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ABSTRACT

Immediate-early response genes (IEGs) are rapidly
and transiently induced following an extracellular
signal. Elucidating the IEG response patterns in sin-
gle cells (SCs) requires assaying large numbers of
timed samples at high accuracy while minimizing
handling effects. To achieve this, we developed and
validated RNA stabilization Buffer for Examination
of Single-cell Transcriptomes (RNA-Best), a versa-
tile single-step cell and tissue preservation protocol
that stabilizes RNA in intact SCs without perturb-
ing transcription patterns. We characterize for the
first time SC heterogeneity in IEG responses to pul-
satile gonadotropin-releasing hormone (GnRH) stim-
uli in pituitary gonadotrope cells. Our study iden-
tifies a gene-specific hierarchical pattern of all-or-
none transcript induction elicited by increasing con-
centrations of GnRH. This quantal pattern of gene
activation raises the possibility that IEG activation,
when accurately resolved at the SC level, may be
mediated by gene bits that behave as pure binary
switches.

INTRODUCTION

Immediate-early response genes (IEGs) are rapidly upregu-
lated in response to various external stimuli such as growth
factors, hormones, or stress (1,2). IEGs respond to external
stimuli within minutes, without requiring de novo protein
synthesis. Most IEGs encode transcription factors, which
regulate genes involved in various cellular functions (3). The
quantitative relationship between stimulus dose and tran-
scriptional response is key for an appropriate cell response
(4).

IEG induction by hypothalamic gonadotropin-releasing
hormone (GnRH) is involved in the regulation of go-
nadotropin subunit gene (Lhb and Fshb) expression in pi-
tuitary gonadotropes and in gonadotrope cell lines (5–9).
The pattern of GnRH signal is pulsatile, which influences
gonadotropin gene regulation and is critical for reproduc-
tive function (10,11).

Previous studies of IEG transcriptional responses to a
stimulus mainly have relied on RNA measurements in bulk
cell populations (8,9,12,13). The recent development of SC
transcriptomics has enabled researchers to explore cell-to-
cell variability and grasp the complex dynamics of gene
regulation. Our recent SC transcriptome analysis of go-
nadotrope cells exposed to static GnRH stimulation high-
lighted cellular heterogeneity in the response to GnRH and
the absence of an effect of cell cycle on this response (14).
However, SC sequencing approaches are limited in mea-
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surement accuracy due to statistical limitations on mea-
suring rare transcripts. We sought to characterize IEG
transcriptional responses to increasing doses of a physio-
logic pulsatile GnRH stimulus across dynamic time-varying
stages using integrated fluidic circuit (IFC) SC real-time
PCR assays and via a new method for stabilizing the large
number of samples needed for study. We devised SC studies
that included detailed GnRH pulse stimulation time course
experiments (15) and examination of the gonadotrope re-
sponse to varying GnRH concentrations (16).

Dissecting immediate-early transcriptional responses to
an external stimulus in individual cells requires elaborate
study designs that include various treatments, time points,
and replicates. IEGs, in particular, are dynamic and can re-
spond to handling (17,18). The use of fresh cells for SC
transcriptomics necessitates immediate sample processing,
which is incompatible with complex time course studies and
with a separation between sample harvest and SC process-
ing steps. Thus, there is a need for a cell preservation proto-
col that: (i) allows splitting of collection time from process-
ing time, (ii) minimizes cell disturbance and transcriptome
changes. Such a protocol would also eliminate an obsta-
cle to SC transcriptome analysis of research or diagnostic
samples obtained in clinical settings. Although SC preser-
vation approaches (19–21,22) have been reported, they in-
volve multistep research laboratory handling (centrifuga-
tion, resuspension) and may be impractical for processing
hundreds of samples needed to accurately resolve transcrip-
tional patterns.

We developed a single-step cell preservation method re-
ferred to as RNA stabilization Buffer for Examination of
Single-cell Transcriptomes (RNA-Best). RNA-Best mini-
mizes alteration of the cell transcriptional state and is suit-
able for exploring the temporal dynamics of immediate-
early transcriptional responses in a large sample set. We val-
idated this methodology by showing that: (i) it maintains
RNA quality and qPCR assay-based expression patterns
of IEGs in a mouse gonadotrope cell line, (ii) it preserves
bulk transcriptome integrity and expression profiles both in
a gonadotrope cell line and in primary pituitary cells, (iii)
it is applicable to SC transcriptome studies, including IFC
SC qPCR of human and mouse cells and SC RNA-seq of
mouse gonadotrope cells. Furthermore, RNA-Best enables
SC profiling of primary cultures of mouse pituitaries and
of dissociated human brain biopsies. Critically, the use of
RNA-Best allowed us to investigate cell-to-cell variability
in IEG responses to GnRH pulses across various times and
doses. We provide first evidence that IEGs show a binary
all-or-none SC response to GnRH, with different genes ex-
hibiting distinct probabilities of induction at each concen-
tration.

MATERIALS AND METHODS

Cell culture

GnRH was purchased from Bachem (Torrance, CA, USA).
L�T2 cells were obtained from Dr. Pamela Mellon (Univer-
sity of California, San Diego, CA). Cells were cultured at
37◦C in DMEM (Mediatech, Herndon, VA) supplemented
with 10% fetal bovine serum (FBS; Gemini, Calabasas, CA,
USA) in a humidified air atmosphere of 5% CO2. Cells

were regularly tested (every 3–6 months) for mycoplasma
and interspecies contamination, and authenticated by anal-
ysis of short tandem repeat (STR) DNA profiling using 27
mouse-specific microsatellite markers (Mouse Cell Check
Plus, IDEXX BioResearch, Columbia, MO, USA). Cell line
authentication was achieved by comparing our cells with
an original aliquot of L�T2 cells used as a standard ref-
erence. Our results confirmed that our L�T2 cells were
mycoplasma-free, were of mouse origin, and had similar
markers as the original cell line aliquot.

Cell preparation and RNA extraction for cell populations

Cell preparation and preservation. L�T2 cells were seeded
at 350 000 cells per well in 12-well plates in DMEM/10%
FBS. After 2 days of culture at 37◦C/5% CO2, cells were
treated with either vehicle (i.e. medium only) or GnRH (2
nM) for various time periods. Cells were then trypsinized,
pelleted at 2200 rpm for 5 min, and resuspended in 400 �l
RNA-Best). RNA-Best-preserved cells were stored at 4◦C
in 1.5 ml Eppendorf tubes for at least 4 days, then spun
down at 2200 rpm for 5 min. Pelleted cells were then lysed
in 360 �l guanidium thiocyanate RNA lysis buffer. The pro-
prietary RNA-Best reagent is available upon request from
the authors.

To compare RNA-Best with the use of fresh cells and
other existing cell preservation/stabilization methods, we
proceeded with the following alternate protocols after cell
trypsinization and pelleting: (i) direct cell lysis in a guani-
dium thiocyanate RNA lysis buffer (4 M guanidium thio-
cyanate, 25 mM sodium citrate pH 7, 0.5% sarcosyl [N-
lauroyl sarcosine] and 0.1 M 2-mercaptoethanol) (23) and
storage at −20◦C, (ii) cell fixation with 4% PFA and stor-
age at −80◦C, as previously described (21), (iii) cell freezing
in DMEM supplemented with 20% FBS and 10% DMSO,
and storage at −80◦C (20) and (iv) methanol fixation and
storage at −80◦C (19).

RNA extraction and quality control. Except for PFA-fixed
cells, total RNA was extracted using the ‘Absolutely RNA
96 microprep’ kit (Agilent, Santa Clara, CA, USA) accord-
ing to the manufacturer’s protocol, and resuspended in elu-
tion buffer (Agilent, Santa Clara, CA). By contrast, cells
fixed with PFA were subjected to reverse-cross-linking and
cell lysis, and RNA purification using the miRNeasy FFPE
Kit (Qiagen, #217504) (protease lysis, reverse-crosslinking
method (PLRC)), as previously described (21). RNA qual-
ity and quantity were assessed by spectrophotometry (Nan-
odrop), fluorometry (Quant-iT RiboGreen RNA reagent,
Invitrogen, Carlsbad, CA, #R11490; Qubit RNA High sen-
sitivity or Broad Range Assay Kits, depending on the RNA
amount, ThermoFisher Scientific), and on a Bioanalyzer
(Agilent RNA Nano and Pico kits). The RNA Integrity
Number (RIN) was determined with Bioanalyzer; a RIN of
8 or above indicated that a sample was suitable for further
processing.

Bulk quantitative real-time PCR

qPCR was performed as recently described (14).
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Bulk RNA-seq assay

Cell preparation, RNA-Best preservation, and RNA ex-
traction were as described above, with the exception that
cells were merely treated with 2 nM GnRH for 40 min.
RNA-seq libraries were prepared with 2 �g of RNA us-
ing the Illumina Truseq LT mRNA kit (Illumina, #RS-122-
2101). ERCCs (DNA Sequence Library for External RNA,
Controls, #2374, National Institute of Standards and Tech-
nology) were added for analysis and quality assessment.
Library quality control and quantification were assessed
by spectrophotometry (Nanodrop), fluorometry (Qubit ds-
DNA High sensitivity Assay Kit), qPCR (Kapa Library
Quantification Kit Illumina Platforms, Kapa Biosystems,
#KK4835), and on a Bioanalyzer (High-Sensitivity DNA
Bioanalyzer kit, Agilent). Additionally, the quality of each
library was assessed by qPCR of selected genes. A total of
six libraries (three from fresh cells, three from RNA-Best-
stabilized cells) were pooled together at equal concentra-
tion, and the pooled sample (20 �l, 10 nM) was sequenced
at the Epigenomics Core of Weill Cornell Medical College
on Illumina HiSeq 2500 v3 using 101 bp single reads.

SC stabilization

L�T2 cells were trypsinized, spun down, resuspended in
RNA-Best and stored at 4◦C until the assay was performed.
Samples preserved in RNA-Best at 4◦C were stable for at
least 8 weeks.

High-throughput microfluidic SC qPCR

L�T2 cells were seeded on glass coverslips and treated with
either 0.5, 2, 8 or 20 nM GnRH pulses (or vehicle) ev-
ery 2 h for a total of four pulses, as previously described
(15). Cells were harvested at short time intervals around
the fourth pulse: 1 min before the fourth pulse (–1 min), 25
min after (+25 min), and 35 min after the fourth pulse (+35
min); for GnRH-treated samples, an additional sample was
harvested 60 min after the fourth pulse (+60 min). A ‘no
pulse’ control sample was also collected to determine the
basal level of activation. Coverslips were collected and cells
were trypsinized, pelleted, resuspended in 1 ml RNA-Best,
and stored at 4◦C. Of note, for each experimental condition
(i.e. GnRH concentration and time point), three biological
replicates were used for bulk qPCR analysis, and one for SC
qPCR analysis.

On the day of the Fluidigm integrated fluidic circuit (IFC)
C1 experiment, RNA-Best-stabilized cells were counted and
diluted to 200 000 cells/ml in RNA-Best, filtered through a
10-�m filter, and resuspended in a 3:2 ratio of RNA-Best:C1
suspension reagent, as recommended by the manufacturer.
SCs were isolated using the IFC C1 system. Briefly, the Pre-
amplification assay (PN 100-4904 H1) was performed ac-
cording to the standard Fluidigm protocol using a small 5–
10 �m primed chip, and was followed by the STA-Pre-Amp
script. SC cDNAs were collected into 25 �l of C1 DNA di-
lution reagent.

qPCR was performed using a Fluidigm Biomark HD sys-
tem. A total of 68 markers were analyzed: 54 genes, 3 Flu-
idigm spikes, 8 ERCC spikes (both RNA and DNA) and

5 DNA markers. Briefly, 10X assays were prepared to ob-
tain a final 10× concentration with 9 �M of primers, 2.5
�M of probe (Roche Universal probes), and assay loading
reagent (Fluidigm PN 100-7611). Samples were prepared by
mixing together 3 �l of 2× mastermix (Applied Biosystems,
Taqman Gene expression Master Mix #4369016), 0.3 �l of
20X GE sample loading reagent (Fluidigm PN 100-7610),
and 2.7 �l of pre-amplified cDNA. The 96.96 dynamic array
chip was primed, then loaded with 5 �l of 10× assays and
5 �l of sample mix. The plate was loaded into an HX Flu-
idigm system for the priming and loading steps using the
Fluidigm scripts. Upon completion of the loading script,
the plate was transferred to a Biomark instrument to collect
qPCR data using the Biomark HD Data Collection soft-
ware. The parameters specified were: ROX (passive refer-
ence), single assay Probe (FAM-TAMRA), GE 96.96 stan-
dard v1 without melting curve, and Auto-exposure. Data
were analyzed using the Fluidigm Real-Time PCR analysis
software to generate the heat map and individual well re-
sults. The automated function was used to determine Cycle-
Threshold (Ct) values, and data were visually inspected to
make sure the threshold looked fine. The Ct threshold was
manually adjusted in the case of the Fos gene at 20 nM
GnRH. Data were exported into Excel for further analysis.
Gene expression was calculated as 41 – Ct value. Wells that
showed no expression of house-keeping genes represented
either damaged cells, cell debris, or the absence of cell, and
thus were removed from further analysis.

GEM Drop-seq assay

L�T2 cells were treated with either vehicle or 2 nM GnRH
for 40 min. Cells were then trypsinized, pelleted, and resus-
pended in 1 ml RNA-Best. GEM Drop-seq was performed
as described (10× Genomics, Pleasanton, CA, USA; (24)),
following the Single Cell 3′ Reagents Kits V2 User Guide.
Cells were filtered, counted on a Countess instrument, and
the final concentration was set at 1,000 cells/�l in RNA-
Best. The 10X chip (Chromium Single Cell 3′ Chip kit v2
PN-12036) was loaded to target 5000 cells final. Reverse-
transcription was performed in the emulsion and cDNA
was amplified for 12 cycles before library construction
(Chromium Single Cell 3′ Library and Gel Bead Kit V2 PN-
120237). Each library was tagged with a different index for
multiplexing (Chromium i7 Multiplex kit PN-12062). Qual-
ity control and quantification of the amplified cDNA were
assessed on a Bioanalyzer (High-Sensitivity DNA Bioana-
lyzer kit). Library quality control and quantification were
evaluated as described above. Sequencing was carried out
at the Epigenomics Core of Weill Cornell Medical College
on Illumina HiSeq 2500 v3 using 98+26 paired-end reads,
two lanes, rapid mode.

Bulk RNA-seq data analysis

RNA-seq reads were aligned using STAR (25) v2.5.1b with
the mouse genome (GRCm38 assembly) and gene annota-
tions (release M8, Ensembl version 83) downloaded from
https://www.gencodegenes.org/. The matrix counts of gene
expression for all six samples were computed by feature-
Counts v1.5.0-p1 (26). Differentially expressed genes (5%

https://www.gencodegenes.org/
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FDR and at least 2log2 fold change) were identified using
the voom method (27) in the Bioconductor (28) package
Limma (29). Pearson correlation was computed in R us-
ing the cor() function (30). The TPM computed by RSEM
(31) was used for the comparison of bulk RNA-seq with SC
RNA-seq data.

SC RNA-seq data analysis

SC RNA-seq data were processed using the Cell Ranger
pipeline v1.3, which provides a data matrix of expression
for all genes and all cells. Differentially expressed genes were
analyzed using the sSeq method (32), as implemented in the
R package cellrangerRkit v1.1. The cell phase computation
for the SCs follows the ideas described in the Supplementary
Material of Macosko et al. (33) with our own customized R
script implementation.

Statistics

For assessment of the effect of SC preservation on RNA
yield (Figure 1A), we used a one-way analysis of vari-
ance (ANOVA) followed by Bonferroni multiple compari-
son post-hoc test, with n = 8 biological replicates per pro-
tocol and F = 5.523. The number of degrees of freedom was
39. For analysis of RNA integrity (Figure 1B), we used one-
way ANOVA followed by Bonferroni multiple comparison
test, with n = 2 biological replicates per protocol and F =
45.73. The number of degrees of freedom was 9. For evalu-
ating the effects of preservation on basal and regulated tran-
script levels by bulk qPCR (Figure 1C), we used a two-tailed
t-test, with n = 4 biological replicates. For Fos basal expres-
sion, the t-values (t) and the number of degrees of freedom
(df) were: t = 1.066, df = 6 (Fresh cells versus RNA-Best
preservation), t = 10.69, df = 6 (fresh cells versus cryop-
reservation), t = 4.239, df = 6 (fresh cells versus methanol
fixation), t = 4.322, df = 4 (fresh cells versus FRISCR). For
Egr1 basal expression, they were: t = 1.061, df = 5 (fresh
cells versus RNA-Best preservation), t = 6.715, df = 6 (fresh
cells versus cryopreservation), t = 3.289, df = 6 (fresh cells
versus methanol fixation), t = 4.426, df = 4 (fresh cells ver-
sus FRISCR). For Fos induced expression, they were: t =
1.265, df = 6 (fresh cells versus RNA-Best preservation), t
= 4.650, df = 6 (fresh cells versus cryopreservation). For
Egr1 induced expression, they were: t = 1.867, df = 6 (fresh
cells versus RNA-Best preservation), t = 1.228, df = 6 (fresh
cells versus cryopreservation). Statistical analyses were all
performed using GraphPad Prism version 5.04 (GraphPad
Software, San Diego, CA, USA, www.graphpad.com).

RESULTS

Preservation of RNA integrity and qPCR-based IEG expres-
sion patterns in RNA-Best-stabilized cells

We compared RNA isolated from L�T2 gonadotrope cells
preserved for 10 days at 4◦C with RNA-Best, to that of cells
stored at −80◦C with other SC preservation methods (19–
21), and to RNA isolated from fresh cells. We assessed cel-
lular and RNA integrity, gene regulatory alterations caused
by preservation, and ease of use. Total RNA yield was fairly

similar with all approaches (Figure 1A). The high RNA in-
tegrity numbers (RINs) seen in fresh cells were only found
with the RNA-Best and cryopreservation protocols (Fig-
ure 1B, Supplementary Figure S1). RINs were significantly
lower with FRISCR and methanol fixation. To evaluate the
effects of preservation on basal and regulated transcript lev-
els, we measured induction of the IEGs Fos and Egr1 by
GnRH (9). Only cells preserved with RNA-Best showed
basal and regulated transcript expression levels that were
not significantly different from those observed in fresh cells
(Figure 1C). A detailed time course of Fos and Egr1 in-
duction by GnRH showed that indistinguishable temporal
gene expression trajectories were obtained with RNA-Best-
preserved and fresh cells (Figure 1D). Altogether, these data
suggest that the RNA-Best protocol preserves high quality
RNA with negligible alteration of gene expression patterns,
even for handling-sensitive transcripts.

RNA-seq expression profiles of fresh and RNA-Best-
preserved bulk cells are comparable

To evaluate our approach for the transcriptomic profiling of
L�T2 cells, we compared bulk RNA sequencing (RNA-seq)
data obtained from RNA-Best-preserved and fresh samples
following GnRH treatment. Quality assessment of RNA-
seq libraries revealed comparable Bioanalyzer traces (Sup-
plementary Figure S1). Gene expression levels were highly
consistent based on pairwise correlations (Figure 2A) and
expression heat map (Figure 2B). Sequenced samples were
also comparable with respect to chromosomal transcript
representation bias and GC coverage (Supplementary Fig-
ure S2), as well as 5′ to 3′ read coverage bias across all pre-
dicted transcript lengths, with the expected increased bias
for longer transcripts (Supplementary Figure S3).

RNA-Best maintains SC transcriptome integrity

We evaluated the use of RNA-Best for studying variation
in SC transcriptomes. Imaging flow cytometry analysis of
RNA-Best-stabilized L�T2 cells showed that SCs were pre-
served (Supplementary Figure S4). Analysis of SC tran-
scripts from an RNA-Best-preserved human monocyte and
mouse L�T2 cell mixture assayed by integrated fluidic cir-
cuit (IFC) qPCR showed a high measurement consistency
across SCs and a low cell doublet rate (Supplementary Fig-
ure S4). We assessed the use of this protocol for the anal-
ysis of cell-to-cell variability in individual cycling cells us-
ing gel-in-emulsion (GEM) Drop-seq (24). We recently used
GEM Drop-seq in fresh samples of L�T2 cells to deter-
mine the SC cell cycle stage assignment and the interaction
of cell cycle with the effects of GnRH (14). We reproduced
this experiment using cells preserved with RNA-Best. While
small differences in the proportion of cells in each cycle were
noted, presumably due to the studies being performed on
different batches of cells, the findings and conclusions about
GnRH-cell cycle interaction effects were equivalent (Fig-
ure 3A, B). When comparing averaged SC transcript mea-
surements from fresh vs. RNA-Best-stabilized cells (for all
the treatment combinations), correlation coefficients were
within the 0.97–0.99 range (Figure 3C), most likely due to
the batch effect mentioned above. In comparison, the cor-
relation coefficient for vehicle- versus GnRH-treated cells

http://www.graphpad.com
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Figure 1. RNA-Best preservation of cultured gonadotropes maintains IEG transcript levels under basal and stimulated conditions. (A, B) RNA yield (A)
and quality (B) from fresh cells, RNA-Best-preserved cells, or cells preserved using cryopreservation, methanol fixation, or FRISCR. *P < 0.05 and **P
< 0.01; bars show mean ± s.e.m. (C) qPCR analysis of Fos and Egr1 basal expression and GnRH induction (fold change); 2 nM GnRH treatment for 35
min; *P < 0.05, **P < 0.01, ***P < 0.001 and ****P < 0.0001. Note that Egr1 fold change using FRISCR equals 1, due to no difference between vehicle
and GnRH treatment. (D) Time course of GnRH induction of Fos and Egr1 in fresh vs. RNA-Best-preserved cells (n = 6 biological replicates per time
point and protocol). Data in A–D are from one of four representative experiments.

Figure 2. RNA-Best preserves transcriptome profiles from bulk gonadotrope cells. (A) Pairwise correlations between bulk RNA-seq data from three fresh
and three RNA-Best samples. Expression counts were converted to log2 (counts per million +1). Pearson correlations are indicated. (B) Heat map of
selected GnRH-regulated genes and commonly used house-keeping (HK) genes in the same samples as in A.

within each method was >0.99, underscoring data repro-
ducibility.

RNA-Best enables cell type profiling in mouse and human pri-
mary tissues

We evaluated the use of RNA-Best for overcoming geo-
graphical and practical barriers through a collaborative SC

analysis of primary cultures and acutely dissociated tissues
using a variety of SC assay protocols. Primary mouse pi-
tuitary cells were isolated in a laboratory separated by 400
miles (and an international border) from the assay labora-
tory and preserved in different reagents during transport.
Primary pituitary samples preserved with RNA-Best or
with an established RNA-stabilizing reagent that does not
preserve SCs, when analyzed as bulk samples, showed com-
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Figure 3. RNA-Best preserves cell cycle stage assignments in single gonadotrope cells exposed to GnRH. (A, B) Cell cycle and GnRH-cell cycle interaction
effects on SC transcriptome in fresh (1992 vehicle- and 1889 GnRH-treated) vs. RNA-Best-preserved cells (3579 vehicle- and 2753 GnRH-treated) using
GEM Drop-seq. (A) Each cell on the x-axis is aligned by cell cycle progression. Color coding indicates score assignment to the cell cycle phase. The five
cell cycle phases are indicated. (B) Summary of the percentage of cells assigned to different cycles. (C) Pairwise correlations between SC gene expression
measurements averaged across vehicle- vs. GnRH-treated cells that were either directly lysed (fresh cells) or preserved in RNA-Best. Expression counts
were converted to log2 (counts per million +1). Pearson correlations are indicated.

parable read sequence characteristics and transcript expres-
sion patterns (Supplementary Figures S5 and S6). Based on
a pairwise correlation and a heat map of highly expressed
genes, gene expression levels were highly correlated (Sup-
plementary Figure S5). Analysis of SC heterogeneity in pri-
mary mouse pituitary cultures using IFC-SC isolation fol-
lowed by SC RNA-seq identified two broad clusters of cells
expressing a few house-keeping genes and many high vari-
ance genes (Supplementary Figure S7). Investigation of the
cellular composition of RNA-Best-preserved cultured pri-
mary mouse pituitary cells showed co-expression of RNA
markers classically associated with different pituitary cell
types, thus supporting cell-to-cell heterogeneity within the
pituitary and the existence of polyhormonal cells (Supple-

mentary Figure S8). These results are consistent with previ-
ous co-detection of hormonal cell type markers in these cells
using histological approaches (34,35). By assaying SC tran-
scriptomes from RNA-Best-preserved samples of dissoci-
ated human brain biopsies using Drop-seq, we were simi-
larly able to identify cell type composition in the neocortex
from an epilepsy surgical resection specimen, as well as in
the infiltrative neocortex from a glioblastoma surgical resec-
tion specimen (Supplementary Figure S9). Detection of rare
B lymphocytes in the epileptic neocortex was confirmed by
CD79a immunostaining. Overall, these results demonstrate
the applicability of RNA-Best for SC transcriptome assays
with diverse human and mouse primary tissues.
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Characterization of SC heterogeneity in IEG responses to
GnRH using RNA-Best cell preservation

The ability of RNA-Best to maintain SC transcriptome in-
formation allowed us to characterize SC heterogeneity in
IEG responses to GnRH. In order to approximate the phys-
iological pulsatile exposure paradigm, we exposed L�T2
cells to 5-min duration pulses of 2 nM GnRH every 2 h,
as previously described (15), and collected samples at short
time intervals around the fourth pulse (from −1 min to +60
min; Figure 4A). Two months later, over 400 SCs were IFC-
isolated from these samples, and SC transcript levels of 54
genes were measured by IFC TaqMan assays (Supplemen-
tary Figures S10–S12, Supplementary Table S1). SC levels
of the house-keeping genes showed similar unimodal distri-
butions in control and GnRH-treated samples at all time
points (Figure 4B, Supplementary Figure S11). In contrast,
Fos, Egr1, and other regulated genes showed a bimodal dis-
tribution, with variable percentages of gene expressing vs.
non-gene expressing cells (Figure 4C, Supplementary Fig-
ure S11). While non-gene expressing cells were predominant
in control samples at all times, the proportion of gene ex-
pressing cells was dramatically higher at +25 min and +35
min compared to −1 min (Figure 4C). These results are
consistent with our previous bulk temporal response data
(15). To further delineate the gene regulatory mechanisms
in SCs, we examined the effect of varying concentrations of
GnRH (from 0.5 to 20 nM) on transcripts in samples col-
lected at −1 min and +25 (or +35) min relative to the 4th
pulse (Supplementary Figures S13–S16). Over 600 SCs were
analyzed. All IEGs exhibited a concentration-dependent bi-
modal SC response pattern, with the proportion of gene ex-
pressing (or induced) cells increasing with increasing stim-
ulus level (Figure 5A,B, Supplementary Figures S13 and
S15). In contrast, all house-keeping genes showed compa-
rable unimodal distributions at all concentrations (Figure
5A, Supplementary Figures S13 and S15). Notably, the level
of transcript in cells showing induction of each gene was
not increased with increasing concentration of GnRH (Fig-
ure 5C). Instead, the number of induced cells increased as
concentration increased (Figure 5D, Supplementary Figure
S15). Furthermore, we observed a hierarchical pattern of
IEG induction, with Egr1 and Fos being activated in SCs
at lower concentrations than Egr2 and Fosb (Figure 5B, D).
Thus, these SC data resolve gene-specific all-or-none SC re-
sponses to increasing concentrations of GnRH exposed in
a physiological pulsed pattern, and show that the SC prob-
ability of induction increases with concentration and differs
for different GnRH-induced IEGs.

DISCUSSION

The RNA-Best protocol greatly expands possibilities for
both bulk and SC transcriptome studies by: (i) enabling
analysis of samples in a clinical context, (ii) allowing for a
geographical separation between the experimental and as-
say laboratories through easy storage and transportation,
(iii) opening the prospects of complex time course experi-
ments, which are needed for the study of highly regulated
genes such as IEGs.

Importantly, RNA-Best allows, for the first time, the
accurate SC measurement of IEG induction patterns. In

our hands, while cell cryopreservation seemed to maintain
RNA integrity, the thawing procedure appeared to result
in increased IEG basal expression (see Figure 1C). The
FRISCR method resulted in altered IEG expression pro-
files, suggesting that it may cause some significant RNA
damage. FRISCR relies on cell fixation with paraformalde-
hyde, which generates covalent cross-links with proteins and
nucleic acids (36,37). Formaldehyde is known to impair nu-
cleic acid quality (38). Moreover, the reverse crosslinking
step in FRISCR might result in relatively low percentages
of protein-free RNA (39). Methanol fixation also resulted in
altered IEG expression, despite the fact that alcohol-based
non-crosslinking fixatives seem more effective at preserving
nucleic acids (36). While we were preparing this manuscript,
another cell preservation solution (Lomant’s Reagent or
DSP) was reported by others (22). Albeit promising, the
use of DSP is associated with 3′ bias in sequencing cover-
age, suggesting that the cross-linker may cause some RNA
damage.

While static/cyclic stretches or fluid stresses were previ-
ously shown to induce a transient increase in IEG tran-
script levels (17,18,40), we cannot completely rule out the
possibility that trypsinization could represent a significant
mechanical strain. However, it is worth noting that: (i) the
same trypsinization procedure was applied to all samples
in the time course experiment, (ii) only a small fraction of
gonadotrope cells (<10%) exhibited IEG activation at the
0 and 0.5 nM GnRH concentrations, (iii) the vast major-
ity of cells (>90%) were activated at the 20 nM concentra-
tion. Thus, while this background IEG activation might be
caused by trypsinization, the stimulatory effect of GnRH is
undeniable. Additionally, since trypsinization is carried out
regardless of cell preservation, assessing its impact on IEG
expression may be a challenging task and it is beyond the
scope of this work.

Our results support a new model of immediate-early
transcriptional responses to hormone stimulus in SCs. Our
study demonstrates a switch-like induction of IEGs by
GnRH, with the proportion of induced cells increasing with
stimulus concentration and varying for different IEGs. To
our knowledge, this is the first SC transcriptome study that
consistently resolves the pattern of IEG induction responses
to graded stimuli. Our findings represent an important con-
tribution towards elucidating the quantitative and qualita-
tive relationship between an inductive signal and the result-
ing transcriptional response.

Previous studies of IEG transcriptional responses were
mostly population-based (8,9,12,13), thus masking cell-to-
cell variation in gene expression. Later work using homol-
ogous gene recombination and live cell imaging to mea-
sure nascent RNA production in Dictyostelium cells sup-
ported an all-or-none response model where cells had dif-
ferent sensitivities to the inducer (4). In the present study,
SC responses to pulsatile GnRH identify a digital activa-
tion model, yet the average level of expression in induced
cells appears to be unaffected by increasing GnRH concen-
trations.

IEGs are activated by the MAPK signaling pathway fol-
lowing stimulation by an extracellular signal (1). A recent
SC resolution study coupling optogenetic stimulation with
live-cell reporters has highlighted the importance of the pul-
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Figure 4. IEGs show bimodal SC responses to GnRH pulse stimulation. (A) Schematic of the time course experiment design. Cells were exposed to four
pulses of GnRH (blue arrows) and collected at short time intervals around the 4th pulse (yellow arrows). (B, C) Graphs showing the probability for a SC to
express a house-keeping gene (either Eef1a, H2fz, Rps11, or Rps25; (B)) or a regulated gene (as indicated; (C)) following either vehicle or GnRH treatment.
Error bars are based on the binomial standard deviation on the number of gene-expressing cells. In C, Right panel, the +25 min and +35 min data points
are statistically different from −1 min.

satile ERK dynamics in IEG mRNA production, as recur-
rent pulses of ERK activity drive multiple cycles of IEG
transcription, whereas continuous ERK activity results in
lower transcription levels (41). These results and ours shed
some light on how IEGs decode the pattern of ERK ac-
tivity and varying concentrations of extracellular stimu-
lus, respectively. Besides activating transcription factors, the
MAPK signaling pathway also initiates chromatin/histone
modifications that regulate IEG expression (for review, see
(3)). For instance, Fos and Egr1 induction in hippocam-
pal neurons has been associated with increased histone
phospho-acetylation without enhanced binding of CREB
transcription factor at the promoters (42). As DNA methy-
lation and histone modification are known to contribute to
intercellular variability (for review, see (43)), a SC mapping

of the epigenetic marks that are required for IEG activa-
tion would be needed. Additional factors that may influence
IEG transcriptional responses in individual cells include
transcription factor concentration, which may be stochas-
tic, and cell type.

What are the physiological implications of an all-or-none,
gene-specific hierarchical and probabilistic pattern of in-
duction of IEGs? The periodicity of GnRH pulses varies
throughout the female menstrual cycle, resulting in dif-
ferential expression of the Lhb and Fshb genes (11). The
aforementioned pattern of activation of IEGs likely con-
tributes to the preferential induction of Fshb subunit gene
by low frequency GnRH pulses (10,44). It is tempting to
speculate that the gene-specific hierarchical pattern may be
modified at high frequency pulses, thus favoring Lhb ex-
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Figure 5. SC probability of IEG induction is concentration-dependent and varies for each IEG. (A–D) Cells were exposed to increasing concentrations of
GnRH and collected 35 min after the fourth pulse. (A) Vertical scatter plots of Egr2, Fosb, and Rps25 expression in SCs. In parentheses is indicated the
number of gene-expressing (top) and non-gene expressing cells (bottom); each square represents a cell; the green dotted line signifies the average expression
in all analyzed cells at a given GnRH concentration. (B) Plots of the percentages of cells expressing a regulated gene, as indicated. Error bars are based on
the binomial standard deviation on the number of gene-expressing cells. (C) Bar graphs of average gene expression in gene expressing (i.e. induced) cells.
Error bars represent standard deviation. ANOVA shows no significant differences. (D) Venn diagrams illustrating the overlap of Fos, Egr1, Egr2, and Fosb
expression in all analyzed cells at +35 min.
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pression. Comparing the effect of high vs. low frequency
GnRH pulses on IEG transcriptional responses might ad-
dress this hypothesis. However, additional regulatory mech-
anisms may be involved, both at the level of IEG activation
and downstream of IEG activation. Such mechanisms in-
clude but are not restricted to: selective epigenetic and/or
microRNA-mediated silencing of IEGs, selective IEG pro-
tein degradation, selective inhibition of IEG proteins by re-
pressors (for review, see (3)).

As the intercellular variation in membrane-localized
GnRH receptor number is thought to be low in L�T2 cells
(16), we speculate that the digital nature of cell response
may stem from cell-to-cell variations in signaling effector
concentrations, transcription factor concentrations, and/or
in the epigenetic landscape of IEGs. Future studies combin-
ing SC transcriptomics, epigenomics and proteomics anal-
ysis will be needed to address these questions. To provide
a more physiological context, similar studies should be ex-
tended to primary pituitary cells. To this end, we will test the
applicability of RNA-Best for epigenomics and proteomics
profiling. Finally, a recent study has revealed that single-
nuclei preparation from a sub-region of the brain allows
the detection of IEG expression associated with animal ex-
posure to an environmental stimulus, whereas the whole-
cell dissociation procedure elicits IEG expression indepen-
dently of stimulus exposure (45).

The present study is limited by assay of 54 genes per cell
in one cell type in response to graded concentrations of a
single hormone. Further study of the SC dynamics of gene
regulation using this more accurate technique and preserva-
tion protocol in other systems and for additional transcript
classes is needed. In the present experiments, we find no ev-
idence for regulation of the rate of transcription of IEGs at
the level of the SC. Could it be possible that what has ap-
peared to be dynamic gene regulation in population assays
is entirely due to probabilistic quantal gene activation and
suppression at the SC level? While this hypothesis is highly
speculative based on the data presented in this study, it is a
crucial question to now resolve in any attempt to elucidate
the principles of the encoding and operation of the software
programs of cells.
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