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Abstract— Thanks to the development of sensor networks and
information technology, data-driven fault detection and diagno-
sis (FDD) is getting more and more popular with rich data. In the
building FDD field, mature supervised learning algorithms and
strategies have been applied to detect and diagnose known faults.
However, it is out of the question to collect labeled training data
for every possible fault. Thus, there is a necessity to study FDD
when the training data for some faults are unavailable. To the
authors’ best knowledge, few works have reported how to identify
“unseen faults.” In this paper, authors propose a novel expert
knowledge-based unseen fault identification (EK-UFI) method
to identify unseen faults by employing the similarities between
known faults and unknown faults. The similarity is captured
by incorporating essential expert knowledge that is encoded in
the fault gene matrix. The fault gene is integrated with a latent
incorporation matrix that transfers knowledge from known faults
to unseen faults. With application to a real system, the proposed
method is proven to be effective in identifying various building
unknown faults with a high accuracy.

Note to Practitioners— FDD is of great importance for saving
energy and improving occupancy comfort levels and building
safety levels. Identifying unseen faults in real application is chal-
lenging since: 1) building faults are complicated and confusing
while well-labeled fault data is rare; 2) experimental fault data
collected in laboratory test beds cannot be directly used as
judgment criteria for real buildings; and 3) it is impossible to
measure every possible fault ahead of time. Although supervised
learning methods have been successfully applied in existing works
to solve the building FDD, they could not attack the UFI problem.
In this paper, a novel EK-UFI method is proposed to identify
unseen faults by employing the similarities between known faults
and unknown faults. Experimental results show that the proposed
method is essential.

Index Terms— Air handling unit (AHU), heating, ventilation,
and air conditioning (HVAC), smart building, unseen fault
identification (UFI).
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I. INTRODUCTION

BUILDING energy consumption contributes to more than
40% of the total energy usage worldwide, and most of

that is due to heating, ventilation, and air conditioning (HVAC)
systems [1], [2]. A large part of this energy is wasted because
of poor maintenance, degradation, and improperly controlled
equipment. Therefore, in terms of energy savings, automated
building fault detection and diagnosis (FDD) is attracting more
and more attention [3], [4].

Despite the miscellaneous FDD methods, faults in the real
application are complicated and confusing [5], [6]. For exam-
ple, faulty valves and dampers in air handling unit (AHU) are
difficult to identify since the increased cooling coil entering air
temperature caused by a leaky hot water valve would be com-
pensated for by the increased mechanical cooling. An incorrect
mixed air temperature due to excessive or inadequate outside
air (damper fault) is usually compensated for by the increased
cooling or heating load. Under those situations, faults could
be unnoticed for years since the indoor air quality (IAQ) is
generally not affected. To identify them, FDD strategies should
be designed with capabilities to monitor the inner connections
among different components. Compared with the traditional
model-based methods [7]–[9], data-driven FDD method is
becoming more and more popular due to its superiority in
revealing the underlying patterns and relationships [10]–[12].
As a result, a wide range of pattern classification techniques
have been explored as data-driven methods in the build-
ing FDD field, including multivariate regression models [13],
Bayes classifiers [14], neural networks (NNs) [15], lin-
ear discriminant analysis (LDA) [16], Gaussian mixture
models [17], support vector data description [18], [19], sup-
port vector machines [20], [21], and tree-structured learning
method [22], [23].

It is shown that supervised data-driven FDD is quite popular
and effective in terms of both diagnosis accuracy and effi-
ciency. However, these approaches cannot tackle the challenge
that new fault classes (unseen faults) may appear after the
training stage. Generally speaking, supervised FDD fades
when the real application considers the following factors.

1) The building management system (BMS) merely stores
normal data (or unlabelled fault data) while well-labeled
fault data are rare.

2) Experiments are possible in laboratory test-beds, how-
ever, available data sets are limited in terms of the
sample size and a number of fault types.

3) As common sense, there does not exist two identical
buildings in the world. The well-labeled fault data
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obtained in one building cannot be directly used as
judgment criteria for another one.

4) It is impossible to measure every possible fault ahead of
time.

Taking those factors into consideration, in this paper,
authors propose to identify unseen building faults whose
labeled data are not available in the training process. Identi-
fying unseen faults rises the problem about how to recognize
new concepts on the basis of known categories [24]–[26]. With
analogy to how human beings identify a new object, a com-
pletely new object could be recognised by a human via just
reading a high-level description of it [27]. Similarities between
the description of the new object and previously learned
concepts are leveraged as the hidden knowledge that can help
to deepen human beings’ understanding of the new object.
To achieve this, the following challenging points should be
addressed. First, a new learning framework should be proposed
since traditional supervised classification is not applicable due
to lacking of labeled data, while pure unsupervised methods
cannot identify fault categories. Second, high-level description
about building faults needs to be explored to relate unseen
faults with fault classes that are previously learned in the
training process. Third, it requires careful mathematical design
to transfer the extracted high-level knowledge and apply it to
identify unseen categories.

In the literature, researchers have paid much attention
to deal with the aforementioned situations (limitation of
labeled data). Traditionally, when only normal data are avail-
able, unsupervised methods such as kernel principal com-
ponent analysis [28] and Gaussian mixture model [29], [30]
are the popular solutions for anomalous event detection
while the causes and anomaly types are not well revealed.
Keigo et al. [31] proposed a semisupervised algorithm to
identify building energy faults with limited labeled data. Simi-
lar semisupervised solutions can be found in [32]–[34], where
noise accumulation of the unlabelled data may hamper the
identification performance. An unknown input observer was
utilized in [35] to decouple unknown inputs from residuals
which aims at improving the robustness of isolating known
faults. Li et al. [16] proposed to use the fault range confir-
mation mechanism in their FDD strategy to make it aware of
unknown faults. The aforementioned existing methods could
detect new anomalous conditions with knowledge about the
normal condition and known faults, however, they cannot tell
corresponding fault types.

With the recent development in machine learning field,
besides direct analysis of historical data, strategies that make
use of the expert knowledge which can be transferred from
one category/system/model to another are attracting more and
more attention [27], [36]. Li et al. [22] reported that FDD
performance can be greatly improved by incorporating system
structural information, which is also called expert knowl-
edge, into the classifier. In [37], hybrid minimal structurally
overdetermined (HMSO) sets were designed to capture the
system’s fault feature and solve the fault diagnosis problem
with HMSO selection. Those successful applications reveal
that the system specific expert knowledge which conveys
system structural information is of great importance for FDD

research. In addition, to overcome the shortcoming that sensor
measurements cannot be directly passed from building to
building, universal expert rules are summarized by researchers
and building experts on the basis of field tests in different
buildings [38], [39]. Although rule-based FDD is intuitive and
widely used in nowadays’ HVAC systems, the high false alarm
rate is an obvious defection. Moreover, the basic principal
component analysis (PCA) has been widely utilized to extract
the principal features, which could be leveraged to conduct
fault detection, among multiple sensors [40], [41]. To com-
bine benefits and avoid disadvantages, all the aforementioned
knowledge1 is considered as the expert knowledge in this
paper.

Accordingly, a novel expert knowledge-based unseen fault
identification (EK-UFI) method is proposed to identify unseen
faults by levering information learned from known faults
and expert knowledge and unseen faults. To be specific,
the proposed EK-UFI method includes two parts: training
and inference. In the training part, expert knowledge about
known faults is first described in terms of a numerical matrix.
Here, the matrix of expert knowledge is encoded as the
fault gene matrix since those prior knowledge is always the
same no matter where and when it occurs, just seems like
the Gene of a fault. Then, a latent incorporation matrix
describing the relationship between the known faults and
their fault gene is learned. In the inference part, a similar
relationship is assumed to exist between the unseen fault
and its Gene, and it can be transferred from the known
categories to unknown ones. Thus, the knowledge conveyed
by the fault gene matrix is incorporated into the classifier to
identify unseen fault classes. In contrast to the existing works,
the contributions of this paper are summarized as follows:
1) a novel EK-FDD method is proposed to identify unseen
faults for smart buildings; 2) the proposed method extends the
building FDD research into a boarder field where well-labeled
data are limited; and 3) the proposed method combines
the advantages of rule-based methods and data-driven meth-
ods, which makes the strategy intuitive with mathematical
guarantee.

The remaining part of this paper is arranged as follows.
Section II introduces expert knowledge and formulates the
unseen fault detection problem. Section III shows the math-
ematical formulation of the EK-UFI method. Next, UFI
results by EK-UFI are presented with tests on real-time
data, and the comparison is discussed in Section IV. Finally,
Section V summarizes this paper and suggests possible future
work.

II. EXPERT KNOWLEDGE AND UNSEEN FAULT

IDENTIFICATION FRAMEWORK

A. Unseen Fault Identification Framework

Consider the building FDD problem: given a set of sensor
measurements, annotate it with one label to describe the
building working condition (normal or faulty). As shown
in Fig. 1 (top), the FDD problem is a prediction task whose

1Namely, expert rules, system-specific knowledge and data-driven principal
information which are also described with details in Section II-B.
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Fig. 1. Summary of the proposed EK-UFI framework. At the training stage, expert knowledge Mtr of known faults is incorporated with the training data to
learn the transformation matrix V . At the prediction stage, expert knowledge Mtes of unseen fault is utilized to identify the testing fault.

goal is to learn a function f : X −→ Y from the labeled
training data S = {(xi , yi ), i = 1, . . . , n}. With traditional
prediction methods, the function maps an input xi in the space
of measurements X to an output in the space of training class
labels Y , namely, the predicted label yi is included in the
training label set D = {yi , i = 1, . . . n}. However, identifying
unseen faults means that we have no labeled samples for
the testing fault classes but still wish to predict their labels
(y j � D).

In this paper, authors propose a way to incorporate extracted
expert knowledge (or high-level description about faults) with
feature embedding, which consequently transfers knowledge
from known faults to unseen ones. Summarized from the lit-
erature in Section I, expert knowledge includes but not limited
to expert fuels, system-specific knowledge, and data-driven
pricipal information. In Fig. 1 (bottom), as an example, expert
knowledge for known faults and unseen faults are encoded
by Mtr and Mtes, respectively. Note that expert rules in this
figure are rules taken from the AHU performance assessment
rule (APAR) diagnosis and variable air volume (VAV) box
performance assessment control chart (VPACC) diagnosis. The
APARs and the VPACCs are summarized by the National
Institute of Standards and Technology of America [38]. For
example, high/low/unstable airflow indicates a damper fail-
ure, and high/low zone temperature and high/low discharge
temperature indicate a reheat coil valve failure, and so on.
By incorporating Mtr as a hidden layer in the training process,
a latent incorporation matrix can be learned. It is assumed that
the latent incorporation matrix which relates known training
faults with Mtr can be transferred to relate unseen testing faults

with Mtes [24]–[26]. Thus, with the knowledge transferred by
the expert knowledge Mtes of the unseen fault, a predicted
label vector y ′t is allocated to the testing set x ′t . The proposed
method is derived with details in Section III.

B. Expert Knowledge

In this section, the three kinds of expert knowledge consid-
ered in this paper are introduced.

1) ASHRAE Rule-Based Expert Knowledge: Rule-based
detection and diagnosis is popular due to its simplicity and
intuition [38], [42], [43]. Usually, rules are combinations of
threshold values characterized by some representative vari-
ables. A fault will be detected and diagnosed if those thresh-
old values are surpassed. Thus, FDD rules summarized by
building experts are the first choice of the proposed expert
knowledge-based UFI.

However, the rule-based method has obvious shortcomings.
On one hand, it cannot distinguish similar system perfor-
mances. According to [39], rules are summarized by ASHRAE
experts to identify typical AHU faults under different seasonal
cases. The faulty system performance for a typical AHU is
described by 16 prime variables2 and quantified by comparing
the measurements under faulty and normal conditions. It can
be seen in [39] that some faults are hardly evident merely by
ASHRAE rules since they have almost the same performance

2Note that ASHRAE rules of [39] are summarized as reference fault char-
acteristics for typical AHU systems, while in practice much more variables
should be taken into consideration. Usually, hundreds to thousands of variables
are monitored with threshold rules in active building HVAC systems.
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as normal while they do cause damage to the system and lead
to economical loss. On the other hand, a high false alarm rate
is reported in previous works [38], [42], [43]. Faced with the
frequent false alarms in BMS, managers tend to ignore all
of them, which makes the rule-based FDD actually useless.
What’s worse, it takes lots of effort for experts to summarize
useful rules that are suitable for all types of systems, while
rules are still not perfect enough with individual bias. As a
result, in the next step, other kinds of expert knowledge should
also be incorporated in the fault gene matrix.

2) System-Specific Expert Knowledge: Li et al. [44] pointed
out that not all the measured variables under laboratory
environment are useful and available in real FDD applications.
They proposed to select essential features that optimize FDD
accuracy for each fault. It is reported that the subsets of
features (sensor variables) should be selected to identify dif-
ferent faults. Also, the selected subsets of features are listed in
order of how much they contribute to the FDD. Consequently,
in this paper, authors follow the feature selection idea and
regard the feature selection results as “system-specific expert
knowledge.” To be specific, the five most related features
are screened for each fault based on the feature selection
results of [44], and this type of expert knowledge is encoded
accordingly.

3) Data-Driven Expert Knowledge: Since the PCA is a
common tool for denoising and dimension reduction, Jol-
liffe [45] also apply it to extract the principal components of
the data. This kind of information is regarded as data-driven
expert knowledge, which can be easily obtained. In general,
the projection by PCA is a subspace which is linearly com-
bined from the original variables. Although it captures the
major variant, no practical meaning is added to the principal
components.3 Besides PCA, other pattern extraction methods
include locally linear embedding [46] and partial least squares
according to the data characteristics.

Note that expert knowledge is case specific and not limited
to the aforementioned types. For example, expert rules are
summarized by building experts and ASHRAE researchers in
building fields, while they could be general descriptions of
objects in research domains. The system-specific knowledge
is chosen as the sets of most related features in this paper,
which could be other information such as system structure in
other cases if it helps with the FDD results.

C. Encoding

All the aforementioned types of expert knowledge are
numerically encoded and concatenated in the fault gene matrix.
A simple example for how to encode the expert knowledge
is shown in Fig. 2, where 16 terms of rules, 12 items of
system-specific knowledge, and 5 principal components are
concatenated as the expert knowledge for six fault class
as well as one normal class. According to [39], the expert
rules were summarized according to how much the variable
measurements exit the normal range. Consequently, as shown
in Fig. 2(a), rules for values that are below the normal range

3Since the PCA-processed data are already numerical, there is no need to
encode this type of expert knowledge.

Fig. 2. Example for how to encode the expert knowledge.

are encoded as “1” and “2,” rules for variables within the
normal range are encoded as “3,” and rules for variables that
are above the normal range are encoded as “4” and “5.”
Similarly, as shown in Fig. 2(b), the most related feature is
encoded as “5” and the less related features are encoded with
smaller numbers. If one feature is not included in the five
most related features, it is encoded as “0” in the fault gene
matrix. Note that the selected subset of features (five most
related) might be different but with nonempty intersections.
Thus, in the simple example shown in Fig. 2(b), 12 features
are assumed to be the final selected features for six faults.
As for the data-driven expert knowledge, the five most rated
principal components are regarded as the expert knowledge
items in this paper. Finally, all the aforementioned fault
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gene encodings are concatenated in the fault gene matrices
Mtr and Mtes for training and testing, respectively.

III. FAULT GENE EMBEDDING FOR EK-UFI METHOD

A. Fault Gene Embedding

In this section, we introduce how to incorporate the expert
knowledge from the mathematical aspect. To begin with, given
a set of sensor measurements S = {(xi , yi ), i = 1, . . . , n} with
xi ∈ X = �d×n and yi ∈ Y = �n×1.4 Here, n is the number
of input measurements and d is the measurement dimension.
The prediction objective is to learn a function f : X −→ Y
by minimizing an empirical risk function 1

n

∑n
i=1�(yi , zi =

f (xi)) where we consider 0/1 loss: �(y, z) = 0 if if y = z,
and �(y, z) = 1 otherwise. We consider a general version of
discriminant functions f : X × Y and define the prediction
function f as

f (x;w) = arg max
y∈Y

F (x, y;w) (1)

where w is the model parameter vector of F . As a straight
consequence of the linearity5 of (1), we obtain F(x, y;w) =
〈w,�(x, y)〉. Since the joint embedding function � can
be represented by the tensor product between the input
embedding (training measurements) θ and output embedding
(labels) ϕ, F can be rewritten as

F(x, y;w) = 〈w,�(x, y)〉 = 〈w, θT (x)⊗ ϕ(y)〉 (2)

where θ and ϕ are the embedding functions,6 θ : X → X̃ =
�d×n for inputs, and ϕ : Y → Ỹ = �n×N for outputs (N is
the number of training categories). Note that instead of being
written as a label vector, output embedding ϕ is enlarged to the
dimension of N for expert knowledge incorporation, which is
described in (5). Since �(x, y) is defined as X ×Y : �d×n ×
�n×N →�d×N , vector w in (1) can be reshaped into a d×N
matrix w. Consequently, F can be formulated as a bilinear
form

F(x, y;w) = 〈w,�(x, y)〉 = θT (x)wϕ(y). (3)

Next, assume that we have N training classes,
i.e., C = {ci , i = 1, . . . , N}, and a items of expert
knowledge, i.e., K = {k j , j = 1, . . . , a}. Those expert
knowledge can be used to describe the fault classes with
association measures Mk j ,ci , which associates the j th expert
knowledge item with the i th training class. Thus, those
associations could be encoded into a real-valued matrix
(refer to Sections II-B and II-C for more details), which is
called the fault gene matrix M ∈ �a×N .7 The incorporation
transformation between the expert knowledge and the class
labels is

ϕK(y) = ϕ(y)MT . (4)

4Usually, normal condition is included in the training classes [44].
5 F is generally assumed to be linear in the combined feature embedding

of inputs and outputs.
6Here, embedding functions of X and Y represent the data preprocessing

(normalization and outlier removing [22]) of the training data.
7 M ∈ �a×N indicates that the fault gene matrix includes “a” items of

expert knowledge for N training classes.

In accordance with the definition of joint embedding �(x, y)

�K(x, y) = θT (x)⊗ ϕK(y) (5)

where θ : X → X̃ = �d×n , and ϕK : Y → Ỹ = �n×a .
Consequently, in line with (3) we obtain

FK(x, y;M, v)

= 〈v,�K(x, y)〉 = θT (x)vϕK(y) = θT (x)vMT ϕ(y) (6)

where the weight vector v of FK can be defined as the latent
incorporation matrix that relates the expert knowledge with
the fault type predictor.

Now, let us make a slight detour and take a look at the super-
vised FDD with traditional pattern classification algorithm.
Usually, w in (3) is a weight matrix, which can be learned from
the training samples of known faults and corresponding labels.
In the prediction stage, the predicted label (fault type) yt is
within the given label set {yi , i = 1, . . . , n} for any testing set
xt ∈ �d×nt . Taken in this sense, an unseen fault (x ′t � S) will
not be identified correctly by the traditional classifier. Back to
our work, with the help of fault gene matrix M associations
between labels and expert knowledge are embedded to the
discrimination function in (6). In addition, although formulated
with different embedding forms, the discrimination with X and
Y should be the same, namely,

F(x, y;w) = FK(x, y;M, v). (7)

Thus

w = vMT . (8)

In such a case, we have

F(x, y;M, v) = (vT θ(x))
T
(MT ϕ(y)). (9)

In case that the fault gene matrix is redundant, we make
use of the compatibility function (9). The latent incorporation
matrix v is learned from training examples xi ∈ �d×n with
labels yi ∈ �n×N jointly with given Mtr ∈ �a×N . As a simpler
alternative, it is possible to first try to learn by performing
a singular value decomposition on the w matrix, and then
learn v.

B. Offline Model Training

Based on the formulation in last section, our learning
objective is to find the optimal latent incorporation matrix v
which is calculated from the optimal weight matrix w and the
given fault gene matrix M . Thus, we can still consider w as
the optimization aim for two classes

f (x;w) = arg max
y∈Y

F(x, y;w). (10)

Derived from the formulation of [22] and [23], we define
the multiclass margin of a training data sample (xi , yi ) with
respect to w as

mi (w) = F(xi , yi ;w)−max
y 	=yi

F(xi , y;w). (11)
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Note that the correct classification of (xi , yi ) requires a
positive margin. Thus, the maximum margin principle for clas-
sification can be applied to determine the optimal vector w∗
which leads to the maximum class separation

w∗ = argmax
w:‖w‖=1

min
n∑

i=1

mi (w). (12)

Consider a category dependent cost � (yi , y) for misclas-
sifying yi as y, (12) can be equivalently written as a norm
minimization problem, which is augmented by slack variables
for possible margin violations by outliers. Thus, we obtain the
following L2 regularized soft-margin objective8

min
1

2
‖w‖2 + C

n

n∑

i=1

ξi + λ‖v‖2 (13)

s. t.

⎧
⎪⎪⎨

⎪⎪⎩

ξi ≥ 0

‖vT xi‖2 ≤ B

mi (w) ≥ 1− ξi

�(yi , y)

∀ i (14)

where C is a hyperparameter that tunes the margin loss
penalty, B is used to bound the latent incorporation matrix v to
make it invariant enough along different training distributions.
Note that v is just a partial representative of the universal
connection between faults and fault gene. The more training
sets (known fault types) we have, the more realistic v we
can obtain. More discussion about this point is presented in
Section IV-D.

Next, according to (3) and (11), mi (w) is derived as

mi (w) = 〈w,�(xi , yi )〉 −max
y 	=yi
〈w,�(xi , y)〉

≤ 〈w,�(xi , yi )〉 − 〈w,�(xi , y)〉(∀y 	= yi ). (15)

Letting δ�i (y)
�= �(xi , yi ) − �(xi , y), for ∀i,∀y 	= yi ,

we can get

〈w, δ�i (y)〉 ≥ mi (w) ≥ 1− ξi

�(yi , y)
. (16)

Thus, the second constraint of (14) can be rewritten as

〈w, δ�i (y)〉 − 1+ ξi

�(yi , y)
≥ 0. (17)

The dual formulation of the above-mentioned primal prob-
lem with the Lagrangian multiplier method is

L(w, ξ, α, η) = 1

2
‖w‖2 + C

n

n∑

i=1

ξi + λ‖v‖2

−
n∑

i=1

βi (B − ‖vT xi‖2)−
n∑

i=1

ηiξi

−
n∑

i=1

∑

y 	=yi

αiy

(

〈w, δφi (y)〉−1+ ξi

�(yi , y)

)

.

(18)

8Note that in this section the formulation of the soft-margin problem [(11)
and (12)] and the constraint derivation [(15), (16), and (17)] follow the
formulation and derivation in [22] and [23]. One of the novelties of the
proposed EK-UFI method is to integrate the expert knowledge incorporation
matrix v into the optimization functions [(13) and (18)].

As for the optimization, we follow [47] and use stochastic
gradient descent to train embedding models from (9), which
is fast by sampling both training samples and classes.

C. Online Fault Identification

Once the latent incorporation matrix v has been learned
from the training class S, the labels of unseen classes can
be predicted based on v and the corresponding fault gene
matrix Mtes. Thus, the following discrimination function for
the unseen classes S ′ = {x ′j , j = 1, . . . , m} can be obtained:

F(x ′, y;Mtes, v) = θT (x ′)vMT
tesϕ(y). (19)

Since x ′, Mtes and v in (19) are known, the label vector
y ′ = arg max

y
F

(
x ′, y;Mtes, v

)
can be accordingly predicted.

The online update for the exert knowledge-based UFI method
is summarized in Algorithm 1.

Algorithm 1 Online Update Algorithm for EK-UFI
Input S = {(xi , yi ), i = 1, . . . , n}

S ′ = {x ′j , j = 1, . . . , t, t + 1}
Mtr, Mtes

for i = 1, . . . , n do
mi (w) = F (xi , yi ;w)−max

y 	=yi
F (xi , y;w)

w∗ = argmax
w:‖w‖=1

min
n∑

i=1
mi (w)

v = w∗Mtr
end for
Lt+1 ⇐ ∅
while L1...Lt+1 still change do

for j = t + 1 : −1 : 1 do

F
(

x ′j , y;Mtes, v
)
=

(
vT θ

(
x ′j

))T (
MT

tesϕ (y)
)

y ′ = arg max
y

F
(

x ′j , y;Mtes, v
)

Li ← Li ∪
{

y ′
}

end for
end while
Output L1...Lt , Lt+1

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. AHU and Faults

AHU is the key component for maintaining comfortable
and healthy IAQ through connecting outdoor and indoor
environment with heating and cooling plants [48], [49]. A typ-
ical single-duct VAV AHU system with monitoring and con-
trol devices is shown in Fig. 3. Major components and
devices in this system are: supply/return fans (RFs), heat-
ing/cooling/preheat coils, heating/cooling/preheat coil valves,
recirculated/exhaust/outdoor air dampers, deployed sensor
instrumentation, and ducts that transfer the air to and from
the conditioned spaces [50].

The outside air first passes through coils with an amount of
heat that is added or removed according to heating/cooling
requirements. This air is then drawn through the supply
fan (SF), which is equipped with a variable frequency drive,
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Fig. 3. Typical single-duct VAV AHU system. The VAV system maintains
the supply air temperature (Tsa) to the terminals for air conditioning. Tsa is
measured and compared with preset temperature of TC-1. The control is linked
to dc-1 in order to automatically operate Outside Air damper and Return Air
damper for appropriately mixing temperature (Tma) before entering the coil.

Fig. 4. Operating modes of AHU. An economizer set point can be an outdoor
temperature set point, a combination of outdoor temperature and humidity set
points, or an outdoor enthalpy set point. When the outdoor temperature (and
humidity) is above the economizer set point, the outdoor air intake will be a
minimum quantity just to satisfy the ventilation requirement.

and distributed to the zones according to different building
load conditions. Then, the return air from the rooms is
drawn by the RF, which is also equipped with a VFD, and
partially recirculated to mix with the outside intake air and
partially exhausted to the outside environment. The exhaust air,
recirculated air, and outdoor air dampers are used to regulate
the air flow in the AHU.

On the other hand, AHU operating modes change in accor-
dance with the seasonal outdoor air temperature and humidity
and supply air temperature (heating or cooling) set points.
There are four different modes as shown in Fig. 4. In the
mechanical heating mode (Mode 1), the outdoor air damper is
maintained at its minimum position. The heating coil valve is
controlled to keep the supply air temperature at the heating set
point, and the cooling coil valve is closed. In the free cooling
mode (Mode 2), both heating and cooling coil valves are
closed. The outdoor air dampers are modulated to maintain the

Fig. 5. Layout of ERS. AHU-A and AHU-B are identical, and each AHU
serves four zones. Three of the four zones have external exposures and one
only gets internal conditions. The A and B zones are the mirror images with
identical external thermal loads.

supply air temperature at its set point with the outdoor air only.
In the mechanical and economizer cooling mode (Mode 3),
the outdoor air damper is fully open. The cooling coil valve
is modulated to maintain the supply air temperature at the
cooling set point. In the mechanical cooling mode (Mode 4),
the outdoor air damper is fixed at the minimum position since
the outdoor air temperature cannot meet the economizer set
point. The cooling coil valve is modulated to maintain the
supply air temperature at the cooling set point.

Due to the heavy workload, there is a high chance for
AHU to encounter hardware failures and controller errors
due to improper system design, configuration, and operation.
According to their causes and locations, faults are mainly
divided into four categories, i.e., faults in AHU equipment,
actuators, sensors, and feedback controllers [10]. As listed in
the third columns of Tables I–III, 25 typical AHU faults that
are commonly encountered in three seasons (11 typical faults
occur in Spring, 8 typical faults occur in Summer, and 6 typical
faults occur in Winter) are studied in this paper.

B. Data Description

The real-time data of ASHRAE RP-1312 are adopted as
the experimental data in this paper. ASHRAE RP-1312 was
implemented in the test facility at the energy resource sta-
tion (ERS) [51], [52]. As a brief introduction, RP-1312 con-
ducted several on-site experiments to emulate the dynamic
behaviors of a single duct dual fan VAV AHU system serving
four building zones under various seasonal conditions. The
experimental data under normal and typical faulty status is
archived so as to be used in the future research. Interested
readers can refer to [53] for the details about the test facility
provided by Price and Smith. As shown in Fig. 5, the experi-
ment involved two identical AHUs, i.e., AHU-A and AHU-B,
which served as treatment and control groups, respectively.
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The testing space included Inner A & B, West A & B, South
A & B, and East A & B. Faults were manually introduced
into the air-mixing box, coils, and fan sections of AHU-A,
while AHU-B was operated at nominal states. During each
experiment, the system operation was scheduled “ON” during
the occupied period from 6:00 to 18:00 and “OFF” during the
unoccupied period from 18:00 to 6:00. Sensor measurements
were recorded every 2 min. All the experiments were con-
ducted under the real weather and building load conditions
during spring, summer, and winter, respectively. Details about
how those faults are implemented can be found in [39].

C. Experimental Setup

With the RP-1312 data, EK-UFI method is applied to
identify unseen faults for building AHU systems. During each
test round, the unseen fault (the expert knowledge about that
fault is known) is identified by incorporating different sources
of expert knowledge to both the known and unseen faults in the
training and testing processes, respectively. Authors compare
the UFI accuracy in terms of different sources of expert
knowledge, namely, ASHRAE rule-based, system specific, and
data-driven expert knowledge, and the combinations of them,
which will be introduced in Section II-B.

In this paper, the accuracy of identifying an unseen fault
equals to the prediction accuracy between fault and normal.
To be specific, the UFI goal is to estimate the chance that the
predictor f (x) is correct on unseen data, i.e., the generalization
performance of the predictor. In this paper, the empirical
accuracy on a batch testing data set is used as an unbiased
estimator. Let sign[., .] be 1 if the predicted label of one testing
data point accorded with its original label and 0 otherwise,
the testing accuracy is

Accu( f ) = 1

n

n∑

i=1

sign[ f (x j ), y j ] (20)

sign[ f (x j ), yi ] =
{

1, f (x j ) = y j

0, f (x j ) 	= y j
(21)

where f (x j ) is the predicted label for testing data point x j ,
which represents that the data point is recognized as a certain
severity level of one fault type, and y j is the true label that
records the real experiment condition.

In the remaining part, authors consider the one versus all sit-
uation, namely, only one available typical fault is regarded as
unknown while the others are known. The training data set and
testing data set are randomly picked from the RP-1312 data
files. In each UFI round, expert knowledge of known faults
is first incorporated with the training data to learn the latent
incorporation matrix v. Then, the learned incorporation matrix
is applied to predict the testing data set based on the expert
knowledge of the unseen fault. Note that in this paper, “unseen
fault” means that information (including data and expert
knowledge) about that fault is not included in the training
stage. The training-testing round is repeated 20 times with
randomly chosen samples. The final UFI accuracy is the
average value of all the training-testing rounds.

Fig. 6. Spring case: eleven typical faults. UFI accuracy with different
incorporated EK. “Exp.Rule” means only the ASHRAE rules are incorporated
as fault gene. “Exp.Sys” means only the system specific knowledge is
incorporated as fault gene. “Exp.Data” means only the data-driven information
is incorporated as fault gene. “Exp.All” means all the above-mentioned
sources of expert knowledge are incorporated.

D. Unseen Fault Identification

Based on the real-time data collected by ASHRAE
RP-1312 in three seasons (spring, summer, and winter),
the proposed EK-UFI is tested in the one versus all situation
(namely, only one fault is regarded as unknown while the
others are known), and different combinations of expert knowl-
edge are tested separately. Based on the testing accuracy of all
the training-testing rounds, it is seen that unseen faults could
be successfully identified with satisfactory accuracy (about
50%–99%). Note that the accuracy of random guess is 8.33%,
11.11%, and 14.29% for the spring, summer, and winter,
respectively. In the remaining part, the results are analyzed
in terms of sources of expert knowledge and the number of
known faults.

1) Comparison Among Sources of Expert Knowledge:
As shown in Figs. 6–8, UFI accuracy values with different
incorporated expert knowledge are displayed by bar plots for
the three seasonal cases, respectively. Each fault is regarded as
an unseen fault once while the others are known. We compare
the UFI accuracy for each fault with three different sources of
expert knowledge and their combinations. Generally speaking,
the UFI accuracy with system-specific expert knowledge is
higher than that with rule-based expert knowledge. The pro-
posed EK-UFI method performs the worst when incorporating
the data-driven expert knowledge alone. This can be explained
by the ambiguity of PCA. Usually, there is no theoretical
guarantee for the PCA-projected space to be the optimal repre-
sentation of the original data. Next, the differences among the
three sources of expert knowledge are compared with details.

1) In the spring case, as shown in Fig. 6, the proposed
EK-UFI method performs so by incorporating rule-based
expert knowledge with the average identification accu-
racy less than 75% for each fault. Comparing the three
sources of expert knowledge alone (shown by the first
three bars of each fault), the average UFI accuracy
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Fig. 7. Summer case: eight typical faults. UFI accuracy with different incor-
porated EK. Four cases of different expert knowledge sources are considered.
“Exp.Rule” means only the ASHRAE rules are incorporated as fault gene.
“Exp.Sys” means only the system specific knowledge is incorporated as fault
gene. “Exp.Data” means only the data-driven information is incorporated
as fault gene. “Exp.All” means all the above-mentioned sources of expert
knowledge are incorporated.

with system-specific expert knowledge is the highest
for all except for Fault 1, where UFI accuracy with
rule-based expert knowledge is 70.85% while those
with the other two sources are 62.66% and 66.66%,
respectively. Especially, the average UFI accuracy with
system-specific expert knowledge for faults 4 and 5 is as
high 95.55% and 96.93%. We also see in Fig. 6 that for
most of the faults (Fault 2–10), the UFI accuracy with
data-driven expert knowledge is lower than 60%, which
is relatively poor compared with other expert knowledge
sources.

2) In the summer case, as shown in Fig. 7, the iden-
tification performance for unseen Fault 8 with all
types of expert knowledge combinations are impres-
sive (near 100% with most of the combinations,
and the accuracy with data-driven expert knowledge
is 81.22%). With more scrutiny, we observe that, for
all the faults, by combining rule-based expert knowl-
edge and system specific expert knowledge, the UFI
accuracy can be improved (2.08%–36.70% improve-
ment). Similar improvements can also be achieved
by combining rule-based expert knowledge/system spe-
cific expert knowledge with the data-driven expert
knowledge. To be specific, the improvement of adding
rule-based expert knowledge to data-driven expert
knowledge is 0.02%–18.64%. The improvement of
adding system-specific expert knowledge to data-driven
expert knowledge is 14.95%–42.40%. The improve-
ment of adding both rule-based and system-specific
expert knowledge to data-driven expert knowledge is
18.71%–48.75%. Moreover, under all the unseen fault
situations, UFI accuracy with system-specific expert
knowledge is higher than that with rule-based expert
knowledge by 0.21%–21.91%. As a result, we can
conclude that system-specific expert knowledge and the

Fig. 8. Winter case: six typical faults. UFI accuracy with different incorpo-
rated EK. Four cases of different expert knowledge sources are considered.
“Exp.Rule” means only the ASHRAE rules are incorporated as fault gene.
“Exp.Sys” means only the system specific knowledge is incorporated as fault
gene. “Exp.Data” means only the data-driven information is incorporated
as fault gene. “Exp.All” means all the above-mentioned sources of expert
knowledge are incorporated.

combinations with it are more suitable for identifying
unseen faults in the summer case.

3) In the winter case, as shown in Fig. 8, the proposed
EK-UFI method presents an ordinary performance
with data-driven expert knowledge and combina-
tions with it (50.03%–51.57%, 50.38%–77.17%, and
52.12%–83.59%, respectively) under all the six unseen
fault situations. The UFI performance with rule-based
and system-specific expert knowledge is obviously
higher (81.91%–98.05% and 95.25%–99.44%, respec-
tively). Also, by combining rule-based expert knowl-
edge and system-specific expert knowledge together,
0.35%–8.33% accuracy improvement can be achieved.
However, by adding all the three types of expert
knowledge together, the UFI accuracy is slightly worse
(0.14%–17.00%) than that with rule-based and system
specific expert knowledge. This is because data-driven
expert knowledge performs poorly compared with other
two in the winter case. Note that an accuracy around
50% is still theoretically acceptable since random guess
for the unseen fault to be right is 16.67% in winter case,
and even lower in summer and spring cases (12.50% and
9.09%, respectively).

The sensitivity of the EK-UFI method to different combi-
nations of expert knowledge is summarized in Tables I–III.
In those tables, “+” represent 50%–60% UFI accuracy,
“++” represent 60%–70% UFI accuracy, “+++” represent
70%–80% UFI accuracy, “++++” represent 80%–90% UFI
accuracy, and “+++++” represent 90%–100% UFI accuracy.
It can be observed that in the spring case, the EK-UFI
method is more sensitive to the system-specific expert knowl-
edge and the combinations with it. In the summer case,
the EK-UFI method is more sensitive to the combinations
without data-driven expert knowledge, and unseen Fault 8
is sensitive to all the three types of expert knowledge and
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TABLE I

SUMMARY OF UFI RATE IN TERMS OF DIFFERENT SOURCES OF EXPERT KNOWLEDGE IN SPRING

TABLE II

SUMMARY OF UFI RATE IN TERMS OF DIFFERENT SOURCES OF EXPERT KNOWLEDGE IN SUMMER

TABLE III

SUMMARY OF UFI RATE IN TERMS OF DIFFERENT SOURCES OF EXPERT KNOWLEDGE IN WINTER

their combinations. In the winter case, the EK-UFI method
is more sensitive to both rule-based and system-specific
expert knowledge, while the unseen fault performance with
data-driven expert knowledge and combinations with it is not
satisfactory.

2) Comparison via Number of Known Faults: As mentioned
in Section II, the latent incorporation matrix v is just a partial
representation of the universal connection between faults and
fault gene. Here, we first test the “in-variance” of the latent
incorporation matrix (take the Spring case as an example).
In Fig. 9, singular values of latent incorporation matrices
under different faulty conditions were plotted as a function
of the singular value sequence number. Since 11 typical AHU
faults are studied in the Spring case, we trained eleven latent
incorporation matrices according to different known data sets
(10 faults as known and 1 fault as unknown). In Fig. 9(a),
the first 11 singular values9 are plotted for all the 11 matrices

9There are 35 singular values for each latent incorporation matrix v, since
each v is a 35×51 matrix in the calculation process for the Spring case. Except
for the 11 plotted singular values, others are near to 0 (less than 10−10).

(there are 11 dots in each column). Fig. 9(b) is the cor-
responding box plot for each singular value sequence. For
better understanding, we also plotted the log values for all the
singular values in Figs. 9(c) and (d). We could see that the
largest difference is less than 0.15. Since singular values are
scales for the original matrix [54], we can claim the difference
among the tested latent incorporation matrices is small. Recall
that in (14) v is bounded by a constraint to make the latent
incorporation matrix invariant enough along different training
distributions. This is verified in Fig. 9.

Fig. 10 shows the identification accuracy as a function of the
number of known faults. Based on the given faults emulated
by ASHRAE researchers, the combinations of known faults
with different numbers would be complicated. For example,
in the spring case (where 11 typical faults are emulated in
the ASHRAE library), if Fault 1 is treated as the unseen
fault and two faults from the fault library would be chosen
as known faults, there could be C2

10 = 45 possible combina-
tions of known faults. For simplicity, in this paper, we only
consider randomly chosen cases. We can generally observe an
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TABLE IV

COMPARISON BETWEEN EXISTING BUILDING FDD METHODS AND THE PROPOSED EK-UFI

Fig. 9. Testing of the “in-variance” of the latent incorporation matrix,
as an example in the Spring case. Singular values of latent incorporation
matrices under different conditions were plotted as a function of singular
value sequence number. (a) Singular values of different latent incorporation
matrices with stacked points. (b) Distributions of singular values for different
latent incorporation matrices with box-plots. (c) and (d) Log singular values
with stacked points and box-plots, respectively.

Fig. 10. Prediction accuracy of unseen fault as a function of number of
known faults in the Spring case.

increasing trend of UFI accuracy along with the accumulation
of known faults in Fig. 10.

Those observations reveal that in most of the situa-
tions more known faults means better EK-UFI performance.
However, after careful scrutiny, we understand that the number
of known faults is not the single factor that influences the
EK-UFI performance. One similar and the related known fault
will be more helpful for recognizing the unseen fault than
several totally irrelevant known faults. For example, the UFI
accuracy is higher when controller faults are taken as the
known faults than that with equipment faults as known faults.
Moreover, as discussed in Section II-B, EK-UFI performance
is also related to different sources of expert knowledge. How to
choose known faults and how to decide the incorporated expert
knowledge are an interesting topic which deserves effort in the
future work.

3) Comparison With Existing Building FDD Methods:
As given in Table IV, the proposed novel EK-UFI method
is compared with the existing fault detection and identifica-
tion (FDI)10 methods in smart building field. Traditionally,
building FDI methods can be summarized as quantitative
model-based methods (physical model-based methods), qual-
itative model-based methods (rule-based methods), statistical
methods, and machine learning methods [59]. The proposed
EK-UFI method is a novel machine learning method that
combines the advantages of recent machine learning and tra-
ditional a priori knowledge-based detection techniques (rule-
based methods). The key advantages of the proposed EK-UFI
methods and its main difference from the existing FDD
methods are summarized as follows.

1) Physical model-based methods can provide accurate
estimation results if they are well formulated and
the estimation function enables unseen fault detection.
However, it is hard for physical model-based methods
to identify fault types since modeling all the faulty
operations based on first principles is not easy. Tra-
ditional statistical methods, such as cumulative sum
control chart (CUSUM), exponentially weighted mov-
ing average (EWMA) method, and statistical process
control (SPC) method, can find abnormal processing

10Also known as FDD
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points based on control ranges estimated from the nor-
mal historical data. Notwithstanding, statistical methods
cannot identify corresponding fault types since infor-
mation about faults is not included in the calcula-
tion/modeling/training process. A similar situation can
be observed for unsupervised machine learning methods,
whose model is trained with normal data.

2) With bounds of monitoring thresholds defined by a prior
knowledge, rule-based methods can detect known faults
and identify fault types simultaneously. However, pure
rule-based methods are not suitable for the identification
of unseen faults. Through learning from both normal
and labeled abnormal data, supervised machine learning
methods can detect and diagnose known faults with
decent accuracy. Although they have been adequately
applied in building FDI, supervised learning methods
cannot distinguish unseen faults due to a lack of training
data. However, by combining supervised learning meth-
ods with detection ranges, one could recognize unseen
faults without identifying their types.

3) Since the physical models and expert-summarized rules
are system specific and require fine development and
definition, it is energy wasting and time consuming to
extend the related FDI methods to analogous equipment
and systems. On the contrary, with reliable training
data, the data-driven FDI framework (statistical and
machine learning methods) can be easily applied to
similar systems.

4) One of the advantages of the proposed UK-FDI method
is its ability to identify unseen faults with acceptable
accuracy. However, UK-FDI is dependent on how well
the expert knowledge can describe the fault categories
in a high level. The method would not be useful without
reliable expert knowledge.

V. CONCLUSION

In this paper, the EK-UFI method is proposed to identify
unseen building faults by incorporating various sources of
expert knowledge which is encoded in the fault gene matrix.
The EK-UFI method is designed to recognize unseen faults by
incorporating expert knowledge, provided with its description
in terms of numerical matrices. By applying EK-UFI to iden-
tify unseen AHU faults with real data measured by ASHRAE
RP-1312, it is proven to be effective with high identification
accuracy. Besides building communities, the proposed frame-
work can also been extend to identify unseen faults, anomalous
working conditions or malfunctions for other mechanical sys-
tems and cyberphysical systems, such as smart vehicles, smart
water treatment system, smart power system, and so on.

Through comparing the identification accuracy values with
rule-based expert knowledge, system-specific expert knowl-
edge, and data-driven expert knowledge, authors show that
different sources of expert knowledge lead to different UFI
performances. It is interesting to study how to select the
essential expert knowledge in the future work. Moreover,
by accumulating the number of known faults, authors also
found the EK-UFI performance varies as a function of the

number of known faults. This reveals the value of studying
how to make the best use of known faults in the ongoing
work.
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