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Abstract—Workflows are increasingly processing large volumes
of data from scientific instruments, experiments and sensors.
These workflows often consist of complex data processing and
analysis steps that might include a diverse ecosystem of tools
and also often involve human-in-the-loop steps. Sharing and
reproducing these workflows with collaborators and the larger
community is critical but hard to do without the entire context of
the workflow including user notes and execution environment. In
this paper, we describe Science Capsule, which is a framework
to capture, share, and reproduce scientific workflows. Science
Capsule captures, manages and represents both computational
and human elements of a workflow. It automatically captures
and processes events associated with the execution and data life
cycle of workflows, and lets users add other types and forms of
scientific artifacts. Science Capsule also allows users to create
‘workflow snapshots’ that keep track of the different versions of
a workflow and their lineage, allowing scientists to incrementally
share and extend workflows between users. Our results show that
Science Capsule is capable of processing and organizing events
in near real-time for high-throughput experimental and data
analysis workflows without incurring any significant performance
overheads.

I. INTRODUCTION

The growth of data from instruments, sensors, and experi-
ments has resulted in complex processing and data analysis.
Scientific workflows help [1] manage the process from data
collection to analysis [2]–[4]. Users use a myriad of scripts,
tools, and lab notebooks to capture and manage the entire
scientific process. For example, a user at a light source often
performs coarse-grained data analyses in real-time to decide on
additional experiments. These workflows often need to run on
HPC resources at scale. Subsequently after the experiment, the
workflow needs to be rerun for finer-grained analyses and then
shared with collaborators and possibly, even with the larger
community. Today, users lack tools for capturing, sharing, and
reproducing workflows in such contexts.

Workflow tools with integrated provenance collection mech-
anisms [5], [6] are not sufficient as the workflows are in-
creasingly managed across heterogeneous software environ-
ments and ecosystems. Existing tools that enable scientific
reproducibility [7]–[10] often capture system and design-level
provenance separately, and do not include the human elements
of a workflow. Provenance information is often incomplete
and structured provenance tools often don’t let us capture the

§Work performed during internship at Berkeley Lab.

unstructured elements of the workflow. For e.g., the contextual
information (scripts, parameters, decisions, etc.) are not suffi-
ciently captured for users to be able to revisit, re-run, and share
their workflows, data, or their provenance. This is challenging
for workflows using experimental and observational data like
that from the light sources, where researchers reuse workflows
for real-time data analyses to refine the experiment and for
post-experiment data analyses. Previous work in recording
human activities in provenance is also limited to simple anno-
tations [11], [12] that is not sufficient to capture the scientific
complexities and thought process behind an experiment design
or a workflow. Thus, there is a need to capture the relevant
context about a workflow and its artifacts along with run-
time information; that can seamlessly integrate with existing
scientific software ecosystems to enable sharing, reuse and
reproduction of workflows and their data.

In this paper, we describe the design and implementation of
Science Capsule, which captures the processing and data life
cycle of a workflow across machines, organizations, people,
and science domains. Instead of ensuring complete repro-
ducibility, Science Capsule creates a ‘journal’ of workflow
activities that users can inspect, analyze and enhance, while
sharing and reproducing workflows. Science Capsule uses sys-
tem monitors for automated capture of provenance which can
be enhanced with user artifacts (e.g., design notes, experiment
protocols, etc.). Additionally, Science Capsule provides a way
to compare and inspect workflows over time. To this effect,
Science Capsule supports the idea of ‘workflow snapshots’,
akin to a time capsule that captures and preserves all rele-
vant information of a workflow at a particular time. Science
Capsule’s automated provenance collection augmented with
methods to capture user artifacts, workflow snapshots, and
intuitive interfaces provides the necessary foundation that
users need to share and reuse workflows.

Science Capsule includes an event processing engine that
processes and reduces system-level events into workflow ac-
tivities, and a snapshot manager that tracks and manages
workflows over time. The event processing engine uses rule-
based transformations for cleaning, filtering and aggregating
event data. The snapshot manager creates ‘workflow snap-
shots’, which uses a Git-based version control system to keep
track of workflow artifacts, and also provides support for
tracking large amounts of workflow data. Science Capsule also
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Fig. 1: Science Capsule contains three main components – a) event processing engine that transforms and reduces large amounts of raw event
data, b) snapshot manager that manages and tracks workflows over time, and c) an interactive web interface that allows users to inspect,
analyze and enhance workflow execution and provenance information. The controller handles incoming event data from the monitoring
system, and responds to user requests.

provides an interactive web interface to view timeline and add
artifacts to the workflow timeline. Science Capsule is capable
of collecting and processing events at a high throughput
and in real-time to address the needs of high-performance
scientific workflows. We evaluate Science Capsule on two
science workflows, and a synthetic benchmark across three
systems to understand its broad applicability and performance
overheads.

The rest of the paper is organized as follows. We discuss
related work in Section II. We describe the design and imple-
mentation of Science Capsule in Section III, and provide the
evaluation in Section IV. Finally, we present our conclusions
in Section V.

II. RELATED WORK

Over the past decade, several frameworks and programming
interfaces have been developed to create reproducible packages
of scientific workflows by capturing the metadata and prove-
nance information [7]–[10]. Workflow management systems
have also been instrumented to collect necessary metadata and
provenance information [5], [6]. However, these tools require
adapting existing user workflows and work practices to a
specific software ecosystem, which is a challenge for scientific
ecosystems. Also, they do not extensively capture the human
elements of a workflow (e.g., lab notebooks), and are primarily
limited to simple user annotations [11], [12]. Science Capsule
collects workflow runtime and provenance information in a
non-intrusive manner through system-level monitoring, while
allowing users to enhance the information by managing user-
defined artifacts as part of the workflow.

Metadata catalogs like iRODS [13] and data context service
like Ground [14] collect and manage metadata about workflow
data and processes. Bluesky data broker [15] provides an inte-
grated interface to access data and metadata from light source

experiments. Science Capsule can be easily integrated with
such metadata management services to enrich the provenance
derived from system-level monitoring.

Enabling reproducible scientific work is extremely challeng-
ing because it depends on a researcher’s ability to capture,
curate, and share the deluge of artifacts in usable ways [16]–
[20]. Several methods have been proposed to extract and
represent meaningful information from provenance traces of
scientific workflows. Methods using data mining [21], [22],
ontologies [23], [24] and W3C PROV [25] have been used
to extract useful information from large workflow and prove-
nance traces. Other tools and algorithms have been developed
to compare and extract information from workflow executions
and provenance traces over time [26]–[28]. Science Capsule
not only represents a workflow’s execution information, prove-
nance and artifacts, but also their versions over time, allowing
users to study, share, execute and reproduce different versions
of the workflow through a single interface.

III. DESIGN AND IMPLEMENTATION

Figure 1 shows the high-level architecture of Science Cap-
sule. There are three main components in Science Capsule–
a) event processing engine that derives information about the
workflow activities by aggregating and reducing system events,
b) snapshot manager that allows users to navigate workflows
across the time domain, and c) an interactive web interface
that provides an interface to collect user feedback for enhanc-
ing workflow metadata and provenance. When a user initiates a
Science Capsule, it starts monitoring and capturing the events
from the execution and data life cycle of workflows. The
processing engine filters and aggregates these events to gener-
ate provenance, context, and processing information about the
workflows. It essentially transforms raw, unprocessed system
events into workflow activity and provenance information;
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creating a ‘workflow timeline’, which represents a journal of
workflow activities that users can inspect, analyze and enhance
through the interactive web interface. If users need to annotate
specific workflow activities or add information outside of the
computing life cycle of a workflow (e.g., lab notes, image
scans etc.), they can do so through the web interface –
Science Capsule adds and associates the information to the
workflow timeline. In addition to recording and storing fine-
grained events of workflow activities, Science Capsule also
manages the different states of a workflow in its entirety, which
allows users to rollback or skip forth to different workflow
versions over time. In order to allow for time-based workflow
navigation, the snapshot manager in Science Capsule saves,
tracks, and manages the different states of a workflow and
associated artifacts as ‘workflow snapshots’. It uses Git as the
underlying version control system along with different storage
back-ends (ObjectDB and Git-LFS) to efficiently track and
manage workflow artifacts over time.

In Science Capsule, events from workflow executions are
captured through an active monitoring system that can au-
tomatically capture both process (e.g., commands) and data
events (e.g., files created, data written) – the amount and type
of information collected depends on the underlying platform
and the method of capture. Currently, Science Capsule pro-
vides two ways to capture and manage the events and prove-
nance information from workflows – a) within a container
(container mode) that allows Science Capsule to capture the
entire workflow environment and life cycle, ensuring portabil-
ity, reproducibility, and sharing of the containerized workflow,
and b) on the native OS of a scientist’s laptop or compute
cluster (native OS mode), where Science Capsule captures the
execution time provenance on user-specified artifacts, which
can be used for understanding, recreating, and sharing the
workflow. The container mode allows Science Capsule to
capture as much information as possible by monitoring the
closed environment where the workflows run. The native mode
allows Science Capsule to collect only selective information
about the workflows as is required by the users.

A. Events Management
Science Capsule monitors, captures, processes and stores

events from various sources during workflow execution. In
order to monitor the workflow environment and collect events,
users either enable the monitoring of workflow-specific direc-
tories explicitly (native OS mode), or use a container that has
Science Capsule pre-installed (container mode).
Event collection. Science Capsule captures various system-
level events using existing tools that enable cross-platform
event monitoring and capturing of file system and process
invocation events. Currently, system-level events are cap-
tured in Science Capsule using three tools – inotify [29],
watchdog [30], and strace. Inotify and watchdog are used to
capture file system events. Strace is a Linux utility to capture
process related events in addition to file system events. By
default, Science Capsule selects the monitoring tool based
on the underlying platform. For example, inotify is enabled

by default, when Science Capsule is monitoring workflows
on Linux-based systems, whereas watchdog is enabled for
Windows and MacOS users. In addition to the platform
where the workflows run, users can select the monitoring tool
based on the granularity of events they need to capture. For
example, inotify only monitors file system events, whereas
strace monitors both file system and process events.
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Fig. 2: The processing engine in Science Capsule receives unpro-
cessed events from the controller through a message broker and stores
processed events in a mongoDB collection. The REST server provides
an interface for retrieving and adding workflow-specific events.

Event processing. Figure 2 shows the event processing in
Science Capsule. Events from the different sources might be
too fine-grained for users to make any meaningful interpre-
tation about the workflow’s execution or data life cycle. For
example, the file system events captured using inotify contain
file system operations at the block-level, where a single file
read operation might result in multiple file system events. The
processing engine in Science Capsule filters, transforms and
aggregates these low-level system events into a timeline of
workflow activities describing the provenance, contextual data
and processing information about the workflows. The system
events are transformed and reduced using the time and data
dependency information from the event data. The event times
imply the order in which the different activities of a workflow
happened during execution. The reduction is based on the
number of files accessed by the workflow over time, and not
the individual file operations (file open, read/write, close) as
captured at the system-level. In case a file is opened, read
multiple times and closed, Science Capsule creates a single
workflow activity aggregating all the I/O statistics (number of
bytes read, read start time, read end time etc.).
Adding external event sources. In addition to capturing work-
flow provenance and execution information from monitoring
system events, Science Capsule can also capture information
from other external event sources such as workflow scripts
or workflow management systems, to enrich the metadata
and provenance collected using the system-level monitoring
tools. For example, a beamline scientist at the light sources
might want to know the specific configurations used in their
workflows. While the default monitoring system in Science
Capsule captures the file usage and program invocations of
a workflow, events from any analysis tool might describe
additional steps at the application granularity.

In order to extract and store additional workflow execution
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Listing 1 Example rule file for processing events.
1 {
2 "timestamp": {
3 "column": "time",
4 "format": "%Y-%m-%dT%H:%M:%S.%f%z"
5 },
6 "cleaning" : {
7 "must_have_columns" : [ "step",
8 "input",
9 "status" ],

10 "rename_columns" : { "step" : "name",
11 "input": "vars"}
12 },
13 "mappings" : {
14 "artifact" : "name",
15 "action" : "status",
16 "metadata" : [ "vars"]
17 }
18 }

and provenance information into Science Capsule, the events
from external sources need to be processed similar to system-
level events. The processing involves transforming and select-
ing values from the event data that can be used by Science
Capsule to augment additional information into the workflow
timeline. However, events from the external sources can be
of any format or type. To simplify processing events from
different external sources, Science Capsule requires users to
provide configuration files specifying simple rules to extract
workflow information from event data. This also allows Sci-
ence Capsule to process events for any workflow without the
need to rewrite or adapt them to a specific workflow engine or
tool. Listing 1 shows an example configuration file. Currently,
these configuration files may contain simple rules for cleaning
and processing events such as formatting time values, filtering
out non-essential fields and mapping input data to an event in
Science Capsule. However, they may be extended to support
more complex data cleaning and processing for any arbitrary
event source.

B. Workflow Tracking and Snapshots

Figure 3 highlights workflow tracking and snapshot creation
in Science Capsule. The snapshot manager tracks, saves and
allows for temporal navigation (moving back and forth in
time) of workflow executions by allowing users to create
and retrieve snapshots. A ‘workflow snapshot’ is essentially
a collection of data, metadata, initial state, derivation history,
and current state of a workflow that that can be used to
reproduce or revert to a workflow state. Currently, Science
Capsule uses git as the version control back-end and stores
object (data and code) deltas into a git database to create and
manage snapshots. Corresponding metadata for the snapshots
are stored in a relational (sqlite) database for efficient querying
of snapshot information. The git storage back-end can be either
an object database (Git-objectDB) or the git large file storage
(Git-LFS). Since Git-LFS is designed for efficient tracking of
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Fig. 3: Science Capsule tracks workflows and creates snapshots
to save the state of a workflow and related artifacts. The snapshot
manager uses Git to keep track of workflow scripts and data. When
a user requests to create a workflow snapshot, the current state of
the workflow is saved with a snapshot id. All workflow events are
associated with the respective snapshot.
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Fig. 4: Science Capsule snapshot example. Snapshotting in Science
Capsule creates a tree structure where a node represents the state of
a workflow during snapshot. The root of a snapshot tree is the first
saved state of a workflow. Users can arbitrarily switch to a snapshot
(red arrow) from another snapshot, resulting in multiple workflows
or different versions of a workflow. Science Capsule captures the
lineage of the workflows and their versions.

large files, Science Capsule by default uses Git-LFS and only
falls back to Git-objectDB if the former is not available on
the user’s system. The lineage information for each snapshot
is derived from the events captured by the monitoring tools in
Science Capsule. Science Capsule creates an internal identifier
to uniquely associate the events in a workflow to the specific
snapshot.

Users can create multiple snapshots of a workflow over
time, and can also roll back to specific snapshots for creating
multiple execution traces of the workflow. This creates a tree of
several snapshots (Figure 4), where each node of the tree refers
to a version of the original workflow. The path to a node in the
snapshot tree describes the lineage of the derived workflow as
well as its artifacts. In addition to creating snapshots, users can
also retrieve snapshots in any order, list snapshots, compare
two snapshots, and find the objects and derivation history of
snapshots.

C. Science Capsule Implementation
Science Capsule is implemented in Python 3 and provides

a command-line interface (CLI), a REST API, and a web-
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(a) Science Capsule web client showing a workflow timeline (b) Adding artifacts to workflow timeline
Fig. 5: Science Capsule web client displaying XMCD-Spectral workflow activities in a timeline view. Users can add images and/or notes
to the timeline describing their workflow (beyond the compute or data life cycle).

based user interface. The CLI is used to start and manage
the services (message broker, system monitors, database server
etc.). The REST API is used to retrieve and analyze events that
are captured and processed within Science Capsule, and also
create and manage snapshots of workflows. The web client
uses the API to retrieve and display the timeline of activities
and artifacts of any workflow monitored by Science Capsule.
Users can also integrate Science Capsule with existing work-
flow tools through the REST API.

The web client in Science Capsule displays, and allows
users to analyze and annotate workflow and data life cycle
events. This interface represents the events as timeline of
workflow activities, visible in Figure 5. By default, the timeline
shows all data and process events in a workflow as captured by
Science Capsule. However, users can filter and sort activities
based on their type, allowing them to analyze activities that
are relevant to them. The web client is developed in React
and is currently divided into two parts– a) the summary view
(left side in Figure 5a) represents the types of artifacts and
list of snapshots, and b) the right side on the web client
shows the detailed information about the events, and organizes
them in ascending/descending order of their occurrence. Each
entry in the timeline shows relevant information about the
artifacts (e.g, when a file has been written, its path, and the
program invocation that generated the file). Figure 5b shows
the interface to add notes or upload additional artifacts for
the workflows (e.g., scans of lab notebooks), associating them
with specific system events and/or time points in the workflow.
This allows Science Capsule to record artifacts and activities
beyond the computational timeline of a workflow.

We are also exploring integration of Science Capsule with
the Jupyter ecosystem [31] through the development of a
JupyterLab extension. This integration will allow users to
run Science Capsule UIs as tabs in JupyterLab, and be able
to capture, share and visualize the life cycle of workflows.
This integration between Science Capsule with the Jupyter
ecosystem will also allow scientific research and workflows
managed through Jupyter to readily incorporate provenance
collection and reproducibilty in their existing practices.

Finally, Science Capsule is well-integrated with current
container technologies like Docker and Shifter. The Science
Capsule CLI provides a wrapper over several docker com-
mands to initiate and manage workflows using containers that
have Science Capsule pre-installed and enabled. When Science
Capsule services and workflows run inside a container, the
monitoring system in Science Capsule captures all process
and data events associated with the workflows, along with the
underlying environment. This results in both data and process
provenance, and hence, better ability to reproduce them.
Additionally, when Science Capsule is used in a container,
users can also share their workflows along with their artifacts.
The Science Capsule CLI allows users to save and export
workflows as container images that can be shared between
users.

IV. RESULTS

In this section, we evaluate the performance of Science Cap-
sule using two scientific workflows and a synthetic benchmark
across different computing environments.

A. Machines
We use a MacOS desktop (Darwin Kernel Version 19.3.0), a

Linux server running Ubuntu v14.04.6, and the Cori supercom-
puter at NERSC for evaluating the different characteristics of
Science Capsule. The Mac desktop has a 1.6 GHz Dual-Core
Intel Core i5 processor with 16 GB of RAM. The Linux server
has 35 GB of memory and 12 1600 MHz processors. Cori is
a Cray XC40 supercomputer with 1630 compute nodes with
32 cores per node and 128 GB DDR4 2133 MHz memory.
For our results from Cori, we used one compute node and
the DRAM-based tmpfs file system with peak performance of
approximately 1.3 GBps. We also evaluated Science Capsule
using Docker (v17.05) containers on the Linux server, but only
present results for the native Linux server as their performance
was similar.

B. Workflows
In this section, we briefly describe the workflows used for

evaluating Science Capsule.
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Fig. 6: The graph shows the rate at which Science Capsule can
process inotify events generated by the scbench application on a
Linux server. The processing rate increases linearly with the event
generation rate up to 50,000 events/s. Due to the overheads of
processing and transforming those events, the processing rate gets
affected if more than 50,000 inotify events are generated. However,
Science Capsule still achieves a maximum processing rate of 80,000
events/s.

XMCD-Spectral is a real-world workflow for online analy-
sis of X-ray spectroscopy data at the Advanced Light Source
(ALS). It has a Python CLI that allows users to load tabular
data collected from a trajectory scan of a material sample.
For our experiments, we used data from X-ray Magnetic
Circular Dichroism (XMCD), and generated output files with
spectral information as tables (CSV) and figures (PNG). For
this workflow, Science Capsule monitored the directory where
the input data was located and the output files were saved.
Montage is a data-intensive workflow that assembles an
image from sky survey data (FITS files). It is a combination
of sequential and parallel tasks. We used the python imple-
mentation of the workflow, and used different spatial scales
to control the size of the images. Montage creates multiple
sub-directories for saving and processing intermediate files.
Science Capsule was configured to monitor all the directories
and sub-directories created and accessed by Montage.
scbench is a synthetic benchmark that we developed for
evaluating Science Capsule. scbench allows us to control
the data (and subsequently, event) generation rate, number of
files and data size. We used scbench to create and write 4
KB files in parallel for a fixed duration to measure different
performance implications in Science Capsule.

C. Processing Rate

Figure 6 shows the rate at which Science Capsule captures,
filters and aggregates raw, unprocessed events from different
monitoring sources on the Linux server. For this experiment,
we used scbench to do a fixed number of I/O operations
on files and directories monitored by Science Capsule, thus
controlling the event generation rate through scbench. The
result shows that Science Capsule could process ≈ 50,000
events/s on par with the event generation rate. Additionally,
the throughput performance goes up to a maximum of 80,000
events/s, but with some backpressure*. However, real-world

*Condition where event generation rate is higher than the event processing
rate, resulting in continuously increasing the number of unprocessed events
in the queue.

Fig. 7: Maximum sustainable throughput of Science Capsule for
processing events depends on the monitoring source, underlying
platform and the applications’ throughput. For real-world workflows
(XMCD-Spectral and Montage), throughput is higher on Cori
as data is processed faster. The throughput of scbench on Cori
is limited by the queue size of inotify, which can be updated by a
system administrator to handle large event rates.

workflows often generate events at a much lower rate –
Montage generates ≈ 5K events/s for spatial scale 3.0, and
XMCD-Spectral generates ≈ 80 events/s on the Linux
server – than can be processed by Science Capsule in (near)
real-time.

Figure 7 shows the maximum sustainable throughput ob-
tained by Science Capsule for the workflows on different
platforms. On the Mac desktop, the processing rate is low
because the rate at which the events are generated is low.
Watchdog implicitly aggregates raw system-level events, and
generates significantly fewer events as compared to inotify
or strace. Additionally for Montage and XMCD-Spectral,
event generation is higher on Cori than on other systems as
the workflows run faster and generates more events/s. For
scbench, the event processing rate is the maximum when the
application runs on the Linux server. On Cori, the processing
rate is low because of the small queue size in inotify that
limits the maximum number of events in the queue, and
needs to be updated by an admin. The results show that
Science Capsule throughput depends on the monitoring source,
underlying platform and the throughput at which workflow
events are generated.

Fig. 8: Latency depends on the overheads of processing the raw
events in Science Capsule. The latency increases when the event
generation rate exceeds the event processing rate due to large number
of I/O operations/s.

D. Processing Latency and Overhead

Figure 8 shows the processing latency in Science Capsule,
which measures the time between the last generated unpro-
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(a) scbench (b) Montage
Fig. 9: Time to create snapshots using Science Capsule for scbench and Montage workflows (XMCD-Spectral had similar patterns)
generating different data sizes and number of files. For Montage, total data size and the number of files increase as the spatial scale
increases. Snapshot time increases with increasing data size, which can be minimized by creating snapshots in the background or incremental
snapshots whenever possible.

App Raw events Agg. events % Reduction
scbench 1024008 16 99.998
Montage 4608170 17596 99.6

XMCD-Spectral 1724 90 94.8
TABLE I: Science Capsule processes raw, system events into
reduced, aggregated events based on the number of files and a time
window. scbench and XMCD-Spectral work with few files,
resulting in a small number of processed events. Montage operates
on many files, resulting in fairly large number of processed events.

cessed event and the last processed event. The workflows are
executed on the Linux server for this experiment. We do not
plot the latency for XMCD-Spectral since the event gener-
ation rate is low (≈ 80 events/s), and Science Capsule obtains
sub-second latency. For both scbench and Montage, the
latency is minimal (<6s) for large number of I/O operations
and files. For scbench, when the number of I/O operations
per second is less than 24,000 Science Capsule maintains a
processing latency of ≤3s because it can process at almost
the same rate at which the events are generated. When the
number of I/O operations per second exceed beyond 24,000,
the latency increases because of the high event generation
rate (>50,000 events/s; Section IV-C shows that backpressure
occurs when the event generation rate exceeds beyond 50,000).

We also studied the computation overhead of using Science
Capsule. Since by design, Science Capsule does not actively
intercept the application execution, and collects events from
system-level monitoring logs, the overheads on workflow
performance were minimal. Our experiments show that for
the workflows evaluated in this paper, the execution overhead
does not exceed beyond 5s, specifically on platforms that
are constrained by CPU and memory resources (e.g., Mac
desktop).

E. Implications of Event Aggregation

Table I shows the reduction in the number of events after
Science Capsule aggregates the unprocessed monitoring events
generated during workflow execution. In this result, we only
report the number of events generated by the inotify monitor as
the aggregation and reduction is significantly more important
for inotify, than any other monitoring sources (e.g., watchdog)
due to its fine granularity of capturing the system events. The
table shows that for Montage and XMCD-Spectral, the

Fig. 10: Time to create snapshots of the scbench workflow
(including data) using different backends. Snapshotting with Git-LFS
backend performs better than Git ObjectDB as Git-LFS handles large
files efficiently.

reduced number of events is ≈ 0.4% and 5% respectively. Sci-
ence Capsule aggregates events based on a time window and
the number of files. In case a file has been accessed and used
multiple times within the same time window, Science Capsule
creates a single event with aggregated statistics instead of a
large number of system events that are originally generated by
the event monitors. For scbench, the number of aggregated
events is significantly small (< 0.001%) as compared to
the number of unprocessed events because scbench does
multiple write operations on a small number of files that were
grouped as a single write event per file.

F. Snapshot Performance and Overheads

In this section, we present our evaluation for the snapshot
feature in Science Capsule, which allows users to save, reuse
and share their workflow state (including data). We evaluate
the different snapshot actions, effect of different storage back-
ends, and performance overheads for different data sizes. The
results use git-lfs as the backend unless otherwise specified.
Snapshot create time. Figure 9 shows that the time to create
snapshots using Science Capsule increases with increasing
data size and number of files. Figure 9a shows that the time
to create snapshots increase linearly with increasing data size
for scbench. Figure 9b shows the time to create snapshots
increase for the Montage workflow with increasing values of
the spatial scale. With larger values of spatial scale, Montage
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generates more files, resulting in both increasing number of
files and data size to snapshot. However for large snapshots,
the time can be minimized by creating them in the background
or choosing incremental snapshots of small size.
Effect of different storage backends. Figure 10 shows the
performance of creating snapshots using the two git backends
– git-lfs and git-objectDB – in Science Capsule. The graph
shows that with the git-lfs backend, Science Capsule creates
snapshots significantly faster (≈ 5×) than using the default
objectDB for larger data sizes. The results imply that users
can efficiently create and manage large snapshots of their
workflows and data using Science Capsule.

V. CONCLUSIONS

Science Capsule captures the processing and human el-
ements of increasingly complex data life cycles that are
necessary to share, reuse and reproduce workflows across het-
erogeneous computing environments. Science Capsule actively
monitors workflows, processes workflow events in real-time to
generate provenance, and allows users to explicitly enhance
and analyze collected provenance information. Science Cap-
sule reduces the user burden in collecting, aggregating, and
viewing workflow details from user notes to system events.
Subsequently, users can use the provenance journal to recon-
struct/reproduce their workflows. However, Science Capsule
does not guarantee complete provenance and it is possible
that in the process of sharing or reproducing, users might not
have a complete workflow which they may choose to augment.
Our evaluation shows that Science Capsule provides a high-
throughput, low-latency framework to capture the relevant
information without any significant performance overheads.

In future work, we will explore ways to extract relevant
events and provenance information from workflow logs that
will simplify integrating existing workflows with Science
Capsule. User interaction and appropriate abstractions for in-
teracting with collected provenance data will also be explored
in future work.
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