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Abstract Image-based cell classification has become a common tool to identify phenotypic

changes in cell populations. However, this methodology is limited to organisms possessing well-

characterized species-specific reagents (e.g., antibodies) that allow cell identification, clustering,

and convolutional neural network (CNN) training. In the absence of such reagents, the power of

image-based classification has remained mostly off-limits to many research organisms. We have

developed an image-based classification methodology we named Image3C (Image-Cytometry Cell

Classification) that does not require species-specific reagents nor pre-existing knowledge about the

sample. Image3C combines image-based flow cytometry with an unbiased, high-throughput cell

clustering pipeline and CNN integration. Image3C exploits intrinsic cellular features and non-

species-specific dyes to perform de novo cell composition analysis and detect changes between

different conditions. Therefore, Image3C expands the use of image-based analyses of cell

population composition to research organisms in which detailed cellular phenotypes are unknown

or for which species-specific reagents are not available.

Introduction
Single-cell analysis has proven crucial to our understanding of fundamental biological processes such

as development, homeostasis, regeneration, aging, and disease (Goolam et al., 2016;

Kimmel et al., 2019; Pepe-Mooney et al., 2019; Philippeos et al., 2018; Tirosh et al., 2016).

High-throughput analyses of these and other biological processes at single-cell resolution require

technologies capable of describing individual cells and subsequently clustering them based on simi-

larities of features like morphology, cell surface protein expression, or transcriptome profile. Recent

advances in image-based cell profiling and single-cell RNA sequencing (scRNA-seq) allow quantifica-

tion of differences between cell populations and comparisons of cell type composition between sam-

ples (Caicedo et al., 2017). Single-cell studies that use traditional research organisms (e.g., mouse,

rat, or fruit fly) benefit from the availability of genomic platforms and established antibody libraries.

However, the same cannot be said for a growing number of important, yet understudied research

organisms lacking such reagents and whose biological interrogation would benefit immensely from

single-cell analyses. In these cases, classical histochemical methods are often used to identify and

characterize specific cells. Yet, the successful identification and enumeration of biologically meaning-

ful cell types in such studies can be harmed by both the limited number and variety of cellular attrib-

utes (few features or low dynamic range) available for determination of cell types and by observer

bias when using traditional, hand-counting approaches (e.g., hemocytometer and Giemsa stain)
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(van der Meer et al., 2004). These shortcomings, together with the lack of extensive knowledge on

cell-specific phenotypes available for training or for a priori assumptions, usually result in the under-

estimation of the complexity of cellular composition or interactions among cell types within tissues.

Automated classification of cells using convolutional neural networks (CNNs, machine learning

[ML] method specialized in image recognition and classification) has become a promising approach

for accurate high-throughput cell analysis that is free from observer bias (Blasi et al., 2016;

Eulenberg et al., 2017; Kobayashi et al., 2017; Lei et al., 2018; Nassar et al., 2019; Suzuki et al.,

2019). To date, CNN-based automated clustering and classification techniques require pre-existing

knowledge about the organism or cell type of interest (e.g., cell-specific morphological traits within

an image set) or the availability of cell-specific reagents (e.g., antibodies), or genomic sequence (e.

g., single-cell sequencing) (Table 1 shows an overview of the existing methods) (Baron et al., 2019;

Blasi et al., 2016; Cheng et al., 2021; Eulenberg et al., 2017; Hennig et al., 2017;

Kobayashi et al., 2017; Lei et al., 2018; Nassar et al., 2019). This means that to make effective use

of artificial intelligence (AI) approaches for single-cell analysis, one must have information available

to train the algorithm or for ML models, which often arises in the form of information gleaned from

the use of reagents like antibodies. Research areas that rely on inter-species comparisons or studies

on emerging research organisms would benefit from single-cell-based analyses that do not require

pre-existing knowledge of cell types (i.e., which is required for training a CNN for example) and/or

availability of antibodies or molecular databases. For example, within the interdisciplinary field of

eco-immunology, a growing number of researchers are investigating immune system adaptation to

different environments by studying immune cell compositions in diverse animals (Maizels and Nus-

sey, 2013). Given the influences of immune cell composition on the immune system response of an

organism (Kaczorowski et al., 2017), applying modern single-cell analysis in eco-immunological

research would substantially increase our knowledge about the plasticity and conservation of

immune responses in a variety of different animals and conditions (Peuß et al., 2020).

To make sophisticated cellular composition analysis available to any research organism without

the need for either pre-existing knowledge about the cell populations or species-specific reagents,

we developed Image-Cytometry Cell Classification (Image3C). This method analyzes, visualizes, and

quantifies, in a high-throughput and unbiased way, the composition of cell populations by using cell

eLife digest Cells are the building blocks of all living organisms. They come in many types, each

with a different role. Understanding the composition of cells, i.e., how many cells and which types of

cells are present inside an organ can indicate what that organ does. It can also reveal how that

organ changes under different conditions, like during an infection or treatment.

The most powerful methods for studying cells work well for species researchers already know a

lot about, such as mice, zebrafish or humans, but not for less studied animals. To change this

Accorsi, Box, Peuß et al. created a new tool called Image3C to be used for studying the

composition of cells in less researched organisms.

Instead of using reagents that only work for specific species, the tool uses molecules that work

across many species, like dyes that stain the cell nucleus. A cell-sorting machine, known as a flow

cytometer, connected to a microscope then takes pictures of hundreds of stained cells each second

and Image3C groups them based on their appearance, without the need for any prior knowledge

about the cell types. Accorsi et al. then tested Image3C on immune system cells of zebrafish, a well-

studied animal, and apple snails, an under-studied animal. For both species, the tool was able to

sort cells into groups representing different parts of the immune system.

Image3C speeds up the grouping process and reduces the need for user intervention and time.

This lowers the risk of bias compared to manual counting of cells. It can sort cells even when the

types of cells in an organism are unknown and even when specialized reagents for an organism do

not exist. This means that it could characterise the cell make-up of new tissues coming from

organisms never studied before. Access to this uncharted world of cells stands to reveal previously

inaccessible clues about how organs behave and evolve and allow researchers to investigate the

impact of environmental changes on these cells.
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morphological traits and non-species-specific fluorescent probes (e.g., nuclear staining or dyes for

metabolic states that function well in a variety of organisms) (Figure 1, Table 1). By taking advan-

tage of cell morphology and/or fluorescent dyes related to function or metabolic state, Image3C can

analyze single cell suspensions derived from any experimental design, de novo cluster cells present

in the sample of interest and compare their abundance between each other or among different

assays. Once the de novo clustering based on cell-intrinsic features is obtained, Image3C employs a

CNN that uses these clusters as training sets, avoiding in this way user bias or manual classification

(Figure 1, Table 1). This produces a CNN-based cell classifier ‘machine’ used to quantify subse-

quently acquired image-based flow cytometry data and compare cellular composition of samples

across multiple experiments in a high-throughput manner without the need for repeating time-con-

suming steps for de novo clustering. The combination of the clustered cell images, the outputs of

their functional assays, and the published literature about closely related organisms might allow the

identification and description of cell types of interest. In comparison to existing label-free cell clus-

tering methods, Image3C does not require initial antibody staining (Cheng et al., 2021;

Hennig et al., 2017; Lippeveld et al., 2020; Nassar et al., 2019), pre-existing knowledge of spe-

cific cell morphology (Suzuki et al., 2019; Yakimov et al., 2019), and is not limited to a specific

Table 1. Extensive overview on label-free cell clustering tools including a comparison of their main features.

Tool name
Was tested on multiple
cell types?

Requires a priori knowledge of the sample and/or
species-specific reagents for the clustering?

Uses commercially available
hardware?

Uses free or
open source
softwares?

Image3C
(present
work)

YES
(Zebrafish whole kidney
marrow; Apple snail
hemolymph)

NO
Does not require previous knowledge or species-
specific reagents to cluster cell images and train the
neural network. If available, they can be used/
integrated.

YES
(ImageStream)

YES
(IDEAS; Vortex; R;
Python)
NO
(FCS Express
Plus)

CellProfiler * YES
(Fixed Jurkat cells; Live
Jurkat cells; Fission yeast;
Human white blood cells)

YES
Requires annotated datasets to train the
machine learning algorithms, either by staining the
samples with known markers, or by manually
clustering the cells.

YES
(ImageStream; Microscope)

YES
(IDEAS;
CellProfiler)
NO
(MATLAB)

CellProfiler
Analyst †

NO
(Jurkat cells)

YES
Requires the use of fluorescent markers to annotate
the cells and use them as the ground truth to train the
machine learning algorithms.

YES
(ImageStream)

YES
(IDEAS;
CellProfiler/
Phyton)

Label-free
reflectance
microscopy ‡

NO
(Fixed HeLa cells)

YES
Requires immunofluorescence images with known
markers to use as ground truth and for training
multiple deep learning models.

NO
(Custom-built multimodal light-
emitting diode (LED) array
reflectance microscope)

YES
(Deep neural
networks)

Optofluidic
time-stretch
microscopy §

NO
(Human breast
adenocarcinoma cell line,
MCF-7)

YES
Does not provide cell clustering and single-cell
resolution analysis. The changes are analyzed overall
in the sample without assigning it to a cell type.

NO
(Optofluidic time-stretch
microscope and microfluidic
devices)

NO
(MATLAB)

Raman
scattering ¶

YES
(Microalgal cells;
Circulating tumor cells in
human blood)

YES
Requires homogenous cell cultures. After different
treatments, these samples are used to create
databases for training deep learning models.

NO
(High-speed multicolor stimulated
Raman scattering (SRS)
microscope and microfluidic
platform)

YES
(Deep learning,
neural network
structure, VGG-
16)

Fluorescence
lifetime
imaging **

NO
(Human white blood cells)

YES
Depends on other techniques to identify cell types to
compare their autofluorescence signals and
fluorescence decay for further analysis.

YES
(Fluorescence microscopy; FLIM;
Flowcytometer)

YES
(Python)

* Blasi et al., 2016; Nassar et al., 2019.

† Hennig et al., 2017.

‡ Cheng et al., 2021.

§ Kobayashi et al., 2017.

¶ Suzuki et al., 2019.

** Yakimov et al., 2019.
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Figure 1. Schematic representation of Image3C workflow, a method for cell clustering based on morphological features. (A) A single cell suspension is

prepared for image-based flow cytometric analyses. The cells can be labeled with any reagent working for the species of interest. The signal can

highlight specific cell components (e.g., nuclei), metabolic cell states, or specific cell functions. The samples are run on the ImageStreamX Mark II, and

10,000 nucleated and focused events are saved for each sample as individual raw images. (B) IDEAS software is used to open the raw images,

compensate for correcting fluorescent spillover, subtract background, and quantify values for intrinsic morphological and fluorescent features. R (or R

studio) is used to calculate the correlation between features to allow to trim the features that are redundant with others. Samples that are outliers

among replicates are also removed prior to the final normalization of the fluorescence intensities. (C) Images are clustered based on morphological and

fluorescent feature values and visualized as a force-directed layout (FDL) graph where each dot represents one event. (D) R integration in FCS Express

Plus software allows the visualization of cell images by clusters or specifically selected with a gate. This step allows to evaluate the morphological

homogeneity of the clusters, determine if the number of clusters is appropriate, and explore the phenotype/function of the cells based on visualization

of individual channels. (E) Spearman’s correlation plot of feature values by clusters is one of the options available in Image3C for plotting integrated

data. This heatmap shows feature similarities and differences between cells belonging to different clusters. (F) If new experiments are run and new data

needs to be analyzed, two approaches can be taken. (1) If the goal is comparing samples belonging to the same experiment (e.g., treatment vs.

control), the steps described so far from (A) to (E) can be reapplied to the new dataset including a statistical analysis to compare cluster relative

abundance. This approach will produce a new set of clusters that will need to be reannotated. Compare sets of clusters coming from multiple

experiments and multiple rounds of analysis can be challenging without pre-existing knowledge of cell types, clearly different morphologies or

biomarkers that would allow to establish a unique correlation between clusters coming from different FDL graphs. (2) If the goal is integrating

experiments and comparing cell type abundance between them, the use of steps (F) and (G) is suggested. A CNN classifier is trained using the images

obtained from homeostasis, naı̈ve or wild-type (WT) cells, and already organized in clusters in an unbiased way through the first part of our method.

This will generate a trained classifier with CNN classes based on FDL clusters. (G) This classifier is then used for deconvoluting data from new

experimental sets and assigning each event to a CNN class with a given probability. This provides high-throughput and unbiased way to compare

Figure 1 continued on next page

Accorsi, Box, Peuß, et al. eLife 2021;10:e65372. DOI: https://doi.org/10.7554/eLife.65372 4 of 26

Tools and resources Developmental Biology

https://doi.org/10.7554/eLife.65372


cellular phenotype (Blasi et al., 2016) for a priori identification of certain cell types (Table 1). This

makes Image3C extremely versatile and applicable to virtually any research organism and tissue

from which dissociated single cells can be obtained. Parallelly to this de novo clustering approach,

Image3C can take advantage of species-specific reagents and prior knowledge to be combined with

transcriptomic dataset and provide a new and complimentary layer of information based on cell mor-

phology and function. In sum, Image3C combines modern high-throughput data acquisition by

image-based flow cytometry, advanced and unbiased clustering analysis, statistics to compare cellu-

lar compositions across different samples, and a CNN classifier component to easily determine

changes in cell composition across multiple experiments.

Results and discussion

Image3C
Image3C is an imaging tool developed to study tissue composition at single-cell resolution in

research organisms for which antibodies and pre-existing knowledge about cell types are not readily

available (Figure 1, Table 1). Image3C allows for high-throughput and unbiased analysis in scenarios

where manual counting and observer-based cell identification are currently the only options.

Image3C includes all the components required for compensating captured images, quantifying mul-

tiple features for each event, clustering the events, visualizing and exploring the data, and training

and using the CNN for analyzing subsequent samples and integrating multiple experiments (Fig-

ure 1, Figure 1—figure supplement 1).

Once a single cell suspension is prepared from the organism of interest, the cells are stained with

a combination of dyes that are expected to function irrespectively of the species used and which

have high affinity for specific cellular organelles such as nuclei or molecules associated with meta-

bolic states such as reactive oxygen species (ROS). We validated reagents experimentally by deter-

mining that nuclear dyes stain intracellular material matching expected characteristics of nuclear

DNA or by activation of cells with drugs to change their metabolic state. The labeled samples are

then run on the ImageStreamX Mark II (Figure 1A). ImageStream is a commercially available image-

based flow cytometer, whose diffusion in laboratory settings is increasing and that provides highly

reproducible images of cells that can be compared across days of acquisitions and experiments. For

this approach, no microfluidic devices or custom-made and highly specialized microscopes are

required (Table 1), and, if desired, the users can test the Image3C pipeline also on images acquired

at standard microscopes, remembering to carefully control for batch effects.

Once images of individual events are collected for each channel of interest, feature values from

both morphological and fluorescent data, such as cell size and nuclear size, are extracted from the

cell images using IDEAS software (Amnis Millipore, free for download upon creation of Amnis user

account) (Figure 1B; see Supplementary files 1 and 2 for feature description). Correlation between

features is calculated and redundant features are trimmed as well as samples that, among replicates,

are outliers (Figure 2—figure supplements 1 and 2). This prevents clustering artifacts potentially

caused by having multiple features providing the same information or including samples that are not

representative (Figure 1B). During this step, while the number of features was usually reduced signif-

icantly, the correlation between replicates was always high and outliers were rarely observed (Fig-

ure 2—figure supplements 1 and 2). Finally, fluorescence intensity features are transformed to

improve homogeneity of variance of distributions and, if used, DNA staining is normalized to remove

intensity drift between samples and thus align the 2N and 4N DNA content histogram peaks

(Figure 1B, Figure 2—figure supplement 3).

Figure 1 continued

different experiment sets without the requirement for pre-existing knowledge about the tissue cell types, cell biomarkers, or the need to cross-annotate

clusters increasing the probability to introduce errors. The entire pipeline chart and step-by-step technical information, such as software used, time

required for processing, and exported file format, are reported in the interactive map Figure 1—figure supplement 1 that automatically directs to the

specific sections of the GitHub.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Interactive map of Image3C pipeline. Once the images are collected, this pipeline can be followed step-by-step.
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Exported feature quantifications are used for clustering the events. Dimensionality reduction and

visualization of clusters is achieved by generating force-directed layout (FDL) graphs in the VorteX

clustering environment (Figure 1C) (free to install) (Samusik et al., 2016). Cell images for events

within each cluster can be visualized using FCS Express Plus together with custom R scripts

(Figure 1D). These visualization tools and the cluster feature averages (i.e., the mean value of each

feature for each cluster) (Figure 1E) allow to explore the images of selected groups of events and

the features that differ between cells belonging to separate clusters. If control and treatment sam-

ples are included, a statistical analysis using negative binomial regression to compare cell counts per

cluster between samples is also available in the Image3C pipeline. This high-throughput and unbi-

ased analysis provides a comprehensive understanding of a cell population composition at higher

resolution than what is possible with traditional histological methods.

Once this pipeline is run on a first set of samples (e.g., homeostatic state) and the cell clusters are

defined for the tissue of interest, the images and the relative clustering IDs can be used to train a

CNN classifier in an unbiased way (Figure 1F), including the ability to score frequency of ‘new’ cell

types that do not match any of the clusters identified at homeostasis. Therefore, future experiments

in the same tissue used for training the CNN classifier can be analyzed directly through the CNN

(Figure 1G). This significantly reduces the number of steps and time required to process data col-

lected subsequently. An even greater advantage is represented by the fact that, in the absence of

CNN, every time new experimental sets are run it would be necessary to go again through the de

novo clustering part of the pipeline (Figure 1B–E) and the new set of clusters would need to be

cross-annotated to be compared with cell population composition observed in previous experi-

ments. Manually matching clusters between different experimental sets might be a source of errors,

mainly if the user is not familiar with the cell types present in the sample and if specific biomarkers

or pre-existing knowledge about cell types and morphology are not available. The CNN splits all the

cell images in the classes defined during the training step and allows to compare the abundance of

cells with same morphology among different samples without the need to cross-annotate clusters

(Figure 1F, G). The CNN inclusion in Image3C and the reproducibility of image acquisition through

image-based flow cytometry allows use of the clusters defined from one experiment (e.g., homeo-

static state) to set up a classifier in an unbiased way for later use as a reference in analyzing the

effects of experimental manipulations on these cell populations. We conclude from these results that

Image3C can perform de novo high-throughput characterizations of population composition and

define specific cell type changes between homeostatic and experimentally perturbed samples across

multiple experiments.

Image3C recapitulates cell composition of zebrafish whole kidney
marrow (WKM) tissue
To test whether Image3C could identify homogeneous and biologically meaningful cell populations,

we used the research organism Danio rerio. We obtained cells from adult female zebrafish WKM

(location of the hematopoietic tissue) in homeostasis condition, stained them, and ran on the Image-

StreamX Mark II. We analyzed intrinsic morphological and fluorescent features, such as cell and

nuclear size, shape, and darkfield signal (side scatter [SSC]). Feature values were extracted from

each cell image and processed through our pipeline (see Supplementary file 1 for feature descrip-

tion). Clustering by the final set of normalized and non-redundant morphological and fluorescent

features produced distinct cell populations (Figure 2A–C, Figure 2—figure supplements 1–3).

Image3C can distinguish between the major classes of cells present in zebrafish WKM (Figure 2;

Supplementary files 3 and 4) that were described using standard sorting flow cytometry and mor-

phological staining approaches (Traver et al., 2003). It is noteworthy that Image3C can clearly iden-

tify dead cells and debris (Figure 2A, B) allowing to optimize experimental protocols in order to

minimize cell death and run the subsequent analysis only on the intact, live cells. Image3C can iden-

tify cells with outstanding morphological features, such as neutrophils from other myelomonocytes

(Figure 2B, C). Based on zebrafish neutrophil characteristics such as high granularity, high complex-

ity, and low circularity of the nuclei (Lugo-Villarino et al., 2010), this type of granulocytes can be

easily distinguished. Other types of myelomonocytes, such as monocytes and eosinophils, are here

merged in the same cluster since in zebrafish they share many morphological characteristics (Lugo-

Villarino et al., 2010). Similarly, using only intrinsic morphological features for the clustering, differ-

ent lymphocytes (B and T-cells) and hematopoietic stem cells cannot be separated from each other,
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but they can be clearly distinguished from the myelomonocytes (Figure 2A, B). Within the lympho-

cytes/progenitors fraction, we find two clusters (Dr1 and Dr7) that mainly differ in cell diameter

(Figure 2C). Whether this morphological difference has a biological implication needs to be studied

in future experiments.

Figure 2. Analysis of cell composition of adult zebrafish whole kidney marrow (WKM). (A) WKM tissue obtained from zebrafish is prepared for image-

based flow cytometric analyses and run on the ImageStreamX Mark II (n = 8). Standard gating of focused and nucleated events and manual outgating

of most erythrocytes was performed using IDEAS software. The selected images were processed through the pipeline described in Figure 1 and

clustered based only on intrinsic morphological and fluorescent feature values. Force-directed layout (FDL) graph visualizes 16 clusters, and each color

represents a unique cell cluster. (B) Representative cell images belonging to each cluster are shown to evaluate the homogeneity of the cluster and

determine morphology of the cells for cluster annotation. Representative cells for all the identified clusters are shown in Supplementary file 4. Merge

represents the overlay of brightfield (BF) and Draq5 (nuclear staining) signal. (C) Spearman’s correlation plot shows the average feature values of the

images in each cluster to highlight morphological similarities and differences between events belonging to different clusters, such as cell size or

cytoplasm granularity (Supplementary file 1). (D) Box plot of relative abundance of events within each cluster follows the same color code used in (A).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Feature correlation for morphology assay on adult zebrafish whole kidney marrow (WKM).

Figure supplement 2. Sample correlation for morphology assay on adult zebrafish whole kidney marrow (WKM).

Figure supplement 3. DNA normalization for morphology assay on adult zebrafish whole kidney marrow (WKM).
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Image3C also enables the quantification of cell populations (clusters or CNN classes)-relative

abundance, an important tool for comparing population composition across different treatment

groups under different environmental conditions (Peuß et al., 2020). Here, we compared our results

with previously published data to validate our method. Although a direct comparison with results

from classical approaches (Traver et al., 2003) is not possible since we gated out (removed analyti-

cally) mature erythrocytes before clustering (Materials and methods), the myelomonocyte to lympho-

cyte ratio (M/L ratio = 1.59) is similar to the one obtained with classic histological approaches (mean

M/L ratio = 1.35) (Figure 2D; Traver et al., 2003).

Image3C identifies professional phagocytes in zebrafish WKM tissue
Next, we sought to determine whether Image3C could be used to characterize and quantify biologi-

cal processes by identifying a tissue of interest and then comparing cellular composition dynamics,

functions, and physiological responses of specific cell types across a range of experimental condi-

tions. Our goal was to detect statistically significant changes in cluster relative abundance between

control and treated samples to gain a more detailed understanding of cell population dynamics and

individual cell function.

As proof of concept, we performed a standard phagocytosis assay using WKM tissue from

female adult zebrafish. The single cell suspension was incubated with CellTrace Violet labeled Staph-

ylococcus aureus (CTV-S. aureus) and with dihydrorhodamine-123 (DHR), a ROS indicator that

becomes fluorescent if oxidized to report oxidative bursting following phagocytosis. As controls, we

inhibited phagocytosis through cytoskeletal impairment with cytochalasin B (CCB) incubation or

through incubation with bacteria at lowered temperature by placing culture plates on ice. Events col-

lected on the ImageStreamX Mark II were analyzed with Image3C and clustered in 26 distinct clusters

using quantifications of morphological and fluorescent features (see Supplementary file 2 for fea-

ture description), including nuclear staining, phagocytized S. aureus, and DHR positivity (Figure 3A,

Figure 3—figure supplement 1). Professional phagocytes are defined by their ability to take up S.

aureus (CTV staining lies within the cell boundary) and induce a ROS response (bright DHR signal)

(Rabinovitch, 1995). In zebrafish, professional phagocytes are mainly granulocytes and monocytic

cells and can be discriminated from each other based on morphological differences, such as cell

size, granularity, and nuclear shape (Wittamer et al., 2011). To compare samples incubated with

CTV-S. aureus and the samples where phagocytosis is inhibited (CTV-S. aureus + CCB and CTV-S.

aureus + Ice), we used the statistical analysis included in Image3C based on a negative binomial

regression model (Figure 3B, C, Figure 3—figure supplement 2; Supplementary files 5 and 6). Sta-

tistical analyses reported clusters with differences in relative abundance between phagocytosis and

phagocytosis-inhibited samples. Visualizing these clustered event images (Supplementary file 7)

while considering the values and intensities of their morphological and fluorescent features

(Supplementary file 3) allowed identification of 4 clusters of professional phagocytes: granulocytes

within clusters Dr4_P, Dr12_P, and Dr13_P and monocytic cells in cluster Dr21_P (Figure 3A, B). The

morphology of cells in cluster Dr12_P is characteristic of phagocytic neutrophils (Figure 2B,

Figure 3A) that become adhesive and produce extracellular traps upon recognition of bacterial anti-

gens (Palić et al., 2007). Overall, the relative abundance of professional phagocytes is 5–10%

(Figure 3C), which is in line with previous studies that estimated the number of professional phago-

cytes in WKM tissue of adult zebrafish using classical morphological approaches (Wittamer et al.,

2011). It is also noteworthy that in line with other studies (Page et al., 2013) we did not observe a

cluster of lymphocytes (e.g., B-cells) that actively phagocytize CTV-S. aureus bacteria (Figure 2;

Supplementary file 7). Compared to the classical morphological approaches, Image3C allows to

analyze thousands of events in a high-throughput and unbiased fashion, allowing the study of rare

cell morphologies and increasing results confidence and reproducibility. These results show that

Image3C can successfully analyze biological processes since we were able to recapitulate the pres-

ence, cell type, and frequency of professional phagocytes in adult zebrafish WKM organ.

A new aspect that Image3C highlighted is that CCB selectively affects cell viability based on cell

identity, introducing artifacts and cell damage, actions not specific to inhibition of phagocytosis

(Figure 3B). All mature erythrocyte-containing clusters had a significantly higher cell count in the

CTV-S. aureus samples compared to the CTV-S. aureus + CCB ones (Figure 3B;

Supplementary files 3 and 5). Cluster analysis revealed that erythrocytes were almost absent in

samples incubated with CCB (Supplementary file 3), while there was a significant increase in the
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relative abundance of clusters containing dead and apoptotic cells (Figure 3B; Supplementary file

5). Both outcomes are likely due to reduced cell viability of erythrocytes upon CCB incubation.

Moreover, we excluded the possibility of higher cell death in the professional phagocytes upon CCB

incubation since pseudo-phagocytes (phagocytes with DHR response but no internalized CTV-S.

aureus) were significantly more abundant in the CTV-S. aureus + CCB sample (Figure 3B;

Supplementary file 5). These results are remarkable since Image3C allowed us to observe a specific

effect of CCB on erythrocytes’ viability in zebrafish that, as far as we know, was not described

before.

Image3C analysis also uncovered another important biological observation. When we inhibited

phagocytosis by incubating the single cell suspension on ice (CTV-S. aureus + Ice) and compared the

specificity of inhibition with the CTV-S. aureus + CCB sample (Figure 3C; Supplementary file 6), we

discovered that the inhibition of phagocytosis through low temperature only affects adhesive neutro-

phils (cluster Dr12_P) (Figure 3C). This is suspected to occur as ice inhibits adhesion, while CCB

effectively blocks phagocytosis in all professional phagocytes in zebrafish WKM tissue by acting on

Figure 3. Identification of professional phagocytes in zebrafish whole kidney marrow (WKM). (A) A phagocytosis assay was performed on a cell

suspension obtained from zebrafish WKM tissue and the samples were subsequently run on the ImageStreamX Mark II (n = 6). Force-directed

layout (FDL) graph shows 26 clusters, and each color represents a unique cell cluster. Representative cell images belonging to the 4 clusters containing

professional phagocytes are shown. Representative cells for all the identified clusters are shown in Supplementary file 7. Merge represents the overlay

of dihydrorhodamine-123 (DHR) (reactive oxygen species indicator), CellTrace Violet (CTV) (S. aureus labeling), and Draq5 (nuclear staining) channels.

Supplementary file 2 reports the features used for this clustering. (B) Volcano plot illustrates comparison of cluster relative abundance between

phagocytosis samples (CTV-S. aureus) and inhibited phagocytosis samples (CTV-S. aureus + CCB). The log fold change (logFC) is plotted in relation to

the false discovery rate (FDR)-corrected p-value (-log10) of each individual cluster calculated with negative binomial regression model (n = 6)

(Supplementary file 5). Dot color follows the same color code used in (A). (C) Box plot of relative abundances of events within the 4 clusters containing

professional phagocytes in the 3 samples: phagocytosis samples (CTV-S. aureus), CCB-inhibited phagocytosis samples (CTV-S. aureus + CCB), and ice-

inhibited phagocytosis samples (CTV-S. aureus + Ice) (Figure 3—figure supplement 2). Statistically significant differences are calculated using the

negative binomial regression model between the phagocytosis and the inhibited phagocytosis samples (Supplementary files 5 and 6). ** indicates

p�0.01 and n.s. indicates not significantly different after FDR (n = 6).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Sample correlation for phagocytosis assay on adult zebrafish whole kidney marrow (WKM).

Figure supplement 2. Phagocytosis assay on adult zebrafish whole kidney marrow (WKM) (ice phagocytosis inhibition).
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the cytoskeleton. The use of Image3C allowed us to specifically identify cell types that are sensible

to low temperature and those that are not, confirming the existence of different phagocytosis mech-

anisms and providing additional knowledge about pros and cons of different protocols that can be

applied to inhibit phagocytosis based on specific goals and needs.

Image3C recapitulates cell composition of freshwater snail hemolymph
Since we aimed to provide a tool that is widely applicable, we tested Image3C versatility on the

apple snail Pomacea canaliculata, an emerging organism for which molecular and cell biological tools

have yet to be fully developed. As such, we repeated the same experiments done in zebrafish on

the hemolymph of P. canaliculata. For morphological examination of the cellular composition of the

hemolymph collected from female adults in homeostasis conditions, we stained the single cell sus-

pensions with Draq5 (DNA dye) and ran on the ImageStreamX Mark II. We used Image3C to analyze

the images of the events and identified 9 cell clusters (Figure 4A, Figure 4—figure supplement 1).

Two of these clusters comprised cell doublets, debris, and dead cells (clusters Pc5 and Pc8) and the

other clusters, based on inspection of cell images, were grouped into two main categories

(Figure 4A; Supplementary file 8). The first category includes small blast-like cells (cluster Pc4) and

intermediate cells (clusters Pc2 and Pc3) with high nuclear-cytoplasmic (N/C) ratio. These cells mor-

phologically resemble the Group I hemocytes previously described using a classical morphological

approach (Accorsi et al., 2013). The second category comprised larger cells with lower N/C ratio

and abundant membrane protrusions (clusters Pc1, Pc6, Pc7, and Pc9). Likely, these cells correspond

to the previously described Group II hemocytes that include both granular and agranular cells

(Accorsi et al., 2013).

To identify which of these clusters were enriched for granular cells, we looked at the heatmap

with feature values for each individual cluster (Figure 4B; see Supplementary file 1 for feature

description). Cluster Pc6 had the highest values for the features related to cytoplasm texture and

granularity (i.e., area granularity, intensity granularity, and signal granularity) amongst all clusters

other than cell doublets (Figure 4B; Supplementary files 3 and 8). Based on these data, we identi-

fied cluster Pc6 as the one containing the granular hemocytes. The clusters obtained by Image3C

were not only homogeneous and biologically meaningful but were also consistent with published P.

canaliculata hemocyte classification obtained by classical morphological methods (Accorsi et al.,

2013). Such remarkable consistency was observed both in terms of identified cell morphologies and

their relative abundance in the population of circulating hemocytes (Figure 4C; Supplementary file

8). For example, the relative abundance of the previously reported small blast-like cells is 14.0%, a

value almost identical to the abundance of the corresponding cluster Pc4 (13.8%).

Similarly, the category of larger hemocytes or Group II hemocytes represents 80.4% of the circu-

lating cells as measured by traditional morphological methods, while clusters Pc1, Pc6, Pc7, and Pc9

combined represent 72.4% of the events analyzed with Image3C (Figure 4C; Supplementary file 3).

A subset of these cells are the granular cells (cluster Pc6), which correspond to 7.7% of all hemocytes

by classical histological methods and 8.9% by Image3C. The intermediate cells (clusters Pc2 and

Pc3) are the least represented in both approaches, with a relative abundance of 5.6% and 10.6% for

the manually and Image3C analyzed events, respectively (Figure 4C; Supplementary file 3). This dif-

ference is likely best explained by the remarkable difference in both the number of cells and the

number of features that can be considered for analysis by Image3C. Only a few hundred hemocytes

were visually analyzed using traditional histological methods based only on cell diameter and N/C

ratio (Accorsi et al., 2013). In contrast, the automated pipeline used by Image3C facilitated the

analysis of 10,000 nucleated events for each sample and considered 25 morphological features for

each cell. The significantly higher number of morphological features simultaneously considered by

Image3C also explains the higher number of clusters and improved resolution to distinguish cell

types compared to the traditional methods. Hence, Image3C not only can properly analyze cells

obtained from an emerging research organism generating biologically meaningful and informative

clusters but also represents an unprecedented increase in the accuracy of cell type identification

over traditional histological methods, while also allowing high-throughput capability.
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Figure 4. Analysis of P. canaliculata hemocyte population using only intrinsic morphological features of the cells. (A) Hemocytes obtained from the

apple snail P. canaliculata are prepared for image-based flow cytometric analyses and run on the ImageStreamX Mark II (n = 5). Standard gating of

focused and nucleated events was performed using IDEAS software. The selected images were processed through the pipeline described in Figure 1

and clustered based only on intrinsic morphological and fluorescent feature values. Force-directed layout (FDL) graph is used to visualize the 9

identified clusters, and each color represents a unique cell cluster. Representative cell images belonging to each cluster are shown to evaluate the

homogeneity of the cluster and determine morphology of the cells for cluster annotation. Additional representative cells for all the identified clusters

are shown in Supplementary file 8. Merge represents the overlay of brightfield (BF) and Draq5 (nuclear staining) signal. (B) Spearman’s correlation plot

shows the average feature values of the images in each cluster to highlight morphological similarities and differences between events belonging to

different clusters, such as cell size or cytoplasm granularity (Supplementary file 1). Cluster Pc6 is the one among large hemocytes with higher values in

features describing cytoplasm granularity (i.e., area granularity #2, intensity granularity #18, and signal granularity #11). (C) Box plot of relative

abundance of events within each cluster following the same color code used in (A). Clusters Pc5 and Pc8, constituted by duplets and dead cells, are

those with the lowest number of events, validating the protocol used to prepare these samples.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Sample correlation for morphology assay on P. canaliculata hemocytes.
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Image3C identifies phagocytosis-competent cells in the hemolymph of a
freshwater snail
As with zebrafish, we also performed a phagocytosis experiment on hemocytes from P. canaliculata.

Our goal was to test if it is possible with an emerging research organism to successfully discover cell

phenotypes and functions and obtain information about specific biological processes of interest by

using Image3C to compare cell populations among treated and control samples.

Here, we setup the phagocytosis assay incubating the cells with CTV-S. aureus and DHR at room

temperature. The phagocytosis was inhibited, as control, either adding EDTA (CTV-S. aureus +

EDTA) or using low temperature by incubating samples on ice (CTV-S. aureus + Ice). Events col-

lected on the ImageStreamX Mark II were analyzed with Image3C and clustered in 20 distinct clusters

using quantifications of morphological and fluorescent features (see Supplementary file 2 for fea-

ture description), including nuclear staining, phagocytized S. aureus, and DHR positivity (Figure 5A,

Figure 5—figure supplement 1). We compared the phagocytosis-permissive samples (CTV-S.

aureus) with samples where phagocytosis was inhibited by EDTA incubation or low temperature

Figure 5. Identification of professional phagocytes among P. canaliculata hemocytes. (A) A phagocytosis assay was performed on a cell suspension

obtained from apple snail P. canaliculata hemolymph, and the samples were subsequently run on the ImageStreamX Mark II (n = 5). Force-directed

layout (FDL) graph shows 20 clusters, and each color represents a unique cell cluster. Representative cell images belonging to the two clusters

containing professional phagocytes are shown. Representative cells for all the identified clusters are shown in Supplementary file 11. Merge

represents the overlay of dihydrorhodamine-123 (DHR) (reactive oxygen speciesindicator), CellTrace Violet (CTV) (S. aureus labeling), and Draq5 (nuclear

staining) channels. Supplementary file 2 reports the features used for this clustering. (B) Volcano plot illustrates comparison of cluster relative

abundance between phagocytosis samples (CTV-S. aureus) and inhibited phagocytosis samples (CTV-S. aureus + EDTA). The log fold change (logFC) is

plotted in relation to the false discovery rate (FDR)-corrected p-value (-log10) of each individual cluster calculated with negative binomial regression

model (n = 4) (Supplementary file 9). Dot color follows the same color code used in (A). (C) Box plot of relative abundances of events within the two

clusters containing professional phagocytes in the 3 samples: phagocytosis samples (CTV-S. aureus), EDTA-inhibited phagocytosis samples (CTV-S.

aureus + EDTA), and ice-inhibited phagocytosis samples (CTV-S. aureus + Ice) (Figure 5—figure supplement 2). Statistically significant differences are

calculated using the negative binomial regression model between the phagocytosis and the inhibited phagocytosis samples (Supplementary files 9

and 10). ** indicates p�0.01 and n.s. indicates not significantly different after FDR (n = 4).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Sample correlation for phagocytosis assay on P. canaliculata hemocytes.

Figure supplement 2. Phagocytosis assay on P. canaliculata hemocytes (ice-inhibited phagocytosis).

Figure supplement 3. Feature heatmap after phagocytosis assay on P. canaliculata hemocytes.

Figure supplement 4. Gallery of P. canaliculata hemocytes after phagocytosis assay.
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using the statistical analysis included in Image3C based on a negative binomial regression model

(Figure 5B, C, Figure 5—figure supplement 2; Supplementary files 9 and 10). The clusters with

relative abundance significantly higher in the phagocytosis samples (Figure 5B; Supplementary files

3 and 11) and with high intensities of both DHR and bacteria signals (Figure 5—figure supplements

3 and 4) are the two clusters that we identify as enriched with professional phagocyte (cluster Pc5_P

and Pc17_P) (Figure 5B, Figure 4—figure supplement 1, Figure 5—figure supplement 4;

Supplementary file 11). The two clusters show a different DHR signal intensity (ROS response) from

one another upon bacteria exposure (cluster Pc5_P with high DHR signal, cluster Pc17_P with low

DHR signal) (Figure 5—figure supplement 3; Supplementary files 3 and 11). Both Pc5_P and

Pc17_P relative abundance is significantly higher in the phagocytosis samples compared to the

EDTA-treated sample (Figure 5C; Supplementary file 9), showing that EDTA effectively inhibits

phagocytosis for both types of professional phagocytes. In the sample where the phagocytosis was

inhibited by low temperature, however, only cluster Pc17_P had a significantly lower relative abun-

dance compared to the phagocytosis sample (Figure 5C, Figure 3—figure supplement 2;

Supplementary file 10). We can conclude that similar to CCB inhibition in the zebrafish phagocyto-

sis experiment, EDTA is a more effective and generalized (not cell type-specific) inhibitor of phago-

cytosis than low temperature. These results show that also in an emerging research organism

Image3C allowed discovery of new aspects of this biological process and highlighted differences

among professional phagocytes that would have been difficult to detect with other methods.

The data analysis with Image3C clearly highlighted that CCB and EDTA, two classical phagocytic

inhibitors commonly used in controls for phagocytosis experiments in vertebrates and invertebrates,

respectively, result in a drastic change of cell morphology and cell viability. This consequence is not

easily detectable by other methods and is therefore often overlooked. In the present work, these

changes significantly modified the overall cell cluster number and distribution and indicate that the

effects of CCB and EDTA on cell morphology should be taken into consideration in any study of

morphological features of cells with phagocytosis properties because artifacts might be significant.

CNN allows unbiased comparison between experiments
When determining differences between control and experimental treatments, Image3C necessarily

combines images and data from all samples and then clusters the cells. This must be taken into con-

sideration for experimental planning. Experiments meant to analyze cell composition and morpho-

logical diversity in one biological domain (e.g., homeostasis condition) (Figure 2, Figure 4) should

be carried out separately from those in other domains that are likely to introduce changes in the cell

population composition or cell morphologies representing a confounding factor for the de novo

clustering in homeostasis condition. Image3C clustering works best when used, at the same time,

only on samples belonging to a single experimental domain, such as homeostasis or the phagocyto-

sis assay. An issue that emerges when analyzing different experimental sets independently is the

increase of time requirement for analytical steps, the likelihood of introducing errors, and the need

to repeatedly annotate the clusters in the FDL graph obtained from each experimental set. This last

element is required for comparing cell type behaviors among multiple experiments and provide a

global understanding of their functions and response to treatments (i.e., cluster #1 from one analyti-

cal run cannot be expected to match cell morphologies with cluster #1 from another run since there

is a stochastic element to the process).

This last point is probably the most challenging since mistakes can easily be introduced based on

user biases or lack of sufficient pre-existing knowledge about cell morphologies or of cell biomarkers

that would allow a confident cross-annotation between multiple FDL graphs. In addition, we

observed that the number of clusters drastically increases when including treatments that influence

cell morphological properties of the cell. As an example, while we detected 9 unique clusters in

naı̈ve hemolymph samples, we detected 20 clusters in the phagocytosis experiment (Figure 3A,

Figure 4A). This is in part due to the fact that professional phagocytes change their morphology

upon detection of pathogens (Palić et al., 2007), thus creating new clusters. Similarly, the complex-

ity of the clustering is also increased by treatments, such as CCB and EDTA incubations, that are

necessary to ensure identification of professional phagocytes, but have a strong impact on the mor-

phology of the cells making the clustering and annotation steps more challenging and prone to mis-

takes since treated samples contain aberrant populations not found at homeostasis (Figure 5A;

Supplementary file 11).
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To provide an alternative for streamlining the analysis of multiple experimental sets upon initial

de novo clustering and cell type identification in homeostasis samples, we included in Image3C the

possibility to use these initial images and their cluster IDs to train a CNN without manually classifying

the images (Figure 1). This trained classifier can then be used to assign the cell images subsequently

collected from additional experimental sets to one of the clusters defined in the homeostasis condi-

tion in a high-throughput way. In this way, it will be possible to determine the behavior of a specific

cell type through multiple experimental sets without re-clustering whenever new data is acquired. A

crucial element that allows this approach is also represented by the ImageStreamX Mark II system

that provides highly reproducible and comparable images of cells coming from different experi-

ments and acquired at different days, introducing much less variability than standard light or elec-

tron microscopy.

For our pipeline, then, a CNN (LeCun et al., 1989) based on the architecture of DenseNet

(Huang et al., 2017) was deployed to (1) use, as training set, images and clusters obtained from a

first group of samples (e.g., homeostasis conditions, naı̈ve cells, or WT samples) analyzed in an unbi-

ased way by de novo clustering and (2) assign new cell images acquired through ImageStreamX

Mark II system to their respective classes. As proof of concept, we used the clusters identified for P.

canaliculata hemocytes in homeostasis condition with the first part of the pipeline (Figure 4A) for

training and setting up the CNN classifier. This approach would define the classes based on the

unbiased de novo clustering of thousands of cells with no need for formal annotation or previous

knowledge about cell types and tissue composition. To prepare a dataset for training the classifier,

we first combined clusters that strongly overlapped with one another in terms of morphological

characteristics (e.g., doublets and dead cells) to increase accuracy of the classifier (Figure 6A). We

used 80% of the cells obtained in the original P. canaliculata dataset together with their cluster IDs

to train the classifier through over 25,000 iterations. After each iteration, we tested the training with

10% of the original dataset and determined the relative accuracy by scoring numbers of cells whose

cluster ID assigned by the classifier matched the original cluster ID (Figure 6B, C). The remaining

10% of the original dataset was used to calculate the precision of the trained classifier. Clusters with

higher support numbers obtained higher precision scores. The weighted average precision score (f1-

score, precision average score across clusters controlling for support numbers) of 0.75 is relatively

high considering the complexity of the phenotype (brightfield [BF], darkfield, and Draq5 images)

(Figure 6D) and comparable to other studies using ML for cell classification (Blasi et al., 2016). The

true probability match for each individual cell (probability for each cell that the class assigned by the

classifier would match the original cluster ID) demonstrated that lower true probability matches

occurred where clusters strongly overlapped or where cell phenotypes are intermediate between

clusters, providing an additional layer of information about our dataset (Figure 6D).

To test the efficiency of this pipeline, we extracted all the images belonging to the two clusters

identified in the phagocytosis assay as cluster-containing phagocytes and determined to which naı̈ve

cell type they correspond using the CNN classifier and only the BF, SSC, and Draq5 channels (i.e.,

DHR and labeled bacteria signals were not used). We found that 59.4, 6.2, and 9.2% of the phago-

cytes belonged to cluster Pc1_CT, Pc6_CT, and Pc7_CT, respectively (Figure 6E), where CT stands

for classifier training. These results confirmed a previously published result that used classical mor-

phological staining and manual annotation to conclude that the hemocytes able to phagocytize were

primarily Group II hemocytes (Accorsi et al., 2013). Only 8% of the phagocytes were clustered in

the Group I hemocytes, here represented by clusters Pc2_CT, Pc3_CT, and Pc4_CT, while the

remaining 17.2% were assigned by the CNN to the cluster Pc5_CT, constituted by doublets and

dead cells (Figure 6E). This result can be explained by the fact that in vitro phagocytosis triggers

microaggregate formation (hemocyte-hemocyte adhesion) in invertebrate hemocytes that resembles

the nodule formation observed in vivo (Walters, 1970). It is important to observe how this analysis

allowed us to assign phagocytes to cell types using the annotation already performed in Figure 4A

(de novo clustering of hemocytes in homeostasis condition) without the need to reannotate the FDL

obtained during the phagocytosis assay (Figure 5A).

To test the adaptability of the trained CNN to new datasets, we collected hemocytes from male

apple snail specimens, stained the cells with Draq5, and recorded BF, SSC, and nuclei images from

10,000 cells on the ImageStreamX Mark II as previously described. We extracted the images of the

cells and used the trained CNN classifier to determine the relative abundance of hemocytes col-

lected from male snails in the seven classes of the classifier (Figure 6F). First, we visually compared
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Figure 6. Classifier training and use of convolutional neural network (CNN) for integrating multiple experiments. (A) The CNN portion of Image3C

allows the integration of multiple experiments and the analysis of additional samples assigning new events to already defined and annotated clusters

without manual and potentially biased matching of clusters by the user. Images of cells obtained from homeostasis, naı̈ve, or WT samples and already

de novo clustered in an unbiased way by Image3C are exported as TIFF files together with their cluster IDs. P. canaliculata hemocytes in homeostasis

Figure 6 continued on next page
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the female hemocytes clustered by the de novo clustering with the male hemocytes that were run on

the ImageStreamX Mark II and were assigned to a class by the classifier (Figure 6F). This comparison

shows that the female and male hemocytes belonging to the same cluster are morphologically

extremely similar and different from the hemocytes assigned to other clusters (Figure 6F). This dem-

onstrates that the CNN classifier can be trained with a first group of samples and then it can success-

fully analyze new datasets acquired later on. The comparison between female and male hemocyte

compositions revealed that the clusters significantly different in terms of relative abundance are

Pc1_CT and Pc7_CT (Group II agranular large hemocytes) and Pc6_CT (Group II granular large

hemocytes) (Figure 6F). Significantly, prior studies detected no differences between females and

males hemocytes composition through manual classification and counting using a classical morpho-

logical approach (Accorsi et al., 2013). The reduced user bias and high-throughput analysis pre-

sented here, in contrast, allowed us to determine that one of the two subpopulations of agranular

large hemocytes was significantly more abundant in the female animals (Pc1_CT: 53 and 38% in

females and males, respectively) while the other agranular (Pc7_CT) as well as the granular large

hemocytes (Pc6_CT) was significantly more abundant in the male animals (Pc7_CT: 14 and 20% in

females and males, respectively; Pc6_CT: 6 and 10% in females and males, respectively) (Figure 6F).

While the biological significance of this observation is not going to be further investigated in this

paper, the discovery highlights the power of Image3C analysis compared to traditional methods for

determining and quantifying the composition of cell populations. These experiments demonstrate

that Image3C, in combination with the presented convolutional classifier, can analyze large experi-

mental datasets and identify significances with small effect sizes. Importantly, Image3C analysis is

independent of observer biases and does not require prior knowledge about expected tissue com-

position or the expected effect of treatment on cell morphology.

Conclusion
We have developed a powerful new method to analyze at single-cell resolution the composition of

any cell population obtained from research organisms for which species-specific reagents (such as

fluorescently tagged antibodies), biomarkers, single-cell atlases, or a high-quality genome for a

scRNA-seq approach are not available. We demonstrated that Image3C can identify different cell

populations based on morphology and/or function through de novo clustering and highlight impor-

tant changes in cell type abundance and cell population composition caused by experimental or nat-

ural perturbation (sex, treatment, experimental protocol). Image3C does not require, at any point,

prior knowledge about the tissue composition or cell type-specific markers, although, if available,

they can be included and used. Furthermore, in combination with the CNN classifier trained on these

clusters, we demonstrate that Image3C is capable of bias-free and high-throughput analysis of large

experimental datasets making it possible to compare a specific cell type behavior or population

Figure 6 continued

condition obtained from female apple snails (35,000 images) is the dataset used for training the CNN classifier. Before the training, clusters with cells

with strongly overlapping morphology were merged (Pc1 was merged with Pc9 and named Pc1_CT; Pc5 was merged with Pc8 and named Pc5_CT). CT:

classifier training. (B) The training was performed on 80% of the exported images, and the testing during the training was performed on 10% of the

exported images. Relative accuracy was recorded every 100 iterations for 25,000 iterations total. (C) Loss calculation was recorded every 100 iterations

for 25,000 iterations total and indicates that the training set is not memorized. (D) The True match probability (probability that trained classifier-

assigned cluster matches original cluster ID) is given for each cell of the remaining 10% of the original exported images. The detailed precision score

for each cluster together with the weighted average (correcting for support) is reported in the table. (E) The CNN classifier allows for integrating

experiments, such as phagocytosis assay and morphological assay, with minimal probability of introducing errors because of lack of biomarkers. The

plot shows the distribution of the cells belonging to the snail professional phagocytes clusters (Pc5_P and Pc17_P from Figure 5, phagocytosis assay)

among the clusters defined by morphological features using homeostasis conditions. (F) The CNN classifier allows also for the analysis of new samples

obtained from the same species and the same tissue used for the training. The new events obtained running male P. canaliculata hemocytes are

assigned to clusters defined by the de novo clustering step, allowing for comparison between samples (females vs. males) and statistical analysis for

cluster relative abundance differences. The box plot shows the comparison of the hemocyte population composition between females and males

(n = 5). *** are clusters with abundances robustly significantly different between female and male animals. * are clusters with p-value lower than 0.05,

but whose abundances are no more significantly different after the correction for multiple testing (false discovery rate [FDR]). (G) Representative cell

images for each cluster belonging to female and male hemocytes dataset allow to visually compare the cells used to train the classifier (female) with

cells assigned by the classifier and coming from a new set of samples (males). Brightfield (BF), side scatter signal (SSC), and Draq5 (nuclear staining)

signal are shown in individual channels.
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composition across multiple experiments. Image3C is extremely versatile and can be applied to any

tissue or cell population of interest and is adaptable to a variety of experimental designs. Although

Image3C was developed in response to the need of analyzing cell composition of tissues in emerg-

ing research organisms, the Image3C tool could be potentially used also to add to transcriptomic

dataset an additional and complementary layer of information based on cell morphology. Given the

recent advancement in image-based flow cytometry that enables image capturing together with cell

sorting (Nitta et al., 2018), a scRNA-seq approach in combination with the Image3C pipeline would

enable simultaneous analysis of both the morphological/phenotypic and genetic properties of a cell

population at single-cell resolution.

Materials and methods

Key resources table

Reagent type
(species)
or resource Designation

Source or
reference Identifiers

Additional
information

Strain, strain
background (Staphylococcus aureus)

Wood strain
without protein A

Thermo
Fisher Scientific

S2859

Biological sample
(Danio rerio)

Whole kidney
marrow

Stowers Institute
for Medical
Research

Wild type,
adult females

Freshly isolated
from Danio rerio

Biological
sample
(Pomacea
canaliculata)

Hemolymph Stowers Institute
for Medical
Research

Wild type,
adult
females and
males

Freshly isolated
from
Pomacea canaliculata

Chemical
compound,
drug

Dihydrorhodamine-
123 (DHR)

Thermo
Fisher Scientific

D23806 5 mM

Software,
algorithm

IDEAS Amnis
Millipore Sigma

Version 6.2

Software,
algorithm

R code This paper https://github.com/
stowersinstitute/
LIBPB-1390-Image3C
(Box, 2021)

Software,
algorithm

VorteX clustering
environment

https://github.com/
nolanlab/vortex/
releases

Software,
algorithm

FSC Express De Novo Software Image or Plus
configurations -
Version 7

Software,
algorithm

Python script This paper https://github.
com/stowersinstitute/
LIBPB-1390-Image3C

Other Draq5 Thermo Fisher
Scientific

62251 5 mM

Other CellTrace Violet (CTV) Thermo Fisher
Scientific

C34571 5 mM

Collection of zebrafish WKM
Twelve-month-old, wild type, female, adult zebrafish were euthanized with cold 500 mg/L MS-222

solution for 5 min. WKM was dissected as previously described (Traver et al., 2003) and transferred

to 40 mm cell strainer with 1 mL of L-15 media containing 10% water, 10 mM HEPES, and 20 U/mL

Heparin (L-90). Cells were gently forced through the cell strainer with the plunger of a 3 mL dispos-

able syringe. The strainer was washed once with 1 mL of L-90 and the resulting single cell suspension

was centrifuged at 500 rcf at 4 ˚C for 5 min. The supernatant was discarded, and the cells were resus-

pended in 1 mL of L-90 containing 5% fetal calf serum (FCS), 4 mM L-glutamine, and 10,000 U of

both penicillin and streptomycin (L-90 media). The cells were counted in a 1:20 dilution on the EC-

800 flow cytometer (Sony) using scatter properties.
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Collection of apple snail hemocytes
Specimens of the apple snail P. canaliculata (Mollusca, Gastropoda, Ampullariidae) were maintained

and bred in captivity, in a water recirculation system filled with artificial freshwater (2.7 mM CaCl2,

0.8 mM MgSO4, 1.8 mM NaHCO3, 1:5000 Remineralize Balanced Minerals in Liquid Form [Brightwell

Aquatics]). The snails were fed twice a week and kept in a 10:14 light:dark cycle. Wild-type adult

snails, 7–9 months old and with a shell size of 45–60 mm, were starved for 5 days before the hemo-

lymph collection (Accorsi et al., 2013). If not differently specified, female snails were used for the

experiments. The withdrawal was performed by applying a pressure on the operculum and dropping

the hemolymph directly into an ice-cold tube. The hemolymph collected from different animals was

not pooled together. The hemolymph was immediately diluted 1:4 in Bge medium + 10% fetal

bovine serum (FBS) and then centrifuged at 500 rcf for 5 min. The pellet of cells was resuspended in

100 mL of Bge medium + 10% FBS. The Bge medium (also known as Biomphalaria glabrata embry-

onic cell line medium) is constituted by 22% (v/v) Schneider’s Drosophila Medium, 4.5 g/L lactalbu-

min hydrolysate, 1.3 g/L galactose, 0.02 g/L gentamycin in MilliQ water, pH 7.0.

Experiment 1: morphology assay in homeostasis conditions
WKM cells from zebrafish were isolated as described before and plated at 4 � 105 cells/well in a 96-

well plate in 200 mL of L-90 media and incubated for 3 h at room temperature. Cells were stained

with 5 mM Draq5 (Thermo Fisher Scientific) for 10 min and subsequently run on the ImageStreamX

Mark II (Amnis Millipore Sigma), where 10,000 nucleated and focused events were recorded for each

sample (n = 8). Erythrocytes were outgated to enrich for immune-relevant cells and prevent overclus-

tering in the subsequent analysis. The latter is due to the fact that fish erythrocytes are nucleated

and their biconcave shape results in different morphological feature values only depending on their

orientation during image acquisition.

The P. canaliculata hemocytes were stained with 5 mM Draq5 for 10 min, moved to ice, and sub-

sequently run on the ImageStreamX Mark II, where 10,000 nucleated and focused events were

imaged for each sample (n = 5).

Experiment 2: phagocytosis assay
Staphylococcus aureus (Thermo Fisher Scientific) were resuspended in PBS at the final concentration

of 100 mg/mL and incubated with 5 mM CTV (Thermo Fisher Scientific) for 20 min. Labeled bacteria

were centrifuged and resuspended in PBS for three times to remove unbound dye and then stored

at �20 ˚C as single-use aliquots. Cells, obtained from fish WKM or snail hemolymph and in a single

cell suspension, were plated in a 96-well plate at a concentration of 4 � 105 cells/well in 200 mL of

medium and incubated with 2 � 107 CTV-coupled S. aureus/well for 3 h at room temperature. As

control, the phagocytosis was inhibited incubating the cells + CTV-S. aureus mix either on ice (for

both species) or with 0.08 mg/mL CCB for zebrafish cells or with 30 mM EDTA and 10 mM HEPES

for apple snail cells (Cueto et al., 2015; Li et al., 2006). After 2 h and 30 min, we added 5 mM DHR

(Thermo Fisher Scientific) to the cell suspension to stain cells positive for ROS production. To control

for this treatment with DHR, we incubated one aliquot of cells with 10 ng/mL phorbol 12-myristate

13-acetate (PMA) to induce ROS production. At 2 h and 50 min since the beginning of incubation

with CTV-S. aureus, all the samples were stained with 5 mM Draq5 for 10 min. After 3 h incubation

with bacteria, cells were moved and stored on ice and subsequently run on the ImageStreamX Mark

II, where 10,000 nucleated and focused events were imaged for each sample (at least n = 4 snail and

n = 6 fish) at a speed of 1,000 images/s.

Data collection on ImageStreamX Mark II
Following cell preparation, data were acquired from each sample on the ImageStreamX Mark II at

60� magnification, slow/sensitive flow speed (1,000 images/s), using 633, 488, and 405 nm laser

excitation. BF was acquired on channels 1 and 9, DHR (488 nm excitation) on channel 2, CTV-S.

aureus (405 nm excitation) on channel 7, Draq5 (633 nm excitation) on channel 11, and SSC was

acquired on channel 6. Single-color controls were also acquired for each fluorescent channel to allow

for fluorescence spillover correction.
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Data analysis and de novo cluster identification
An interactive map representing the pipeline, the software used, the format of the exported files,

and an approximation of time required for running the individual steps is provided in Figure 1—fig-

ure supplement 1. Raw images from the ImageStreamX Mark II system (RIF files, a type of modified

16-bit TIFF file) were compensated (spillover and other corrections applied), background was sub-

tracted, and features were calculated using IDEAS 6.2 software (Amnis Millipore, free for download

once an Amnis user account is created). The resulting compensated image files (CIF files) were used

to quantify features for all cells and samples. Supplementary files 1 and 2 report the list of features

used for each organism and for each experiment and their description. These per-object feature

matrices (DAF files) were then exported from IDEAS into FCS files. Exported FCS files were proc-

essed in R (R Development Core Team, 2014). In order to trim redundant features that contribute

noise but little new information, Spearman’s correlation values for each pair of features were calcu-

lated using all events of a representative sample and one of the features of the pair was trimmed

when correlation between the two was �0.85 (Figure 2—figure supplement 1; Caicedo et al.,

2017). The Spearman’s correlation of the mean values of remaining features per each sample

was then used to identify outliers among sample replicates. Samples with correlation of mean fea-

ture values below 0.85 with the set were discarded (Figure 2—figure supplement 2, Figure 3—fig-

ure supplement 1, Figure 4—figure supplement 1, Figure 5—figure supplement 1), although in

general the replicates were consistent. Also, while morphological features did not require any trans-

formation or normalization, fluorescence intensity features were transformed using the estimateLo-

gicle() and transform() functions from the R flowCore package (Ellis et al., 2018; Hahne et al., 2009)

to improve homoscedasticity (homogeneity of variance) of distributions. DNA intensity features were

also normalized to align all 2N and 4N peak positions and remove intensity drift between samples

(Figure 2—figure supplement 3) using the gaussNorm() function from flowStats package

(Hahne et al., 2018). The processed data was exported from R (R Development Core Team, 2014)

using writeflowSet() function in flowCore package (Ellis et al., 2018; Hahne et al., 2009) as CSV or

FCS files, depending on downstream needs for the file output.

These processed data files were then imported into the VorteX clustering environment for X-Shift

k-nearest-neighbor clustering (free to install) (Samusik et al., 2016). X-Shift was selected as a cluster-

ing method for Image3C based on a previously published analysis and comparison of clustering

methods (Weber and Robinson, 2016). From that work, we determined that X-shift represents an

optimal trade-off: identifying low-frequency populations, accurately identifying ‘true’ clusters (i.e., F1

scores), not requiring for a priori knowledge of the number of clusters (populations) and having rea-

sonable runtimes (due to hardware CPU requirements). We also did an early comparison of X-shift

with K-means (data not shown) and determined that K-means was insufficient for our purposes as

known cell populations were not well represented by clusters, and we did not want to specify the

number of expected clusters into the method’s input parameters since this would not be known in

experimental use. During the import into VorteX, all features were scaled to 1 SD to equalize the

contribution of features towards clustering. Clustering was performed in VorteX testing a range of k

values (typically from 5 to 150), choosing a final k value using the ‘find elbow point for cluster num-

ber’ function in VorteX and confirming visually that over- or underclustering did not occur. FDL

graphs of a subset of cells obtained from each set of samples were also generated in VorteX, and

cell coordinates in the resultant 2D space were exported along with graphML representation of the

FDL graph. Finally, tabular data (CSV files) was exported from VorteX including a master table of

every cell event with its cluster assignment and original sample ID, as well as a table of the average

feature values for each cluster and counts of cells per cluster and per sample.

Clustering results were further analyzed and plotted in R (R Development Core Team, 2014) by

merging all cell events and feature values with cluster assignments and X/Y coordinates for FDL

graph. Using this merged data and the graphML file exported from VorteX, new FDL graphs were

created for each treatment condition using the igraph package (Csardi and Nepusz, 2006) in R

(R Development Core Team, 2014). Statistical analysis of differences in cell counts per cluster by

condition was performed using negative binomial regression of cell counts per cluster, plots of statis-

tic results and other results were generated, and CSV files containing cell ID, sample ID, feature

values, and X/Y coordinates in FDL graph were exported for each sample. The subsequent use of

FCS Express Plus version 6 (DeNovo software, free alternative are mentioned later in the text)
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allowed visualization of cell images using DAF/CIF files by cluster and customized subsets of the FDL

graphs.

DAF files were opened in FCS Express Plus software, and the ‘R add parameters’ transformation

feature with a custom script was used to merge the clustering data saved in the CSV files generated

above with both DAF and CIF files (feature values and image sets, respectively). FCS Express Plus

was utilized at this stage of work because it is the only platform currently available that works with

Amnis DAF and CIF files while also running transformation processes driven by R scripting. ImageJ

Bio-Formats allows reading images from DAF and CIF files, but we got pixels with a value much

higher than expected, probably due to a bug that has not been fixed yet. This allowed to visualize

image galleries of cells within each cluster and gate by features of interest on 2D plots (more tradi-

tional flow cytometry analysis) for exploring the clustering results and identifying clusters and popu-

lations of interest. FCS Express Plus is a proprietary software, but similar results can be obtained

with IDEAS software where a text file with cluster IDs for each image event can be imported and the

cluster information can be matched to the event images.

The full complement of R packages used includes flowCore (Ellis et al., 2018; Hahne et al.,

2009), flowStats (Hahne et al., 2018), igraph (Csardi and Nepusz, 2006), ggcyto (Jiang, 2015),

ggridges (Wilke, 2018), ggplot2 (Wickham, 2016), stringr (Wickham, 2010), hmisc (Harrell and

Dupont, 2019), and caret (Kuhn, 2008). Figure 1—figure supplement 1 can be used as an interac-

tive map of Image3C pipeline, where, upon clicking on the different portions of the pipeline, the

users will be automatically directed to the corresponding sections of our GitHub repository. The

GitHub repository at https://github.com/stowersinstitute/LIBPB-1390-Image3C reports a detailed

description of all these processing steps and includes sample scripts, workflow files, and example

datasets and tutorials.

Setup and use of a CNN classifier
Once the clusters were defined with the previously described de novo clustering analysis, we used a

CNN (LeCun et al., 1989) based on the architecture of DenseNet (Huang et al., 2017) for image

classification. Out of all the events captured with the ImageStreamX Mark II system, we selected only

single nucleated objects applying gates on area vs. aspect ratio plot and Draq5 intensity plot to

achieve this selection, respectively. For these objects, we exported 16-bit TIFF images (one channel

per fluorescence/BF image ‘color’) using IDEAS 6.2 software.

Because images from the ImageStreamX Mark II system have nonuniform sizes, each image was

cropped or padded to 32 � 32 pixels using NumPy indexing (van der Walt et al., 2011) in a Python

script. The CNN consists of three dense blocks that transition from three-channel image input of

32 � 32 � 3 to a final size of 4 � 4 � 87 with 87 feature maps. A dense block includes three convolu-

tion layers, each followed by leaky ReLU activation. The last step of the block is a strided convolution

used to down-sample the width and height of the feature maps by a factor of 2. The final layer of

the CNN flattens the 4 � 4 � 87 array into a 1D vector of length 1392 and is fully connected to the

output layer, that is, a 1D vector with a length of the number of classes for prediction. The CNN

used softmax cross-entropy for the loss function with L2 regularization, and the Adam optimizer

(Kingma and Ba, 2014) was used to minimize the loss function. The CNN was implemented in

Python using the TensorFlow platform (Abadi et al., 2015) and the SciPy ecosystem (Oliphant, 2006;

Oliphant, 2007; Pedregosa et al., 2011).

The CNN was used to train a classifier using over 35,000 images of P. canaliculata hemolymph

cell types in homeostasis condition acquired with the ImageStreamX Mark II system. The event

images were randomly split in 80% for training, 10% for testing during training, and 10% for final val-

idation. The first 80% of the images were used together with their cluster IDs obtained by the de

novo clustering to train the classifier. The learning rate for the Adam optimizer was set to 0.0006

with a decaying learning rate starting at 0.001 and decreasing by 1% each step. The training pro-

ceeded for 25,000 iterations with a size of 256 randomly selected images for each iteration. After

each iteration, 10% of the cells of the original P. canaliculata dataset was used to test the classifier.

The loss and accuracy of the CNN were recorded after every 100 iterations to monitor the perfor-

mance. The CNN loss was defined by the softmax of the cross-entropy (Dahal, 2017) between the

final output and the one-hot-encoded image labels. To avoid the CNN memorizing the training set,

L2 regularization was applied to the weights. The training and test sets follow the same accuracy
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and loss trends over all iterations, indicating the training set is not memorized and can generalize to

predict the test set.

The finally trained classifier was tested on the remaining 10% of images that were completely

new for the CNN. The trained model was saved for future use, so new images can be inferred by the

network to predict cell types. The inference is very fast because only one forward pass is made

through the network and no backpropagation occurs. The result of the inference is a vector with

length equal to the number of cell type classes. Each element of the vector will be the probability of

the cell belonging to the corresponding class; the sum of the vector must be 1. Inferring a complete

experiment will provide a probability vector for each image; the list of probability vectors can be

saved as CSV file. For new images, the inference results will need to be examined to ensure the pre-

dictions are reliable. A large majority of the probability vectors should have a maximum greater than

0.5, and a subset of the images should be visually inspected to verify proper class assignment.

The interactive map of Image3C pipeline (Figure 1—figure supplement 1) includes also the train-

ing and the use of the CNN. The GitHub repository at https://github.com/stowersinstitute/LIBPB-

1390-Image3C reports a detailed description of all these processing steps, includes sample scripts,

workflow files, and example datasets and tutorials and can be easily accessed by clicking on the right

side of the Image3C interactive map (Figure 1—figure supplement 1).

Statistical analysis
Negative binomial regression was performed on tables of cell counts per cluster and per sample and

plots were generated using R (R Development Core Team, 2014) with the edgeR package

(Robinson et al., 2010), which was developed for RNA-seq analysis, but includes generally applica-

ble and user-friendly wrappers for regression, modeling analysis, and plotting of results. For the

comparison of cellular hemolymph composition between females and males of P. canaliculata, a

one-way ANOVA with subsequent FDR (Benjamini–Hochberg, correction for multiple testing) was

used.
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. Supplementary file 2. Features used for the phagocytosis assay. Names and descriptions of the fea-

tures quantified by IDEAS software and used for clustering events based on cell morphology and

function in the phagocytosis experiment. BF: brightfield; CI: cell intrinsic; CF: cell function.

. Supplementary file 3. Cell cluster properties. Cell cluster properties (e.g., cell numbers per cluster,

cell features used for clustering, feature values for each cluster) for zebrafish whole kidney

marrow (WKM) morphology and phagocytosis assay and for P. canaliculata hemocyte morphology

and phagocytosis assay.

. Supplementary file 4. Cell gallery for zebrafish whole kidney marrow (WKM) in homeostasis condi-

tion. Representative cell images belonging to each individual cluster identified by Image3C for

zebrafish WKM in homeostasis condition are shown. BF: brightfield; SSC: side scatter signal; Draq5:

nuclear staining. Merge represents the overlay of BF, SSC, and Draq5.

. Supplementary file 5. Phagocytosis vs. phagocytosis inhibited with CCB on zebrafish whole kidney

marrow (WKM). Results of negative binomial regression analysis comparing cluster relative
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abundance between phagocytosis samples (CTV-S. aureus) and phagocytosis inhibited with CCB

samples (CTV-S. aureus + CCB) in the zebrafish phagocytosis experiment. FC: fold change; CPM:

count per million; LR: likelihood ratio; FDR: false discovery rate. Relative graph is reported in

Figure 3B.

. Supplementary file 6. Phagocytosis vs. phagocytosis inhibited with ice on zebrafish whole kidney

marrow (WKM). Results of negative binomial regression analysis comparing cluster relative abun-

dance between phagocytosis samples (CTV-S. aureus) and phagocytosis inhibited with ice samples

(CTV-S. aureus + Ice) in the zebrafish phagocytosis experiment. FC: fold change; CPM: count per

million; LR: likelihood ratio; FDR: false discovery rate. Relative graph is reported in Figure 3—figure

supplement 2.

. Supplementary file 7. Cell gallery for zebrafish whole kidney marrow (WKM) after phagocytosis

assay. Representative cell images belonging to each individual cluster identified by Image3C for

zebrafish WKM after phagocytosis assay are shown. BF: brightfield; DHR: fluorescent reactive oxy-

gen species indicator; SSC: side scatter signal; Bac: CTV signal (S. aureus labeling); Draq5: nuclear

staining. Merge represents the overlay of DHR, Bac, and Draq5.

. Supplementary file 8. Cell gallery for P. canaliculata hemocytes in homeostasis condition. Repre-

sentative cell images belonging to each individual cluster identified by Image3C for snail hemocytes

in homeostasis condition are shown. Ch01 is brightfield, Ch06 is side scatter signal, and

Ch11 is Draq5 (nuclear staining). Merge represents the overlay of Ch01, Ch06, and Ch11.

. Supplementary file 9. Phagocytosis vs. phagocytosis inhibited with EDTA on P. canaliculata hemo-

cytes. Results of negative binomial regression analysis comparing cluster relative abundance

between phagocytosis samples (CTV-S. aureus) and phagocytosis inhibited with EDTA samples

(CTV-S. aureus + EDTA) in the apple snail P. canaliculata phagocytosis experiment. FC: fold change;

CPM: count per million; LR: likelihood ratio; FDR: false discovery rate. Relative graph is reported in

Figure 5B.

. Supplementary file 10. Phagocytosis vs. phagocytosis inhibited with ice on P. canaliculata hemo-

cytes. Results of negative binomial regression analysis comparing cluster relative abundance

between phagocytosis samples (CTV-S. aureus) and phagocytosis inhibited with ice samples (CTV-S.

aureus + Ice) in the apple snail P. canaliculata phagocytosis experiment. FC: fold change; CPM:

count per million; LR: likelihood ratio; FDR: false discovery rate. Relative graph is reported in Fig-

ure 5—figure supplement 2.

. Supplementary file 11. Cell gallery for P. canaliculata hemocytes after phagocytosis assay. Repre-

sentative cell images belonging to each individual cluster identified by Image3C for snail hemocytes

after phagocytosis assay are shown. Ch01 is brightfield, Ch02 is DHR signal (reactive oxygen species

indicator), Ch06 is side scatter signal, Ch07 is CTV signal (S. aureus labeling), and Ch11 is Draq5

(nuclear staining). Merge represents the overlay of Ch02, Ch06, Ch07, and Ch11.

. Transparent reporting form

Data availability

All original data underlying this manuscript can be accessed from the Stowers Original Data Reposi-

tory at http://www.stowers.org/research/publications/libpb-1390. Image3C code and description are

freely available at the GitHub repository https://github.com/stowersinstitute/LIBPB-1390-Image3C.
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