UC Berkeley
SEMM Reports Series

Title
Nonlinear Finite Element Analysis of Axisymmetric Solids

Permalink
bttgs:ggescholarshiQ.orgéucgitem42726051§|
Authors

Nagarajan, Sambamurthy

Popov, Egor

Publication Date
1974-06-01

eScholarship.org Powered by the California Diqgital Library

University of California


https://escholarship.org/uc/item/27260515
https://escholarship.org
http://www.cdlib.org/

REPORT NO.
UC SESM 74-9

STRUCTURES AND MATERIALS RESEARCH

DEPARTMENT OF CIVIL ENGINEERING

NONLINEAR FINITE ELEMENT
DYNAMIC ANALYSIS OF
AXISYMMETRIC SOLIDS

by

5 NAGARAJAN
and

E.P.POPOV

Report to

Picatinny Arsenal, Dover, New Jersey
Contract No. DAAA 21-72-C-0727

JULY 1974

STRUCTURAL EFNGINEERING LABORATORY
UNIVERSITY OF CALIFORMIA
BERKELEY CALIFORNIA




|

i STRUCTURES AND MATERIALS RESEARCH
DEPARTMENT OF CIVIL ENGINEERING
| Report No. UC-SESM 74-9

NONLINEAR FINITE ELEMENT DYNAMIC ANALYSIS OF
AXISYMMETRIC SOLIDS

by

S. NAGARAJAN
Assistant Research Engineer

and

E. P. POPOV
1 Faculty Investigator

Report to
Picatinny Arsenal, Dover, New Jersey
Contract No. DAAA 21-72-C-0727

| STRUCTURAL ENGINEERING LABORATORY
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA

JULY 1974




ii
ABSTRACT
The subject of this investigation has been the static

and dynamic analysis of axisymmetric solids taking into account
both material and geometric nonlinearities. A general Lagrangian
formulation forms the basis for the incremental equations of mo-
tion which are solved using direct integration methods. Solution
accuracy is improved by applying equilibrium correction loads at
each step. Finite element discretization is achieved through the
use of quadrilateral plane stress and axisymmetric elements with
incompatible modes added for improvement of the element flexural
characteristics. Several numerical examples are presented to

demonstrate the effectiveness of the developed computer program.
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1. INTRODUCTION

The nonlinear analysis of axisymmetric solids subjected
to axisymmetric loading conditions is the subject of the present
investigation. Material nonlinearities arise from consideration
of elastic-plastic constitutive behavior. Geometric nonlineari-
ties are due to large displacements and are taken into account
through the use of a general Lagrangian formulation as the basis
for the incremental equations of motion.

The isoparametric family of elements was used by Larsen
and Popov [1], and Nagarajan and Popov [2] in earlier works which
considered only the effects of material nonlinearity. Both mat-
erial and geometric nonlinearities were considered by Larsen [3]
and Nagarajan [4] but were restricted to the study of thin and
moderately thick shells of revolution due to the use of a degene-
rate isoparametric shell element. The present effort is an exten-
sion of these works and employs a quadrilateral finite element
(together with incompatible modes) to enable the analysis of axi-
symmetric solids subjected to both static and dynamic loads.

Following a brief review of the incremental virtual work
expression for large deformation problems, the plasticity relations
and the solution method, the finite element procedure for the quad-
rilateral element is presented. Finally, several sample problems
are- considered to illustrate the capabilities of the computer pro-

gram developed.



2. THEORETICAL FORMULATION

2.1 Incremental Equations of Motion

The deformation of a three-dimensional body may be de-
scribed by considering its path from an initial configuration BO
to a final configuration B. An intermediate configuration may be
denoted by B; and a neighboring one by B,. The incremental motion
of the body from B; to B, may be studied using different modes of
description depending on the choice of the configuration to be
used as the reference state; in the Lagrangian mode of description
adopted in this study, the initial configuration BO is chosen as
the reference state.

The incremental displacement from B, to B,,with respect

to a global coordinate system XI in Bo is given by

u=2y-ly | (1)

where the left superscripts denote the configuration. A generic

material point at position X in BO occupies the positions

x:X«}»ly (Za)

X+ 2u=x+2y- 1y (2b)

1544 (
i

and

in B, and B,, respectively. Using rectangular Cartesian coordi-
nates, the Lagrangian strain increment between B, and B, as refer-

red to BO is defined as

+ u + 1

2E J,1 7 U Y

107 Y19



where the linear and nonlinear parts e and y , respectively, can

be identified as
- 1 1
ey = up g Uyt U U gt Yk (4a)

and Znpg = U1 YK, (4b)

The incremental equations of motion are derived by equa-
ting the incremental virtual work between B; and B, due to the in-
ternal stress fields to that of the externally applied tractions
and body forces. Details of derivation of the Lagrangian formula-
tion are presented elsewhere [3,4,5] and the incremental variation-

al expression, neglecting body forces, is obtained as

. X ) _ f , .
/[oo up Suyp + <SIJ SE; * 513 onIJ)] dv 3 Sup “t; da
Bg

1u 1 (5)
J/W (g up suy + S14 aeIJ) dv
Bg

where 2t is the traction vector in B, and 3B, refers to the sur-
face of B, where the traction is specified; da is the infinitesi-
mal surface element in B,, and dV the volume element and o, the

mass density in B,. The 2nd Piola-Kirchhoff (P-K) stress incre-

1
S, is obtained in terms of E through a Tinear trans-

ment, S = 25 -
formation tensor C, i.e.

S=CE (6)
Substitution of this into Eq. (5) results in a nonlinear expression
and a linearized form is obtained by replacing E by e in Eq. (6)

prior to its use in Eq. (5) and using se instead of SE 1in the lat-

ter. Further, any lack of equilibrium that may develop due to



such a linearization during each increment is taken into account
on the right-hand side of Eq. (3) wherein the virtual work due to
the resisting forces, rather than that due to the traction vector
in By, is subtracted from the virtual work doe to the traction
vector in B,.
The transformation of the integral over 3B, to an inte-
gral over 3B, and specialization for conservative and nonconserva-
tive loading have been discussed by Oden [5] and Larsen and Popov [6].
For a nonconservative loading of the pressure type, this integral
can be written as

oW, = - u/f 20 2p su, g 3Ky Bk duy |
3By o 0Xp  BXy 93X BXM

J dA (7)

where 2p is the pressure on a surface element in B,. The second term
within the parantheses gives rise to a nonsymmetric load stiffness.
For most engineering applications, however, the effect of this term is
small and it is neglected from further consideration, especially in
view of the significant increase in computational effort involved in
the solution of a set of equations with a nonsymmetric coefficient
matrix.

The linearized incremental equations of motion are obtained
as

Mo (K +Kg) s u = RN N IR (8)
where the left superscripts referring to configurations B; and B,
correspond to the states at times t and t + At, respectively. K

KG are the incremental and geometric stiffnesses, respectively, and

are obtained from the linearized version of Eq. (5) as



u Ko us [ ooy e ey (9a)

Bo
. o= 1
and su KG y w/‘ SIJ 8114 dv (9b)
Bg
R

IF", the internal resisting forces in B;, and 2R, the externally
applied loads in B, are evaluated using the appropriate integrals

in Egs. (5,7). The inertia forces are computed by assuming M to be
a diagonal lumped mass matrix in the finite element analysis by as-
signing tributary volumes to the nodal points of the finite elements.
Finally, damping forces may also be taken into account in the form

of mass and stiffness proportional viscous damping, viz.

= 0 ’
QD ap M+ az "Kg (10)

where Ky refers to the incremental stiffness at time t = 0 and aj,
a, are the mass and stiffness proportional damping factors respect-
ively. Cp is then assumed to remain constant throughout the analysis
and the incremental equations of motion are modified as
M - i+ QD . Q + (Ko + gé) .'9 = 2R - M - L -
QD . lg - 1ER (11)

2.2 Constitutive Relations

The incremental virtual work expression given in Eq. (5) is
not restricted to any particular constitutive laws of material beha-
vior. Depending upon the type of material behavior to be considered,
the appropriate stress-strain transformation tensor C relating the in-
crements in the 2nd P-K stresses to the Lagrangian strain increments,
Eq. (6), must be obtained. In the case of isotropic linear elastic

materials this tensor is given by



Crae = Ergke = w81 dgp * 811 Sg) * 2 819 8 (12)
where A and p are the Lame constants.

The incremental theory of plasticity using the associated
flow rule, with the von Mises yield condition and either isotropic
or linear kinematic hardening, is adopted as the basis for establi-
shing the constitutive bahavior of elastic-plastic materials. The
details of derivation will not be presented here and may be found
in several references, notably the works of Khojasteh-Bakht [7]
and Larsen [3] who assumed the infinitesimal theory to be applicable
also to the special case of small strains, large rotations by using
the 2nd P-K stress tensor in the undeformed configuration together
with the conjugate Lagrangian strain tensor. The plastic strain in-
crements are related to the increments in the total strains by

P

Erg ® Aok B (13)

and the elastic-plastic stress-strain transformation tensor is ob-
tained as
C

E E A (14)

IJKL ~ “IJKL ~ “IJMN “MNKL
For von Mises yield condition and isotropic hardening, one can ob-
tain [7]

Croe = m(8px Sgp * 81 Sax) * 2 81y S

- 2 1€ 1< 2
9u2h 15,15, /o (15)



where

h=2(1+v) (1-2)/ (E[3 -c(1 - 2v)])
r = Et/E ; Et = slope of uniaxial stress-strain curve
o = /3], , the equivalent stress
(16)
1§id = 1SIJ - 813 1SKK / 3 , the deviatoric stress
and v = Poisson's ratio; A, u = Lame constants )

The isotropic hardening rule does not account for Bausch-
inger effect; in fact, it predicts a negative Bauschinger effect.
The kinematic hardening rule suggested by Prager [8] or the modified
rule of Ziegler [9] may be used in the case of linearly hardening
materials but more refined models are necessary to treat general
nonlinearly hardening materials under cyclic Toading or subject to
the influence of severe load reversels. The linear hardening rule
of Prager has been incorporatedlinto the developed computer pro-
gram. The yield surface is assumed to retain its initial shape
and size and simply undergo a translation proportional to the plas-

tic strain rate, i.e.

. P
1z - 1

where the function ¢ is experimentally determined. Following [7],
the elastic-plastic stress-strain transformation tensor for this
case can be obtained as

C + A4

kL = RSy Sgp * Sy S 1J SkL

- 2 1T 21 1 .1
buh (1575 - tagy) (5 = oy ) (18)

where

h=1[2k (2u+c)]™ (19)



Using the uniaxial tensile test data to define k and c, one gets

k=0, //3 5 c=2H/3=2E/[3(1 - 2)] (20)
where gy = yield stress and H' = slope of the g - EP curve.

In addition to the constitutive relations, it is also
necessary to define a loading/unloading criterion. Depending on
the state of stress, the yieid function f is computed and an elas-
tic state is indicated if f < 0, and a plastic state if f = 0;
f > 0 constitutes an inadmissible state in the theory of plasticity.
Associated with the plastic state f = 0, three types of behavior
are recognized, viz, loading, unloading and neutral loading which

are characterized by F > 0, f<0and f = 0, respectively.



3. FINITE ELEMENT ANALYSIS

The isoparametric family of elements [10] has been suc-
cessfully used in the elastic-plastic analysis of axisymmetric
solids under both static and dynamic Toading [1,2]. But the use
of these elements becomes computationally inefficient especially
in the analysis of moderately thick sheils considering both mater-
ial and geometric nonlinearities. A degenerate isoparametric shell
element [11] was successfully employed [3,4] and considerable econ-
omy in computational effort was achieved. However, construction of
discrete models to represent thick shells or shells with sharp dis-
continuities in geometry such as due to cut-outs or stiffeners
necessitate the use of one or more elements belonging to the iso-
parametric family. In this connection, it is desireable to keep
to a minimum the number of degrees of freedom in the element and a
quadrilateral element with two incompatible modes [12] has been
chosen in this study. The incompatible displacement modes are se-
Tected to be of the same form as the errors associated with the
basic isoparametric quadrilateral element. The displacement am-
plitudes associated with these modes are additional degrees of
freedom which can be eliminated at the element level by minimizing
the strain energy with respect to these amplitudes. This is equi-
valent to the static condensation algorithm which can be accom-
plished quite readily using the standard Gauss elimination technique
[12]. The additional computational effort involved is far out-

weighed by the improvement obtained in the accuracy of the element.



3.1 Interpolation Polynomials

The geometry of a general quadrilateral element, Fig. 1,
can be described using interpolation polynomials in terms of local

natural coordinates (£, n) and the global nodal point coordinates

(Y": 21) s i.e.

1
L
H =1 ¢; (€.m) "”T\ (21)

Z .
1=1

where the polynomials can be written down as

o7 (£, n) =1/4 (1 - £) (1 +n)
%, (g, n) =1/8 (1 - ¢) (1 -n)
(22)
d5 (g, n) = /4 (1 + &) (1 - n)
¢, (g, n) = 1/4 (1 + g) (1 + n)

The local natural coordinates (&, n) of any point within the element
are such that -1 <& <+ 1 and -1 <n <+ 1. The displacement field
for an isoparametric quadrilateral element is specified by the same

interpolation polynomials used for the geometry, i.e.

u u.
Wl =_ ¢.| (gs T\) {W1l (23)
i=1! i

where (ui, Wi) are the global displacements of the i-th nodal point.

o~ &

The two incompatible modes [12] given by

i

os(csn) =1 -¢2

) (24)

i

and ¢6(€, n) 1 -n

are added to the basic displacement field such that

u1. %y
W)

I
= Z d).l (€9 n)
i=1 1

u
w ) %y

+ ¢5 (z,n) '

}+ b6 (z.n) {3}1 (25)

10
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Each element then has four displacement amplitudes (a;, a,, a5 and
oy associated with the incompatible modes) in addition to the two

degrees of freedom (ui, Wi) at each nodal point.

3.2 Strain-Displacement Relations

The Tinear and nonlinear parts of the incremental Lagran-
gian strain between configurations B; and B, referred to By are given

by Eqs. (4a, 4b). The Tinear part may be rewritten as

2epy = Gpp * lug ) U g+ (g + tuy ) uy g (26)
The components of the deformation gradient 1E in By with regard to
By are defined as

X ax 5

"1 7 T (Xp + tup) =gy * tup (27)
Hence the expression for the linear strain increment can be simpli-
fied to the form

2ery = Fep Yot g Yt (28)

For axisymmetric deformations, the three coordinate axes 1, 2 and 3
are identified with r, 0 and z where o refers to the circumferential

direction and r, z are the global axes. Hence,

Up o = Uy 1 = U3 =Upy 3=0
3 3 3

1Ul’z = 1U2’1 - 1U3’2 = 1U233 =0 (29)
o = 1Fy; = '3, =15 =0
Defining
te} = < eyr ey o33 265 > (30)
and
fug =< MU U DM dw, | (31)

] ar r 3Z 9r 9z



the expression for linear part of the Lagrangian strain increment
given by Eq. (28) can be written in the matrix form

{e} = [A] {ug} (32)
where [A] is a deformation gradient matrix whose components can be

obtained using Eqs. (27,28) as

3lu 31w
1
[0l =] o 1+ m§~ 0 0 0
(33)
31y alw
0 0 5z 0 1+ 3z
3lu 31y 5lw 3lw
7 0 Tr=r T+ 5
L y
or
lFll 0 0 1F31 0
_ 0 1Fy, 0 0 0
[A] = (34)
F3 0 Fyy 1F4, IFa{J

This transformation matrix has to be recomputed at each step, but

the transformation matrix [B] relating displacement gradients {ua}

to the displacements (corresponding to element degrees of freedom)
remains unchanged throughout the analysis since it depends only up-

on the undeformed configuration, the interpolation polynomials and
their derivatives. The same transformation is also valid for {1ua},
and the relationships are given as

{u} = [B] {0} (35)

and
tug} = [B] ! (36)

12
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where {U} and {lu} are vectors consisting, respectively, of the
incremental and total nodal point displacements together with the
displacement amplitudes corresponding to the incompatible modes.
Derivation of the displacement gradient matrix [B] is presented in
Appendix A. Combining Eqs. (32,35), the linear part of the Lagran-
gian strain increment is obtained as

{e} = [a] [B] {0} (37)

The nonlinear part of the strain increment can be obtained

from Eq. (4b) as

(M17) rkau/ar)z + (aw/ar)? A
22 (u/r)?
S VK ) ()
N33 (du/3z)? + (aw/az)?2
kﬂlij Gau/ar) (su/sz) + (aw/ar) (aw/az)J

This can be evaluated readily once the displacement gradients {ua}
have been computed using Eq. (35). However, in the development of
the geometric stiffness matrix, an explicit nonlinear strain-dis-

placement relation will be needed and can be written as

[ n11 (<> [Hy;] {0}

j 22 <U> [Hyp] {0}
n3s3 ( =172 <U> [Hs3] {a} (39)
n13 | <u> [Hys] G} )

The matrices [Hij] can be obtained rather simply in terms of the

displacement gradient matrix [B] as

T
[H;51 = [B] [e;5] [B] (40)



where [Qij] are null matrices except for
[911]1,1 = [Qll]u,u =1 (41a)

1 (41b)

i

[922}2,2

i
s

[Q33]393 = [933]555 = (41¢)

i
1

{913]133 = [913]H,5 = (41d)

It should be noted that these matrices [Hij] are also computed only
once since they are directly derivable from [B] which remains un-

changed throughout the analysis as mentioned earlier.

3.3 Incremental Stiffness Matrix [K,]

This matrix may be obtained using Eq. (9a) together with
the Tlinear strain-displacement relation given by Eq. (37). Thus,

one obtains

(ko1 = 1817 [417 [CT (4] [B] v (42)
Bo
or 1 1
kol = 2 f f 1817 (01 (87 v 13] dn (43)
1 1
where
[0] = [1" [c] [A] (44)

The integrations are performed rather easily using either Gaussian
or Simpson quadrature formulas for which the abcissas and weights
may be obtained from standard mathematical tables [13]. The values
of v, |J| and [B] at any integration point can be obtained using

the expressions developed in Appendix A, and [A] is obtained from
the displacement gradients using Eq. (33). The stress-strain matrix

[C] can be obtained using Fgs. (12), (15) or (18) depending on the

14
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assumed constitutive behavior.

3.4 Geometric Stiffness Matrix [KGl

The nonlinear strain-displacement relation of Eq. (38) is
substituted into Eq. (9b) for evaluation of this part of the ele-
ment stiffness. Thus, one obtains

[Kg] .)f(lsll [H11] + 1S5, [Hpo] + 1S53 [Hisl

Bg

i

218y, 1/2 ([Hy] + [s1D)) v (45)
Defining <13> = <1811 1522 1333 21513>

one can write

(K] :2”]/} <1s> [Hi1]
-1 71

[Hy2]
r |3| dn dz  (46)
[H33l

b1/2([H13] + [H131Tl

3.5 Element Mass and Damping Matrices

The element mass is assumed to be concentrated at the four
nodal points. The cross-sectional area of the element is computed
using numerical integration at the same time the element stiff-
ness matrices are evaluated. Each node is assigned one-fourth of
the total area and the tributary volume of each node per unit radian in
the circumferential direction is computed by taking the product of
the tributary area and the r-coordinate of its centroid. In the
case of plane stress problems, the tributary volume is simply the
tributary area times the element width. Knowing the element mass

density, the Tumped mass at each node of the element is obtained



and represents the inertia term in the element mass matrix corres-
ponding to the two degrees of freedom at that node.

The damping matrix [CD] is obtained as given by Eq. (10)
except that it should be noted that the stiffness proportional
damping factor a, should be taken to operate on [%Ky] and not [9K,]
where the former is obtained after static condensation has been
performed on the latter to eliminate the equations corresponding to

the incompatible degrees of freedom.

3.6 Consistent Nodal Forces

3.6.1 Internal Resisting Forces

The internal resisting forces acting at the nodal points
of an element and corresponding to the incompatible degrees of free-
dom are obtained using the second term within the parantheses of the

Tast integral in Eq. (5). Thus, one obtains

. 1R
SIS i / (817 [a17 £is) av (47)
IFR
o
or
1 1
(FRy = 2n f f (81" [a1" 1S} r (] dn de (48)
1

R

where {1FR} corresponds to the nodal degrees of freedom and {1Fa}

corresponds to the incompatible degrees of freedom.

3.6.2 Externally Applied Loading

The element nodal force vector for a pressure type non-
conservative loading is given by the virtual work expression in

Eq. (7). At most a linear varjation of the pressure can be consi-



dered on any face of the element (say, joining nodal points i and j)

and the equivalent concentrated loads at i and j are computed as

{%R} = ;//i fﬂ_ [&]T [1F"1]T {N} <¢> {%p} dA (49)
P
3By
where [¢] and <y> define linear variation of the variables along the

face i-j, i.e.

y (1-£)/2 0 (1+£)/2 0 :1
o i
=0 (=[] {u} = 0 0 0 0 )
Yo il (50)
w 0 (a2 0 (ee)sz) |
2
2p = <u> {2p} = <(1-g)/2 (1+g)/2> Zpi (51)
p.
j

The unit outward normal N to the face i-j makes an angle 6 to the
r-axis and its components are given by {N}T = <cos 6 0 sin 6>. The
conservation of mass requires that pg/p = det [1F], and finally, de-
fining g8 to be the differential length along the face and hence the
differential surface element to be dA = 27 r g d&, one obtains the

expression for equivalent nodal loads as
1
{2R} = _p, ./F[@]T [3F177 (N} <y> {2p} r & det [IF] de  (52)
< v

4x1 4x3 3x3  3x1 1x2 2x1

3.7 Static Condensation Method

The incremental equations of motion, Eq. (11), can now be

written at the element level as

[M] fi) + [C] iy + [KJ00 = £2R) - [M] €% - [Cp] (14} - {1FY} (53)

8x8 8x1  8x8 8x1 12x12 12x1  8x1  8x8 8x] 8x8 8x1 12x1

17
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where [Kt] = [KO] + [KG] is the element tangent stiffness matrix
at time t. The equations corresponding to the incompatible modes
are eliminated by the use of static condensation technique before
assembly into the system of equations for the complete structure.
This has the advantage that the total number of equations as well
as the overall bandwidth of the structure are reduced. The method
of condensing unwanted degrees of freedom is now well known [12]
and proceeds as follows--

The stiffness matrix [K ], displacement vector {u} and

nodal resisting forces {1F"} can be partitioned as

Kqu Ku@ U 1FR

[k = 5%@{-?5? {0} = ?il . Ry - ?él_ (54)
12x12 Kau ! Koca 12x1 4x1 FE
| 4x8 | 4x4 ] il

This enables the last four equations of (53) to be solved for {al,
i.e.
- R
= [K 1 (-TK - {1F
fod = [k 10 (-0K T {up - Ao o) (55)
4x1 4x4 4x8  8x1 4x1
When this expression for {a} is substituted into the first eight
equations of (53), one obtains the effective element stiffness matrix
[Rt] and the effective nodal resisting forces {1FR} as
Pl s ) -1 _
[RoJ = DKy D - [ D KT LK ]
8x8 8x8 8x4  4x4 4x8
and
1FRy o r1pRy -1 g1gR
{1F°r = {*F} [Kua] [Kad] { Fa}
8x1 8x1 8x4  4x4 4x1



Eq. (53) is then reduced to the form
[M] tiy + [Cy] €0} + [KJ fup = Ry - [M] 103 - [Cp] iy - 01F%

Following the standard direct stiffness formulation, these element
equations can then be directly assembled to form the incremental

equations of motion for the structural system,

3.8 Solution of Equations

Step-by-step or direct integration procedures offer the
only feasible method of solution for problems involving material
and/or geometric nonlinearities. The method of Newmark [14] and
Wilson, Farhoomand [15,16] have both been incorporated in the com-
puter program developed during this study. The formulas needed for
the implementation of these algorithms were summarized in earlier
reports [2,4]. The inertia and damping forces are negiected in the
case of quasi-static problems and Eg. (58) is solved repetitively
using the Gaussian elimination technique. A modified incremental
solution with equilibrium correction at each step is thus obtained

and is the equivalent of a one-step Newton iteration scheme.

19
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4. NUMERICAL EXAMPLES

Several numerical examples are presented in this section to
demonstrate the capabilities of the developed computer program NEPAX
(Nonlinear Elastic-Plastic analysis of AXisymmetric solids) for static and
dynamic analysis of plane stress and axisymmetric problems. Comparisons
are made with available analytical solutions as well as results of other

known numerical analyses.

4.1 Elastic-Plastic Static Analysis of a S.S. Beam

The simply supported beam shown in Fig. 2 is of length L,
thickness h and unit width. The material is assumed to be elastic-perfectiy
plastic and the behavior of the beam is studied when it is subjected to a
uniformly distributed static load. Taking advantage of the symmetry about
midspan and the antisymmetry about the neutral axis (using small displacement
assumptions), only one quarter of the beam need be studied and is dis-
cretized by eight equal elements. Each element has two Gaussian integration
points along the length and five Simpson integration points across the
depth (i.e. a 2 x 5 integration scheme). The normalized load-displacement
curve obtained using twenty load increments is presented in Fig. 2 and
compares very well with the theoretical elastic-plastic solution of Prager

and Hodge [17].

4.2 Elastic-Plastic Static Analysis of a Thick-Walled Cylinder

An infinitely long thick-walied cylinder shown as an insert in
Fig. 3 is subjected to uniform internal pressure P - The cylinder has
an inner radius of 1" and outer radius of 2" and is assumed to be made of
elastic-perfectly plastic material with the following properties:

Young's modulus, E = 8.67 x 10° psi

i

Poisson's ratio, v = 0.3

#

Yield stress, oy 1732 psi
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The purpose of this analysis is to compare the finite element results with
the analytical elastic-plastic solutions presented by Hodge and White [18].
The cylinder is discretized by ten equal elements (2 x 2 integration
scheme) in the radial direction and analyzed using fifteen load increments
reaching a total internal pressure of 1400 psi. Fig. 3 displays the
radial displacement at the outer face of the cylinder as a function of
increasing internal pressure while Fig. 4 shows the radial, circumferential
and axial stress distributions across the cylinder thickness at an internal
pressure of 1250 psi with the elastic-plastic boundary being located at
r/a = 1.5. The agreement between the finite element results and the
analytical solution [18] is excellent as may be seen from Figs. 3 and 4 and
further demonstrates the capability of the program to analyze elastic-plastic

problems with a high degree of accuracy.

4.3 Llarge Displacement Static Analysis of a Spherical Cap

The static analysis of an elastic spherical cap under a con-
centrated apex load has been studied by several authors - among them
Mescall [19], Stricklin [20] and Bathe et al [21] - as the high degree of
nonlinearity exhibited by this structure poses quite a severe test for any
large displacement formulation. This cap is shown as an insert in Fig. 5

and has the following dimensions:

Radius of curvature, R = 4.76 in.
Shell thickness, h = 0.01576 in.
Rise of the shell, H = 0.0859 in.
Half angle of opening, o = 10,9°

The material is assumed to be isotropic, linear elastic with Young's modulus
E =10 x 10° psi and Poisson's ratio v = 0.3. The purpose of this analysis
is to compare the finite element results with the known numerical solutions

and to demonstrate the capabilities of the present program to treat large
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displacement problems.

The cap is discretized by ten equal elements (2 x 2 integration
scheme) from the apex to the support. The normalized apex displacement is
shown in Fig. 5 as a function of the applied load for three different
loading schemes. The solutions of Stricklin [20] and Bathe et al [21]
(both employing 100 equal Toad steps) are also plotted in the same figure.

The result of using twenty equal steps of 5 1bs. is that the
solution drifts away considerly in the softening region. But once the cap
folds over and begins to stiffen, the results follow the solution of [21]
even with this coarse scheme of loading. Using fifty equal increments of
2 1bs. improves the solution considerably as may be seen from Fig. 5.
Since the behavior of the cap is almost Tinear once it enters the
stiffening phase, it is obvious that fine load increments are needed only
to capture the softening behavior correctly, after which coarser load
steps could be taken without any loss of accuracy. Hence, a final loading
scheme consisting of fifty equal steps of T 1b., followed by five steps of
2 1bs. and finally eight steps of 5 1bs. (thus 63 steps over a total of
100 Ibs.) is employed and gives a solution which is identical to that of
[21]. The load-displacement curve of [20] is slightly different from the
current solution and could be attributed to the formulation employed by
Stricklin [20] which considers the nonlinearities as giving rise to
additional effective loads rather than making a contribution to the

structural stiffness.

4.4 Large Dispilacement Static and Dynamic Analysis of a Cantilever

The Targe displacement analysis of an elastic cantilever shown
as an insert in Fig. 6 is taken up as the next example. An analytical
solution has been presented by Holden [22] for the static analysis of a

cantilever under a uniformly distributed load and shows the stiffening
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behavior of the beam with increasing displacements. It should be noted,
however, that the Toading in [22] is assumed to be conservative (the
direction of Toad appiication remains fixed in space) with the result
that, as the displacements increase, a significant part of the loading
is sustained by membrane rather than flexural action. If, on the other
hand, a nonconservative load of the pressure type is considered, the load
remains normal to the beam at all times and must, therefore, be sustained
primarily by flexure. This would result in the stiffening of the cantilever
to be much less than that predicted by Holden. Indeed, in the case of
dynamic loading, such as due to a blast, it is more realistic to assume a
pressure type loading. Hence the correct identification of the applied
Toad is of primary importance in a large displacement analysis and the
behavior of the cantilever is studied here under the action of both the
gravity type conservative load and nonconservative pressure load.

The material of the cantilever is assumed to be isotropic,
Tinear elastic and the pertinent dimensions as well as material properties

are as follows:

Length, L = 10 in.

Depth, h =1 1n.

Width, b =1 1in.

Young's modulus, E = 1.2 x 10 “psi
Poisson's ratio, v = 0.2

i

Mass density, o= 1.0 x 1075 1b.-sec?2./in".

The cantilever is discretized by five equal elements (2 x 2 integration scheme)
and a static load of 10 1bs./in. is applied using 100 equal increments.

The normalized load-displacement results are presented in Fig. 6. The

agreement with the analytical solution [22] is excellent for the case of

gravity type conservative loading. In addition, it may also be observed
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that the stiffening of the cantilever is considerably less under the
influence of nonconservative pressure type Toading which is to be expected
in view of the discussion in the preceding paragraph.

The dynamic analysis of this cantilever under a gravity type
uniform step load of 2.85 1b./in. has been presented by Bathe et aj [21].
The displacement-time results obtained in the present study using Newmark
integration method (with y = 0.5 and ¢ = 0.25) are plotted in Fig. 7
and compare very well with those of [21]. The nonlinear response has a
significantly smaller amplitude and effective period of vibration
compared to the linear solution. In addition, the Tinear and nonlinear
static displacements (obtained from Fig. 6) for a 2.85 1b./in. gravity
type load are also indicated in Fig. 7 and approximate the mean displacements
around which the cantilever vibrates in the corresponding dynamic analyses.
The large displacement dynamic analysis is also carried out for
a 2.85 1b./in. uniform step pressure and Fig. 8 shows the displacement-time
histories for both types of loading as well as the results of the linear
analysis. The three corresponding static solutions (from Fig. 6) are alsg
indicated in this figure. The peak amplitudes and period of vibration of
the beam under the pressure load are smalier than the results of the linear
analysis but greater than the values obtained from the nonlinear analysis
using the gravity type conservative load. These results are consistent
With the observations made earlier in the case of static analysis and once

again emphasize the importance of defining the applied load correctly.

4.5 Dynamic Response of a Shallow Spherical Cap

A shallow spherical cap subjected to a uniformly distributed step
pressure is selected as the last example. The geometry, material properties
and load-time history are given in Fig. 9. Ten equal elements ( 2 x 7

integration scheme for elastic analysis and 2 x 5 integration for



elastic-plastic analysis) are employed to discretize the shell from the
apex to the support. The time integration is carried out using the
Newmark method (with v = 0.5 and 8 = 0.25) with 10 x 10-¢ sec. time steps.

Uniform external step pressure of 600 psi is applied on the cap
and the dynamic response obtained for Tinear elastic as well as linear
and nonlinear elastic-plastic cases. The apex displacement of the cap is
plotted in Fig. 10 for all three cases as a function of time. The effect
of the nonlinearities on the dynamic response of this cap is significant
although the behavior of this cap is not highly nonlinear when the
intensity of loading considered here is applied in a quasi-static manner.
The motion of the cap is damped by the unrecoverabie mechanical work
expended in plastic deformation with the result that the peak amplitudes
are reduced and the periods of vibration increased as compared to the
elastic solution. In addition, it should be noted that the mean dis-
placement around which the cap vibrates is greater in the elastic-plastic
cases compared to the elastic response wherein the vibration takes place
around the static displacement.

The geometrically linear elastic and elastic-plastic solutions
are compared in Fig. 11 with the solutions obtained in [2] using the ten
node isoparametric elements. The agreement is good in the case of the
elastic analyses, the siight differences in the peak amplitude being
attributable to the different structural discretizations employed. The
elastic-plastic solutions differ to a greater extent and it should be noted
in this connection that the boundary conditions at the fixed end are
idealized differently in the two analyses. The pinching effect at the
support has been avoided in [2] by allowing two of the three nodal points
to slide along the inclined support. It is shown in [2] that an alternate

boundary condition wherein such siiding is not permitted affects the
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effective stress distribution (upon which the yield condition is based)
and leads to an increase of about 10% in the peak amplitude of the cap
under 445 psi step pressure. The differences between the two elastic-
plastic solutions in Fig. 11 can then be attributed to a large extent to
the fact that the latter boundary condition has been employed in the
present study as the current program is capablie of specifying the boundary
conditions only along the global r- aﬁd z-axes. For completely en-
closed spaces, such as occur in pressure vessels, this problem does not
arise.

The elastic-plastic (linear and nonlinear geometry) responses
are finally compared in Fig. 12 with the responses obtained in [4] using
degenerate isoparametric shell elements. Although the two sets of sol-
utions exhibit the same trend as far as vibration periods and phase
shifts are concerned, the peak amplitudes do not agree very well. How-
ever, such a comparison is complicated due to several factors that need
to be taken into consideration. Whereas a two dimensional solid element
is employed in the present study, the one used in [4] is a degenerate
shell element in which transverse normal stresses are assumed to be
negligible and do not enter into the computation of effective stresses
which control the plastic behavior. In addition, as discussed earlier
with reference to Fig. 11, the boundary conditions used also affect
the effective stresses. Also, no artificial damping is involved in
the numerical time integration in this investigation whereas the
s-control is used in the Newmark method (s = 0.05, y = 0.55 and
8 = 0.276) in the solutions obtained in [4] and introduces some damping
of the peaks. It is of interest to note that this cap has also been
studied by Bathe et al [21] whose results (not plotted in the figure),

using an eight nodal point isoparameteric element, give peak amplitudes
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that lie in between those of [4] and this study. Thus no conclu-
sions can be readily drawn regarding the accuracy of the various

numerical solutions in the absence of some parametric studies to

determine their convergence or experimental results with which

comparisons could be made.
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5. CONCLUSIONS

An efficient computer program for elastic-plastic, large
displacement static and dynamic analysis of axisymmetric solids has
been deveioped using quadrilateral elements with incompatibie modes.

The discretized incremental finite element equations, obtained using a
general Lagrangian formulation, are solved by step-by-step numerical

time integration schemes with equilibrium correction at each step. The
flow theory of plasticity with von Mises yield criterion is used in the
plastic range. The sample problems considered have all been solved

using the isotropic hardening rule or assuming elastic-perfectly plastic
behavior although the linear kinematic hardening law is also incorporated
as an option in the computer program. Several sets of material properties
may be defined and the behavior of different elements in a structure may
then be governed by different material laws, thus enabling the study of
composite systems.

The addition of incompatible modes in a quadrilateral element
greatly improves its accuracy. However, these elements should not be
badly distorted in shape and this may impose some restrictions in
passing from a single layered to multilayered mesh or in changing the
number of Tayers in a continuous mesh. In this connection, it may be
advantageous to include options in the program for isoparametric elements
with more than four nodes. Further, in many applications, the parts of
the structure which behave primarily as shells could be represented
advantageously by the degenerate isoparametric shell element if an option
were also provided for such an element.

The merits of the different elements in terms of computational
efficiency are rather difficult to judge from the samll-scale problems

such as those studied here. But the general observation can be made
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that, on a per element basis, the quadrilateral element used in

the present study is competitive with the degenerate shell element
and considerable more efficient than the ten node isoparameteric
element. However, the number of elements required to achieve a com-
parable level of accuracy in the discretization using the different
elements is really problem dependent. Hence, the proper selection
of elements and mesh lay-out for a given problem must be based on
available information such as the geometry of the structure, type

of loading and possible some knowledge of the stress gradients.
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This appendix outiines the procedure used to evaluate the

displacement gradient matrix [B] in Egs. (35,36) which relates the

disolacement gradients fu b and {1ua} to the displacements {U} and

{14} in the quadrilateral element with incompatible modes.

The geometry and displacement fields are given by
Lll‘

r = Z Qb.' («Sm) ri
Z =1 z1
and
iy
lul - 3

M i

The chain rule of differentiation gives
3/ ar 3/ s8¢
3/ 9z det J 5/9n

where [J] is the Jacobian matrix given by
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where <r> =
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The global displacement
similar manner using Eqs. (21,25)

tion, Egs. (A.1, A.2), e.q.
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{r}T and {z} are vectors of nodal point global co-

gradients can be derived in a

and the chain rule of differentia-
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For convenience of notation, define the following:

[P1 = oy ¢ b5, - 05, 65,0) 171,65 3=1.4 (.
<U> = <U oy ag> T <Uy Uy Ug Uy o ag> (A.
W = W, 0> T W W, W, W o o (A.
[y = T%T-[E] {z} and X} = - T%T-[ﬁj (r} (A.
Then, & T%T'<U> [P] 1z} = <U> {Y} (A.
In a similar manner, the expressions for the other displacement
gradients %3 %%a %%-and %g-can also be obtained as
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Finally, defining

<U>» = <U. W UZW

;W o, o > (A.16)

u\ W U W al o, 3 Oy

2 73 73 4 on
the displacement gradient matrix [B] can be written as

Y 0 Y 0 Y 0 Y 0O Y 0 ¥ O

1 a 3 Ly 5 6
6, 0 9, 0 9, 0 o 0 o 0 4 O
[B] = X1 0 X2 0 X3 0 Xu 0 X5 0 X6 0 (A.17)
0 v, 0 Y, 0 Y, 0 Y, 0 Y, 0 Y
0 X, 0 X, 0 X; 0 X 0 X 0 X

-

The last four columns of this 5 x 12 matrix operate on the incompa-
tible displacement amplitudes and can be readily suppressed if de-

sired in the computer program.
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FIG. 1 QUADRILATERAL ELEMENT AND INCOMPATIBLE MODES
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