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Root-associated bacterial communities and root metabolite 
composition are linked to nitrogen use efficiency in sorghum

Yen Ning Chai,1 Yunhui Qi,2 Emily Goren,2 Dawn Chiniquy,3,4 Amy M. Sheflin,5 Susannah G. Tringe,3,4 Jessica E. Prenni,5 Peng Liu,2 

Daniel P. Schachtman1
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ABSTRACT The development of cereal crops with high nitrogen use efficiency (NUE) 
is a priority for worldwide agriculture. In addition to conventional plant breeding and 
genetic engineering, the use of the plant microbiome offers another approach to 
improving crop NUE. To gain insight into the bacterial communities associated with 
sorghum lines that differ in NUE, a field experiment was designed comparing 24 diverse 
Sorghum bicolor lines under sufficient and deficient nitrogen (N). Amplicon sequencing 
and untargeted gas chromatography–mass spectrometry were used to characterize the 
bacterial communities and the root metabolome associated with sorghum genotypes 
varying in sensitivity to low N. We demonstrated that N stress and sorghum type 
(energy, sweet, and grain sorghum) significantly impacted the root-associated bacte­
rial communities and root metabolite composition of sorghum. We found a positive 
correlation between sorghum NUE and bacterial richness and diversity in the rhizo­
sphere. The greater alpha diversity in high NUE lines was associated with the decreased 
abundance of a dominant bacterial taxon, Pseudomonas. Multiple strong correlations 
were detected between root metabolites and rhizosphere bacterial communities in 
response to low N stress. This indicates that the shift in the sorghum microbiome due 
to low N is associated with the root metabolites of the host plant. Taken together, our 
findings suggest that host genetic regulation of root metabolites plays a role in defining 
the root-associated microbiome of sorghum genotypes differing in NUE and tolerance to 
low N stress.

IMPORTANCE The development of crops that are more nitrogen use-efficient (NUE) 
is critical for the future of the enhanced sustainability of agriculture worldwide. This 
objective has been pursued mainly through plant breeding and plant molecular 
engineering, but these approaches have had only limited success. Therefore, a different 
strategy that leverages soil microbes needs to be fully explored because it is known 
that soil microbes improve plant growth through multiple mechanisms. To design 
approaches that use the soil microbiome to increase NUE, it will first be essential to 
understand the relationship among soil microbes, root metabolites, and crop productiv­
ity. Using this approach, we demonstrated that certain key metabolites and specific 
microbes are associated with high and low sorghum NUE in a field study. This important 
information provides a new path forward for developing crop genotypes that have 
increased NUE through the positive contribution of soil microbes.

KEYWORDS sorghum, root metabolites, bacterial communities, nitrogen use efficiency, 
nitrogen stress, biomass

T he role of root metabolites in modulating the root-associated microbiome has 
gained significant attention in recent years. Although it is known that certain plant 

metabolites exuded from plant roots can shape the composition of the rhizosphere 
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microbiome (1–4), the effects of a substantial number of primary and secondary root 
metabolites on the root-associated microbiome remain unclear. Root metabolites are 
likely to influence the microbes that inhabit both the inside of the roots (endosphere) 
and in the region just outside the roots (rhizosphere). Few studies have characterized 
the association between the root metabolites and the root-associated microbiome (3, 
5, 6), and even fewer studies have investigated how this association is affected by 
abiotic stresses (7, 8). Since root metabolites are sensitive to changes in environmental 
conditions (9–11), the study of root metabolites may provide valuable insights into the 
factors underlying host plant modulation of root-associated microbiomes in response to 
abiotic stresses. Additionally, the host plant species and genotype are likely to play a 
crucial role in the interaction between root exudates and the root-associated micro­
biome. Host plants have been shown to have a significant effect on the composition 
of the root-associated microbiome (6, 12–15); therefore, understanding the host plant 
control over the root-associated microbiome is of great interest to crop breeders for the 
selection of cultivars that are more productive and resilient to stresses.

Over the past few decades, the application of nitrogen (N) fertilizer has intensified 
to accommodate increased demands for higher crop yields due to rapidly growing 
populations. While an excess amount of applied N ensures higher yields, it also leads to 
adverse environmental impacts due to the leaching of N fertilizer into waterways and 
groundwater. Therefore, to mitigate adverse environmental effects, it will be necessary 
to lower the input of N fertilizer while selecting crop cultivars with high N use efficiency. 
Sorghum bicolor is an excellent model system for studying this because it requires less 
N fertilizer than maize, which has been extensively studied by plant biologists and 
agronomists (16). It also exhibits a range of nitrogen use efficiency (NUE), which may 
be in part due to the vast genetic diversity within the sorghum gene pool. While past 
studies have identified genes (17, 18) and phenotypes (19, 20) that are potentially 
associated with high NUE in sorghum, there is still a lack of information on the over­
all variation in sorghum NUE and the relationship between NUE and recruitment of 
root-associated microbes.

As an ancient African grass, elite sorghum lines that are grown as a staple crop 
worldwide are the result of many generations of breeding concomitant with the 
selection across geographic gradients (21). Sorghum can be classified into four major 
types based on their carbon partitioning characteristics (21). Grain sorghum, the most 
widely grown sorghum type, is primarily grown for food and partitions carbon into 
panicles. The forage cultivars have lower grain yield, exhibit coarser stems (compared 
with grain sorghum), and are used mainly for grazing and silage. In contrast, energy and 
sweet sorghum mostly partition carbon to the stem but in the form of lignocellulosic 
biomass and fermentable sugars, respectively, making them excellent feedstocks for 
biofuel production (22, 23). Information about the NUE of energy sorghum will be 
particularly important for the identification of lines that grow well in marginal soils so 
this lignocellulosic biomass crop can be grown efficiently with little added N and where it 
will not compete with food crops.

In this study, we characterized the root metabolite and bacterial communities across 
24 diverse sorghum genotypes grown under full and low N field conditions. Our goal 
was to construct a more comprehensive picture that advances the understanding of 
the interplay between the host regulation of root metabolites and the root-associated 
microbiome of sorghum genotypes differing in response to N stress. To achieve this 
goal, we sought to answer the following questions. (i) How does N stress and sorghum 
genotype affect the associated bacterial community diversity and composition? (ii) How 
does N stress and sorghum genotype affect the root metabolite composition? (iii) Are 
the bacterial communities different between high and low NUE genotypes? (iv) Is 
there an association between root metabolites and rhizosphere bacterial community 
composition? This is vital foundational information for our overall understanding of the 
relationship between root metabolites and associated microbes and could be used in 
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future work to intentionally promote specific plant–microbe interactions that would be 
more favorable to low N conditions for sorghum and other crop species.

RESULTS

A diverse panel of sorghum genotypes exhibits variation in N use efficiency

In this study, the NUE of 23 diverse sorghum genotypes that span three sorghum types 
was compared (Fig. 1; Fig. S1). The sorghum lines were grown under full and low N 
conditions in the same field site, and their NUE was derived as the ratio of the above­
ground biomass under low versus full N conditions measured at the end of the season. 
The low N treatment significantly reduced the biomass of all the sorghum genotypes 
(ANOVA: P < 0.001). The average reduction in dry biomass due to low N was 22% with 
some genotypes exhibiting larger reductions in biomass than others. PI 329632 was the 
most susceptible to low N, exhibiting 40% reduction in dry biomass in response to low N. 
ICSV700 was the least susceptible to low N as its biomass barely decreased due to low N. 
The sweet sorghum genotypes used in this study exhibited an average of 23% higher dry 
biomass ratio than the other two sorghum types, indicating higher NUE in this sorghum 
type.

Sorghum rhizosphere and root endosphere microbiome are affected by N 
availability and sorghum type

The bacterial communities in the soil between rows, soil within rows (the soil layer 
beyond rhizosphere but near roots), rhizosphere, root endosphere, and leaf endosphere 
at the sorghum vegetative stage were surveyed by sequencing the V4 region of the 16S 
rRNA amplicons. We found that sample type or compartment (rhizosphere, root and leaf 
endosphere, and soils) were the major factors that affected the assembly of sorghum 
microbiomes (Fig. 2A), accounting for 27% of the variation in the microbial communities. 
The microbial diversity and richness decreased from the soil within rows to the endo­
phytic compartments, with the leaf endosphere harboring the least diverse microbial 
community (Fig. 2B and C). We also detected a significant increase in bacterial richness in 
the rhizosphere and root endosphere due to low N (Fig. 2B). From the soil between rows 
to the endophytic compartments, we observed a substantial change in the relative 
abundance of the members of various phyla. Notably, the phyla Crenarchaeota, 
Chloroflexi, Actinobacteriota, and Firmicutes decreased by 95%, 86%, 76%, and 43%, 
respectively (Fig. 2D). In contrast, an increase of 217% in relative abundance for the 
phylum of Bacteroidota and 138% for Proteobacteria was measured.

Next, we dissected the effects of N availability and sorghum type on the bacterial 
communities for each compartment (Fig. 3A through E). Canonical analysis of principal 
coordinates (CAP) and permutational multivariate analysis of variance (PERMANOVA) 
revealed that the rhizosphere and root endosphere communities were significantly 
impacted by N availability, which separated the samples along the primary axis (Fig. 3B 
and C), suggesting that it was a major factor that shaped the microbial communities in 
these compartments. Linear discriminant analysis effect size (LEfSE) was then used to 
identify the microbial taxa across all taxonomic ranks that were differentially impacted by 
N availability for each compartment. Consistent with the CAP and PERMANOVA findings, 
significant differential abundance at the phylum level was only detectable in the 
rhizosphere and root endosphere (Fig. 4). Bacteroidota was the only phylum that was 
significantly enriched under full N conditions, and this was observed for both rhizo­
sphere and root endosphere. Chloroflexi and Planctomycetota were in greater abun­
dance under low N conditions in both rhizosphere and endosphere, while Myxococcota 
was only enriched in low N rhizosphere samples. The phyla that were significantly 
enriched under low N conditions in the root endosphere were Firmicutes, Acidobacteria, 
Crenarchaeota, and Gemmatimonadota. In addition to N availability, we observed a 
significant effect from the sorghum type (energy, grain, and sweet) in all compartments 
except for soil between rows, which was the only compartment that was not associated 
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with plants (Fig. 3A through E). Subsequent pairwise PERMANOVA revealed that the 
microbial communities in soil, root, and leaf were significantly different across the three 
sorghum types, except in the rhizosphere, where no discernible difference between 
energy and sweet sorghum was observed (Table S2). A higher similarity between the 

FIG 1 Biomass ratios of 23 diverse sorghum genotypes. (A) Fresh and (B) dry weight ratios derived by dividing the biomass measured under low vs full N 

conditions. Error bars represent the 95% confidence intervals. n = 8 for each genotype. Dashed line represents biomass ratio = 1.
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FIG 2 Bacterial diversity and composition across different compartments. (A) Principal coordinate analysis (PCoA) based on Bray–Curtis distance showing the 

overall composition of bacterial communities across different compartments and N treatments. (B) Faith’s phylogenetic distance and (C) Shannon diversity of 

bacterial communities for each compartment and treatment combination. (D) Relative abundance of the most abundant phyla across different compartments 

and N treatments. Abbreviation: SWR, soil within rows; SBR, soil between rows; FN, full N; LN, low N.
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sweet and energy types compared with grain sorghum was observed across all sample 
types, regardless of the significance.

FIG 3 Effects of N treatment and sorghum type on the bacterial community in each compartment. CAP based on Bray–Curtis 

distance of (A) soil within rows, (B) rhizosphere, (C) root endosphere, (D) soil between rows, and (E) leaf endosphere. .P ≤ 0.1, *P 

≤ 0.05, **P ≤ 0.01, and ***P ≤ 0.001. Abbreviation: NS, not significant.
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The alpha diversity and composition of the rhizosphere bacterial community 
are associated with sorghum NUE

We sought to understand whether the shift in bacterial communities in the rhizosphere 
and root endosphere due to low N was related to sorghum NUE. First, we correlated 
the changes in bacterial richness and diversity due to N stress with sorghum NUE 
expressed as the dry biomass ratio (Fig. 1) across all sorghum genotypes (Fig. 5A and 
B). The low N-induced changes in the bacterial richness and diversity were derived as 
the ratios of Faith’s phylogenetic distance and Shannon diversity between low and full 
N conditions, respectively. We found a significant positive correlation between these 
ratios and sorghum NUE only in the rhizosphere and not in the root endosphere (Fig. 
S2), indicating that the genotypes with higher NUE had greater bacterial richness and 
diversity in the rhizosphere under low N compared with full N. This trend was stronger 

FIG 4 Relative abundance of bacterial phyla that were significantly impacted by N stress in at least one compartment 

determined by LEfSE. *P ≤ 0.05, **P ≤ 0.01, and ***P ≤ 0.001.
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for the energy and grain sorghum (Fig. 5C and D), but it is important to note that only 
two grain sorghum genotypes were included in this study.

We then investigated the effect of sorghum NUE on individual bacterial taxa using 
correlation analysis. We selected the microbial taxa across all taxonomic ranks that were 
responsive to low N as identified by LEfSE and correlated their relative abundance ratio 
between low and full N with sorghum NUE. We found that the abundance ratio of 
Pseudomonas, the most abundant bacterial genus in the rhizosphere, was negatively 
correlated with NUE across the energy and grain sorghum type, but not for sweet 
sorghum (Fig. 6A). In other words, Pseudomonas was more abundant in the rhizosphere 
of the energy and grain sorghum genotypes with lower NUE while it was less abundant 
in the rhizosphere of the genotypes with higher NUE under low N. Since Pseudomo­
nas comprised an average of 27% of the rhizosphere bacterial community of energy 
and grain sorghum, lower abundance of this genus in the genotypes with higher 
NUE under low N may be linked to the elevated alpha diversity in the rhizosphere 
of these sorghum genotypes, and vice versa for the low NUE lines. Additionally, the 
sweet sorghum genotypes had a lower abundance of Pseudomonas (~20%) in the 
rhizosphere than the other two sorghum types, which is in accord with the higher 

FIG 5 The relationship between bacterial alpha diversity in rhizosphere and sorghum NUE. (A, C) The correlation between Faith’s phylogenetic distance and 

(B, D) Shannon diversity ratio (low N/full N) with sorghum NUE derived from dry biomass ratio with (A, B) and without (C, D) sweet sorghum. The coefficient of 

correlation as Kendall’s τ and P-value of each model is denoted on the top right of each plot.
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FIG 6 Bacterial taxa in relation to sorghum NUE. Taxa are shown based on two criteria: (i) differen-

tial abundance in high versus low nitrogen conditions (LEfSE analysis) and (ii) significant correlations 

between the differential abundance ratios under low N/full N versus sorghum NUE expressed as 

the biomass ratios under low N/full N (excluding sweet sorghum) of (A) Pseudomonas, (B) Chloflexi, 

(C) Planctomycetota, (D) Verrucomicrobiota, (E) Actinobacteriota, (F) Acidobacteriota, and (G) Rhizobiales. 

The coefficient of correlation as Kendall’s τ and P-value of each model is denoted on the top right of each 

plot.
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bacterial richness and diversity observed in sweet sorghum’s rhizosphere. The sweet 
sorghum genotypes tested also had, on average, higher NUE than the grain or energy 
types. Besides Pseudomonas, we identified other bacterial taxa that were differentially 
enriched or depleted in the rhizosphere of the genotypes with higher or lower NUE. An 
increased abundance of the phyla of Chloroflexi, Planctomycetota, Verrucomicrobiota, 
Actinobacteriota, Acidobacteriota, and the order Rhizobiales under low N was observed 
in the genotypes with higher NUE (Fig. 6B through G).

Sorghum root metabolite composition is affected by N availability and 
sorghum NUE

To determine whether low N and sorghum type affected root metabolites, untarge­
ted gas chromatography–mass spectrometry (GC-MS) was deployed to characterize 
metabolite profiles. The metabolomic profiling was performed on 19 sorghum geno­
types (Table S1) with five replicates for each genotype and treatment combination. A 
total of 429 metabolite features were detected, and annotations were assigned to 77. 
Principal component analysis (PCA) was used to visualize the variation across samples 
and showed that the root metabolite profile of the N-stressed plants was clearly different 
from those that were grown in the full N segments of the field (Fig. 7A). PERMANOVA 
confirmed that the low N significantly affected the root metabolite profile (P < 0.001). 
While the root metabolite profile was found to differ significantly across the three 
sorghum types (P = 0.037), the difference was not significant in the post hoc pairwise 
comparisons.

The Kruskal–Wallis test was used to identify 270 metabolite features that were 
differentially affected by the N treatment and sorghum NUE. The 270 metabolite features 
were then visualized based on their normalized intensity patterns using 1D-SOM (Fig. 
7B, upper panel; Data set S1). The metabolite features with similar intensity patterns 
were grouped into 10 clusters based on their z-scores for the high and low NUE lines 
under each N treatment (Fig. 7B, lower panel; Data set S1). The analysis revealed that 
189 metabolite features decreased in intensity under N stress (clusters 2–5). The majority 
of the metabolite features that decreased under low N were amino acids (asparagine, 
glycine, leucine, lysine, phenylalanine, serine, valine, and threonine) and organic acids 
(citric acid, succinic acid, lactic acid, etc.). Conversely, clusters 8–10 showcased metabolite 
features that were enriched under low N, with cluster 10 highlighting metabolite features 
that exhibited higher abundance in the low NUE lines (ethanolamine, phytol, etc.) (Fig. 
7B; Data set S1). Strikingly, clusters 1 and 7 clearly distinguished the metabolites that 
were differentially enriched in the low and high NUE lines, respectively. The metabolites 
that were enriched in low NUE lines included shikimic acid and myo-inositol while the 
metabolites enriched in high NUE lines included galactinol and tyrosine (Fig. 7B; Data set 
S1).

Sorghum root metabolites shape the rhizosphere bacterial community

To determine whether the shifts in the rhizosphere bacterial community were induced 
by sorghum root metabolites, group sparse canonical correlation analysis (GSCCA) was 
performed to identify the correlation structure between metabolites and amplicon 
sequence variants (ASVs). Among the features selected by GSCCA, we identified several 
metabolites that were correlated with Pseudomonas ASVs in the rhizosphere. Despite the 
fact that 316 ASVs were assigned to Pseudomonas, most Pseudomonas reads (~91%) were 
mapped to 10 ASVs, and 8 out of these 10 ASVs were enriched under low N condi­
tions. Interestingly, we found that trehalose was positively correlated with the dominant 
Pseudomonas ASVs (ASV2, 3, 9, 10, and 16; τ ~0.27) that were specifically enriched under 
low N. We then consolidated all the Pseudomonas ASVs and analyzed the correlation 
between Pseudomonas and root metabolites. We found that the ratio of Pseudomonas 
abundance between low and full N exhibited a significant positive correlation with the 
ratio of shikimic acid between low and full N for all sorghum genotypes tested (Fig. 8A).
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In addition to Pseudomonas, GSCCA identified a number of ASV and metabolite 
pairs that were correlated (Fig. 8B; Data set S2). For instance, positive correlations were 
detected between various amino acids and organic acids with bacterial families that 
are known for their plant growth-promoting abilities, including Rhizobiaceae, Oxalobac­
teraceae, Comamonadaceae, and Burkholderiaceae (Fig. 8B; Data set S2). Phytol, which 
was enriched in the low NUE lines under N deficiency, covaried with several members 
of Actinobacteria and Proteobacteria, but the impact was genus-specific. For example, 
phytol was positively correlated with Streptomyces while negatively correlated with 
Gaiellales, Mycobacterium, Aeromicrobium, Nocardioides, and Solirubrobacter even though 
they are all members of Actinobacteria (Fig. 8B; Data set S2).

DISCUSSION

The communication between soil microbial communities and plant root metabolites and 
exudates is complex and varies depending on plant species, environmental conditions, 

FIG 7 Root metabolomic profiles of sorghum. (A) PCA depicting the effects of N treatment and sorghum type on root 

metabolite composition. (B) One-dimensional self-organizing map (1D-SOM) clustering and cluster assignment of sorghum 

root metabolites. The upper heatmap illustrates the normalized intensity of metabolite features that were significantly 

affected by N treatment and sorghum NUE as identified by the Kruskal–Wallis test. These metabolites were assigned to 10 

clusters in the lower heatmap based on their z-scores for the high NUE (NUE > 0.77) and low NUE (NUE < 0.77) lines under each 

N treatment. The width of each cluster is proportional to the number of metabolite features assigned to the cluster. The color 

of each cluster represents the mean values of the cluster.
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and plant developmental stage as well as many soil physicochemical factors. It is 
well known that root metabolites such as nodulation factors stimulate the beneficial 
interaction between nitrogen fixing legumes and rhizobia under conditions of low N 

FIG 8 Relationship between root metabolites and rhizosphere bacteria. (A) Correlation between Pseudomonas ratio (low N/full N) and shikimic acid ratio (low 

N/full N). (B) Heatmap showing correlated metabolites (row) and ASVs (column) identified by GSCCA. The ASVs are arranged based on the position of the ASVs in 

the phylogenetic tree on the top. The scale bar next to the tree indicates the evolutionary distance of the ASVs. The color bar next to the tree indicates the phylar 

information of the ASVs.
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supply. Under conditions of biotic stress, the idea of a “cry for help” has been discussed 
as a way in which plants deploy metabolite signals to recruit beneficial microbes to 
help alleviate both abiotic and biotic stresses (24–27). While much of the research 
enumerating examples of the “cry for help” hypothesis has measured root exudates, root 
metabolites also provide an important factor in shaping microbial communities (28–30).

Improving NUE in cereal crops is of critical importance to agriculture worldwide. 
Conventional breeding and genetic engineering are the main approaches currently used 
to enhance crop NUE (31). The yield enhancement resulting from agronomic approaches 
where increasing amounts of N fertilizer are used may no longer be a feasible approach 
to improve crop yield because of the environmental externalities caused by fertilizer 
usage. Breeding for increased NUE has also been challenging because it has been 
difficult to identify genes responsible for NUE due to the significant variability in field 
testing approaches and the likelihood that this is a quantitative trait (31). New meth­
ods to improve crop NUE by manipulating plant microbiomes may be a solution that 
provides a more sustainable alternative since new evidence shows that crop NUE may in 
part be associated with the plant belowground microbiome (32).

NUE characteristics in sorghum

The genetic variability of sorghum contributes to the significant variation in the NUE 
across different sorghum genotypes (17). In this study, we compared the growth of 24 
diverse sorghum lines under two N regimes and identified the genotypes that exhibited 
higher NUE when N was limited. Consistent with other studies (18, 33), we found that 
sweet sorghum genotypes generally have higher NUE compared with energy and grain 
sorghum. PI 297155 was one of the genotypes with the highest NUE identified in this 
study, but it was also determined to have the lowest NUE in our previous greenhouse 
study (33). This discrepancy in sorghum NUE between greenhouse and field conditions 
is not surprising because crop NUE could vary with many factors including N fertilization 
rates (34), soil characteristics (e.g., pH and texture) (35), and the composition of the 
soil microbiome, highlighting the importance of selecting for crop NUE in different 
environments. Overall, our study highlights the large degree of NUE variability across 
diverse sorghum genotypes and provides insight on the potential candidates to be used 
in the breeding of high NUE sorghum lines.

Role of microbiome in influencing sorghum NUE

Microbial richness and diversity are frequently demonstrated to be positively correlated 
with plant vigor (32, 36–38). Yet, our knowledge of the mechanisms underpinning the 
positive effects of microbial diversity on plant health is limited to the perspective that 
higher microbial diversity helps buffer against the perturbation of certain microbial 
species that are usually harmful to plants (36). Our finding that increased microbial 
richness and diversity in the rhizosphere are positively correlated with plant perform­
ance under low N conditions provides evidence that increased bacterial diversity may 
contribute to mitigating sorghum N stress. This correlation is also indicative of the 
large variation in responses to low N among the range of sorghum lines studied here 
that differ in NUE. In agreement with our result, greater bacterial diversity has also 
been found in the root endosphere of indica rice varieties, which exhibit superior NUE 
compared with the japonica lines (32). In the rice study, the increased bacterial diversity 
was attributed to the recruitment of a large proportion of N cycle-related bacteria in 
indica varieties, which may have enhanced the plant N availability. In another study on 
tree species when N became limited, plant root metabolites were shown to stimulate 
microbial decomposition of soil organic matter to increase N mineralization for plant 
uptake (39, 40). Our findings and those of others suggest that high NUE in plants may 
in part be linked to the ability to modulate the belowground microbial communities to 
ultimately improve N uptake and availability. The positive correlation between microbial 
diversity and plant NUE may be due to enhanced complementary interactions (41) and 
improved overall metabolic capabilities of rhizosphere microbial communities under low 
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N. This hypothesis warrants further testing given the importance of increasing NUE in 
modern agroecosystems. A functional consequence of the increased diversity may be to 
boost soil organic matter decomposition and other aspects of N cycling with positive 
impacts on the overall productivity of the whole plant–microbe holobiont.

We further revealed that the increased bacterial diversity and richness in the 
rhizosphere of high NUE genotypes under low N were associated with the decreased 
abundance of Pseudomonas and increased abundance of members of Chloroflexi, 
Planctomycetota, Verrucomicrobiota, Actinobacteriota, Acidobacteriota, and Rhizobiales. 
Pseudomonas was the most abundant genus identified in the rhizosphere in our study. 
Strikingly, Pseudomonas proliferation particularly during the early host vegetative stage 
has also been documented in various independent studies on sorghum (8, 42, 43) and 
maize (44). Although the cause of Pseudomonas proliferation is unclear, Pseudomonas is a 
copiotroph specialized in utilizing plant root metabolites (42). Therefore, we hypothesize 
that the lower abundance of Pseudomonas in the high NUE genotypes may be driven by 
reduced access to labile carbon from plant roots in response to N stress, which facilitated 
the enrichment of the oligotrophic phyla, Chloflexi, Planctomycetota, Verrucomicrobiota, 
and Acidobacteriota (45). The enrichment of the order Rhizobiales in the rhizosphere may 
also contribute to plant N uptake as this order contains many N-fixing genera (46). The 
association between the relative abundance of these taxa and host NUE was stronger in 
energy and grain, but not in sweet sorghum genotypes that exhibited greater NUE. This 
suggested that the effect of rhizosphere bacterial communities on sorghum NUE may be 
related to the sorghum types and the degree of NUE in various genotypes.

Plant modulation of root metabolites under low N

The availability of N was the primary factor impacting the root metabolite composition 
in our study, with a notable decrease in many amino acids in N-stressed roots. This 
finding is in line with previous studies (8, 47). The reduction in amino acids, particularly 
phenylalanine, may explain the decrease observed in several hydroxycinnamates and 
hydroxybenzoates derived from shikimic and phenylpropanoid pathways. Many of these 
compounds (vanillic acid, p-benzoic acid, ferulic acid, etc.) are integral constituents of the 
cell wall or involved in plant defense against pathogens (48). Therefore, the reduction 
in these compounds under low N may have accounted for the increase in bacterial 
richness measured in the rhizosphere and root endosphere by lowering the barriers to 
colonization.

We also demonstrated that certain root metabolite features were differentially 
enriched or depleted in sorghum lines with different NUE, suggesting that there may 
be associations between root metabolism and sorghum NUE. For instance, we found that 
galactinol was differentially enriched in the root of high NUE lines regardless of the N 
treatment. While galactinol has not been demonstrated to directly link to plant NUE, it 
has been found to be involved in priming a plant’s defense system against pathogens 
(49, 50) and enhancing plant tolerance to various abiotic stresses including drought 
(51), salt (52), and temperature stress (53). The accumulation of galactinol can effectively 
protect plant cells from damage induced by reactive oxygen species that accumulate 
under stress conditions (54). On the other hand, phytol accumulation was associated 
with low NUE lines under N stress. Phytol is a diterpene constituent of chlorophyll, and 
the accumulation of phytol is often associated with chlorophyll degradation induced by 
stresses such as N deprivation (55, 56). Therefore, greater phytol accumulation in roots 
in the low NUE lines further shows that N stress was more severe in these plants than 
in high NUE genotypes. In addition, both the work by Sheflin et al. (8) and our study 
found that the concentration of shikimic acid in the sorghum roots was correlated to 
the differential abundance of Pseudomonas in the rhizosphere, consistent with findings 
that Pseudomonas was more abundant in low N fields and could be enriched in vitro 
by shikimic acid addition (42). Shikimic acid is a precursor of aromatic amino acids 
including phenylalanine, which is required for the synthesis of a plant defense hormone, 
salicylic acid. Although root salicylic acid was not measured, our results provide further 
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evidence that the differential abundance of Pseudomonas in sorghum rhizosphere may 
be attributed to the varying defense or stress responses in the sorghum lines that 
differed in NUE under low N conditions (8). Trehalose has been shown to have integral 
roles in alleviating plant abiotic stresses such as drought and salinity (57). While little is 
known about the role of trehalose in N stress, in our study, it was related to reduced 
microbial diversity and lower NUE in sorghum. In contrast, under nitrogen deficiency, 
an association between cereal species and tolerance to low nitrogen conditions was 
linked to trehalose (58), but no comparisons were done between genotypes of the same 
species as in our study. Taken together, our findings highlight the potential crosstalk 
between host root metabolites and the rhizosphere bacterial communities that may be 
important for plant performance under low N conditions.

Conclusion

The objectives of this study were to more fully elucidate how sorghum genotype, 
root-associated bacteria, and root metabolites may be related to nitrogen use efficiency 
in sorghum. The findings from our study demonstrate that there are associations 
between the sorghum root metabolome and rhizosphere bacterial communities that 
are associated with sorghum NUE across a range of genetically diverse genotypes. We 
found that sorghum bacterial communities were impacted by the sorghum type (grain, 
sweet, and energy). N stress was also an important factor that led to the change in the 
composition of bacterial communities in the rhizosphere and root endosphere. Although 
the shifts in root metabolite composition were mainly driven by N availability, the 
sorghum type did influence root metabolite composition. Sorghum NUE was positively 
correlated with the richness and diversity of the bacterial community in the rhizosphere, 
which was linked to the differential abundance of the dominant Pseudomonas genus. 
We also showed that the changes in root metabolites due to N stress were correlated 
with the shifts in the rhizosphere bacterial community composition. Taken together, 
our results highlight the importance of considering the vast sorghum genetic variation 
in both plant responses to changes in soil fertility, which led to certain fingerprints of 
root metabolome and root-associated bacterial community composition. The variation 
in the metabolome and microbiome composition was also related to the differences in 
sorghum NUE. Future experiments will be needed to test whether specific microbes and 
metabolites identified in this study cause changes in sorghum NUE.

MATERIALS AND METHODS

Field description and experimental design

The field used in this study was located in central Nebraska, USA, at GPS coordi­
nates 41.201041–97.944750. Pre-season sampling was done in 16 evenly spaced areas 
throughout the field in the top 30.5 cm and in the 30.5–91.4 cm region of the soil profile. 
The soil nitrate levels were on average 3.4 ± 2.2 ppm in the top 30.5 cm of the soil and 
6.5 ± 3.3 ppm in the 30.5–91.4 cm region of the soil. The field was set up as a split-plot 
design with eight blocks or replicates that contained two N treatments and 24 sorghum 
genotypes (Table S1) arranged randomly within each treatment. Plots contained four 
rows approximately 4.6 meters in length and 76 cm between rows. Eighty-five pounds 
of granular urea (46-0-0) was added to the full N treatments, and no urea was added to 
the low N treatments. Seeds were treated with Concep III before planting, and metola­
chlor and bromoxynil were used just after sorghum germination to help control weeds. 
Planting was performed on 26 May 2017, and seeds were planted at an interval of 4 
inches in a row in the four row plots. Cultivation to remove weeds was done by hand 
during the season. Sampling was done only on the two inner rows that contained on 
average 37 plants per the inner two rows of each plot.
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Sample collection and preparation

Biomass sampling

Final plant biomass was measured on 9 October 2017 by harvesting a 1-m section 
of one of the middle rows and then using the area of that section to extrapolate to 
kilogram/hectare. Stalks and panicles were weighed separately. Four replicate blocks out 
of the eight were subsampled for dry weight. Plants were weighed, and a subsample 
of three plants was taken then reweighed, bagged, dried at 80°C, and reweighed to 
determine the dry weights of the plots. The influence of N treatment and genotype on 
plant biomass was assessed using linear mixed-effects models through the lmer (59) 
function in R. Biomass data were log-transformed in the model to correct for skewness. 
Plots and blocks were included in the model as random effects. For some genotypes, the 
block effects were found to be insignificant and removed from the model. We estimated 
a biomass ratio of low N versus full N conditions for each genotype and constructed 
confidence intervals for the ratio for each genotype based on the linear mixed effects 
model using the emmeans package (60) in R. This ratio was used to evaluate the NUE of 
the different sorghum genotypes under limited N conditions. The biomass data of one 
genotype Chinese Amber could not be measured because most plants had fallen over 
due to strong winds and weak stems prior to the biomass harvest.

Microbiome and root metabolite sampling

Soil between rows, soil within rows, rhizosphere, root, and leaf samples were collected 
from the field on 18 July 2017. Except for the soil between rows, each sample was 
collected from two plants located at two different spots within each plot. Soil between 
rows samples were excavated from the top 30 cm of soil in between plots from different 
locations of the field. Soil within rows, rhizosphere, and root samples were collected as 
described previously (61). Leaf samples were collected from the emerging leaf inside the 
whorl that had not been exposed because they were considered to be absent of leaf 
epiphytic microbes. The leaf tissue was rinsed in sterile phosphate buffer and cut into 
small pieces carefully with sterile tools and then stored on ice. In addition to collecting 
root samples for microbiome analysis, a subset of roots was separated for metabolite 
profiling after carefully removing the rhizosphere soil by rinsing again in phosphate 
buffer and gently wiping the roots with a Kimwipe.

All the samples for microbiome and metabolome analyses were brought back to 
the laboratory on ice and processed as described previously (8, 61). The soil between 
rows was processed with the same procedure as the soil within rows. In brief, these 
soil samples were sieved to remove any small roots and debris before freezing at −20°C 
and then loading into a 96-well plate for DNA extraction. For the leaf samples, a surface 
sterilization step was omitted because the leaf portion that we collected was still inside 
the plant and had not emerged from the shoot. Both root tissues and leaf samples 
were frozen at −80°C and ground in liquid N to homogenize the samples before DNA 
extraction.

DNA extraction and sequencing

Following the manufacturer’s protocols, soil and rhizosphere DNA were extracted using 
the MagAttract PowerSoil DNA KF Kit (Qiagen, Germantown, MD) with the KingFisher 
Flex System (Thermo Fisher Scientific, Waltham, MA) while the MagMAX Plant DNA 
Kit (Thermo Fisher Scientific, Waltham, MA) was used for the extraction of leaf and 
root tissues. The V4 region of 16S rRNA was then amplified with the primers 515F 
(GTGCCAGCMGCCGCGGTAA)/806R (GGACTACHVGGGTWTCTAAT) followed by sequenc­
ing with the Illumina MiSeq platform at the Joint Genome Institute using the protocol 
described previously (42).
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Non-targeted GC-MS and data analysis

Non-targeted GC-MS was used for root metabolite profiling using the protocol descri­
bed previously (8). Root metabolite profiling was performed on 19 selected genotypes 
(excluding Grassl, PI655972, PI505735, BTx623, and Chinese Amber) with five replicates 
for each genotype and treatment combination. Root tissue was frozen at −80 °C and 
then lyophilized. Lyophilized root tissue was homogenized in 5 mL polypropylene 
tubes using stainless steel beads and the Bullet Blender Storm 5 homogenizer (Next 
Advance, Averill Park, NY). A 20-mg portion of the lyophilized and homogenized tissue 
was weighed into a 2-mL glass vial, and biphasic extraction was performed by adding 
1 mL of methyl-tert-butyl-ether (MTBE) solution containing 6:3:1 MTBE:methanol:water 
(vol/vol/vol), vortexing at 4°C for 60 min, followed by centrifugation for 15 min at 
3,500 rpm. Three hundred fifty microliter of water was added to the extract and vortexed 
for 30 min at 4°C, followed by centrifugation at 2,750 rpm at 4°C for 15 min. The 
aqueous layer was transferred to an Ambion filter cartridge (Thermo Fisher Scientific, 
USA) and was centrifuged briefly to pass the aqueous extract through the column. Two 
hundred microliter of the filtered aqueous layer was dried down completely under N2 
(g). The dried samples were re-suspended in 50 µL of pyridine containing 25 mg/mL 
of methoxyamine hydrochloride (Sigma), incubated at 60°C for 45 min, vigorously 
vortexed for 30 s, sonicated for 10 min, and incubated for an additional 45 min at 60°C. 
Next, samples were cooled to room temperature and briefly centrifuged. Then, 50 µL 
of N-methyl-N-trimethylsilyltrifluoroacetamide with 1% trimethylchlorosilane (MSTFA + 
1% TMCS, Thermo Fisher Scientific) was added; samples were vigorously vortexed for 
30 s and then incubated at 60°C for 30 min. Metabolites were separated and detected 
using a Trace 1310 GC coupled to an ISQ mass spectrometer (Thermo Fisher Scientific). 
Samples (1 µL) were injected at a 10:1 split ratio onto a 30-m TG-5MS column (0.25 mm 
i.d., 0.25 µm film thickness; Thermo Fisher Scientific) with a 1.2-mL/min helium gas flow 
rate. The gas chromatography inlet was held at 285°C. The oven program started at 80°C 
for 30 s, followed by a ramp of 15°C/min to 330°C and an 8 min hold. Masses between 50 
and 650 m/z were scanned at 5 scans/sec under electron impact ionization. The transfer 
line and ion source were held at 300 and 260°C, respectively.

GC-MS data were processed using the R statistical environment as described 
previously (62). Briefly, the processing steps follow: (i) XCMS software defined a matrix of 
molecular features (63), (ii) samples were normalized to total ion current, (iii) RAMClust 
package for R clustered co-varying and co-eluting features into spectra (64), and (iv) 
RAMSearch software (65) allowed annotation by searching spectra against internal and 
external databases. Databases used for annotations included golm (http://gmd.mpimp-
golm.mpg.de/) and NISTv14 (http://www.nist.gov). The log2-transformed and pareto-
scaled metabolite data (annotated metabolites and unknowns) were then subjected to 
principal component analysis using prcomp (66) function in R. The effects of N treatment 
and sorghum type were assessed using their Bray–Curtis distance through adonis (67) 
function in R, and the split-plot design was considered using the parameter “strata.” 
Subsequently, the metabolite data were subjected to clustering using 1D-SOM through 
MarVis software (version 2.0, http://marvis.gobics.de) (68, 69). Only the metabolites that 
were differentially affected by N treatment and NUE as identified by the Kruskal–Wallis 
test were used in the 1D-SOM analysis (69). The metabolites were normalized based 
on their z-scores (subtracting the mean then dividing by the standard deviation) and 
aggregated into 10 clusters by their mean values.

16S amplicon data analysis

The analysis of 16S amplicon data was done using UPARSE (70) and QIIME 2 (71), and 
R (66) was used for figure generation. UPARSE was used to merge the paired-end 
reads, remove the primers, filter out the reads with expected error scores below one, 
remove chimeras, and generate read clusters at 100% similarity. The resulting table 
containing the read count of the ASVs was then subjected to downstream analyses 
using QIIME 2. Taxonomy was assigned to each ASV using a q2-feature-classifier (72) 
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pre-trained with the SILVA database (73). Reads assigned to chloroplast and mitochon­
dria were removed, constituting an average of 88%, 38%, 1.5%, 1.7%, and 1.2% of the 
total reads in leaf, root, rhizosphere, soil within rows, and soil within rows, respectively 
(Table S3). Rarefaction curves were generated for each sample type after the chloroplast 
and mitochondria sequences were removed and prior to the alpha and beta diversity 
analyses to ensure that a sufficient sampling depth was achieved. Sampling depths of 
84,009, 57,118, 80,141, 15,496, and 500 were used for soil between rows, soil within rows, 
rhizosphere, root endosphere, and leaf, respectively. For the alpha diversity analyses, 
the Shannon diversity index and Faith’s phylogenetic distance were used to assess the 
diversity and richness of the microbiome, respectively. The difference in alpha diversity 
indices for each combination of N treatment and sample type was tested using ANOVA 
in R followed by post hoc Tukey–HSD pairwise comparisons. For the beta diversity 
analyses, PCoA and CAP were performed on Bray–Curtis distance matrices using pcoa 
(74) and capscale (67) functions in R. The changes in microbiome composition due to 
N treatment, sample type, sorghum genotype, and sorghum type were evaluated using 
PERMANOVA with 999 permutations using adonis function (67) in R, and the split-plot 
design was considered in the model using the parameter “strata.” Pairwise comparisons 
across the different sorghum types were then conducted using PERMANOVA, and the 
P-values were adjusted using Benjamini–Hochberg false discovery (FDR) correction. The 
bacterial taxa differentially affected by N treatment and sorghum NUE were identified 
using linear discriminant analysis effect size analysis based on the relative abundance at 
http://huttenhower.sph.harvard.edu/lefse/ (75). A non-parametric measure of correla­
tion, Kendall’s rank correlation, was employed to evaluate the association between NUE 
and the alpha diversity ratios (Shannon diversity index and Faith’s phylogenetic distance) 
for each sorghum genotype using the cor.test (66) function in R. These alpha diversity 
ratios were calculated by dividing the mean values under low N by those under high 
N for each genotype. To determine the relationships between relative abundance ratios 
(low N/high N) of bacterial taxa significantly impacted by N treatment, as identified by 
LEfSE, and sorghum NUE based on biomass ratios, we first identified the taxa exhibiting 
differential abundance in high versus low nitrogen conditions (based on LEFSE). We then 
only show the taxa that had significant correlations between the abundance ratios and 
NUE (Fig. 6).

Correlation between metabolites and rhizosphere microbiome

GSCCA was used to identify the correlations between root metabolites and rhizosphere 
ASVs (76). Only the samples that were profiled for both root metabolite and microbiome 
were included in this analysis. The ASVs present in less than 95% of the samples for 
any combination of sorghum type and genotype in both low and full N treatments 
were excluded from the analysis. Metabolites that were unannotated were also excluded 
from GSCCA. As a result, a total of 690 ASVs and 77 metabolites were included in 
the GSCCA. The filtered ASV data were subjected to analysis of composition of micro­
biomes transformation (77) while the metabolite data were log-transformed. Next, we 
grouped the ASVs and metabolites based on their phylum and superclass, respectively. 
Superclass is the second-level chemical taxonomy assigned to biochemicals according 
to their structural features (The Metabolomics Workbench, https://www.metabolomics­
workbench.org/). We obtained the between-group and within-group correlations, and 
the groups with high between-group correlations were merged until the within-group 
correlations were higher than the between-group correlations. We also merged the 
superclass or phylum singletons with the corresponding most correlated groups. After 
merging, we performed GSCCA based on the pooled covariance with respect to the 
full and low N groups to select groups and features that contribute to the canonical 
correlations between metabolites and ASVs, followed by a test with 10,000 permutations 
to determine if the canonical correlations were significantly different from zero. To 
account for the imbalance of sample sizes in different genotypes, we used stratified 
cross-validation when searching for the best tuning parameters.
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As Pseudomonas was identified as the most prevalent genus in the sorghum 
rhizosphere in this study and exhibited higher abundance in the low NUE lines, we 
conducted Kendall’s rank correlation to evaluate the association between the ratios of 
Pseudomonas genus and shikimic acid, which was enriched in the root of low NUE lines. 
Both of these ratios were derived by dividing the mean values under low N by those 
under high N.
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