nov exponents may not be necessary for tracking changing
degrees of chaos in real systems: following prior observations of
a strong correlation between a quick-to-compute and noise-
robust measure called permutation entropy (Glossary) and the
largest Lyapunov exponents of several systems32,43, the Chaos
Decision Tree Algorithm approximates degree of chaos by
calculating the permutation entropy of the inputted signal, after
it has been de-noised and corrected for possible over-sampling.
In agreement with prior findings, we found that permutation
entropy tracked degree of chaos in the logistic map, the Hénon
map, the Lorenz system, a high-dimensional mean-field model
of the cortex, and an electronic circuit. See Methods for details
on the parameters that were used to generate dynamics with
different degrees of chaos in these systems, and for details on
how ground-truth largest Lyapunov exponents were calculated.
Note that without downsampling, the correlation between the
largest Lyapunov exponents and permutation entropy breaks
down in continuous systems (Supplementary Table 14), which
is to be expected, as permutation entropy has only been ana-
lytically proven to track the degree of chaos in discrete-time
systems32,44 (see Glossary).

Table 1 The Chaos Decision Tree Algorithm classified biological simulations as periodic or chaotic with near-perfect accuracy.

Measurement noise level (% of std. dev.)

System 0% 10% 20% 30% 40%

Cortical model20 (chaotic) 100/100 100/100 100/100 97/100 83/100
Cortical model20 (periodic) 100/100 100/100 100/100 100/100 100/100
Spiking neuron49 (chaotic) 100/100 100/100 100/100 100/100 98/100
Granulocyte levels19 (chaotic) 100/100 100/100 100/100 100/100 100/100
Granulocyte levels19 (periodic) 100/100 100/100 100/100 100/100 83/100
NF-κB transcription14 (chaotic) 99/100 99/100 100/100 100/100 100/100
NF-κB transcription14 (periodic) 100/100 100/100 97/100 100/100 100/100
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Finally, as a first-pass implementation of our method, we
applied the Chaos Decision Tree Algorithm to recordings of
human heart rate variability, made available by Physionet31.
There has been considerable debate over whether or not the
irregularities of heart rate signals (in either health or disease)
reflect a predominantly chaotic process. While many classic
chaos-detection methods have identified heart rate variability as
chaotic (see Glass5 for a review), other studies have argued that
this is an erroneous classification, suggesting that heart rate
variability is, in fact, a nonlinear stochastic process45,46, and that
prior classifications of heart rate signals as chaotic simply reflect
the shortcomings of classic chaos-detection methods. In agree-
ment with this view, we here show that the Chaos Decision Tree
Algorithm classified heart rate signals from healthy subjects,
congestive heart failure patients, and atrial fibrillation patients as
stochastic, rather than chaotic, with the exception of two con-
gestive heart failure patients (Table 6).

Discussion
In this paper, we have introduced a processing pipeline, called the
Chaos Decision Tree Algorithm21, that can accurately detect

whether a time-series signal is generated by a predominantly
stochastic, periodic, or chaotic system, and can also accurately
track changing levels of chaos within a system using permutation
entropy. The pipeline makes no assumptions about the input
data. The Chaos Decision Tree Algorithm consists of four broad
steps: (1) testing for stochasticity using surrogate data methods,
(2) de-noising, (3) downsampling if data are oversampled, and (3)
testing for chaos using the modified 0–1 test. We tested the
performance of several different surrogate data generation algo-
rithms, de-noising algorithms, downsampling algorithms, and
parameters for the modified 0–1 test. Each alternative algorithm
and parameter choice has its relative strengths and weaknesses,
and we have structured our code such that a user can specify
which algorithms and parameters to use for each step of the
pipeline. If a user only inputs a time-series recording without
specifying any sub-algorithms or parameters, then our pipeline
will automatically use the methods and parameters we found
yielded the most accurate results across a large and diverse set of
data. All analyses reported in the main body of this paper are for
this automated set of subroutines.

We tested the (automated) Chaos Decision Tree Algorithm
on a diverse range of simulations of biological systems, non-

Table 2 The Chaos Decision Tree Algorithm classified non-biological simulations as stochastic, periodic, or chaotic with high
accuracy. These simulated systems include strange non-chaotic attractors (SNAs), linear stochastic processes, and nonlinear
stochastic processes, all of which are classically difficult to distinguish from chaos.

Measurement noise level (% of std. dev.)

System 0% 10% 20% 30% 40%

Cubic map50 (chaotic) 100/100 100/100 100/100 100/100 100/100
Cubic map50 (periodic) 100/100 100/100 100/100 100/100 100/100
Cubic map50 (SNA HH) 100/100 100/100 100/100 100/100 100/100
Cubic map50 (SNA S3) 100/100 100/100 100/100 100/100 0/100
GOPY map51 (SNA) 100/100 100/100 100/100 99/100 14/100
Logistic map52 (chaotic) 100/100 100/100 100/100 100/100 100/100
Logistic map52 (periodic) 100/100 100/100 100/100 100/100 100/100
Lorenz system53 (chaotic) 100/100 100/100 97/100 82/100 36/100
Generalized Hénon map54 (hyperchaotic) 100/100 100/100 100/100 100/100 93/100
Freitas map55 (nonlinear stochastic) 78/100 83/100 98/100 98/100 74/100
Noise-driven sine map55 (nonlinear stochastic) 55/100 3/100 22/100 5/100 78/100
Bounded random walk56 (nonlinear stochastic) 100/100 97/100 59/100 95/100 100/100
Cyclostationary process57 (linear stochastic) 99/100 100/100 99/100 100/100 100/100
ARMA process (linear stochastic) 85/100 98/100 99/100 99/100 100/100
Trended random walk (linear stochastic) 100/100 89/100 90/100 98/100 100/100
Random walk (linear stochastic) 100/100 98/100 100/100 100/100 100/100
Violet noise58 (linear stochastic) 99/100
Blue noise58 (linear stochastic) 100/100
White noise58 (linear stochastic) 100/100
Pink noise58 (linear stochastic) 100/100
Red noise58 (linear stochastic) 100/100

Table 3 Classification accuracy in held out simulated systems. While the datasets in Tables 1, 2 were used to optimize the Chaos
Decision Tree Algorithm, these datasets were not. Performance was near-perfect.

Measurement noise level (% of std. dev.)

System 0% 10% 20% 30% 40%

Rössler system59 (chaotic) 70/100 90/100 96/100 100/100 100/100
Ikeda map60 (chaotic) 100/100 100/100 100/100 100/100 14/100
Hénon map61 (periodic) 100/100 100/100 100/100 100/100 100/100
Cubic map61 (period-doubled) 100/100 100/100 100/100 100/100 100/100
Poincaré oscillator41 (periodic) 100/100 100/100 100/100 100/100 57/100
Poincaré oscillator41 (quasi-periodic) 100/100 100/100 100/100 100/100 100/100
Poincaré oscillator41 (chaotic) 100/100 100/100 100/100 100/100 100/100
Multivariate AR model (linear stochastic) 100/100 100/100 100/100 100/100 100/100
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biological simulations, and empirical (non-simulated) data
recordings. Empirical data were recorded from an integrated
circuit in a periodic, strange non-chaotic, and chaotic state, a
chaotic laser, the stellar flux of a strange non-chaotic star, the
North Atlantic Oscillation index, a Parkinson’s tremor, an
essential tremor, and heart rate variability from congestive
heart failure patients, atrial fibrillation patients, and healthy
controls. In the cases for which the ground-truth was known (i.e.,
all datasets other than heart rate variability), the Chaos Decision
Tree Algorithm performed at very high accuracy even at relatively
high levels of measurement noise. For heart rate variability,
our results support the hypothesis that cardiac rhythm variability
is stochastic45,46. Overall, these findings make us confident
that the Chaos Decision Tree Algorithm can be fruitfully applied
to biological and non-biological signals contaminated by
measurement noise.

We note a few limitations/shortcomings of our algorithm. First,
the 0–1 test used in our pipeline might classify some very weakly
chaotic systems (i.e., systems whose largest Lyapunov exponent is
positive but very near zero) as periodic if the length of the time-
series provided is short; but, with longer time-series, the test is
guaranteed to provide accurate results40. We also note that the
algorithm performed poorly for the noise-driven sine map, which
was consistently mis-classified as chaotic (Table 2). It is possible
that this system was not classified as stochastic because its level of
intrinsic noise was very low; in support of this, we found that the
Chaos Decision Tree Algorithm classified nonlinear dynamical
systems with very low levels of intrinsic noise as deterministic,
and that classifications of stochasticity became more frequent as

the level of intrinsic noise was increased (Supplementary
Table 18). It is also possible that this system is, in fact, an example
of noise-induced chaos47. Finally, although the choice of system
observables did not appreciably affect the performance of our
method (Supplementary Table 15), we agree with Letellier and
colleagues48 that some system observables are better representa-
tions of a system’s dynamics than others, and that this can have
important consequences for the accuracy of nonlinear time-series
analysis methods such as this one. In light of these potential
limitations, it bears re-emphasizing that the absence, presence,
and degree of chaos can only be determined with absolute cer-
tainty in a computer model that is free of measurement noise, by
running multiple simulations and seeing how quickly initially
similar states diverge. Thus, although the Chaos Decision Tree
Algorithm pipeline performs at very high accuracy, it should,
when possible, be used in conjunction with analyses of a com-
puter model of the system at hand.

We hope that the Chaos Decision Tree Algorithm will help
advance the decades-old effort to bring the insights of chaos
theory to biology. While a diverse range of biological simulations
and a small number of real biological cases have been shown to be
chaotic, detecting the presence and degree of chaos in biological
recordings has been difficult. The Chaos Decision Tree Algorithm
overcomes the difficulties of prior tests, by being fast, highly
robust to measurement noise, and, unless the user specifies spe-
cific alternative subroutines, fully automated. We welcome any
efforts to identify edge cases for which our pipeline systematically
breaks down; given that our pipeline is a modular decision tree,
new subroutines can be added to accommodate such edge cases.
We hope that our pipeline (and perhaps future iterations of it)
will be useful to any of the domains of science—and in particular
of biology—in which chaos has been invoked, but not tested.

Methods
The Chaos Decision Tree Algorithm. To understand the logic of the Chaos
Decision Tree Algorithm21, we begin with the final test in the decision tree. The
crux of the Chaos Decision Tree Algorithm is the 0–1 test for chaos. The 0–1 test
for chaos was originally developed by Gottwald and Melbourne37, who later offered
a slightly modified version of the test, which can cope with moderate amounts of
measurement noise38. Several years later, Dawes and Freeland further modified the
test, such that it could suppress correlations induced by quasi-periodic dynamics,
and thus more effectively distinguish between chaotic and strange non-chaotic
dynamics, which are difficult to distinguish given only a time-series recording23.
The modified 0–1 test involves taking a one-dimensional time-series of interest ϕ,
and using it to drive the following two-dimensional system:

pðnþ 1Þ ¼ pðnÞ þ ϕðnÞ cos cn
qðnþ 1Þ ¼ qðnÞ þ ϕðnÞ sin cn ð1Þ

where c is a random value bounded between 0 and 2π. For a given c, the solution to

Table 5 The Chaos Decision Tree Algorithm uses permutation entropy, calculated from data that have been de-noised and
downsampled (if oversampled), to track the degree of chaos in a system, which might change as the state of the system
changes.

Measurement noise level (% of std. dev.)

System 0% 10% 20% 30% 40%

Logistic map52 0.93*** 0.80*** 0.93*** 0.93*** 0.91***
Hénon map61 0.92*** 0.93*** 0.94*** 0.92*** 0.88***
Lorenz system53 0.81*** 0.71*** 0.73*** 0.69*** 0.62***
Cortical model20 0.69*** 0.55*** 0.39*** 0.33*** 0.24***
Neuron integrated circuit27 0.94***

We here show Spearman correlations between permutation entropy and largest Lyapunov exponents, which measure degree of chaos but which are difficult to estimate from empirical data. Data include
four simulated systems and recordings from an integrated circuit in different states. See Methods for how ground-truth largest Lyapunov exponents were calculated for these systems
***p < 0.001 (two-tailed) after Bonferroni-correcting for multiple comparisons to the same set of ground-truth largest Lyapunov exponents

Table 4 Classification accuracy in empirical (non-simulated)
data from stochastic, periodic, strange non-chaotic (SNA),
and chaotic systems. As was the case for the data in
Table 3, these datasets were not used to optimize algorithm
performance, and so are also held out datasets. Algorithm
performance was perfect.

System

Neuron integrated circuit27 (chaotic) 10/10
Neuron integrated circuit27 (SNA) 10/10
Neuron integrated circuit27 (periodic) 10/10
Laser28 (chaotic) 1/1
Stellar flux29 (SNA) 1/1
North Atlantic Oscillation index30 (linear stochastic) 1/1
Essential tremor26 (nonlinear stochastic) 1/1
Parkinson’s tremor26 (nonlinear stochastic) 1/1
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Eq. (1) yields:

pcðnÞ ¼
Xn
j¼1

ϕðjÞ cos jc

qcðnÞ ¼
Xn
j¼1

ϕðjÞ sin jc
ð2Þ

Gottwald and Melbourne show that if the inputted time-series ϕ is regular, the
motion of p and q is bounded, while p and q display asymptotic Brownian motion
if ϕ is chaotic. The time-averaged mean square displacement of p and q, plus the
noise term proposed by Dawes and Freeland23, is

McðnÞ ¼
1
N

XN
j¼1
ð½pcðjþ nÞ � pcðjÞ�2 þ ½qcðjþ nÞ � qcðjÞ�2Þ þ σηn: ð3Þ

where ηn is a uniformly distributed random variable between ½� 1
2 ;

1
2� and σ is the

noise level. Finally, the outputted K-statistic of the 0–1 test uses a correlation
coefficient to measure the growth rate of the mean squared displacement of the
two-dimensional system in Eq. (1):

Kc ¼ corrðn;McðnÞÞ ð4Þ
K is computed for 100 different values of c, randomly sampled between 0 and 2π,
and the final output of the test is the median K across different values of c. For
chaotic systems, this median K value will approach 1, and for periodic systems, K
will approach 023,37–40.

There are two parameters in this modified 0–1 test: the parameter σ that
controls the level of added noise in Eq. (3), and the cutoff for what K-statistic
values are classified as indicating chaos or periodicity in a finite time-series. We
performed ROC-curve analyses for different values of σ and found that σ ¼ 0:5
maximized classification performance across systems and noise levels
(Supplementary Fig. 4), and so our pipeline automatically sets σ to 0.5 if σ is not
specified by the user. Note that for non-zero values of σ, K approaches zero as the
standard deviation of a test signal approaches zero (Supplementary Fig. 5), and so
the Chaos Decision Tree Algorithm multiplies a test signal by a constant to fix its
standard deviation at 0.5 before applying the 0–1 test. A cutoff for K can also be
inputted to our Matlab script, such that data that yield a K value greater than that
cutoff are classified as chaotic and data that yield a K value less than or equal to that
cutoff are classified as periodic. If no cutoff is provided, a cutoff is chosen based on
an analysis of optimal cutoffs as a function of time-series length (Supplementary
Fig. 6). If the automatically selected cutoff is greater than 0.99, the cutoff is set to
K ¼ 0:99, as K is upper-bounded by 1. We have confirmed that this automated
cutoff selection yields highly accurate results for sub-samples of both test and held-
out datasets (Supplementary Tables 16, 17).

The 0–1 test described above only yields accurate results for data that are
deterministic24,40,62,63. A system is considered deterministic if, given the exact
same initial conditions, it always evolves over time the same way, whereas a system
is considered stochastic if there is appreciable randomness built in to its evolution
over time (Glossary, Supplementary Fig. 1, 2). Not only are all chaotic systems
(predominantly) deterministic—and thus the possibility of chaos can be
automatically rejected if a system is found to be stochastic (though we note that a
mathematically rigorous definition of chaos has recently been extended to the
domain of stochastic systems, under the framework of the Supersymmetric Theory
of Stochastics47)—but the 0–1 test is also known to incorrectly classify stochastic
dynamics as chaotic24,62,63. Thus, the Chaos Decision Tree Algorithm first rules out
the possibility that data are predominantly stochastic before applying the modified
0–1 test. To do so, it uses a noise-robust method recently developed by Zunino and
Kulp64, which tests for determinism using surrogate statistics33, with permutation
entropy32 as the test statistic. The calculation of permutation entropy relies on two
parameters: permutation order and time-lag. We follow the recommendation from
Bandt and Pompe32 and set the time-lag to 1, and found that a permutation order
of 8 maximized stochasticity detection accuracy (Supplementary Tables 2, 3).
Moreover, we use a combination of amplitude adjusted Fourier transform

surrogates33 and Cyclic Phase Permutation surrogates35, unlike Zunino and Kulp,
who used iterative amplitude adjusted Fourier transform33 surrogates, because we
found that this combination led to far higher classification accuracy
(Supplementary Tables 2, 3). The Chaos Decision Tree Algorithm classifies data as
stochastic (and thus does not proceed to subsequent steps) if the permutation
entropy of the original data falls within either surrogate distribution. The algorithm
uses the Toolboxes for Complex Systems implementation of the permutation
entropy algorithm, written by Andreas Müller65. Surrogates are generated using the
Matlab toolbox recently released by Lancaster and colleagues34. Note that because
Fourier-based surrogates are strictly stationary, surrogate-based tests that use only
Fourier-based algorithms are only valid if the test time-series is also stationary34,57;
that said, we found that non-stationarity did not affect the accuracy of a
stochasticity test that uses a combination of amplitude adjusted Fourier transform
and Cyclic Phase Permutation surrogates (Supplementary Tables 1–4). We also did
not find that a normality transformation of the data improved the performance of
our surrogate-based stochasticity test (Supplementary Table 2), counter to what has
been suggested elsewhere22.

If data “pass” the stochasticity test described above and are deemed
operationally deterministic, then the Chaos Decision Tree Algorithm automatically
denoises the inputted signal. We compared three de-noising algorithms: a moving
average filter (using Matlab’s smooth.m function), the Matlab Chaotic Systems
Toolbox’s66 implementation of Schreiber’s noise-reduction algorithm36 (Glossary),
and wavelet de-noising using an empirical Bayesian method with a Cauchy prior
(using Matlab’s wdenoise.m function). Although it is considerably slower to run,
Schreiber denoising markedly outperforms the other two approaches in recovering
the deterministic component of signals contaminated by measurement noise
(Supplementary Table 5), and markedly improves the performance of the modified
0–1 test (Supplementary Table 6, Supplementary Fig. 4). Thus, the Chaos Decision
Tree Algorithm automatically uses Schreiber de-noising before testing for chaos,
unless the user specifies one of the other two de-noising algorithms tested here to
be used instead.

The final step of the Chaos Decision Tree Algorithm before applying the 0–1
test is to check if data are oversampled and to downsample them if they are.
Gottwald and Melbourne have shown39 that the 0–1 test can give inaccurate results
for continuous (i.e., non-discrete-time) systems sampled at a very high frequency,
but that it can accurately differentiate between periodic dynamics and chaotic
dynamics in continuous deterministic systems when data are properly
downsampled. In light of this, the Chaos Decision Tree Algorithm utilizes the
(crude) test for oversampling used by Matthews67, by calculating a measure η,
which is the difference between the global maximum and global minimum of the
data divided by the mean absolute difference between consecutive time-points in
the data. If η> 10, then the data are deemed to be oversampled, and the Chaos
Decision Tree Algorithm iteratively downsamples the data by a factor of 2 until
η � 10 or until there are fewer than 100 time-points left in the signal. We
compared this approach both to no downsampling and to an alternative method,
suggested by Eyébé Fouda and colleagues68 to improve 0–1 test performance,
which downsamples by taking just the local minima and maxima of oversampled
signals. We found that downsampling after de-noising yields more accurate results
than either alternative approach when oversampled signals are contaminated by
measurement noise (Supplementary Table 6). We also note that recorded
experimental data may be unlikely to be oversampled (Supplementary Table 7),
and that this problem may be more likely to arise in simulated continuous systems.
If the data are not oversampled, or if they have been downsampled, the Chaos
Decision Tree Algorithm then applies the modified 0–1 test to the data, as
described above.

Finally, the algorithm uses the permutation entropy of the inputted signal as a
proxy for the degree of chaos in the system. Though the algorithm uses
permutation entropy to establish whether or not a signal is predominantly
deterministic (see above), permutation entropy has also been shown to tightly track
the largest Lyapunov exponent (and therefore the degree of chaos) of the logistic
map32, the tent map69, and the Duffing oscillator43. We should in general expect a
close correspondence between permutation entropy and Lyapunov exponents, in
light of the equivalence in discrete-time systems between permutation entropy and
Kolmogorov-Sinai entropy44,70–72, which is upper-bounded by the sum of a
system’s positive Lyapunov exponents—a relationship known as the “Pesin
identity”73. When calculating permutation entropy to track degree of chaos (rather
than for determinism testing as above), we follow Bandt and Pompe’s32

recommendation and simply set the time-lag to 1 and the permutation order to 5,
which we showed tracks degree of chaos in all systems tested (Table 5). Because this
equivalence is only known to hold for discrete-time systems44, permutation
entropy is only calculated after the inputted signal has been de-noised and, if
oversampled, downsampled; this considerably improves its ability to track degree
of chaos in continuous systems (Table 5, Supplementary Table 14).

The full decision tree of our algorithm is depicted graphically in Fig. 1.

Data
Biological simulations. The following describes the simulations of biological sys-
tems analyzed in this paper. We only picked biological simulations for which the
presence or absence of chaos has been established in prior work. Initial conditions
were randomized in all simulations. We also tested the effect of measurement noise

Table 6 The Chaos Decision Tree Algorithm consistently
classifies heart rate recordings, across conditions, as
stochastic.

Classification

Condition Stochastic Periodic Chaotic

Healthy controls31 5/5 0/5 0/5
Congestive heart
failure31

3/5 2/5 0/5

Atrial fibrillation31 5/5 0/5 0/5

The only exceptions were the heart rate signals recorded from two patients with congestive
heart failure, which were classified as periodic
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on the accuracy of the Chaos Decision Tree Algorithm in classifying systems, by
adding white noise to our simulated data, the amplitude of which was up to 40%
the standard deviation of the original data. For each simulated system and level of
measurement noise, we created 100 datasets with 10,000 time points.

Chaotic mean-field cortical model. Steyn-Ross, Steyn-Ross, and Sleigh20 describe
a mean-field model of the cortex based on the equations first introduced by Liley
and colleagues74,75, which includes electrical gap-junction synapses in addition to
the standard chemical synapses used in the earlier models. The model contains
both inhibitory and excitatory neural populations communicating locally through
gap junctions and chemical synapses and communicating over long ranges via
myelinated axons. The dynamics of each neural population in the model are
determined by two first-order and six second-order partial differential equations,
which is equivalent to 14 first-order differential equations. The primary output of
the model is the mean excitatory firing rates of 120 neural populations, which
approximates the large-scale cortical signals that might be measured through
electrocortigraphy, magnetoencephalography, or electroencephalography. Steyn-
Ross, Steyn-Ross, and Sleigh20 show that just by varying the inhibitory gap-
junction diffusive-coupling strength parameter in their model, they can produce
dynamics ranging from periodicity to strong chaos. In their simulation of “waking”
cortical dynamics, Turing (spatial) and Hopf (temporal) instabilities interact to
produce chaotic, low-frequency spatiotemporal oscillations. For chaotic dynamics,
we simulated 2,000,000 time-points of their “wake” simulation, with the inhibitory
gap-junction diffusive-coupling strength parameter set to 0.4, and then
downsampled the data to 10,000 time-points. We only applied our algorithm to the
mean excitatory firing rate of one neural population, i.e. to just one out of 14
variables describing the dynamics of just one out of 120 interacting such 14-
dimensional systems (though the variable is biologically well-defined). The Matlab
code for the simulations is available in the Supplementary Material of Steyn-Ross,
Steyn-Ross, and Sleigh20.

Periodic mean-field cortical model. Steyn-Ross, Steyn-Ross, and Sleigh show that
their cortical mean-field model enters a periodic, seizure-like state dominated by a
Hopf instability when the inhibitory gap-junction diffusive-coupling strength
parameter is set to 0.1. Just as in the chaotic case, we simulated 2,000,000 time-
points and then downsampled to 10,000 time-points. Note that Steyn-Ross, Steyn-
Ross, and Sleigh estimate the largest Lyapunov exponent of their model to be
around zero when the inhibitory gap-junction diffusive-coupling strength
parameter is 0.1, whereas our own estimate (using an automated version of their
same method—see below) placed the largest Lyapunov exponent more clearly in
the periodic regime, at −2.1.

Chaotic spiking neuron. Izhikevich49,76 describes a simple neuron model that
can display both spiking and bursting behavior. The model consists of a neuron’s
membrane potential v, a membrane recovery variable u, an input current I, and
parameters a, b, c, and d:

dv
dt
¼ 0:004v2 þ 5v þ 140� uþ I

du
dt
¼ aðbv � uÞ

ð5Þ

with the auxiliary after-spike resetting:

if v � þ30mV; then
v c

u uþ d:

�
ð6Þ

When a ¼ 0:2, b ¼ 2, c ¼ �56, d ¼ �16, and I ¼ �99, the neuron’s membrane
potential v (which is the variable we analyze) displays chaotic spikes49,76. We
simulated the Izhikevich neuron using a first-order Euler method, with an
integration step of 0.25 ms. We generated 50,000 time points, and dowsampled by a
factor of 5 (to avoid over-sampling).

Periodic white blood cell concentration. Inspired by the finding that chronic
granulocytic leukemia involves apparently aperiodic oscillations in the
concentration of circulating white blood cells77, Mackey and Glass19 study
mathematical models of oscillating physiological control systems. They describe a
simple mathematical model of the concentration of circulating white blood cells:

dx
dt
¼ a

xτ
1þ xcτ

� bx ð7Þ

where a ¼ 0:2, b ¼ 0:1, and c ¼ 10. The parameter τ represents the delay between
white blood cell production in bone marrow and the release of those cells into the
blood stream. Since this cellular generation delay time is increased in some patients
with chronic granulocytic leukemia, Mackey and Glass study the behavior of this
system as a function of the delay time τ. They find that as τ increased, the resulting
oscillations produced by this equation became aperiodic. Through formal analysis
of Lyapunov exponents of this system, Farmer78 later confirmed that for τ ¼ 10,
the oscillations of this system are periodic. We simulated 100,000 time-points of
the periodic Mackey-Glass system using a first-order Euler method with an
integration step of 1, and then downsampled by a factor of 10 (to avoid over-
sampling).

Chaotic white blood cell concentration. For τ ¼ 30, Farmer confirmed78 that the
Mackey-Glass equation (Eq. (7)) for the concentration of circulating white blood
cells yields a chaotic oscillation. We simulated 100,000 time-points of the chaotic

Mackey-Glass system using a first-order Euler method with an integration step of
1, and then downsampled by a factor of 10 (to avoid over-sampling).

Periodic NF-κB transcription. Heltberg and colleageus14 recently described a five-
dimensional mathematical model of oscillating concentrations of the transcription
factor NF-κB, which regulates several genes involved in immune responses and is
widely studied in immunity and cancer research. They show that the dynamics of NF-
κB concentration are coupled to varying levels of a cytokin-like tumor necrosis factor
(TNF). They show that when TNF oscillations have a low amplitude, NF-κB
oscillations are periodic. We simulated periodic NF-κB oscillations using Heltberg and
colleagues’ Matlab code, available at https://github.com/Mathiasheltberg/ChaoticDyna
micsInTranscriptionFactors.

Chaotic NF-κB transcription. Heltberg and colleagues14 show that by increasing
the amplitude of the TNF signal, the oscillating number of NF-κB molecules in
their model becomes chaotic. We simulated chaotic NF-κB oscillations using
Heltberg and colleagues’ Matlab code, available at https://github.com/
Mathiasheltberg/ChaoticDynamicsInTranscriptionFactors.

Non-biological simulations. Because there are only a limited number of biological
simulations for which the presence of chaos has already been established, we also
applied the Chaos Decision Tree Algorithm to a wide range of mathematical
systems previously studied in the chaos theory and nonlinear time-series analysis
literatures:

Chaotic cubic map. Venkatesan and Lakshmanan50 describe a quasiperiodically
forced cubic map, which can exhibit a large diversity of periodic, chaotic, and
strange non-chaotic dynamics. In particular, the map exhibits many different
routes to chaos. Their system is described by the following:

xiþ1 ¼ Qþ f cosð2πθiÞ � Axi þ x3i
θiþ1 ¼ θi þ ωðmod 1Þ; ð8Þ

where ω ¼
ffiffi
5
p �1

2 (the golden ratio). We set f ¼ �0:8, Q ¼ 0, and A ¼ 1:5, which
Venkatesan and Lakshmanan have shown lead to chaotic dynamics50. For the
results reported in Table 2, we followed Dawes and Freeland23 in taking a linear
combination of x and θ: ϕi ¼ xi=6þ θi=10. Results for x individually are reported
in Supplementary Table 15 (results for θ on its own are not informative, as θ is an
independent, quasi-periodic process).

Periodic cubic map. Venkatesan and Lakshmanan50 show that the system in Eq.
(8) exhibits periodic (one-frequency torus) dynamics when f ¼ 0, Q ¼ 0, and
A ¼ 1. We picked these parameters for periodic dynamics. To get a time-series ϕ
from the cubic map, we again took a linear combination of x and θ:
ϕi ¼ xi=6þ θi=10. Results for x and θ individually are reported in Supplementary
Table 15.

Strange non-chaotic cubic map (HH). We set f ¼ 0:7, Q ¼ 0, and A ¼ 1:88697
for one type of strange non-chaotic dynamics, which Venkatesan and
Lakshmanan50 have shown bring the forced cubic map into a strange non-chaotic
regime via the Heagy-Hammel route (i.e., collision of a period-doubled quasi-
periodic torus with its unstable parent). Results for x individually are reported in
Supplementary Table 15.

Strange non-chaotic cubic map (S3). We set f ¼ 0:35, Q ¼ 0, and A ¼ 0:35 for a
second type of strange non-chaotic dynamics, which Venkatesan and
Lakshmanan50 have shown push the forced cubic map into a strange non-chaotic
regime via Type-3 Intermittency (i.e., inverse period-doubling bifurcation). Results
for x individually are reported in Supplementary Table 15.

Period-doubled cubic map. Venkatesan and Lakshmanan50 show that the system
in Eq. (8) exhibits period-doubled dynamics when f ¼ �0:18, Q ¼ 0, and A ¼ 1:1.
We picked these parameters for period-doubled dynamics. To get a time-series ϕ
from the cubic map, we again took a linear combination of x and θ:
ϕi ¼ xi=6þ θi=10. Results for x individually are reported in Supplementary
Table 15.

Strange non-chaotic GOPY model. The first known strange non-chaotic system
was described by Grebogi, Ott, Pelikan, and Yorke, commonly referred to as the
GOPY model51. The GOPY model is described by the following:

xiþ1 ¼ 2σðtanh xiÞ cosð2πθiÞ
θiþ1 ¼ θi þ ωðmod 1Þ; ð9Þ

where σ ¼ 1:5, θ ¼ 0:5, and ω ¼
ffiffi
5
p �1

2 (the golden ratio). To get a time-series ϕ
from the GOPY model, we followed Dawes and Freeland23 in taking a linear
combination of x and θ: ϕi ¼ xi=6þ θi=10. Results for x individually are reported
in Supplementary Table 15 (as is the case for the cubic map, results for θ on its own
are not informative, as θ is an independent, quasi-periodic process).

Chaotic logistic map. The logistic map is one of the simplest known systems that
can exhibit both periodic and chaotic behavior. It was originally introduced by
biologist Robert May52 as a discrete-time model of population growth. It is
described by the following equation:

xiþ1 ¼ rxið1� xiÞ ð10Þ
where xi represents the ratio of the population size at time i to the maximum
possible population size. For chaotic dynamics52, we set r ¼ 4.

Periodic logistic map. For periodic dynamics52 in the logistic map, we set r ¼
3:5 in Eq. (10).
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Chaotic Lorenz system. Perhaps the most famous of all chaotic systems, the
Lorenz model of atmospheric convection is described by the following system of
equations53:

dx
dt
¼ σðy � xÞ

dy
dt
¼ xðρ� zÞ � y

dz
dt
¼ xy � βz

ð11Þ

where x is the rate of convection, y is the horizontal temperature variation, and z is
the vertical temperature variation. Though the equations were initially meant to
model atmospheric convection, identical equations have been found in models of a
wide variety of physical systems, including lasers79 and chemical reactions80. We
set σ ¼ 10, ρ ¼ 30, and β ¼ 8

3, for which the Lorenz system exhibits chaos
(determined by calculating the largest Lyapunov exponent of the system with these
parameters, using Ramasubramanian’s algorithm81). We integrated the equations
for the Lorenz system using the Fourth Order Runge-Kutta method with an
integration step of 0.01. To get a single time-series ϕ from the Lorenz model, we
took a linear combination of x and y: ϕ=x+ y. Results for x, y, and z individually
are reported in Supplementary Table 15.

Hyperchaotic generalized Henon map. Data from hyperchaotic systems, which
contain more than one positive Lyapunov exponent, can be difficult to distinguish
from noise25. As such, hyperchaotic systems present a challenge to tests of
determinism from time-series data, which might mistake hyperchaos for
stochasticity. To demonstrate the robustness of the Chaos Decision Tree
Algorithm’s stochasticity test, we analyzed the Generalized Henon Map, which is
described by the following equation:

xiþ1 ¼ a� x2i�1 � bxi�2 ð12Þ
We set a ¼ 1:76 and b ¼ 0:1, for which the Generalized Henon Map produces
hyperchaos54.

Noise-driven sine map. Freitas and colleagues55 describe a non-chaotic,
randomly driven system:

xiþ1 ¼ μ sinðxiÞ þ Yiηi ð13Þ
where μ ¼ 2:4, Yi is a random Bernoulli process that equals 1 with probability 0.01
and 0 with probability 0.99, and ηi is a random variable uniformly distributed
between −2 and 2. Freitas and colleagues show that a chaos-detection technique
called “noise titration”82 incorrectly classifies this system as chaotic.

Freitas map. Freitas and colleagues55 also describe a nonlinear correlated noise
process, which we here call the “Freitas map.” The Freitas map contains dynamic
noise added to a nonlinear moving average filter:

viþ1 ¼ 3vi þ 4vi�1ð1� viÞ ð14Þ
where vn is a uniform random variable distributed between 0 and 1. Freitas and
colleagues show that the noise titration technique also incorrectly classifies this
system as chaotic.

Bounded random walk. Nicolau56 describes a bounded random walk (BRW),
which is a globally stationary process with local unit roots (i.e. local non-
stationarities):

Xt ¼ Xt�1 þ ekðe�α1ðXt�1�τÞ � eα2ðXt�1�τÞÞ þ σtϵt ð15Þ
where τ, k, α1, α2, and σ are parameters, and ϵt is a white noise error term. Note
that the bounded random walk can be decomposed into a random walk,
Xt ¼ Xt�1 þ σtϵt , plus an adjustment function ekðe�α1ðXt�1�τÞ � eα2ðXt�1�τÞÞ. The
adjustment function serves to pull the random walk toward τ if the process deviates
too far from τ. Though it is a stationary process (albeit with local non-
stationarities), the bounded random walk is often mis-classified as non-stationary
by stationarity tests83. Following Nicolau56 and Patterson83, we set τ ¼ 100,
k ¼ �15, α1 ¼ 3, α2 ¼ 3, and σ ¼ 0:4, which generates a random walk that
remains roughly within the interval of 100 ± 5.

Cyclostationary process. A cyclostationary autoregressive process is essentially a
combination of a noise-driven linear damped oscillator and linear relaxators.
Cyclostationary systems are non-stationary because their probability distributions
vary cyclically with time. Following Timmer57, we simulate a cyclostationary
process described by the following:

Xt ¼ a1Xt�1 þ a2Xt�2 þ ϵt ð16Þ
where ϵt is a white noise error term and

a1 ¼ 2 cosð2π=TÞe�1=τ
a2 ¼ �e�2=τ

ð17Þ

τ is the relaxation time and T is the oscillation period. We set τ ¼ 50 and T ¼ 10,
which Timmer has shown leads to incorrect classification of this system as
nonlinear or deterministic by surrogate tests that only use Fourier-based
surrogates, which are strictly stationary.

ARMA process. A general autoregressive moving-average (ARMA) process is
described by the following:

Xt ¼ cþ ϵt þ
Xp
i¼1

ϕiXt�i þ
Xq
i¼1

θiϵt�i ð18Þ

where c is a constant, ϕ1; :::; ϕp and θ1; :::; θp are parameters, and ϵt ; ϵt�1; ::: are
white noise error terms. An ARMA process with a lag of 1, or an ARMA(1)
process, is:

Xt ¼ cþ ϵt þ ϕXt�1 þ θϵt�1 ð19Þ
When ϕ< 1, the ARMA process is (weakly) stationary. When ϕ is close to but less
than 1 and θ ≠ 0, ARMA processes, though stationary, are often mis-classified as
non-stationary by stationarity tests84. All ARMA processes simulated in this paper
were lag 1, and we set c ¼ 0 and ϕ ¼ 0:99. For the analyses in Supplementary
Tables 1–4 and in Table 2, we drew θ from a random, normal distribution with
mean μ ¼ 0 and standard deviation σ ¼ 1 for each simulation. We also tested
ARMA(1) processes for θ values fixed at −0.5, 0, 0.5, and 0.9 (Supplementary
Table 19).

Random walk. A random walk is modeled by an autoregressive process with a
unit root:

Xt ¼ Xt�1 þ ϵt ð20Þ
where ϵ is a white noise error term with mean μ ¼ 0 and standard deviation σ ¼ 1.
Random walks are non-stationary.

Trended random walk. A trended random walk introduces a secondary non-
stationarity, namely, a linear trend, to the random walk:

Xt ¼ Xt�1 þ bþ ϵt ð21Þ
where ϵ is a white noise error term with mean μ ¼ 0 and standard deviation σ ¼ 1
and b is the slope of the linear trend. For all trended random walks simulated in
this paper, b was randomly drawn from a Gaussian distribution with mean μ ¼ 0
and standard deviation σ ¼ 0:01.

Colored noise. Colored noise refers to a stationary, stochastic process with a
non-uniform power spectrum. White noise has a uniform power spectrum
(meaning equal power at all frequencies); pink noise has a power spectral density
proportional to 1

f , where f is frequency; red noise has a power spectral density

proportional to 1
f 2
; blue noise has a power spectral density proportional to f ; and

violet noise has a power spectral density proportional to f 2. All colored noise
signals were simulated using Zhivomirov’s algorithm58, available at https://www.
mathworks.com/matlabcentral/fileexchange/42919-pink-red-blue-and-violet-
noise-generation-with-matlab.

Rössler system. The Rössler system is described by the following system of
differential equations59:

dx
dt
¼ �wy � z

dy
dt
¼ wx þ ay

dz
dt
¼ bþ zðx � cÞ

ð22Þ

We set a ¼ 0:2, b ¼ 0:2, and c ¼ 5:7, for which the Rössler system exhibits
chaos59. w controls the frequency of the system’s oscillations, and was set to 1. We
integrated the equations for the Rössler system using the Fourth Order Runge-
Kutta method with an integration step of 0.01. We generated 5,000,000 time-
points, and then downsampled to 10,000 datapoints. To get a single time-series ϕ
from the Rössler model, we took a linear combination of x and y: ϕ = x+ y.
Results for x, y, and z individually are reported in Supplementary Table 15.

Ikeda map. Ikeda and colleagues described a chaotic model of light passing
through a nonlinear optical resonator85. The model can be simplified into a two-
dimensional map86:

xiþ1 ¼ 1þ uðxi cos ti � yi sin tiÞ
yiþ1 ¼ uðxi sin ti � yi cos tiÞ

ð23Þ

where u is a parameter and

ti ¼ 0:4� 6
1þ x2i þ y2i

ð24Þ

We set u ¼ 0:9, for which the Ikeda map exhibits chaos86. Table 3 reports results
for a linear combination of the two variables, ϕ = x+ y. Results for x and y
individually are reported in Supplementary Table 15.

Hénon map. The Hénon map61 is a two-dimensional system of equations:

xiþ1 ¼ 1� ax2i þ yi
yiþ1 ¼ bxi

ð25Þ

We set a ¼ 1:25 and b ¼ 0:3, for which the Hénon map is periodic87. Table 3
reports results for a linear combination of the two variables, ϕ = x+ y. Results for
x and y individually are reported in Supplementary Table 15.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-019-0715-9 ARTICLE

COMMUNICATIONS BIOLOGY |            (2020) 3:11 | https://doi.org/10.1038/s42003-019-0715-9 | www.nature.com/commsbio 9

https://www.mathworks.com/matlabcentral/fileexchange/42919-pink-red-blue-and-violet-noise-generation-with-matlab
https://www.mathworks.com/matlabcentral/fileexchange/42919-pink-red-blue-and-violet-noise-generation-with-matlab
https://www.mathworks.com/matlabcentral/fileexchange/42919-pink-red-blue-and-violet-noise-generation-with-matlab
www.nature.com/commsbio
www.nature.com/commsbio


Periodic Poincaré oscillator. The Poincaré oscillator has been widely studied as a
model of biological oscillations, particularly as a model of the effect of periodic
stimulation on the dynamics of biological oscillators88. The oscillator is described
by the following equations:

dr
dt
¼ krð1� rÞ

dΦ
dt
¼ 2Φ

ð26Þ

where k is a positive value that controls the oscillator’s relaxation rate. The phase of
this system is described by its angular coordinate ϕ in a unit cycle. Periodic
stimulation of the system is modeled as a perturbation of magnitude b away from
the unit cycle, which leads to an instantaneous resetting of the phase of the
oscillator, as determined by the following phase resetting curve:

gðϕÞ ¼ 1
2π

arccos
cos 2πϕþ bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ b2 þ 2b cos 2πϕ
q ðmod 1Þ ð27Þ

The period of the stimulation is determined by a parameter τ. For periodic
dynamics, we analyze the time-varying phase of the Poincaré oscillator with b ¼
1:13 and τ ¼ 0:69, which Guevara and Glass show leads to phase locking between
the oscillator and the periodic perturbations41.

Quasi-periodic Poincaré oscillator. For quasi-periodic dynamics41 in the
Poincaré oscillator, wet set b ¼ 0:95 in Eq. (20), with an inter-stimulus delay
τ ¼ 0:75.

Chaotic Poincaré oscillator. For chaotic dynamics41 in the Poincaré oscillator,
wet set b ¼ 1:13 and τ ¼ 0:65.

Stochastic Lorenz system. To study the effect of dynamic noise on our
algorithm’s classification of stochastic chaotic systems, we took the Lorenz system
described in Eq. (11), and added intrinsic/dynamic Gaussian noise to the x
component of the system (we found that the system was far less sensitive to noise
being injected into the y variable):

dx
dt
¼ σðy � xÞ þ Aη

dy
dt
¼ xðρ� zÞ � y

dz
dt
¼ xy � βz

ð28Þ

where ηi is a normally distributed random variable with mean 0 and standard
deviation 1, and A is a parameter that controls the amplitude of the dynamic/
intrinsic noise. As for the deterministic case, we set σ ¼ 10, ρ ¼ 30, and β ¼ 8

3. The
stochastic Lorenz system was simulated using the Fourth Order Runge-Kutta
method with an integration step of 0.01. Supplementary Table 18 reports results for
different values of A, both for all system variables individually and for the linear
combination x + y.

Stochastic Rössler system. We also took the Rössler system described in Eq. (22),
and added dynamical Gaussian noise to the x component of the system:

dx
dt
¼ σðy � xÞ þ Aη

dy
dt
¼ xðρ� zÞ � y

dz
dt
¼ xy � βz

ð29Þ

where ηi is a normally distributed random variable with mean 0 and standard
deviation 1, and A is a parameter that controls the amplitude of the dynamic/
intrinsic noise. As for the deterministic case, we set a ¼ 0:2, b ¼ 0:2, and c ¼ 5:7,
and simulated the model using the Fourth Order Runge-Kutta method with an
integration step of 0.01. We generated 5,000,000 time-points, and then
downsampled to 10,000 datapoints. Supplementary Table 18 reports results for
different values of A, both for all system variables individually and for the linear
combination of x+ y.

Multivariate AR model. We generated random multivariate autoregressive (AR)
models using the Multivariate Granger Causality (MVGC) toolbox89. To create
random regression matrices, we created random 5-node dense positive definite
matrices using Matlab’s sprandsym.m function, with a graph density of 1. To
ensure stationary dynamics, we used the MVGC toolbox’s var_specrad.m
function to decay the coefficients of the random dense positive definite matrices so
that their spectral radii were 0.8. To ensure uncorrelated noise in the resulting AR
model, we created error matrices with diagonal elements set to 1 and off-diagonal
elements set to 0. We then inputted these regression and error matrices into the
MVGC toolbox’s var_to_tsdata.m function to create multivariate time-series
with 5 nodes and 10,000 time-points. We then applied the Chaos Decision Tree
Algorithm to just the univariate activity of the first node of the resulting
multivariate signal.

Empirical data. We here describe the real-world data analyzed in this paper, and
how these data were previously classified as stochastic, periodic, or chaotic:

A chaotic neuron integrated circuit. Data recorded from an integrated circuit
were kindly sent to us by Seiji Uenohara and colleagues. The circuit is a physical
implementation of a chaotic neuron model that is based on the Hudgkin-Huxley
equations90. The equations governing the circuit’s behavior can be reduced to the
following two-dimensional map:

ζðt þ 1Þ ¼ krζðtÞ þ af ðζðtÞ þ b cosð2πθðtÞÞÞ þ a

θðt þ 1Þ ¼ θðtÞ þ ω ðmod1Þ ð30Þ

where f ð�Þ is a monotonically decreasing nonlinear output function, b controls the

amplitude of the quasi-periodic forcing, and ω ¼
ffiffi
5
p �1

2 (the golden ratio). The
quasi-periodic external forcing was inputted to the circuit using an analog board
PXI-6289, which was also used to record the circuit’s output. Varying the
parameter b can bring the circuit into periodic, strange non-chaotic, and chaotic
states, which Uenohara and colleagues were able to classify by analyzing the
consistency of the circuit’s response to an external input27. There are 10 datasets
recorded from the circuit’s chaotic state.

A strange non-chaotic neuron integrated circuit. There are 10 datasets recorded
from the strange non-chaotic state of Uenohara and colleagues’ circuit.

A periodic neuron integrated circuit. There are 10 datasets recorded from the
periodic state of Uenohara and colleagues’ circuit.

Chaotic laser. Hübner and colleagues28 used phase portrait, correlation integral,
and autocorrelation function analyses to detect chaos in the intensity pulsing of an
unidirectional far-infrared NH3 ring laser. Laser data were downloaded from
https://www.pdx.edu/biomedical-signal-processing-lab/chaotic-time-series.

Stellar flux of a strange non-chaotic star. We analyzed stellar flux from KIC
5520878, the only known non-artificial strange non-chaotic system29. Data were
sent to us by John F. Lindner, who, together with colleagues, determined the status
of KIC 5520878 as a strange non-chaotic system using a series of spectral scaling
analyses29. Data were originally obtained from the Mikulski Archive for Space
Telescopes. Because there are large shifts in the data due to the stellar flux being
recorded in different pixels of the Kepler Space Telescope, we visually inspected the
data to find a relatively stable period (i.e. a period in between large shifts) and then
detrended the data. We thus exclusively analyzed time points 11,620 to 14,003 from
the dataset analzed in Lindner and colleagues’ paper29.

North Atlantic Oscillation Index. We analyzed the monthly mean North
Atlantic Oscillation (NAO) Index from January 1950 to December 2018. The NAO
Index is the difference in atmospheric pressure at sea level between the Azores high
and the Icelandic low, and has been shown by several groups of researchers,
employing a range of techniques, to be stochastic25,91–96. Data were downloaded
from the Climate Prediction Center website (http://www.cpc.ncep.noaa.gov/).

Parkinson’s tremor. We analyzed recordings of a Parkinson’s patient’s hand
acceleration, measured for 30 s at a sampling rate of 1000 Hz by piezoresistive
accelerometers. Through analyses of correlation integrals, Poincaré and return
maps, Lyapunov exponents, and the δ-ϵ method, Timmer and colleageus57 showed
that this Parkinson’s tremor was a nonlinear stochastic oscillator. Data were
downloaded from http://jeti.uni-freiburg.de/path_tremor/readme.

Essential tremor. We analyzed recordings of hand acceleration from a patient
with an essential tremor, also measured for 30 seconds at a sampling rate of 1000
Hz by piezoresistive accelerometers. As they did with the Parkinson’s tremor,
Timmer and colleagues used correlation integrals, Poincaré and return maps,
Lyapunov exponents, and the δ-ϵ method to show that this essential tremor was a
nonlinear stochastic oscillator. Data were downloaded from http://jeti.uni-freiburg.
de/path_tremor/readme.

Heart rate (healthy subjects). Five heart beat (RR-interval) time-series
recordings from healthy subjects were downloaded from Physionet31: https://www.
physionet.org/challenge/chaos/. The signals were recorded using continuous
ambulatory (Holter) electrocardiograms, and are in sinus rhythm. Outliers were
filtered out of the data using Physionet’s WFDB software package. Though a full
24 h of data were available for each subject, we only took the first 2.78 h of data,
corresponding to 10,000 time-points. This was both to save on computation time
and to be consistent with the length of other time-series analyzed in this paper.

Heart rate (congestive heart failure patients). Five heart beat (RR-interval) time-
series recordings from patients with congestive heart failure were downloaded from
Physionet31. Like the healthy rate signals, these data were recorded using
continuous ambulatory (Holter) electrocardiograms, are in sinus rhythm, and were
filtered for outliers. Though a full 24 h of data were available for each subject, we
only took the first 2.78 h of data.

Heart rate (atrial fibrillation). Five heart beat (RR-interval) time-series
recordings from patients with congestive heart failure were downloaded from
Physionet31. Like the healthy rate signals, these data were recorded using
continuous ambulatory (Holter) electrocardiograms and were filtered for outliers,
but are not in sinus rhythm. We only took the first 2.78 h of data, corresponding to
10,000 time-points.

Parameters and largest Lyapunov exponents for data in Table 5. We here
describe the methods used to generate data with different degrees of chaos for the
analyses reported in Table 5, as well as the methods used to calculate largest Lya-
punov exponents in these systems.

Logistic map. The logistic map has only a single parameter, r (see above).
Following Bandt and Pompe32, we varied r between 3.5 and 4, in intervals of 0.001,
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to generate 501 10,000 time-point signals with different levels of chaos. Ground-
truth largest Lyapunov exponents were calculated using the derivative method,
which does not involve generating time-series data.

Hénon map. To generate different degrees of chaos in the Hénon map, we
varied its a parameter (see above) between 1 and 1.4, in intervals of 0.001, to
generate 401 10,000 time-point signals with different degrees of chaos. Ground-
truth largest Lyapunov exponents were calculated using code provided in
Dynamical Systems with Applications using Matlab97, available at https://github.
com/springer-math/Dynamical-Systems-with-Applications-using-MATLAB/.

Lorenz system. For the Lorenz system, we varied its σ parameter between 5.75
and 15, in intervals of 0.05, and generated 10,000 time-points per simulation.
Within this parameter range, the Lorenz system is chaotic, but displays varying
degrees of chaos. To calculate largest Lyapunov exponents for each parameter, we
used the algorithm provided by Ramasubramanian81, which, like the algorithms
used for the logistic and Hénon maps, does not involve generating time-series data.

Mean-field cortical model. Following Steyn-Ross, Steyn-Ross, and Sleigh20,
different levels of chaos in their mean-field cortical model were generated by
varying two parameters: postsynaptic inhibitory response and inhibitory diffusion.
The postsynaptic inhibitory response parameter (λi in their model) was varied
between 0.98 and 1.018 in intervals of 0.001, and the inhibitory diffusion parameter
(D2 in their model) was varied between 0.1 and 0.8 in intervals of 0.05, producing a
total of 585 parameter configurations. We simulated 25,000 time-points in the
model, with no downsampling, so we could again test the effect of the Chaos
Decision Tree Algorithm’s automated downsampling on permutation entropy’
ability to track level of chaos in continuous systems. Unfortunately, there are no
tools for analytically estimating the largest Lyapunov exponent of the mean-field
cortical model, and so largest Lyapunov exponents were approximated by running
two noise-free simulations of the model for each parameter configuration, with
very slightly different initial conditions, and fitting a line to the rate of divergence
between the two simulations from the beginning of the simulations to the point
when their divergence rate saturates and flattens out. The slope of the fitted line is
taken as the estimate of the largest Lyapunov exponent10. While Steyn-Ross, Steyn-
Ross, and Sleigh’s code for estimating largest Lyapunov exponents using this
method requires subjective evaluation of where to fit the line (i.e. finding the non-
saturated part of the divergence rate plot), we automated this process by fitting a
line from the beginning of the divergence rate plot to the point where its mean
abruptly changes, reflecting saturation; this point was determined using Matlab’s
findchangepts.m function. Simulations with approximated largest Lyapunov
exponents less than −5 or greater than 5 were excluded from the analysis, as these
are likely poor estimates; visual inspection confirmed that for these cases, there was
often no clear point of saturation for the divergence rate between simulations, and
so lines were often automatically fitted to particularly steep, short sub-segments of
the plot. Visual inspection further confirmed that in most other cases, there was a
clear, linear rate of divergence between simulations followed by saturation, and that
the automatically fitted line was a good fit.

Neuron integrated circuit. The integrated circuit data analyzed in Table 5 are the
same as those analyzed in Table 4. Because the circuit is a physical implementation
of a known and simple two-dimensional system of equations, Uenuhara and
colleagues used those equations to calculate the ground-truth largest Lyapunov
exponents of the circuit in its three different states (periodic, strange non-chaotic,
and chaotic), and report those largest Lyapunov exponents in their paper27.

Statistics and reproducibility. In reporting the performance of the Chaos
Decision Tree Algorithm, we only made recourse to statistical tests in Table 5
and Supplementary Table 14, where we report the (two-tailed) p-values of
Spearman correlations between largest Lyapunov exponents and permutation
entropies. Because these correlations were calculated against the same set of
ground-truth largest Lyapunov exponents for each system, p-values were
Bonferroni-corrected for multiple comparisons. Elsewhere, we only report the
fraction out of all datasets that were correctly classified as stochastic, periodic, or
chaotic (with exact sample sizes provided in all tables). Within the Chaos
Decision Tree Algorithm itself, statistical tests appear in two locations. First, if
the user chooses to test for stationarity, then the pipeline will only proceed to
test for stochasticity if the test signal passes a (two-tailed) stationarity test with α
= 0.05. Moreover, the pipeline uses surrogate statistics to test for determinism: if
the permutation entropy of the inputted signal lies outside the distribution of
permutation entropies of 1000 surrogates (which is equivalent to a two-tailed
statistical test with α= 9.99e−4), then the data are classified as being generated
by a predominantly deterministic system. No sample size calculation was per-
formed before analyzing the data presented, as our results simply report clas-
sification accuracy for a large number of datasets (and no statistical analyses
were performed beyond reporting classification accuracy). No data were exclu-
ded from the analysis. Data in Tables 1, 2 were used to optimize our algorithm,
which was then re-tested on datasets in Tables 3, 4. Finally, note that no p-value
is associated with the K-statistic outputted by the 0–1 test for chaos. To facilitate
the reproducibility of our analyses, we have included code alongside our pipe-
line, as well as links to code in our Methods, for generating all simulated datasets
tested in this paper. Links to most empirical datasets analyzed here have been
provided in the Methods.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Links to Matlab scripts for simulating the mean-field cortical model and NF-κB
transcription are provided in the Methods. Matlab scripts for simulating all other systems
described in this paper are provided along with the code for the Chaos Decision Tree
Algorithm at https://figshare.com/s/80891dfb34c6ee9c8b34 (DOI: doi.org/10.6084/m9.
figshare.7476362.v7). All empirical datasets except for the integrated circuit recordings
are freely available online, and URLs to each data source are provided in the Methods.

Code availability
The code for the Chaos Decision Tree Algorithm is provided at https://figshare.com/s/
80891dfb34c6ee9c8b34 (DOI: doi.org/10.6084/m9.figshare.7476362.v7).
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