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Abstract

Nitrogen-vacancy color centers in diamond have attracted broad attention as quantum

sensors for AC mangetic field. Here we develop a quantum diamond spectrometer

for both ambient condition and under pressure in diamond anvil cells. Optically

based nuclear magnetic resonance has been achieved and various AC sensing methods

have been demonstrated. A clear signal from precessing 13C spins in the diamond

lattice has been found. The synchronized readout sensitivity at ambient and 3.6 GPa

pressure are 1.9 and 7.6 nT/
√
Hz, respectively. In order to decrease the pressure

inhomogeneity, a novel method – double quantum resonance – has been testified and

discussed.

Using conventional nuclear magnetic resonance approach, a rare earth insulator

TmVO4, which is a model system to study nematic order and the roles played by

nematic fluctuations, has been studied as a function of temperature and magnetic

field direction orientation. We find that the magnetic shift tensor agrees quantitatively

with direct dipolar coupling between the V nuclear moments and the Tm 4f moments.

The spin-lattice relaxation rate exhibits a steep minimum for a field oriented 90◦ to the

c axis, which is inconsistent with purely magnetic fluctuations. It is likely that both

quadrupolar and magnetic fluctuations are present and drive spin-lattice relaxation.
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Chapter 1

Spin systems and magnetic

resonance

The solid is the state where a large amount of particles break translation symmetry

and take up some lattice structure so as to minimize the total potential energy. The

fundamental particle usually is atom, which consists of electron(s) and nuclei. The

nucleus is much heavier than electron (mp

me
= 1836.153), hence electrons have better

mobility. By the uncertainty principle, we can infer that electron has much bigger

energy variation than the nuclei. In fact, in most cases, the electrons control most

physical properties of the solids.

In the Born–Oppenheimer approximation, we assume that the wave functions of

the nuclei and electrons can be treated separately. In the following sections, we will

introduce electron and nuclear spins behavior in the solid systems and how we can

probe the physical properties using these local probes.

1.1 Electrons in solids

Electrons in solids can be roughly categorized into two types: valence (ion) electrons

that behaves like atomic electrons that form ions together with nuclei core; and

1



conduction electrons that hop from one site to another.

Since the periodic structure breaks continuous translation symmetry, electrons

can be described by Bloch waves. Their energies are described by the band structure,

which is analogous to the energy levels of atoms. Conduction electrons usually exist

near the Fermi energy. For insulators, there is a gap near the Fermi energy, which

dominates the electron behavior. The typical gap size is around 0.1 ∼ 4 eV (0.1

∼ 4.6 ×104 K). For metals, conduction electrons play important roles in transport,

magnetism and so on.

Due to the mobility of conduction electrons, they cannot be easily described by

a single energy level due to the uncertainly principle. On the other hand, valence

electrons, which are more localized, usually can be treated as linear combination of

atomic orbitals with other perturbations. In such case, we can picture these electrons

as single particles carrying magnetic moments.

If we assume the spin orbit coupling is rather weak, the valence electron’s magnetic

moment might be written as (assuming ℏ = 1 from now on):

µe = gµBS, (1.1)

where µB is the Bohr magneton and g is called g-factor. For free electron g = 2.0023.

Due to the Zeeman effect, the electron’s Hamiltonian under magnetic field is:

HZeeman = gµBS ·B, (1.2)

where B = B0ẑ is the external magnetic field. Projecting onto the z axis, the degen-

eracy is lifted by ms = ±1/2:

E± = ±gµBB0/2 (1.3)

∆E = gµBB0 (1.4)

2



If there is microwave (MW) radiation (photon) that obeys hνe = ∆E, the absorption

rate for single electron can be written as:

p± ∼ | ⟨−|D |+⟩ |2δ(hν −∆E), (1.5)

where D is the magnetic dipole for spin resonance. In other words, during a sweep of

MW frequency, the electron spin in the lowest energy state (- state) can move to the

upper state (+ state) by absorbing a quantum of electromagnetic radiation energy

(photon) when hν = ∆E. This phenomenon is called electron spin resonance (ESR).

For a macroscopic sample, it includes many electron spins interacting with them-

selves and the environment. The absorption rate in total is given by computing the

number of spins per second that go from the lower energy to the upper [74]:

dE

dt
= ∆Ep±(N− −N+), (1.6)

where N+ and N− are number of electrons on + and − energy levels respectively.

The two terms both contribute to the rate since p+→− = p−→+ = p± according to

Eq. 1.5. It can also be justified by total spin momentum conservation. Therefore,

the prerequisite of non-zero absorption in macroscopic system is an unbalanced spin

number distribution (spin polarization): n = N− −N+ > 0.

Luckily, due to the Boltzmann distribution, the spin numbers should obey:

N+

N−
= exp(−gµBBz

kBT
). (1.7)

The typical energy scale for ∆E = gµBBz (1 T) and kBT (100 K) is 5× 10−6 eV and

10−2 eV. If we assume gµBBz ≪ kBT , we get:

N− −N+ ∼ gµBBz

kBT
N−. (1.8)

3



Figure 1.1: The population ratio of two-level system N+

N−
based on Boltzmann distri-

bution. The x and y axis state different magnetic field and temperature.

Hence we can improve the spin polarization by either increasing external field B or

lowering the temperature.

Unlike bulk measurements such as using a SQUID magnetometer, resonance mea-

surements such as ESR reveal the local electron’s properties, which can give insight

into the electronic behavior. To be specific, the behavior of an electron spin S is

controlled by its Hamiltonian:

HESR = HZeeman +HQuad +HSS +HSI , (1.9)

where Quad, SS and SI stand for electronic quadrupolar interaction, electron spin-spin
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interaction and electron-nuclear spin interaction respectively [68]:

HZeeman = µBB · g · S (1.10)

HQuad = S ·D · S (1.11)

HSS = J
∑
ij

Si · Sj (1.12)

HSI = S ·A · I (1.13)

where g is the effective g-factor tensor, D is the electronic quadrupole tensor, J is

the exchange constant, and A is the hyperfine coupling tensor. By studying ESR in

certain materials, the information about these coupling parameters can be studied .

These interactions lead to changes of resonance frequency, linewidth and lineshapes

[41, 3]. ESR is widely used in biology, chemistry and physics.

1.2 Nuclei in solids

The nuclei in solids are rather more localized than electrons. They carry charge

and are spatially confined, within a periodic ionic potential. Although they do not

dominate most physical properties like electrons, they still have intrinsic magnetic

moments:

µn = gnµnI, (1.14)

where gn is the g-factor which varies for different isotopes and I is the nuclear angular

momentum which is determined by the nuclear shell model [14].

The nuclear magneton µn = e
2mpc

is much smaller than Bohr magneton (µB

µn
=

1836.153). Besides this, the other terms are the same as those of Eq. 1.1. Due to the

Zeeman effect, the nuclear spin behavior should be the same as electron spin:

HZeeman = γnI ·B, (1.15)
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where γn = gnµn is the nuclear gyromagnetic ratio. Here we consider a nucleus with

spin I = 1/2 and an external field B = B0ẑ. The energy levels can be written as:

E± = ±γnBz/2 (1.16)

∆E = γnBz (1.17)

Similarly, the MW radiation can be absorbed if hνn = ∆E . This phenomenon is called

nuclear magnetic resonance (NMR). The macroscopic absorption rate is proportional

to the spin polarization (Eq. 1.6), and the spin polarization can be approximate to

be:

N− −N+ ∼ γnBz

kBT
N−, (1.18)

where ∆E = γnBz (1 T) is about 10−7 eV. Due to the difference on magnetic mo-

ment, the nuclear spin polarization is roughly 1800 times weaker than electron spin

polarization under same condition.

In general, nuclei as the center of ions behave as independent particles due to

small magnetic moment and charge shielding from core electrons. Changes on the

local magnetic environment will lead to changes on nuclear spin energy levels, which

can be reflected in NMR spectroscopy.

The general nuclear spin Hamiltonian in a solid can be written as:

HNMR = HZeeman +HHyperfine +HQuadrupole +HDipole, (1.19)

where HZeeman is the Zeeman interaction, HHyperfine is the hyperfine interaction,

HQuadrupole is the quadrupole interaction, and HDipole is the dipole interaction among

nuclei. In the following sections, the hyperfine and quadrupole terms shall be in-

troduced, as they are the most sigificant terms (in energy) that interact with local

environments.
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1.2.1 The hyperfine interaction

The interaction of a nucleus with the surrounding electrons is referred to as the

hyperfine interaction and can be written as:

Hhyperfine = I · A · S, (1.20)

where A is the hyperfine coupling tensor which describes the strength and anisotropy

of the coupling. This tensor can be broken down into dipolar, transferred, and contact

terms. The contact term arises from unpaired s electron states which have a non-zero

probability of being found at the nucleus. The transferred term arises when nearest

neighbor orbitals hybridize with the s orbitals which in turn have wavefunctions that

contact the nucleus. The dipolar term often dominates in insulator where electron

magnets are localized and coupled to nuclear magnets via dipole field generation.

In metallic systems, the hyperfine interaction with the conduction electrons is

known as the Knight shift. In insulating systems, the hyperfine coupling with ion

electrons is called magnetic shift. For the second case, the dipole interactions create

an effective local field at the nuclear site, which can be written as:

Honsite = γnI · (B0 +Blocal) = γnI · (1 +K) ·B0, (1.21)

where B0 is the calibrated external field and K is the magnetic shift tensor which is

defined as Blocal = K·B0. The magnetic shift is actually the sum of two contributions:

K = KL +KS , (1.22)

Here KL represents the contribution to the magnetic field seen at the nucleus due to

the orbital susceptibility (the Van Vleck susceptibility) from unfilled shells. In many

condensed matter systems, KL is temperature independent. The tensor KS represents
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the contribution to the magnetic field due to the electronic spin susceptibility and

usually is a function of temperature. In other words, if the electron local moment can

be written as M = S = χ ·B0, then it should obey:

Blocal = A · S = K ·B0 (1.23)

After cancelling B0, we find:

A · χ
gµB

= K (1.24)

Therefore for insulating systems, the magnetic shift and electron spin susceptibility

(without magnetic ordering) should exhibit a linear relation, and the ratio is de-

termined by the hyperfine coupling. See Section 6.4 for more information on this

relation.

1.2.2 The quadrupole interaction

For nuclear spins with I ≥ 1/2, the quadrupole interaction describes the lowest order

electrostatic coupling between electrons and nuclei. To be specific, for a point nucleus

with a charge Ze, the electrostatic energy can be written as [1]:

WE =

∫ ∫
ρe(re)ρn(rn)dredrn

|re − rn|
, (1.25)

where ρe(re) and ρn(rn) are electron and nucleus charge distribution respectively

(Born–Oppenheimer approximation is assumed). Using Laplace expansion of 1/|re−

rn|, the energy can be rewritten as:

WE =
∑
l,m

Am
l B

m∗
l , (1.26)
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where

Am
l =

∫ √
4π

2l + 1
ρn(rn)r

l
nY

m
l (θ, ϕ)drn (1.27)

Bm
l =

∫ √
4π

2l + 1
ρe(re)r

−(l+1)
e Y m

l (θ, ϕ)dre (1.28)

For l = 0, the energy corresponds to electrostatic energy between point charges

Ze, which is a uniform offset to all nuclear spins. For l = 1, the energy corresponds to

interaction between nuclear electric dipole moment and electric field. Experimentally,

the nuclear electric dipole moment is zero [87], hence this term does not exist. For

l = 2, the energy corresponds to interaction between nuclear electric quadrupole

moment and electric field gradient (EFG). To be exact, it can be written as:

HQuadrupole =
2∑

m=−2

Am
2 B

m∗
2 =

∑
j,k

Qjk(
∂2V

∂xj∂xk
)r=0, (1.29)

where

Qjk =
eQ

6I(2I − 1)
(
3

2
(IjIk + IkIj)− δjkI(I + 1)) (1.30)

is a traceless Cartesian tensor. If the coordinate axes are chosen so that the EFG

tensor is diagonal:

(
∂2V

∂xj∂xk
)r=0 =


Vxx 0 0

0 Vyy 0

0 0 Vzz

 , (1.31)

the quadrupole Hamiltonian becomes:

HQuadrupole =
νc
4
(3I2z − I(I + 1) + η(I2x − I2y )), (1.32)

where νc =
eQVzz

I(2I−1)
and η = Vxx−Vyy

Vzz
. We also utilize Laplace’s equation that there is

no electric charge near the nucleus: Vxx + Vyy + Vzz = 0.
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As we can see, the information about the local electric field can be known by

studying the quadrupole interaction. For example, one can measure the NMR spectra

while rotating the sample. If the external field B0 does not lie along one of the

principal axes of the EFG tensor, then the Hamiltonian becomes:

HQuadrupole(θ) = α{I2xVxx + I2y (cos
2 θVyy + sin2 θVzz) (1.33)

+ I2z (cos
2 θVzz + sin2 θVyy) (1.34)

+ (IyIz + IzIy) cos θ sin θ(Vyy − Vzz)}, (1.35)

where α = eQ
2I(2I−1)

and θ us the angle between B0 and the principal axis with the

largest eigenvalue, Vzz. Assuming the quadrupole interaction is much smaller than

the Zeeman splitting on the z direction: γnBz ≫ νc, the quadrupole part can be

treated as a first order perturbation. Taking I = 1 as an example, its energy levels

at eigenstates become:

E+1 = γnBz +
α

2
(cos2 θVzz + sin2 θVyy) (1.36)

E0 = 0− α(cos2 θVzz + sin2 θVyy) (1.37)

E−1 = −γnBz +
α

2
(cos2 θVzz + sin2 θVyy) (1.38)

The NMR freqencies are:

f+ = E+1 − E0 = γnBz +
3α

2
(cos2 θVzz + sin2 θVyy) (1.39)

f− = E0 − E−1 = γnBz −
α

2
(cos2 θVzz + sin2 θVyy) (1.40)

The splitting between two peaks is 2α(cos2 θVzz + sin2 θVyy). If the crystal has axial

symmetry: Vxx = Vyy, then Vyy = −Vzz

2
, and the splitting becomes:

∆f = 2α(cos2 θVzz + sin2 θVyy) = νc
3 cos2 θ − 1

2
(1.41)
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In Section 6.4 we shall see that Eq. 1.41 also holds for spin I = 7
2
systems.

1.3 Color centers in solids

Ideally, a crystal has perfect unit cell and the translation symmetry always holds. In

practice, this is not always the case. One common types of defect is called a point

defect, consisting of the absence of ions (or presence of extra ions). Such defects can

profoundly alter a crystal’s optical properties (and, in particular, their color) [4]. Fig.

1.2 shows different types of point defects in diamond and their color.

Sometimes substitution can lead to point defects, which may also unbalance the

charge neutrality. It is also, however, possible to balance the charge with an electron

localized in the vicinity of the point defect. Such an electron will have a spectrum of

energy levels. Excitations between these levels produce a series of optical absorption

lines analogous to those of isolated atoms. These kinds of defect-electron structures

are known as color centers. Some recently studied color centers in semiconductors

have been shown in Fig. 1.3.

In general, color centers have localized wavefunctions. Since the defect formation

is just a minor change compared to the crystal lattice, the energy required to do so

is rather small. Hence its energy level should be near the Fermi level Ef . Defect’s

electrons are ideal for ESR study, since they are localized with moderate energy scale,

and the electrons are often unpaired with finite spin S.

1.4 Nitrogen vacancy centers in diamond

One types of color center we are particularly interested in, nitrogen–vacancy centers

in diamond, have attracted broad attention as quantum sensors for both static and

dynamic magnetic, electrical, strain, and thermal fields and are particularly attractive

for quantum sensing, with wide-ranging application in the physical and life sciences
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Figure 1.2: Atomic lattice defects cause different colors in diamond. Their configura-
tion makes a significant difference in the color [13].

[24, 53, 16]. This color center consists of a vacancy adjacent to a nitrogen atom

that replaces a carbon in the diamond structure. The defect center attracts an extra

electron to have a net negative charge, so we abbreviate the center as NV−.

Due to the tetrahedral bonding structure of carbon, there are four possible orien-

tations of the nitrogen-vacancy axis:[111], [1̄1̄1], [1̄11̄], and [11̄1̄] (Fig. 1.4(a)). The

NV structure is constrained by the geometry of the diamond lattice to abide by C3v

symmetry (Fig. 1.4(b)). These symmetry properties in combination with six total

electrons and various interactions give rise to a specific electronic structure.

1.4.1 Electronic states properties

The NV− color center contains six electrons: five are from the nitrogen and the three

carbons surrounding the vacancy and one from outside. As irreducible representations

of the C3v group, four orbital states a1, a
′
1, ex, and ey can be formed, which are
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Figure 1.3: Prominently studied color centers in diamond and silicon carbide orga-
nized by the electron spin value which defines their energy scheme and associated
interactions. The color centers are represented with their symmetry groups, crystal
defect illustrations where yellow atoms represent foreign species and dashed outlines
represent missing atoms, emission wavelength on the spectrum and the longest mea-
sured coherence times [62].

combinations of the four dangling bonds surrounding the vacancy (Fig. 1.5(a)).

In the ground state, the a1 and a
′
1 states, which are lowest in energy, are filled

by four electrons, as shown in Fig. 1.5(b). The remaining two electrons occupy the

degenerate orbitals ex and ey. An antisymmetric combination of the orbital states

minimizes the Coulomb energy and results in a spin-triplet ground state manifold:

∣∣3A2

〉
= |E0⟩ ⊗ |mS⟩ , (1.42)

where |E0⟩ = |exey − eyex⟩ indicates the orbital state has 0 angular orbital momentum

and |mS⟩ represents electron spin mS = ±1, 0 states. One comment on the ground

states is that the electrons in the top energy levels are both unpaired, which is ideal

for ESR studies.

The relevant excited state for the optical transitions of the NV center is a pair of
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Figure 1.4: (a) Four orientations of the NV center in diamond. Carbon atoms are
depicted in black, nitrogen (N) atoms in blue, and vacancies (V) in white. The NV
electronic spin is indicated by green arrows[67]. (b) The NV has the same sym-
metries as a tetrahedron with a painted tip, or an equilateral triangle (restricted to
2-dimensional operations): reflections through mirror planes (M1, M2, M3), rotations
by ± 120◦ (R1, R2), and the identity [59].
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triplets which arises from the promotion of one of the electrons occupying the orbital

a1 to the ex or ey orbitals. By group theoretical analysis [54], a total of six states can

be formed into two groups:

∣∣3E(mS = ±1)
〉
=



|A1⟩

|A2⟩

|E1⟩

|E2⟩

(1.43)

∣∣3E(mS = 0)
〉
=

 |Ex⟩

|Ey⟩
(1.44)

where these six energy levels are separated by spin-orbit and spin-spin interaction at

the scale of GHz, which can all be excited by a 2.33 eV light. Since optical selection

rules conserve the total angular momentum of the photon-NV center system, from

now on we will only consider spin-conserving optical transitions.

1.4.2 Optical properties

One advantage of color centers is their optical absorption and emission are similar to

isolated atoms, which is also the case for NV centers. The schematic energy levels

of NV− ground and excited states are shown in Fig. 1.6. The ground state 3A2 and

excited state 3E are separated by a 637 nm zero-phonon line (ZPL), in the meantime

the spin-spin interactions split the |mS = 0⟩ and |mS = ±1⟩ spin states to a zero-field

splitting of Dgs = 2.87 GHz for the ground state and Des = 1.41 GHz for the excited

state. States |1A1⟩ and |1E⟩ are excited states with S = 0, hence they cannot be

reached by optical transitions.

At room temperature, the probability of electrons being at different mS states is

determined by the Boltzmann distribution: p±1

p0
= exp(− Dgs

kBT
). Since kBT ≫ Dgs,
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Figure 1.5: (a) Single electron orbitals of the NV center. The nitrogen and three
carbons surrounding the vacancy are shown, and the perspective is along the NV axis.
The color scale roughly represents the sign and occupation of each orbital. b) Ground
states 3A2 and excited states 3E associated with the NV center’s optical transitions.
The four symmetrized states are filled by six electrons (black arrows), which can also
be viewed as two holes (dashed arrows) [18]. (c) Energy levels of an NV− center within
the bandgap of the host diamond lattice. From left to right: the metastable singlet
ground and excited state as a function of magnetic field (oriented parallel to the NV−

axis), anisotropic in-plane strain, and temperature. The temperature dependence has
been magnified by a factor of 100 for clarity, indicated with green arrows [62].((a)(b)
are reproduced from [18])

we find p±1 ∼ p0, meaning electrons have equal probability to have different mS

values. With optical irradiation, |3A2, 0⟩ will be excite to |3E, 0⟩ and |3A2,±1⟩ to

|3E,±1⟩ (with a smaller intensity [18]). After some time the excitations will decay

and emit fluorescence at the ZPL (e.g. at 637 nm), which we can measure precisely.

Although the radiative transitions between the |3A2, 0⟩ and |3E, 0⟩ conserve electronic

spin projection, there exists some spin non-conserving channels (|A1⟩ , |E1,2⟩ → |1A1⟩),
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Figure 1.6: Schematic of the NV− electronic structure including the 3A2 and
3E (room

temperature) fine structure. The optical and infrared transitions are denoted by solid
arrows and the spin non-conserving intersystem crossing (ISC) are denoted by dashed
arrows [24, 34]

called intersystem crossings (ISC), that preferentially depopulates |3E,±1⟩ into |1A1⟩.

Followed by a 1042 nm infrared decay, the |1A1⟩ state shifts to |1E⟩ and eventually

repopulates |3A2, 0⟩ and |3A2,±1⟩ via ISC. The ratio of the ISC rates Γ0, Γ1, Γ2 is

roughly 53.3 : 0.98 : 0.73 and it varies between NVs [69, 80]. This whole ISC

optical cycle takes a few hundred ns, which depopulates |3A2,±1⟩ due to ISC channel

between |3E,±1⟩ into |1A1⟩.

After a few µs of optical irradiation, the ISC optical cycle already happens dozens

of times, which can almost depopulate all the electrons in |mS = ±1⟩. Often, polariza-

tion can be in range of 80−90% [69]. Taking 85% as average, we can convert the ratio

into temperature using Boltzmann distribution, which is Teff ∼ 0.31K. Therefore, a

well polarized initial state |mS = 0⟩ can be easily prepared at room temperature by

optical pumping.

Another outcome of the ISC optical cycle is spin dependent fluorescence. As show

in Fig. 1.7, when the state is prepared in |3A2, 0⟩, no ISC will be involved – all the
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Figure 1.7: Examples of the time-dependent fluorescence Ims for pure initial spin
states (mS = 0,±1). The contrast in the fluorescence of the pure spin states is
demonstrated in different colors (reproduced from [24])

states will emit 637 nm fluorescence; when the state is prepared in |3A2,±1⟩ (see next

section), ISC will play a very important role which results in a lower intensity of the

637 nm fluorescence and more 1042 nm infrared emission. Hence by readout of the

fluorescence intensity, the population ratio between |0⟩ and |±1⟩ can be measured.

1.4.3 Optical detected magnetic resonance

In a magnetic field, the Hamiltonian of NV− ground state electrons can be written

as:

HNV − = DS2
z + γeB · S, (1.45)
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where D = 2.87GHz is the zero-field splitting between |0⟩ and |±1⟩ and γe = gµB is

the gyromagnetic ratio of electron. If the field is aligned along the NV axis: B = Bz ẑ,

the energy levels of three spin states are:

E+1 = γeBz +D (1.46)

E0 = 0 (1.47)

E−1 = −γeBz +D (1.48)

If there is MW radiation that matches f− = −γBz + D or f+ = −γBz + D, the

electron spin can move from |0⟩ to |±1⟩ and the MW energy will be absorbed, which

is the basic idea of ESR.

For the NV system, however, if the MW radiation matches f±, the electrons will

be moved to the |3A2,±1⟩ states, which takes ISC optical cycle and exhibit lower

fluorescence output. In other words, by sensing the decay of fluorescence, one can

determine the resonance frequency. This method is called optical detected magnetic

resonance (ODMR).

One advantage of ODMR over ESR is that the optical sensing is much easier,

whereas ESR is usually detected by observing a resonant cavity. The most straight-

forward application of NV ODMR is as a magnetometer – the splitting between two

resonance frequencies, ∆f = 2γBz, is proportional to the field intensity. In fact, we

use NV centers as magnetometer to calibrate our magnets (see Section 2.2.3).

There are two broad approaches to NV ODMR: single site and ensemble mea-

surements. The major difference between them is that single NV always have two

resonance frequencies, whereas ensemble NV measures Avogadro’s number of sites,

which consists of four different orientations. Each orientation will have a different

angle with the external field, therefore ensemble NV ODMR often has eight peaks,
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indicating two transitions for each orientation (Fig. 3.2).

1.4.4 Strain effects

Using group theory [39], the first-order linear perturbation to the electronic states

of a trigonal defect (NV−) within a cubic crystal (diamond) due to stress can be

understood. The NV− Hamiltonian with mechanical-spin interaction can be written

as:

HNV −S = (D0 +Mz)S
2
z +Mx(S

2
x − S2

y) + My(SxSy + SySx) + γeB · S, (1.49)

where D0 is the zero field splitting under ambient condition. Mz, Mx and My refer

to[8]:

Mz = a1(σXX + σY Y + σZZ) + 2a2(σY Z + σZX + σXY ) (1.50)

Mx = b(σXX + σY Y − 2σZZ) + c(σY Z + σZX − 2σXY ) (1.51)

My =
√
3b(σXX − σY Y ) +

√
3c(σY Z − σZX) (1.52)

After diagonalizing the Hamiltonian, the energy levels of NV− exhibit two dis-

tinct effects: one translates both transitions by Mz; another splits transitions by√
Mx

2 +My
2.

If we assume the pressure is normal to the cubic surface and no shear stress is
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Figure 1.8: (a)(b) Calculated NV− electron spin resonance (ESR) spectra depen-
dence on strain component Mz and Mx;(c)(d) Calculated proportion of lowest energy
transition (highlighted in dashed box) as Mz and Mx increases. As we can see, Mz

does not effect the in-parallel NV−’s transition proportion, which corresponds to hy-
drostatic pressure case. MeanwhileMx tend to mix |Sz = −1⟩ and |Sz = +1⟩ together,
which is a signature of shear stress. It is worth to note that mixing states also occur
when the bias field B is misaligned from NV−’s axis.
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involved – σij ̸= 0 if and only if i = j, Mi (i = x,y,z) can be simplified as:

Mz = a1(σXX + σY Y + σZZ) (1.53)

Mx = 0 (1.54)

My = 0 (1.55)

These assumptions are reliable when the pressure is not extreme, where the pressure

in the DAC is still quite hydrostatic (It might fail at Mbar pressure[38, 21]). Never-

theless, the hydrostatic pressure on NV− will mostly contribute to the common shift,

ωCM ∼ Mz, which is shown in Fig. 1.8(a).

If the applied strain is pure shear strain – σij ̸= 0 if and only if i, j = x, y, then:

Mz = 2a2σXY (1.56)

Mx = −2cσXY (1.57)

My = 0 (1.58)

The shear strain not only contributes to common shift ωCM , but also generates dif-

ferential shift ωDF , which is shown in Fig. 1.8(b). Besides, the shear strain will mix

|Sz = −1⟩ and |Sz = +1⟩ together (Fig. 1.8(d)), which will reduce the fluorescence

(FL) contrast. This might explain the signal intensity decay in the high pressure

regime[21].

1.5 Pulsed magnetic resonance

The above mentioned magnetic resonance techniques, including ESR, NMR, and

ODMR, require a continuous-wave (CW) MW. Under CW radiation, a non-thermal

equilibrium polarization is reached and some MW energy is absorbed. In the 1970s,

pulsed (FT) NMR was developed, which has become the most widely used magnetic

22



Experimental methods detecting signal Receiver
Electron spin resonance Spin magnetization High frequency resonator
Nuclear spin resonance Spin magnetization MW coil
Optical detected magnetic resonance Fluorescence Photodiode

Table 1.1: Various pulsed magnetic resonance methods and their detecting signals

resonance technique.

The basic idea of pulsed magnetic resonance (MR) is as follows: after a net polar-

ization between energy levels is initialized, a short pulse at the resonance frequency

is applied, which perturbs the polarization from equilibrium. A detection occurs

immediately after the radiation (various detection method for different magnetic res-

onance has been stated in Table 1.1). After the perturbation, the system will relax

to equilibrium over time.

There are two major advantages of pulsed MR:

1. Better signal to noise ratio (SNR). By repeating measurement cycles N times

and signal averages, the effective SNR should increase as
√
N .

2. Extracting dynamical information. During CW MR, the information one can

get comes mostly from the spectra, which renders resonance frequencies and

lineshape. These quantities describe static properties of the local environment.

For pulsed MR, one can also measure polarization changes as it relaxes back

to equilibrium. These relaxation processes contain dynamical properties of the

local environment (see next section).

1.5.1 Rotating frame

For a two level system (also called qubit), if we assume the MW pulses happen during

0 < t < tMW , then its Hamiltonian during that time is:

HQubit−MW (t) = γSzB0 + γB1(cos(ωrf t+ ϕ)Sx + sin(ωrf t+ ϕ)Sy), (1.59)
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where the Si’s are spin 1/2 operators, γ is the gyromagnetic ratio of the spin, H0 is

the static magnetic field intensity, and H1, ωrf , and ϕ are the intensity, frequency,

and phase of the MW pulse respectively.

We assume the initial state density matrix is ρ0 = |0⟩ ⟨0|, indicating a perfect

polarization in the lowest energy state. If we apply a unitary transformation:

U = exp(−iωSzt), (1.60)

the transformed Hamiltonian (in the so-called rotating frame) becomes:

H̃Qubit−MW = U †HQubit−MWU + i
∂U †

∂t
U

= (γB0 − ω)Sz + γB1(cos((ωrf − ω)t+ ϕ)Sx (1.61)

+ sin((ωrf − ω)t+ ϕ)Sy) (1.62)

If ω = ωrf , the Hamiltonian becomes time-independent:

H̃Qubit−MW = γB
′ · S (1.63)

where the effective field B
′
is:

B
′

x = B1 cos(ϕ)

B
′

y = B1 sin(ϕ) (1.64)

B
′

z = B0 − ωrf/γ

Consider the magnetization, defined as M = Tr(ρS), in the laboratory frame.

Initially it is along the z-direction. The MW field Bmw = B1 cos(ωrf t+ ϕ)x̂ +

B1 sin(ωrf t+ ϕ)ŷ rotates around the z axis with angular frequency ωrf . If we choose

a reference frame that is rotating along the z axis at frequency ωrf , then the MW field
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in the new frame is static. If the MW is on resonance: ωrf = γB0, the magnetization

will rotate along the MW field direction, which causes M to change direction. This

is the reason why this unitary transformation U is called the rotating frame.

Solving the time-independent Hamiltonian in the rotating frame, then trans-

forming it back to the laboratory frame, one can get a two-level wavefunction at

0 < t < tMW (S = 1/2):

|Ψl(t)⟩ = U † |Ψr(t)⟩ (1.65)

= U †exp(−iγB′ · St) |Ψ(0)⟩ (1.66)

=

 e−iωrf t/2(cos(Ωt/2)− iB
′
z sin(Ωt/2)

B′ )

eiωrf t/2 (−iB
′
x+B

′
y) sin(Ωt/2)

B′

 , (1.67)

where Ω = γB
′
and B

′
denotes the intensity of the effective field given in Eq. 1.64.

In practice, ωrf ≫ Ω. Sometimes the dwell time δt during the measurement can

be relatively long such that δt ∼ 2π
Ω

≫ 2π
ωrf

, hence the exponential phase from U is not

affecting the wavefunction: eiωrf t/2 ∼ const. In such case we can consider that the

measured system is already in the rotating frame [64]. More discussion on two level

systems and the double quantum rotating frame can be found in Section 3.3 and 5.2.

1.6 Relaxation process

1.6.1 Bloch equation

If we consider the density matrix for an S = 1/2 system, the Liouville equation

describes the time evolution:

∂ρ

∂t
= −i[H, ρ], (1.68)
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where:

ρ =

 ρ00 ρ01

ρ10 ρ11

 (1.69)

Defining unitless magnetization M = Tr(ρS), it turns out that Eq. 1.68 can be

rewritten as a differential equation of M [76]:

Mx = γ(M×B)x

My = γ(M×B)y (1.70)

Mz = γ(M×B)z,

which is also known as the Bloch equations [11]. The magnetization defined here is

proportional to the bulk magnetization, so these describe macroscopic behavior of

spins under magnetic field.

In fact Eq. 1.70 pictures the ideal case where a single spin is isolated. In a real

system due to the spin-spin interaction and spin-lattice interaction, the magnetization

can be strongly effected by the local environment. The Bloch equations also include

relaxation terms:

Mx = γ(M×B)x −
Mx

T2

My = γ(M×B)y −
My

T2
(1.71)

Mz = γ(M×B)z −
M0 −Mz

T1
,

where T1 is the spin-lattice relaxation time, T2 is the spin-spin relaxation time, and

M0 = χ0B0 is the initial nuclear magnetization in equilibrium.

Here T1 describes the time scale for magnetization Mz to relax to equilibrium M0,

and T2 describes the time scale for magnetization in the plane, Mx,y, to decay to
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0. These variables are only phenomenological parameters, and do not elaborate the

specific relaxation mechanisms.

1.6.2 T1 relaxation

T1 describes the decay of the magnetization component Mz(t), and Mz(t) is deter-

mined by the population at each energy levels. The total nuclear spin Hamiltonian

can be defined as:

H = H0 +H1(t), (1.72)

where H0 is the static terms such as Zeeman interaction and quadrupolar interaction,

and H1(t) takes into account local environment fluctuations [79]. Defining P(t) as

the population vector of the different energy levels with P(0) being the equilibrium

value, the population time evolution can be understood as a master equation:

P(t) = W(P(t)−P(0)), (1.73)

where W is the relaxation matrix, which in second-order perturbation is given by [1]:

Wαβ(α ̸= β) =

∫ ∞

−∞
dτexp(iωαβτ)⟨α|H1(τ) |β⟩ ⟨β|H1(0) |α⟩ (1.74)

Wαα = −
∑
α ̸=β

Wαβ, (1.75)

where |α⟩, |β⟩ are eigenstates of H0 and ωαβ = ⟨α|H0 |α⟩ − ⟨β|H0 |β⟩ are transition

frequencies. Ensemble averages are denoted by ⟨· · · ⟩.

In short, the relaxation rate between energy levels is controlled by fluctuations

that can flip the energy levels. There are two typical fluctuations able to achieve

this: fluctuating magnetic fields which couples |n⟩ to |n± 1⟩ and fluctuating EFGs

which couples |n⟩ to both |n± 1⟩ and |n± 2⟩. The relaxation matrices originated
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from these two fields can be written as:

Wαβ
m (n→ n+ 1) ∼ γ2

2

∫ ∞

0

(⟨hx(τ)hx(0)⟩+ ⟨hy(τ)hy(0)⟩)e−ωαβτdτ

Wαβ
Q1 (n→ n+ 1) ∼ (eQ)2

∫ ∞

0

⟨V+1(τ)V−1(0)⟩e−ωαβτdτ (1.76)

Wαβ
Q2 (n→ n+ 2) ∼ (eQ)2

∫ ∞

0

⟨V+2(τ)V−2(0)⟩e−ωαβτdτ,

where Hx,y(t) are fluctuating magnetic field in plane components, and V1,2(t) compo-

nent of the fluctuating EFG in the basis of spherical harmonics (Eq. 1.28). The total

relaxation is the combination of the three: W = Wm +WQ1 +WQ2 [79, 82].

Utilizing the fluctuation-dissipation theorem [42], the correlations in Eq. 1.76 can

be linked to the imaginary part of the Fourier transform of the susceptibility Imχ(ω).

The spin-lattice relaxation rate is given by [61]:

T−1
1 = γ2kBT lim

ω→0

∑
q

|F (q)|2 Imχ(q, ω)
ω

, (1.77)

where F (q) is the form factor which is the Fourier transform of the hyperfine coupling

and q is the wave vector summed over Brillouin zone. See more discussion about T−1
1

in Section 6.5.1.

1.6.3 T2 relaxation

T2 (T ∗
2 ) relaxation describes decay of the in plane magnetization Mx,y. In quantum

language, the state of a two-level system:

|ψ⟩ = 1√
2
(|0⟩+ eiϕ |1⟩) (1.78)

is strongly related to the macroscopic magnetization. The decay of Mx,y can be

understood as losing coherence in the quantum level. Naively, the loss of coherence
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can happen in two ways: bit flip between |0⟩ and |1⟩, and phase variation [22]. Using

Redfield theory, if the fluctuating source is pure magnetic field, the T2 of the system

can be written in terms of T1 [74]:

1

T2
=

1

2T1
+ γ2Szz(0), (1.79)

where Szz(0) is the correlation of magnetic field in z direction hz(t). In this equation,

the first term is flipping the states and the second term is varying the phase.

What we also can learn from Eq. 1.79 is that T2 is often much shorter than T1

due to the phase varying term. In order to extend T2, in other words extend the

coherence, it is important to secure the phase. Different methods such as spin echo,

dynamical decoupling and spin-locking are developed in order to achieve this. The

upper bound of T2 should be in the same order as T1. See more details for extending

coherence in Section 3.6.
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Chapter 2

Experimental methods

In order to sense nearby environment using NV− centers in diamond, a quantum dia-

mond spectrometer with certain resolution and sensitivity is required. In this chapter,

the details about spectrometer constructions and development will be presented, in-

cluding that for ambient pressure and GPa pressure in a diamond anvil cell (DAC).

The conventional NMR cryogenic system will also be introduced.

2.1 NV diamond samples

We employed two sets of NV− diamond crystals. Sample A is from the Pines lab

in UC Brekeley. It is a type Ib [100] diamond which is grown by HPHT methods

from SUMITOMO (it usually contains nitrogen defects from 10 to 100 ppm), and

then it is irradiated with electrons at 3 MeV, with a fluence of 1018 cm−2 [5]. The

NV concentration is typically in the range of 100 - 500 ppm. Its T2 measurement is

displayed in Fig. 2.1(a).

Sample B is DNV-B1 from element six. It is a [100] CVD grown diamond with

much fewer NV concentration – about 300 ppb. Its typical T2 at ambient condition
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Sample A B
growth method HPHT CVD
NV− concentration 100 ∼ 500 ppm 0.3 ppm
T2 0.8 µs 85.1 µs

Table 2.1: NV diamond sample A vs B

is displayed in in Fig. 2.1(b). The modulation on the decay is due to the AC signal

generated by 13C nuclear spin under bias field – its frequency is γ13CH0. More details

about T2 will be discussed in chapter 3.6.

In order to utilize the NV diamond inside a DAC, it needs to be reshaped down to

µm size. Thus we asked Delaware Diamond Knives to cut a 100 µm part then polish

down to about 20 µm for both A and B samples. The film can then be broken down

to smaller chips so as to fit them into the gasket hole, which is usually in the order

of 150µm.

Figure 2.1: (a) The spin echo contrast vs τ for sample A. The curve does not have
modulated oscillation might because decoherence is dominating by NVs interaction;
(b) The spin echo contrast vs τ for sample B. The T2 is about 100 times longer and
curve has modulated oscillation corresponding to AC magnetic field generated by 13C
spins in the diamond lattice at 250 Gauss.
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Figure 2.2: Top left: HPHT hundreds ppm diamond; Top right: CVD 300 ppb
diamond; the look becomes darker after the laser cut(it is possible that extra NVs are
generated during the cutting process); Bottom left: diamond chip cut from HPHT
diamond; Bottom right: diamond chip cut from CVD diamond.

2.2 NV center quantum spectrometer for ambient

pressure

The first version of NV diamond quantum spectrometer is adapted from the previ-

ous continuous-wave(CW) quantum spectrometer with lock-in techniques[78]. The

improvements include a stable floating optical table, a powerful solid state laser and

synchronization between light, microwave(MW) and data acquisition. The schematic

diagram is shown in Fig. 2.3.
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Figure 2.3: Schematic of NV center quantum spectrometer. Note that the light paths
for both zero and first order of AOM are shown, and only the first order light can
pass onto collimation and detection. The two setups in blue box are exchangeable.
The NV sample and antenna are mounted on a translation stage.

2.2.1 Optical system

The whole system is constructed on Newport research series plus optical table. The

500 mW solid state laser (GEM 532 Novanta Photonics) and aluminum heat sink

is mounted on an adjustable lab jack(Newport Lab jack 271). The outcome light

from laser module is already linear polarized. The direction of polarization vector A⃗0

is controlled by a 1” half wave plate (HWP Thorlabs WPH10M-532) on a rotating

mount (Thorlabs RSP1). To be specific, the HWP has perpendicular fast and slow

axes. The projection onto fast axis stays unchanged while projection onto show axis

has an extra π phase introduced by the HWP. As a result, the angle between incident

light and output light is 2θ, where θ is the angle between A⃗0 and the fast axis (Fig.

2.4). Afterwards, the beam passed through an Acousto-Optic Modulator (ISOMET
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M1201-SF40-1.7 AOM) which is driven by a 40 MHz MW driver (ISOMET 521C-2

RF Driver).

Figure 2.4: The in plane view of HWP and laser beam incident and output polar-

ization vector A⃗in
0 and A⃗out

0 . Here f⃗ and f⃗ denote the HWP’s fast and slow axis
respectively.

The purpose of the AOM is to turn on and off the beam freely. The AOM is a

device that uses the acousto-optic effect to diffract light using sound waves. A piezo-

electric transducer is attached to glass in the device. The driver creates an oscillating

electric signal to vibrate the glass, which generates sound waves in the material.

These can be thought of as moving periodic planes of expansion and compression

that change the index of refraction. Incoming light scatters off the resulting periodic

index modulation and interference occurs similar to Bragg diffraction like in Fig. 2.5.

To angle the device properly, the incoming beam and the glass interface should be

perpendicular and off by the Bragg angle(for our AOM it is about 3 mrad). When

the device is misaligned, one usually can observe diffraction pattern up to the 4th

order; when the device is aligned, most beam power is in the 0th and one of the 1st

orders.

There are two ways to set up the AOM: one way is passing the device once – after

two 1” kinetic mirrors’ reflection, the 0th and 1st order beams will be distinguishable;
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Figure 2.5: AOM schematic plot (Reproduced from ISOMET manual)

another way is passing the device twice – the 1st order will be reflected backwards

so that it is the new incoming light. As a result, the second 1st order will be distin-

guishable and also its polarization is rotated by 90 degrees after passing the quarter

wave plate(Thorlabs WPQ10M-532) twice. Eventually the beam will be reflected by

the polarizing plate beamsplitter (Thorlabs PBSW-532).

The advantage of double-pass is it increases the on/off contrast of the fluorescence

signal. The AOM is not perfect, so there will have slight amount of residue light on

the 1st order even when the driving has not been applied. The power of residue light

I1 linearly depending on the incoming light I0: I1 = r I0. For double-pass, since the

beam passes the AOM twice, the final residue light will be I1 = r2 I0. This improve-
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ment on residue light can be crucial when the laser power is relatively large and NV

concentration is relatively high – the residue light can interact with the NVs during

the dark time.

After the AOM, the beam will next be collimated and aligned onto the pupil of

the objective lens (Nikon M Plan 100x ELWD). For collimation purpose there are two

plano-convex lens with different focal length (Thorlabs LA1131-A and LA1951-A) –

the beam will be expanded. A shearing Interferometer(Thorlabs SI035) is used to

check the collimation. Since Rayleigh length of the Gaussian beam out of the laser is

not long enough to cover the whole optical system, it is important to collimate the

beam before it enters the objective. As for expansion, it is better to let the beam

cover the whole pupil area instead of cover part of it – It pushes the resolution down

to the diffraction limit.

The NV sample usually sits on a transparent platform (cover glass for example)

which is mounted on a translation stage (Newport ESP300) whose actuator (New-

port 850G-LS) has encoder resolution 7.985 nm. Therefore it allows us to locate the

sample precisely within about 1 µm.

The fluorescence emitted by NVs in diamond is collected by the same objec-

tive, sharing the same light path as the green laser until it reaches the dichroic mir-

ror (Edmond optics 69-216). Fluorescence will be directed and focused either to

the CMOS camera (Thorlabs DCC1545M) or the avalanche photodetector (Thorlabs

APD120A2/M APD) controlled by a flip mirror (Thorlabs FM90). Longpass filters

(BLP01-594R-25 EdgeBasic) are used to block the residual green light.
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2.2.2 Microwave delivery

The MW signals to control NVs in the diamond are generated by an 6Gs/s arbitrary

waveform generator (Tabor SE5082 AWG). The output signal is sent to an 16 Watts

amplifier (mini circuits ZHL-16W-43-S+), an circulator (Pasternack PE83CR1004)

to avoid the reflected power back to the amplifier and finally the antenna (Fig. 2.6).

A simple MW ’antenna’ (MW transmitter) could be a copper wire connecting

between center and ground of an SMA connector or a PCB strip with a hole in the

middle (Fig. 2.7). The one we usually use is a copper strip electroplating onto a cover

glass. The pattern consists of two straight line and a loop at the end. A male SMA

connector is attached to straight lines by the sliver epoxy. A female SMA wall mount

is attached on the translation stage so that the antenna can be connected onto the

stage freely.

Unlike in conventional NMR, the tank circuit is fine tuned to the target resonance

frequency using capacitors, here the circuit impedance Z at target frequency is much

greater than 50 Ω so that the reflection coefficient

ρ =
Z − 50Ω

Z + 50Ω
(2.1)

is almost 1, which means most of the power has been lost during the transmission.

Still the residual MW power is able to generate 5 MHz Rabi power and higher, which

is sufficient for control the NVs for our purpose.

2.2.2.1 Higher harmonics generation

All kinds of dynamical decoupling (DD) sequences are generated by AWG during

the experiment. AWG can read user defined waveforms – usually a discrete array of
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signal levels, then it can convert the digital input into analog output by interpolating

between those signal levels. The interpolation depends on the sampling mode.

In order to create different phases in the MW pulses, there must be enough sam-

pling points in one period of the signal. One way to achieve this is generate higher

harmonics. Technically, the output of AWG contains multiple harmonics from dif-

ferent Nyquist zones and the target harmonics output is usually weaker than signal

in the first Nyquist zone. Hence a bandpass filter (mini circuits VBF and VBFZ se-

ries) and a pre-amplifier (mini circuits ZX60-53LN+) are applied to select the desired

Nyquist zone and also increase the power. The filtered and boosted signal will then

be transmitted to the 16 Watts amplifier.

Figure 2.6: MW delivery schematic plot
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Figure 2.7: three possible antennas to deliver MW. Top: a electroplating copper
structure on the cover glass is connected to a PCB which has a soldered SMA con-
nector. Middle: A wire loop connecting between center and ground shield of a coaxial
cable. Bottom: A specially made PCB with a loop and hole

2.2.3 Static field generation

A static magnetic field is applied so as to separate one of the NV- orientations from

the other three in the spectra (details are discussed in 3.2). The field needs to be

applied parallel to one of the NV−’ orientations – [111] for an example, where the

angle between the field direction and the z axis of the NV diamond is θNV = 54.74◦.

Since the NV−’s gyromagnetic ratio is quite large (28025 MHz/T), the NV−”s energy

level will have a significant response to field in the order of Gauss. The field range

for our system is 10 to 300 Gauss.
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2.2.3.1 Electromagnet

One way to apply the field is to use an electromagnet. We constructed a special

mount from aluminum to meet the right angle of the field – a copper coil is held in

the mount aligned with the NV axis (Fig. 2.8(a)). The whole mount is surrounded

by cooling water to dissipate the heat (Fisher). The current in the coil is controlled

by a 600 Watt DC power supply (FAST-PS 3020-600).The mount sits on the objec-

tive so that the NV diamond will be at the most homogeneous region of the field

(Fig. 2.8(b)). The resulting field measured by NV continuous wave (CW) spectra

depends linearly on the current. The field can be tuned continuously from 5 to 60

Gauss (Fig. 2.8(c)). It is challenging to increase the current further since the cool-

ing power reaches its threshold. Besides, the cooling power is fluctuating especially

with big current (¿ 15 A), which renders unstable coil temperature and magnetic field.

2.2.3.2 Permanent magnet

Another way to apply the field is using permanent magnets, which have stable mag-

netic field properties. Neodymium magnets are chosen because they are inexpensive

and easily available. Similar to the electromagnet we constructed, a special mount

3D printed to align the field with the NV axis – magnets can be stacked in the hole

on each side (Fig. 2.9(a)). The 1” disc magnets (Mcmaster-Carr 5862K Fig. 2.9(b))

with thickness ranging from 1
16

′′
to 1

2

′′
can generate static field from 50 to 300 G ap-

proximately (Fig. 2.9(c)). Though easy to manipulate, field from permanent magnet

is not as homogeneous as that from the electromagnet. The field also cannot be tuned

continuously.
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Figure 2.8: (a)The electric magnet structure: conducting wire is wrapped around
an aluminum mount with a special angle. The cooling water is running in a copper
tube outside of the coil. A Hall sensor and a test coil is also attached to the mount.
(b)The magnet mount is in align with objective and antenna. (c)The field intensity
measured by NV CW spectra fit vs applied current on the coil.

2.2.4 Fluorescence signal process

The fluorescence intensity varies with different NV samples. To be specific, the Silicon

Avalanche photodetector we are using has a minimum detecting power PRMS as 1.5

nW, which is nmin = PRMS/hν = 4.0 ∗ 109 photons per second. Assumptions are

the following: (a) all the NVs under the objective focus are responsible for the signal

contrast and the laser power is strong enough to saturate all of them; (b) the lifetime

of the excited state Γ−1 is 10 ns; (c) the branch ratio to the dark state Pdark is 0.3;

(d) The focusing volume Vf is about 1 µm3. Then the NV photon density can be

written as:

nNV =
ΓPdarkρNV Vf

4
, (2.2)
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Figure 2.9: (a)The 3D printed magnet mount in align with objective and antenna.
The mount has two cylinders to load permanent magnets. (b)The 1” diameter and 1

16

” thickness cylinder Neodymium magnets (c)NV CW spectra vs different permanent
magnets

The factor of 1
4
accounts for one out of four orientations. The minimum detectable NV

density ρmin can be reached when nNV = nmin. The calculation shows ρmin = 7.0∗1014

cm−3, which is also 4.0 ppb (ρC = 1.76 ∗ 1023 cm−3).

Likewise, the maximum detectable power Pmax is 1.5 µW , which corresponds to

NV density 4.0 ppm. Considering the NV density of our samples, the APD has no

problem to detect sample A and B except for sample A it needs a neutral-density
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filter (Thorlabs NE10A-A) to avoid the saturation.

The output of APD is a voltage signal ranging from few mV(RMS noise) to few

Volts. This time dependent analog voltage can be observed via oscilloscope directly,

or it can be converted into digital signal via a data acquisition card (National instru-

ment USB-6361 DAQ) which is necessary to measure the fluorescence temporally.

Figure 2.10: Synchronization control schematic diagram

2.2.5 Synchronization control

The basic of AC field detection is controlling the NV spin temporally, which requires

the synchronization between laser excitation, MW sequence control and fluorescence

voltage readout. A schematic diagram is shown in Fig. 2.10(a). The AOM driver,

AWG and DAQ require proper trigger signals, hence the timing is governed by a

third trigger source – a TTL trigger board (Spincore PBESR-PRO-300 pulseblaster).

As the heart of the timing control, the shortest the pulse TTL board can generate is
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Figure 2.11: Triggers controlled by TTL trigger board. Ideally, the NVs are ini-
tialized to |0⟩ at the beginning. After AWG is triggered, the pre-programmed MW
sequence will transform the state into superposition state 1√

2
(|0⟩ + eiα |1⟩) (α is a

certain phase during the MW manipulation). Before shining the green laser the final
state is cos β |0⟩+sin β |1⟩. Utilizing the laser pump, the fluorescence can be detected
and it contains information about final phase β. By the end of the laser pulse, NVs
are re-initialized to |0⟩ ready for the next cycle. The timing in the plot is schematic.

1
Ωclock

= 3.333 ns. In the meantime, it has multiple channels which can be programmed

in the same time.

A typical measurement sequence consists of four channels: AOM channel, AWG

channel, DAQ channel and DAQ cycle channel. The first trigger is the DAQ trigger

to count the number of cycles; after that the AWG is triggered to output a pre-

programmed MW sequence; lastly there is the AOM gate to shine green light upon

the NV diamond both for measuring spin states and re-polarizing them back to the

ground states. Meanwhile two DAQ triggers are high at the beginning and the end

of the laser gate. The two voltages Vspin and Vlaser, which give ratio
Vspin

Vlaser
, represent

the NV population on the ground state | ⟨0|ψ⟩ |2 after and before MW manipulations.
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One cycle takes tens of µs and one measurement usually takes tens of thousands of

cycles. A standard cycle is displayed in Fig. 2.11).

2.3 NV diamond quantum spectrometer for a di-

amond anvil cell

After constructing and demonstrating the NV diamond quantum spectrometer in

ambient conditions, the system was upgraded for high pressure measurement. Several

changes have been adapted to the spectrometer regarding the diamond anvil cell

(DAC).

2.3.1 Diamond anvil cell (DAC)

The DAC we used in the system is a commercial Beryllium Copper cell originally

designed for micro-Raman spectrosopy (Fig. 2.12). There is a 52◦ measuring win-

dow and the gasket is enclosed inside the cell so as to stay heat conducting with

the whole cell. The diamond anvils we choose are type IIac since they contain fewer

Nitrogen defects. The culet diameter is 500 µm, also it has no bevel and no extra

NV implantation. The gaskets we used are metallic disks made from beryllium copper.

In order to probe the AC field under pressure using NV centers, a diamond chip

(sample B) is positioned in the middle of the gasket hole. The hole is filled by the

pressure media, Daphne oil 7575, which is a transparent liquid at ambient condition.

The typical gasket thickness and hole size after pre-indentation is 150 µm and 200

µm and the NV chip size is roughly 80 µm.

Based on the gasket material, the diamond shape and the pressure media, the
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maximum pressure one can reach with this setup is approximately 20 GPa.

Figure 2.12: CryoDAC-ST DAC Orthographic projection drawings from Almax ea-
sylab

2.3.2 Optical adjustment

The DAC enables the possibility to measure NV under extreme pressure, however at

high pressure, optical detection is difficult. The DAC has a 8.5 mm working distance

to the sample which precludes the use of a high Numerical aperture (NA) objective,
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which will result in larger focus volume, lower power density and smaller fluorescence

collecting angle. The objective (Nikon CFI T Plan Epi SLWD 50X Objective NA 0.4)

current used has a long working distance (22 mm), which approximately doubles the

diffraction limit. The minimum detectable NV density is proportional to the focusing

volume, therefore the minimum NV density in DAC ρDAC
min becomes to be 4.0×23 ppb,

which is not far from sample B’s NV concentration. Hence the NV contrast signal is

rather small in the cell, and it takes longer time to get trustworthy results.

Another issue is the alignment of the NV chip. It is challenging to determine the

laser focus point on the chip in x, y and z direction within the DAC. It is hard to

apply the bias field on the [111] direction compared with ambient condition where

the diamond orientation is more obvious. It turns out that the best approach is the

CMOS camera. After the camera is aligned with fluorescence, the laser focus point

can be chosen by translating the chip until it generates a clear image on the camera

(Fig. 2.13). Also the image can be used to determine the diamond orientation. By

combining the NV CW spectra and NV chip’s fluorescence image, the bias field can

be positioned in the right direction.

2.3.3 Antenna design

The approaches to transmit MW power into the DAC have always being challeng-

ing. Some attempts have been done such as µm induction coils[44], designer anvil

with embedded antenna[77] and Lenz lens resonator[57]. Though they might be very

effective in some circumstances, these methods are convenient to introduce enough

MW power while it is invariant under pressure. Another issue is the RF screening of

metallic gasket, which make it almost impossible to use the antenna on the outside

of the gasket. Due to these concerns, we decided to fabricate gold MW strips and
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Figure 2.13: CMOS camera fluorescence image from a micro diamond chip in the
DAC. The brightness on the picture indicates red fluorescence intensity. The laser
focusing point is the brightest spot in the middle, which is approximately 10 µm.
There is also some amount of fluorescence glowing on the edge of the diamond chip.

let them pass directly into the gasket hole region (Fig. 2.14). More details with be

discussed in 4.1.1.

2.3.4 DAC preparation

The DAC preparation is essential before the real experiment. Success under pressur-

ization mainly depends on the treatment of each detail of the preparation – a single

mistake in one of the procedures might cause a series of problems afterwards. It is
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Figure 2.14: Left: straight antenna conducting layer. Middle: loop antenna conduct-
ing layer. Right: loop antenna insulating layer

Figure 2.15: Procedures to prepare the DAC before pressurization

beneficial to slow down and check each step carefully, so a week time line is recom-

mended (take several rests and always have steady hands!). Here is a protocol we

used for this work[84] and it took us more than five attempts to get it work.

2.3.4.1 DAC diamond alignment (1st day)

The purpose of alignment is to make sure the two anvil diamonds are aligned perfectly

so that the pressure applied is uniform and it won’t damage the anvil. A microscope

and a single color light source is needed.
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First, push the piston into the cell but leave a space of about 0.2 mm between the two

anvil faces and focus microscope on the diamond – diamond interface. In general, the

two anvil faces will not be coincident. Using the four lateral screws on the side, bring

the two faces into coincidence. Tighten all four screws, checking that the alignment

is not disturbed.

Second, turn on the lamp and push gently on the piston so that the two anvil surfaces

are brought into contact. Viewing down the microscope, coloured fringes should be

seen. Use the two sets of screws on the bottom to move the fringe pattern in the

direction of fewer fringes until, eventually, the field of view is uniformly coloured. At

this point the anvils are accurately aligned for tilt.

2.3.4.2 Gasket preparation (1st ∼ 2nd day)

First, pre-indent the gasket in the DAC. Before applying the pressure, try to make

a mark on the gasket, which will show which side of the gasket is facing up, and

will help ensure the gasket is put back in the same orientation after being taken out

of the DAC. Then put in the piston and align it with the mark on the DAC and

apply a small amount of pressure (less than 3 GPa) where you just begin to feel some

resistance when turning the screws. After pressurizing take the gasket off and check

both sides of the gasket, making sure the material is pushed away from the center

region and the surface in the middle looks uniform.

Second, drill a hole through the center of the pre-indented region using Electric

Discharge Machining drilling system (Hylozoic EDM). The size of the hole is de-

termined by the size of the tool to discharge (copper wire). The tool used in this

experiment is 260 µm. Fill in fluids to overflow the gasket and center the tool to the

middle. Record the thickness of the pre-indented region based on the readings. The
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thickness we measured is ranging from 150 to 200 µm. The final gasket should look

like Fig. 2.15(a).

2.3.4.3 Gasket insulation (2nd ∼ 3rd day)

First, prepare some stycast 1266. The part A and B needs to be in ratio of 100 : 28

to behave the best after it cures. So try to use analytical balances while weighing the

two. Adding part B directly into part A is recommended. After mixing the epoxy

for 5 minutes until they look as a whole, pump on the mixture until all the bubbles

come out.

Next, add insulating powder into the epoxy. Wash the tools with methyl alcohol

and dry them in the fume hood. Start to add powder into the mixed epoxy – the

powder can either be micro-size aluminum oxide (50 µm) or cubic boron nitride. The

epoxy can actually take a large amount of powder, so it often takes two to three

times to add the powder and mix well. Gradually the mixture becomes stiffer, hence

some tools like mortar could be helpful. Eventually the mixture becomes brittle and

looks like flakes as the amount of powder increases. The ideal stage for insulation

is between ’the dough’ and ’the flake’ – since the mixture won’t stick onto the anvil

completely and won’t be easy to be ripped off from the gasket as well.

Lastly, press the insulation onto the gasket. The pressure applied on the piston

cannot be bigger than pre-indent pressure – usually just finger pressure without the

screw. It’d be better to press some mixture inside the DAC and check on the status

of the residue. If it is still opaque, it probably means it is not dense enough. Before

the final press, put some insulating powder above the mixture so that it is less likely

to stick onto the anvil. After finger tightening on the piston, let the insulation cure
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in an oven around 70◦C overnight.

Take out the DAC next day, and the insulation should mostly stick onto the gas-

ket like Fig. 2.15(b). Use a micro drill (similar to the size of hole) to tap a hole

(careful the drill is brittle). The insulation should not be too brittle and not be too

stiff either. Clean the anvil on the piston at the end.

2.3.4.4 Antenna and NV attachment (4th ∼ 5th day)

The purpose of insulation is to separate the antenna from the conducting gasket.

The insulation is attached against the piston anvil where the antenna should be at-

tached. The antenna strip consists of two large conduction pads joined by a narrow

strip. It has two sides: one side is the coating layer and the other side is the gold layer.

Firstly, secure the middle structure onto the anvil using the stycast. Try not to

flatten the whole strip onto the culet surface but leave some room to let the strip

relax under the pressure. Bend the pads towards the side surface of the anvil and

secure them down flatly after the first batch stycast is cured. The final look will be

like Fig. 2.15(c).

Secondly, make the connection: stick some conducting tape onto the piston surface

to guide the conducting wires. The MW eventually come through a SMA connector,

and a special PCB board is made to join the antenna and SMA connector. There

will be two bigger wires (AWG 36) connecting from PCB strips to the connecting

tape through the tunnels on the piston, and will also be two smaller wires (AWG 44)

connecting from the tape to the antenna. The connections are made by silver epoxy

(MG Chemical 8331) on conducting tapes and pads. The wires will be soldered onto
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the PCB strips. Usually the resistances between pads are around 1 Ohm and the

total resistance from PCB SMA connector is about 2 to 3 Ohms. Next, Secure the

micro NV chip onto the bottom anvil (make sure the gasket can still sit onto the

bottom anvil after the NV chip is glued). It should look like Fig. 2.15(e).

Finally, put on the gasket and add in some pressure medium. In principle the bot-

tom culet and pre-indent gasket should hold a closed space which pressure medium

goes into. The liquid level should be more than half filled but should not leak onto

top pre-indent surface. Lastly, insert in the piston with antenna attached, check the

connection between DAC shell and SMA leads as the piston is inserted further. If

they are shorted, take the piston out and check the insulation. Otherwise, cap the

piston and tap in the screw gently. The DAC is ready to pressurize(Fig. 2.15(f)).

2.4 Solid state NMR system

The Oxford magnet(Fig. 2.16(a)) is the main instrument for TmVO4 angular de-

pendence measurement. It is a high homogeneity warm bore magnet with a fixed

field. The field last measured on 1/22/2014 is 11.7285 T and the homogeneity at its

center is about 1.1 ppm. The magnet is coupled with a closed cycle Janis cryostat

(model SHI-950T) which is controlled by a compressor (Sumitomo F-50L) and tem-

perature controller (Lakeshore 340 cryogenic). The available temperature range is

300K - 4K, and down to 1.5K with a vacuum pump. NMR measurements are per-

formed with a spectrometer (Tecmag Apollo 37723) and a 55 db pulsed RF amplifier

(CPC 5T300M). The Oxford is vacuum and nitrogen jacketed, and used in a fixed

field configuration.
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The dual-axis goniometer NMR probe (Fig. 2.16(b)) [72] enables fine angular

control for both in plane (ab) and out of plane (c) direction of a tetragonal crystal.

There is a fast axis (1 : 30) and a slow axis (1 : 600). For our purpose the slow axis

is used to control the angle between the external field and the crystal c axis. The

sample is wrapped by a silver coil and glued onto a sample holder which is inserted

onto the probe.

Figure 2.16: (a) Oxford magnet and cryogenic system; (b) Goniometer probe head
drawing
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Chapter 3

Quantum sensing with NV

ensemble

In recent years, the field of quantum sensing has become a distinct and rapidly grow-

ing branch of research within the area of quantum science and technology. The

sensing protocols in fact can be implemented on any qubit systems, and ac signals

can originate from different sources that couple to the qubits [62]. Ultimately, our

goal is utilizing these quantum sensing methods on NV− centers platform to achieve

very small volume ac optical detected magnetic resonance (ODMR). For conventional

NMR, which is also a successful sensing method for ac signal detection of nuclear spin

polarization, a solenoid around the sample is used to pick up ac fields via Faraday

induction. On the other hand for ODMR, the nuclear spin ac signal is captured by

phase accumulation of nearby NV− centers. Depending on the strength of the cou-

pling of the coherent precession, nuclear spins for this case, ODMR can achieve ultra

high sensitivity even for nano volume samples [33], which could not be measured using

traditional pulsed NMR techniques.

In this chapter, some important sensing protocols and their experimental realiza-

tion of ODMR is discussed, starting with the comparison between continuous and
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pulsed scheme.

3.1 Continuous vs Pulsed

Figure 3.1: The schematic plot of CW-ODMR (a) and pulsed ODMR (b) magne-
tometry protocols

The continuous wave (CW) ODMR is a simple, widely employed magnetometry

method. Unlike pulsed ODMR, its implementation does not require synchroniza-

tion control; the technique is therefore technically easier to implement than pulsed

measurement schemes. The schmatic plot is shown in Fig. 3.1(a).
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However, CW-ODMR is not envisioned for many high sensitivity applications for

multiple reasons. First, CW-ODMR usually has weak fluorescence (FL) contrast

even with lock-in amplification [77], Second, unlike pulsed ODMR whose resolution is

determined by decoherence time T ∗
2 (Fig. 3.1 (b)), CW-ODMR methods suffer from

MW and optical power broadening which is usually beyond the scale of (T ∗
2 )

−1.

Despite poor resolution, CW ODMR is a powerful tool to understand NV center

energy levels and orientations, which is useful prior to more subtle measurements. In

order to achieve AC sensing ODMR, pulsed control of NV− centers is required.

3.2 CW NV ODMR

Exposing the NVs to 532 nm excitation light for a few microseconds is sufficient to

initialize all the NVs to their ground state and FL should be at I0 (Section 1.4.2).

If the CW microwave field at the frequency of the |0⟩ ↔ |±1⟩ transitions are turned

on while the laser is pumping, a different equilibrium is reached and the FL signal

I1 should be reduced from I0. Therefore the FL contrast, ∆I = (I0 − I1)/I0, which

is typically on the order of a few percent at room temperature depending on the

laser power and NV density, can be used to characterize the microwave transitions.

In other words, ∆I ̸= 0 only when fMW is close to NV |0⟩ ↔ |±1⟩ transitions. By

sweeping fMW , the energy spectra, or so called electron spin resonance (ESR), of NV

centers can be obtained.

Fig. 3.2 displays some ESR spectra under various conditions. When there is no

external magnetic field, the energies of tje |±1⟩ states are degenerated – therefore a

single transition at zero field splitting D = 2.87 GHz is expected (red curve). With

the non-zero external magnetic field, if the NV centers are misaligned from one of

four possible NV axis ([111] for example), there are eight peaks in total indicating

response from each NV orientation (blue). If the field is aligned, there are four peaks
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Figure 3.2: NV ensemble ESR spectra intensity ∆I versus fMW with external field:
0 mT (red), 11 mT (blue) and 6 mT (green). The 11 mT field is misaligned with NV
center axis.

due to the symmetry (green). The outermost transitions (in dashed box) are |±1⟩

transitions in parallel with the external field.
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In practice, ODMR has better performance if a clean two-level system is chosen.

By introducing an external magnetic field, one particular orientation of the NV en-

semble can be distinguished from the other three. A sub two-level system can be

realized by choosing two energy levels from |0⟩ and |±1⟩, which all belong to one type

orientation NV center.

3.2.1 Light polarization effect

The equilibrium ∆I is proportional to the optical transition rate between ground

state |3A2⟩ and excited state |3E⟩:

pdipole ∼ |
〈
3A2

∣∣ A⃗0 · r⃗ |Ex⟩ |2 + |
〈
3A2

∣∣ A⃗0 · r⃗ |Ey⟩ |2 (3.1)

= |A⃗0 · (⟨a1| r⃗ |ex⟩ |2 + |A⃗0 · (⟨a1| r⃗ |ey⟩ |2

where A⃗0 is the exciting laser’s polarization vecter, |a1⟩ is the second highest or-

bital ,and |ex⟩, |ey⟩ are the highest orbitals of the NV electric ground manifold (Fig.

1.5). The excitation raises one of the electrons from |a1⟩ to
∣∣ex(y)〉. Due to the C3v

symmetry, |ex⟩ and |ey⟩ have non-zero transition dipole moment [18]:

⟨a1| x⃗ |ex⟩ = ⟨a1| y⃗ |ey⟩ := D, (3.2)

and the dipole directions for x and y are [1̄1̄2] and [11̄0] respectively[27]. Assuming

the polarization vector A⃗0 = {cos (ϕ0 + 2ϕ), sin (ϕ0 + 2ϕ), 0} (light is propagating to

NV diamond via z axis), the transition rate can be simplified to be:

p[111] ∼
|D|2

3
(2− sin(4ϕ+ 2ϕ0)), (3.3)

where ϕ0 is the initial laser polarization angle and ϕ is the angle between initial

polarization and half-wave plate’s fast axis (Section 2.2.1). Similarly, the transition
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rate for the other three NV orientations can be written as:

p[1̄1̄1] ∼
|D|2

3
(2− sin(4ϕ+ 2ϕ0))

p[11̄1̄] ∼
|D|2

3
(2 + sin(4ϕ+ 2ϕ0)) (3.4)

p[1̄11̄] ∼
|D|2

3
(2 + sin(4ϕ+ 2ϕ0))

Fig. 3.3(a) shows the ESR contrast ∆I versus ϕ. Indexes 1 2 3 4 represent

four orientation of NV centers. Since the NV crystal is misaligned, four orientations

make up eight peaks in total. As expected, two orientations 1 and 3 have similar

behavior whereas 2 and 4 show the opposite (Fig. 3.3(b)). The period of π/2 is due

to the nature of HWP: ϕ rotation on fast axis leads to a 2ϕ rotation on the output

polarization direction.

While the NV diamond is aligned with external field, one orientation is separated

from the other three. As a result, there are two groups of peaks (Fig. 3.2 green line).

Despite different offsets, the polarization angle has opposite effects on two groups.

To be specific, when the outer satellites reach maximum ∆I, the inter peaks should

be minimum.

3.2.2 Hyperfine coupling to 13C

The NV center is a prefect local probe since its Hamiltonian contains not only the NV

electron and the spin interactions but also hyperfine coupling to nearby nuclear spins.

The strongest coupling happens between the NV spin and its nearby carbon nuclear

spin. The carbon element has two stable isotopes 12C and 13C, whose abundance are

98.9 % and 1.1 % respectively. Though 12C has zero nuclear spin, 13C has I = 1/2.

Thus it can couple to NV electron spins.

Fig. 3.4 shows ESR spectra containing NV coupling to 13C spins. The two satel-
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Figure 3.3: (a) Misaligned ESR spectra versus HWP’s fast axis angle ϕ (b) Signal
contrast ∆I at NV 1 and 2 versus HWP’s rotation angle. The solid curves are fittings
using Eq. 3.4. H0 = 11 mT.
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Figure 3.4: NV ensemble ESR spectra with zero external field. The two satellites
at 2.812 and 2.941 GHz are due to NV electron spins coupling to their closest 13C
neighbor

lites below (2.812 GHz) and above (2.941 GHz) zero-field splitting frequency (2.87

GHz) are attributed to hyperfine coupling. The area ratio of 13C peak and the total

spectra is about 3.15 %, which is in the same order as 13C abundance.
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If we assume hyperfine coupling S
′ ·A′ ·I ′

between 13C and NV has axial symmetry

[73], the tensor A
′
should be like:

A
′
=


A⊥ 0 0

0 A⊥ 0

0 0 A||

 . (3.5)

In order to combine it with the NV Hamiltonian, a rotation is needed to transform

tensor and nuclear spin into NV axis. Define R = Ry(109.47
◦), then A = R · A′ · R†

and S
′ · A′ · I ′

= S · A · I. The full 13C-NV Hamiltonian can be written as:

HNV−13C = DS2
z + E(S2

x − S2
y) + S · A · I, (3.6)

where D is the zero-field spiltting and E is the residue stress term that splits the |±1⟩

transition.

Solving the energy level and fitting them into experimental data, we find A|| = 389

MHz and A⊥ ∼ 0. The result is different from pervious EPR results (A|| = 198.2

MHz A⊥ = 120.8 MHz [30]). A potential explanation is that zero field NV ESR is

mainly dominated by strain effect whereas NV EPR is dominated by magnetic field

applied at certain axis. A proper understanding to explain both NV ESR and NV

EPR data is still uncovered.

3.3 Pulsed NV ODMR

Unlike ESR measurements, the pulsed approaches require a relative short MW pulse

(tMW ≪ T1) and the NV spin state readout happens immediately after the MW pulse

train. Measurements such as Rabi, Ramsey and other dynamic decoupling sequences

are probing a non-equilibrium spin state, whereas ESR measurements are probing

spin state in thermal equilibrium. More importantly, NV ODMR is based on the
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Figure 3.5: (a) The sub-system qubit of NV and its measured signal (b) General
sensing protocol. Most of quantum sensing method can be divided into these steps:
initialization, basis transformation, signal interrogation and detection.

qubit nature of NV ground state – the sensing information is stored in the phase ϕ

of a qubit: |ψ⟩ = 1√
2
(|0⟩+ eiϕ |1⟩).

A map between NV spin states and qubit states and general sensing protocol is

shown in Fig. 3.5. We know that the target signal is proportional to the ground state

density ρ00 = ⟨0|ψ⟩ ⟨ψ|0⟩ (Section 1.3). Initially, the qubit is prepared in |0⟩. Then

with the help of the MW pulse, the qubit is transferred from Sz basis to Sx basis.

During the interaction period, if the target signal is coupled to qubit Sz, the in-plane

phase evolves from ϕ to ϕ
′
. Eventually, by reversing the basis transformation, the

new phase is projected onto |0⟩ and ρ′
00 can be obtained when the qubit is measured

and re-polarized using the laser.

In the following sections, different sensing protocols will be introduced in combi-

nation with the Bloch sphere picture and experimental data.
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Figure 3.6: (a) Rabi oscillation timing sequence (b) NV spin state in Bloch sphere
as time evolves. The rotation angle is determined by the driving MW field. (c) A
typical Rabi oscillation of NV ensemble.

3.4 Rabi oscillation

In general, the Rabi oscillation is defined as the cyclic behaviour of a two-level quan-

tum system in the presence of an oscillatory driving field. In Fig. 3.6(b), the

NV spin is firstly initialized in |0⟩ qubit state. By controlling the duration and

power of the resonant MW pulse, the state is driven into a superposition state:
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|ψ⟩ = cos(θ/2) |0⟩+ sin(θ/2)eiϕ |1⟩, where:

θ = γHMW tMW (3.7)

ϕ = ϕ0, (3.8)

and the MW field is HMW(t) = HMW ẑ sin(ω∆t+ ϕ0) (ω∆ is the energy gap of two-

level system) and γ is the gyromagnetic ratio of NV. Some unitary transformations

such as 90◦ and 180◦ rotation at certain axes i – U i
π/2 = e−iSit90 and U i

π = e−iSit180 in

rotating frame – can be realized if HMW , tMW and ϕ0 are chosen properly. Hences

Rabi oscillations, also known as Rabi calibrations, are often used to determined the

proper MW duration and power in both ODMR and NMR.

Fig. 3.6(c) displays a standard Rabi oscillation in experiment. The oscillation can

be described by constant oscillating frequency Ω = γHMW and exponential decay.

There are several reasons causing the decay: one is the MW inhomogeneity over the

NV ensemble. Since each NV sees a slightly different MW power and so oscillates

with a slightly different Rabi frequency, the total signal is the sum of the oscillation

with a distribution of frequencies set by the gradient of the MW power. Another

reason is the MW excitation window. Since the MW is a pulse with duration tMW ,

its Fourier transform has a width on the order of MHz. The off-resonance oscillation

also has slightly different Rabi frequency and give rise to a MW distribution. To

conclude, these factors result in a dephasing effect that is usually characterized by

T ∗
2 .

3.4.1 Rabi power dependence

Fig. 3.7 shows Rabi oscillations as the MW amplitude HMW increases. The Rabi

frequency is increasing monotonically as the power grows, which is consistent with

Ω = γHMW . Moreover, the variance of Rabi frequency gets larger when power grows,
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Figure 3.7: Rabi oscillations versus driving MW field intensity HMW and their
Fourier transforms of the Rabi oscillations, which indicate the distribution of HMW .
The Rabi frequency increases as the microwave power is increased. The distribution
is broadened because the HMW field from the microwave antenna is not homogeneous.

which reflects the gradient of the MW power. Here we demonstrate that Rabi oscilla-

tion is a ideal tool to investigate the MW field homogeneity. In practice, we want to

have sufficient Rabi frequency to generate short MW pulses to create as homogeneous

a response as possible. Therefore for a certain MW antenna design, the MW power

can be optimized using this approach.

3.4.2 Rabi imaging

The Rabi oscillations can provide information about the MW field homogeneity. For

a larger region (in the scale of hundred µm), with sufficient optical resolution, the

MW field homogeneity can be directly measured using a scanning technique. Fig. 3.8

shows representative scans of the Rabi frequency, Ω, and the fluorescence intensity
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FL. The spot size of the laser is less than 20 µm. Based on the result, we find that

FL is uniform across the whole sample, indicating a uniform NV center distribution

in the diamond. The MW power is peaked in the middle of the sample and decays to

zero as it approaches to the edge of the NV sample. Thus we can infer the position

of the antenna by observing the MW power spatial distribution. In principle, this

method can be applied to observe the MW power variation due to changes on physical

environment near the NV sample [55, 83].

3.5 Ramsey interferometry

Thanks to Rabi oscillation, the MW pulse duration for Uπ/2 (π/2 pulse) and Uπ (π

pulse) rotations can be determined to be t90 and t180 (Fig. 3.6(c)). After initialization,

a π/2 pulse rotates the qubit magnetization into the xy plane: 1√
2
(|0⟩ + eiϕ0 |1⟩).

During the free evolution period, the phase ϕ0 can change due to two factors: the

gap ω∆ between the two-level, also called the Larmor frequency, and any interactions

between the NV and target sources (for example 14N nuclear spin in the diamond),

which turn ϕ0 into ϕ0 + ω∆τ + f(τ), where f(τ) describes interaction over time

τ . Finally by applying a second π/2 pulse, the qubit state can be measured and

the final result is called Ramsey interferometry (Fig. 3.9(b)). A typical Ramsey

interference versus interrogation time τ is shown in Fig. 3.9(c). The signal contains

a fast oscillating component originated from the Larmor frequency ω∆. It also shows

a slow envelope modulation which arises from interaction f(τ). It is worthwhile to

mention that the signal contrast drops exponentially as τ increases. This is due to

dephasing effect which is characterized by T ∗
2 , which is similar to free induction decay

in NMR.
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Figure 3.8: The Rabi frequency and fluorescence intensity measured as a function of
the position in an diamond sample with NV centers located within a diamond anvil
cell. The scanning step size is 20 µm or the scale of the individual squares on the
map.

3.5.1 Quadrature detection

Besides the MW pulse duration, the pulse initial phase is also controllable, which

affects the Uπ/2 rotation axis (Eq. 3.7). By controlling the phase of the second pulse

relative to the first, one can project either ⟨Sx⟩ or ⟨Sy⟩ onto the z axis (See table

3.1). Collecting data for both phases enables quadrature detection and hence the
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Figure 3.9: (a) Ramsey interferometry time sequence (b) NV spin states in Bloch
sphere (c) A typical Ramsey interference of NV ensemble. T ∗

2 is about 700 ns.

Pulse 1 Pulse 2 ρ00
x x cos2(ωτ/2)
x -x sin2(ωτ/2)
x y (1 + sin(ωτ))/2
x -y (1− sin(ωτ))/2

Table 3.1: Ramsey result for some possible MW pulse phase configurations without
interaction (ω is the Larmor frequency)
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Figure 3.10: Left: four types of relative phase Ramsey interference. Right: Two
quadrature components by subtracting four measurements on the left. Inset: complex
FFT of the quadrature Ramsey interference. The FFT frequency is shifted due to
insufficient sampling rate.
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full complex Fourier transform can be obtained. It is also useful to implement phase

cycling to improve the signal-to-noise ratio (SNR). Spurious noise, misalignments

of the microwave pulses, and astigmatism in the phase response of the microwave

sources can all contribute to noise in the measured fluorescence contrast, and similar

approaches are regularly used in conventional NMR [6]. By cycling the phases of

the first and second MW pulses so that the NV spin is rotated alternately to the

±x and ±y directions and back to the ±z direction, one can either add or subtract

the measured contrast to remove background noise. Fig. 3.10 demonstrates this

approach. By subtracting different phase Ramsey measurements according to table

3.1, the baseline of ∆I is canceled. Also, a complex FFT is permitted by both sin

and cos components, which is peaking at Lamour frequency 2.713 GHz for 0 to |−1⟩

transition.

3.5.2 Hyperfine coupling to 14N

Figure 3.11: Ramsey spectra for both |mS = 0⟩ to |mS = ±1⟩ transitions. The three
peaks are attributed to hyperfine coupling between 14N nuclear spins

Note that the complex FFT spectrum of Ramsey reveals three separate peaks,
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which arise due to the hyperfine coupling between the NV spin, S, and the 14N

nuclear spin, I = 1 (natural abundance 99.6%). The hyperfine coupling is given by

Hhf = Ŝ · A · Î, where the coupling tensor A is diagonal along the NV-axis with

components A|| = 2.1 and A⊥ = 2.3 MHz [30].

For simplicity, we just consider secular parts (diagonal terms in the Sz basis [74])

for now. Then the full 14N-NV Hamiltonian can be written as:

HNV−14N = DS2
z + ωSSz + A||SzIz +QI2z + ωIIz, (3.9)

where D = 2870 MHz, Q = −5.01 MHz, ωS is in the order of 100 MHz and ωI is in

the order of 100 kHz.

For optical transitions between ground and excited state, since it is mainly dom-

inated by NV electron transition dipole moment [18], the nuclear spin mI should be

preserved during the transitions. Therefore the three transitions from mS = 0 to

mS = −1 are:

EmI=−1 = D − ωS + A|| (3.10)

EmI=0 = D − ωS (3.11)

EmI=+1 = D − ωS − A|| (3.12)

The three lines are in consistent with the results in Fig. 3.11, which corresponds to a

hyperfine field of 0, ±2.1 MHz. Likewise, the mS = 0 to mS = +1 transitions are the

same structure except the hyperfine field has the opposite sign. If we focus on the

intensity of three peaks, we can find that the mI = −1 always has a higher contrast.

This is due to the laser pumping leads to higher probability of lowest energy state

|mS = 0,mI = −1⟩. In other words, the laser pumping not only polarize the NV spin,

it also polarizes the nearby 14N nuclear spin in some levels, which plays an important
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role in quantum computation [81].

Note that the quadruple interaction Q does not contribute to the 14N hyperfine

structure. It also prevents Ramsey interference modulation from misaligned trans-

verse magnetic field. For a 15N enriched NV sample, the Ramsey signal has electron

spin echo envelope modulation (ESEEM) since 15N has I = 1/2 [64].

3.5.3 Off-resonance response

Figure 3.12: Left: Ramsey interference versus τ at different MW pulse frequency.
The color indicates the signal contrast ∆I. The data is measured in rotating frame
by choose proper τ steps. Right: FFT of τ at different MW frequencies.

The discussions in previous sections assume that the MW pulse frequency matches

the two-level energy gap. In practice, it is common that these two frequencies are

mismatched: δω = ω∆ − ωMW ̸= 0. In the rotating frame, the qubit phase can

be represented as ϕ
′
= ω∆τ − ωMW τ = δωτ . As a result, the Ramsey interference

should vary as sin(δωτ), which is shown in Fig. 3.12. The Ramsey fringes increase
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as the absolute value |δω| grows, and the FFT indicates that Ramsey frequency is

linearly proportional to |δω|. Besides frequency, the signal contrast drops as |δω|

grows, which is due to that the excitation window in the frequency domain decays

like a sinc function.

3.6 Dynamical decoupling sequences

3.6.1 Spin echo

Figure 3.13: (a) Spin echo time sequence (b) NV spin state in Bloch sphere as time
evolves (c) Typical spin echo τ2 sweep with fixed τ1. The echo appears when τ2 = τ1.
Blue and red data are two quadrature channels.

One effective method to extend the coherence time is the spin echo, which is

widely used in NMR and MRI. The difference between a Ramsey (Fig. 3.9(a)) and a

spin echo sequence (Fig. 3.13(a)) is an extra π pulse in the middle of two π/2 pulses.

The NV spin evolution is shown in Fig. 3.13(b). If the dephasing arises from a static

field H0 inhomegenity, it makes some of the NVs evolve faster and some slower. The
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π pulse inverses all the NV spins so that they are refocused to the same phase when

τ1 = τ2. This idea is demonstrated in Fig. 3.13(c). The signal contrast starts to rise

when τ2 approaches τ1. Although the peak width in τ2 is still dominated by T ∗
2 , the

overall coherence time (peak position) has been extended.

The spin echo can also be used to measure the new coherence time T2 with less

dephasing – by sweeping τ = τ1 = τ2. The T2 measurements for different NV diamond

sample are displayed in Fig. 2.1. Although T2 is no longer affected by static and

slowly-varying inhomogeneities, it is still limited by fast varying fields originated

from dipolar coupling to other spins (NVs, 14N). The coupling usually can be reduced

by decreasing the NV conceration [7].

3.6.2 Carr-Purcell-Meiboom-Gill (CPMG) sequences

Figure 3.14: (a) CPMG-N time sequence (b) NV spin state MW manipulation in
Bloch sphere. The dashed box is repeated by N times (c) The qubit phase ϕ as time
evolves under static magnetic field when N = 2. The pulse is ideal so that tMW → 0
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As we have already seen, the spin echo can extend the coherence time from T ∗
2

to T2. This advantage can be amplified by introducing more π pulses in the middle

of the sequence. These kind of MW sequences with multiple refocusing are called

CPMG-N sequences [17, 56], where N is the repeating number of π pulses. The MW

sequences for CPMG-N is shown in Fig. 3.14(a). the interrogation time between π

pulses is τ whereas time between π pulse and π/2 pulse is τ/2. During the cycles

(dashed box in Fig. 3.14(a)(b)), the NV spin keeps refocusing and retains the initial

phase at the end of the cycle under the static field. In other words, the dephasing

contributing to T ∗
2 is removed by repeating the refocusing. In principle, the coherence

time of CPMG TCPMG
2 should obey T echo

2 < TCPMG
2 < N ∗ T echo

2 , which extends the

coherence even longer. To be specific, the CPMG is a form of dynamical decoupling

sequence, which can seperate the NV spin from its environment. On the other hand,

phase can be accumulated in the presence of an oscillating magnetic field, and the

sensitivity is proportional to the repeat time reciprocal 1/N . More details will be

discussed in next section.

3.6.3 XY8-n sequences

Besides CPMG, there are other types of dynamical decoupling sequences such as

XY8-n [35]. As shown in Fig. 3.15(a), the XY8-n sequence consists of multiples of

a sub-sequence of eight π pulses. Here, n is the number of cycles indicating that

the repeat number N = 8n. The refocusing π pulses are imposed on either the x

or y axis in a symmetric way, whereas CPMG sequences only apply them along a

single direction (Fig. 3.15). It turns out that the multi-axis refocusing can reduce the

effect of pulse errors and maintain a good coherence performance for different repeat

number N [2]. In practice, we find that XY8-n sequences indeed have a much longer

coherence time per pulse (T2/N) for larger repeat number (N ∼ 50).
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Figure 3.15: (a) XY8-n time sequence. The dashed box is repeated by n times. The
spacing between π pulses is τ while that between π and π/2 pulses is τ/2. (b) The
qubit phase ϕ versus evolution time τ under static magnetic field during the dashed
box cycling. The pulse is ideal so that tMW is infinitely-narrow in time

3.6.4 Coherence extension

Fig. 3.16 shows the coherence time for different MW sequences. For the dense

concentrated NV sample (sample A), its coherence time has been extended from 100

ns (Ramsey) to 1 µs (spin echo) and 20 µs (XY8-n). Meanwhile for low concentrated

NV sample (sample B), its coherence time under spin echo T2 is already 80 µs, and

we should expect its coherence time with XY8-n to be in ms scale (black line), which,

however, is beyond the memory of the arbitrary waveform generator. The significant

dip on the curve is due to the oscillating field from 13C nuclear spin, which is going
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Figure 3.16: Signal contrast ∆I as a function of evolution time for several different
MW pulse-train sequences. Sample A and B are defined in Fig. 2.2.

to be discussed in the next section.

3.7 AC magnetometry metrology

Our task in this section is to introduce a basic set of ac sensing protocols. Assuming

the target AC signal is coupling to the NV spin via the Hamiltonian:

Hac(t) = γhac sin(ωact+ α)Sz, (3.13)

where hac is the field amplitude present at the NV site. In the rotating frame, the

qubit phase accumulated by the AC signal is ϕ(t) = γ
∫ t

0
hac(t

′)dt′. For the MW

sequences like Ramsey, the overall phase accumulation during the interrogation time

τ , is small since the positive and negative phase contributions from the sine function

almost cancel each other. However, for MW sequences like CPMG and XY8-n, the
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π pulses effectively reverse the direction of hac(t), and therefore reverse the direction

of precession. For a series of π pulses spaced at regular intervals, τ , the phase of the

NV can be written as [22]:

ϕ(t) = γ

∫ t

0

heff (t
′)dt′, (3.14)

where the effective field is heff (t) = u(t)hac(t), and u(t) alternates between successive

π pulses (which we approximate as infinitely-narrow in time).

Expanding as a Fourier series, the effective field can be expressed as:

heff (t) = hac
∑

n=1,3,···

2

nπ
[cos((ωac − nπ/τ)t− α)

− cos((ωac + nπ/τ)t+ α)] . (3.15)

Most of these frequency components are integrated to nearly zero in Eq. 3.14, which

reflects the fact that such pulse sequences filter out noise sources with frequency

components far from nπ/τ . On the other hand, if nπ/τ ≈ ωac, heff (t) has a com-

ponent that is nearly constant over time and the phase ϕ has a relative large phase

accumulation. For n = 1, where the pulse spacing τ ≈ π/ωac,

ϕ(t) =
2γhact

π
sinc(πδft) cos(πδft− α) (3.16)

where δf = (2τ)−1 − ωac/(2π) is the frequency offset.

If the AC signal arises from sources such as a test signal coil or a spin’s in-plane

magnetization, then the signal initial phase α should be single valued. In this case

if the pulse spacing is tuned exactly such that δf = 0, then the phase accumulates

linearly with time. After accumulating this phase for a series of N pulses, the qubit

can then be measured at Sz basis. The final fluorescence signal contrast ∆I depends
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on the relative phase of the first and last π/2 pulses, and ∆I varies as:

∆I1 =


cos

(
2N γhac

ωac
cosα

)
for 90x − 90x

sin
(
2N γhac

ωac
cosα

)
for 90x − 90y

(3.17)

Let’s define Φ = 2N γhac

ωac
which is the maximum phase that can be accumulated.

Assuming the AC signal is so small such that γhac ≪ ωac (Φ ≪1), then the contrast

can be simplified as:

∆I1 ∼


1− (Φ cosα)2/2 for 90x − 90x

Φcosα for 90x − 90y

(3.18)

If the AC signal arises from sources such as statistically polarized spins, the ini-

tial phase α is randomized. In general, the probability distribution of α should be

unbiased, therefore when δf = 0, the signal contrast ∆I can be integrated to be:

∆I2 =


J0(Φ) for 90x − 90x

0 for 90x − 90y

(3.19)

where J0(x) is the zero order Bessel function of the first kind. When hac is small, it

is given by:

∆I2 ∼


1− (Φ/2)2 for 90x − 90x

0 for 90x − 90y

(3.20)

In short, for both single and randomized phase AC signal, the dynamical decou-

pling sequences can give rise to a qubit phase when δf ∼ 0. Based on this concept,

some approaches have been developed to measure the AC frequency ωac and the

amplitude hac.
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3.7.1 Pulse-spacing sweep

Figure 3.17: (a) XY8-n MW sequence compatible with the AC signal. The dashed
box is repeated by n times. (b) Signal contrast ∆I versus the detection frequency,
(2τ)−1, where τ is the pulse spacing of a dynamical decoupling sequence. Input signals
of 1.12 and 1.25 MHz were test signals introduced externally. The dip in the contrast
arises due to the phase accumulated by the NV centers. (c) ∆I of a test AC signal
measured by signal averaging as a function of the voltage applied to the external AC
coil. The solid line is a fit to zero order Bessel function of the first kind.

Since the NV signal contrast ∆I always has a decrease for 90x − 90x channel

when δf = 0, one can sweep the interrogation time, τ , and measure the response

on ∆I. Fig. 3.17 explains this approach. The data was measured with a external

AC coil, which can generate AC fields ranging from nT to µT. Even though the test

signal is single phased, the signal’s initial phase at the beginning of each cycle is

randomized. Hence for measurements averaged many times, the test signal phase α

can be treated as an uniformly distributed random variable. For a XY8-8 sequences,

the signal contrast shows significant dip when (2τ)−1 = ωac/(2π) as expected in Eq.

3.20 (see Fig. 3.17(b)). When the signal amplitude hac is not so small, the signal

contrast should obey the Bessel function in Eq. 3.19. This behavior is illustrated in
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Fig. 3.17(c), in which the AC voltage, Vpp is varied to change the magnitude of hac.

In this case, hac ∝ Vpp.

Figure 3.18: The signal contrast versus detection frequency, (2τ)−1, where τ is the
pulse spacing of XY8 sequences, measured at various repeating number n. The dip
around 0.3 MHz arises from precessing 13C spins in the diamond lattice. The dashed
line indicates 13C Larmor frequency under a external field H0 = 288.58 G.

Besides the test signal, this approach can also be used to detect nuclear spins

processing near the NV centers. Fig. 3.18 shows pulse sweep measurements with

various XY8-n sequences. As one can see, the dips around f13C = 0.309 MHz is

enlarged as n grows, indicating that dips belong to some AC signal sources. The

big dip is divided into two parts by 13C’s Larmor frequency (dashed line), which

can be explained by 13C spins with an magnetic shift from the hyperfine coupling to

the nearby NV. The magnetic shift is about ±20 KHz (±6.5 %), which is too big

to be dipolar coupling to other nuclear spins. Although the origins of this detailed

structure are unclear, it is straightforward that we can detect the nuclear spins and

the hyperfine structure using these dynamical decoupling methods.
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3.7.2 Correlation spectroscopy

Figure 3.19: XY8-n correlation spectroscopy MW sequence compatible with the AC
signal. The dashed box is repeated by n times. (b) Signal contrast ∆I versus free
evolution period, tcorr. Test signal frequency was 625 kHz. Solid curves are fittings
using Eq. 3.21. (c) ∆I versus tcorr for 13C nuclear spins. The 13C Larmor frequency
is f13C =0.270 MHz.

For the pulse sweep method, the frequency bandwidth is determined by the to-

tal evolution time ∆f ∼ 1/T2. In order to further narrow down the bandwidth, a

correlation spectroscopy method has been developed. The idea is illustrated in Fig.

3.19(a). The MW sequence is subdivided into two equal sensing periods of duration

Nτ that are separated by an incremented free evolution period tcorr. When δf = 0,

the first sensing sequence picks up phase ϕ1 = Φcosα and store in the qubit. If the

AC signal is still correlated after tcorr, the initial phase at the beginning of second

sensing sequence is α
′
= α+Nπ+ωactcorr. Again the sensing sequence picks up phase

ϕ2 = Φcosα
′
Eventually, the signal contrast after readout can be written as [22]:

∆I3 = sin (Φ cosα) sin (Φ cos(α + ωactcorr)) for 90x − 90y 90x − 90y, (3.21)
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When Φ is small, ∆I3 becomes:

∆I3 ∼ Φ2 cosα cos(α + ωactcorr) for 90x − 90y 90x − 90y (3.22)

By sweeping the free evolution period tcorr, an oscillation at target frequency ωac can

be obtained. Since during tcorr the phase is stored in the Sz basis, the coherence is

limited by T1 instead of T2. Hence the bandwidth can be improved to be ∆f ∼ 1/T1.

Fig. 3.19(b)(c) display the correlation spectra detecting test signal and 13C nuclear

spins respectively. The test signal can be well explained by integrating α in Eq. 3.21

using a uniform distribution. The solid curves are fittings with different Φ values and

the target frequency is consistent with the preset value 625 kHz. The 13C correlations

reveal oscillation at f13C = 271.3± 4.1 kHz (spin echo), which is consistent with 13C

Larmor freqency under external field H0 = 251.88 G. The signal contrast is still at the

same level when tcorr ∼ 200µs, showing that the coherence is not limited by T2. On

the other hand, it is obvious that the waveforms of 13C do not show any significant

repeating number N dependence – unlike the test signal data, different colored curves

have almost the same shape, which suggests that AC signal from 13C cannot be simply

modeled as a constant amplitude and frequency sine wave with a uniform randomized

phase (Eq. 3.13). Future studies are required to understand these correlation spectra

in more detail.

3.7.3 Synchronized readout

Though the methods above have already pushed the bandwidth to the limit of NV

qubit’s lifetime (T1 and T2), it is still possible to push the limit further. Here we

introduce a method that is independent of NV’s coherence time, which is analogous

to classical heterodyne detection in that an unknown signal is ”mixed” with a local

oscillator [70, 33]. The idea is illustrated in Fig. 3.20(a). Unlike the pulse sweep
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Figure 3.20: (a) XY8-n synchronized readout timing control. X and Y stand for π
pulses applying on X and Y axis respectively. (b) synchronized readout of a test AC
signal. The y axis stands for scan times Nscan. The total measuring time is Ttot =
NscanTmeas, where Tmeas is measuring time for individual scan. In this experiment
XY8-20 sequence is used. τ = 0.833µs, fac = 1.2001 MHz, τSR = 78.333 µs, Tmeas =
2.567s.
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approach, where initial phase of the AC signal at the start of each cycle, α, is uniformly

random, here we set the total cycle time to an even integer multiple of interrogation

time τ : τSR = 2nτ (as displayed in Fig. 3.20). Therefore the initial phase at the mth

cycle could be written as:

αm = mωacτSR + α0 (3.23)

= 2π(fac − (2τ)−1)mτSR + 2nπ + α0, (3.24)

where δf ≡ fac − (2τ)−1 is the frequency offset. As a result, the signal contrast at

the mth cycle should be:

∆I(mτSR) =


cos (Φ cos(2πδfmτSR + α0)) for 90x − 90x

sin (Φ cos(2πδfmτSR + α0)) for 90x − 90y

(3.25)

For small Φ, this quantity becomes:

∆I(mτSR) ∼


1− (Φ cos(2πδfmτSR + α0))

2/2 for 90x − 90x

Φcos(2πδfmτSR + α0) for 90x − 90y

(3.26)

Fig. 3.20(b) shows several time-series signals produced by AC fields generated by

a copper coil located near the NV diamonds. Each point represents a NV fluorescence

acquisition result ∆I at the end of each cycle τSR. For a 90x−90y quadrature channel,

an oscillation at δf = 100 Hz emerges as the repeat time increases. The top curve

(N = 512) exhibits an oscillation at 99.76 ± 0.14 Hz, whose bandwidth is dominated

by the AC signal’s lifetime instead of the NV’s.

In order to determine the field sensitivity ηac, defined as:

ηac =
hac

SNR(1)
, (3.27)
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Figure 3.21: (a) Synchronized readout measurements of test signals. The applied
voltage for the AC current source of the coil is varied from U = -6 to U = 5 dBm.
Each black trace corresponds to a fitting using Eq. 3.25. (b) linear relation between
maximum accumulating phase Φ and applied voltage on the coil Vpp. The black line
stands for linear fit with none intercept. (c) Synchronized readout FFT spectrum of
a 49.08 nT (2 Vpp) test signal. The calibrated signal amplitude defines the vertical
axis of the plot. The inset window shows the frequency range used to estimate the
noise in the spectrum. Vrms represents the white noise amplitude. (d) Synchronized
readout SNR as a function of total measuring time. Black line stands for a power fit
mentioned in the text. XY8-10 sequence is used. τ = 0.833µs, fac = 1.2001 MHz,
τSR = 45 µs, Tmeas = 1.475s.
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one needs to know the size of the AC field hac and its corresponding signal-to-noise

ratio (SNR) for a single acquisition SNR(1). In practice, we assume that the AC field

amplitude is proportional to the applied voltage across the coil: hac = κ U, where U

is the applied voltage, and κ is the coupling coefficient. For 90x − 90y phase in Eq.

3.25, if the m0-th acquisition obeys cos(2πδfmτsr + α0) = 1, then signal contrast at

that point becomes ∆I(m = m0) = sinΦ = sin
(
2N γκU

ωac

)
, which is a sine function

of applied voltage U. Fig. 3.21(a) displays time-series signals with various applied

voltages, U. When τsr equals to the time indicated by dashed lines in Fig. 3.21(a),

∆I is proportional to sinΦ. By fitting all curves simultaneously, the phase Φ can be

obtained (Fig. 3.21(b)) and κ can be calculated to be:

κ =
ωac

2Nγ

∆Φ

∆U
= 24.54 nT/V (3.28)

On the other hand, the SNR can be obtained by comparing signal and noise

intensity in Fig. 3.21(c). For a measurement of 49.08 nT AC signal which has been

averaged for 4096Tmeas, the noise level can be obtained from baseline root-mean-

square (rms) value. If the noise source is white noise, we have:

SNR(t) =
NscansTmeas ∗ Isignal(1)√
NscansTmeas ∗ Inoise(1)

=
√
NscansTmeas ∗ SNR(1) (3.29)

Replacing SNR(1) with ηac, we obtain:

SNR(t) =
hac
ηac

√
NscansTmeas (3.30)

A power-law fit in Fig. 3.21(d) indicates a square-root scaling with time and a

sensitivity of ηac = 34.78 nT · Hz−1/2.

Although the sensitivity can still be improved by increasing π pulses repeat num-

ber and varying τ , it might still be in the order of nT · Hz−1/2. So as to detect
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AC sensing method Resolution AC signal type
Pulse-spacing sweep 10 kHz random or single phase
correlation spectroscopy 1 kHz random or single phase
Synchronized readout 100 mHz single phase

Table 3.2: Various AC sensing methods. The resolutions are obtained from sample
B.

nuclear polarization outside of the NV diamond, the sensitivity needs to be around

10 pT · Hz−1/2 level as reported in [33]. On the other hand, there is a strong AC signal

from the 13C nuclear spins as seen in Section 3.7.1 and 3.7.2. This field is created by

statistical polarization instead magnetic polarization, which lacks a traceable initial

phase α. Thus we are not able to detect the AC signal directly from these local spins.

3.8 Conclusion

The work described in this chapter can be divided into three parts: CW NV ODMR

study, pulsed NV ODMR and coherence extension, AC sensing metrology. In the first

part we studied the basics of NV spectra and the relation to both the light polarization

and the 13C hyperfine interaction. The second part described pulsed ODMR NV

control protocols using a qubit with a Bloch sphere. Utilizing dynamical decoupling

sequences, the coherence time T2 can be extended 50 times, which makes AC sensing

possible. The third part introduced various methods to detect AC magnetic fields

coupling to nearby NV centers. The differences between them are summarized in

Table .3.2.

The ultimate goal is to use NV centers to detect nearby environments under

extreme physical conditions such as high pressure. Ideally it is straightforward to

adapt current methods to the diamond anvil cell (DAC) if the sensitivity is sufficient.

In fact, one way to achieve this is to keep the AC sensitivity and enlarge the AC field

by hyperpolarization [15]. Nevertheless, the pressure in the DAC makes quantum

sensing challenging due to inhomogeneities of the microwave field and pressure. More
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details will be discussed in the next chapter.
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Chapter 4

AC sensing in a diamond anvil cell

In this chapter, we describe experiments to develop Optical detected magnetic res-

onance (ODMR) to study AC dynamic fields such as those arising from precessing

nuclear spins as a function of pressure in the diamond anvil cell (DAC). In principle

there is no upper pressure limit for such measurements, and we will discuss some of

the challenges that emerge under pressure as the properties of the NV centers evolve.

4.1 Building ODMR in the DAC

The principle challenges to performing ODMR in a DAC are associated with the col-

lecting sufficient fluorescence (FL) from the sample as well as introducing microwaves

with sufficient homogeneity and magnitude. The optical system is the same as that

of ambient condition before the final NV sample FL collection, which is shown in Fig.

2.3. The geometry of NV diamond and DAC is displayed in Fig. 4.1. The geometry

of the DAC requires a larger working distance, from 0.8 to 0.4 for our case, so the

FL intensity is reduced due to a smaller numerical aperture objective. Though the

focusing beam size is few µm, the FL collected from focusing spot is too small to gen-

erate enough signal to noise ratio (SNR) to achieve AC quantum sensing. Therefore

instead of having a confocal microscope setup, we collect all FL signal created by the
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Figure 4.1: Diamond anvil cell for optically-detected magnetic resonance experiments.
An objective focuses the excitation light and collects the fluorescence from within the
sample space in the gasket. A gold antenna is located across the anvil culet (sample
hole 260 µm diameter), and a small NV diamond crystal of dimensions ∼ 100×75 µm
is visible at the center to the lower right of the antenna (see arrow), oriented normal
the [100] direction. A magnetic field of magnitude H0 ∼ 29 mT is oriented 54.7◦ from
the vertical along the [111] direction of the diamond using permanent neodymium
magnets mounted externally.

NV chip.

4.1.1 MW antenna design

Introducing microwaves with sufficient magnitude in close proximity to the NV centers

presents a major challenge for working in a DAC, because the conducting gasket can

screen out the magnetic field, as illustrated in Fig. 4.2. High microwave amplitudes

are necessary in order to achieve strong H1 fields and hence large Rabi frequencies.

The magnitude of H1 should be ∼ 0.18 mT in order to have a 90◦ pulse time on

the order of 50 ns (Ω ∼ 5 MHz). Note that it is not necessary to have a high Q

resonant circuit, so the antenna does not necessarily need to have a low resistance.
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Previous studies have utilized antennas located external to the sample chamber [25,

45, 38, 90], within the sample chamber [71], as well as designer anvils with conducting

paths deposited directly onto the diamond culet and protected with a capping layer of

CVD grown diamond [77]. Locating the antenna outside the sample space, as shown

in Fig. 4.2(a,b), is easier, but is inefficient because a large fraction of the power

goes towards inducing screening currents in the conducting gasket and can lead to

undesired heating effects. Designer anvils are costly and time consuming to prepare

[86].

Figure 4.2: Calculated magnetic field profile from a wire loop surrounding a diamond
anvil close to (a) an insulating gasket and (b) a conducting gasket for 63.2 V(40
dBm) across the antenna at 3 GHz. The conducting gasket screens the majority
of the magnetic field within the sample space. (c) The calculated magnetic field
profile and induced current density for a conducting gasket with a straight antenna,
as illustrated in Fig. 4.3(a). The diamond anvil (outlined in green) has a relative
permeability of 5 [40]. The green rectangle in the sample space represents the volume
of the NV diamond chip used to compute the histograms in Fig. 4.4.

To overcome this challenge, we fabricated gold microwave strips, as shown in Fig.

4.3, by electroplating 8 µm thick strips onto a substrate, which were then liberated

chemically for insertion into the DAC. A single antenna is then transferred onto the

culet of the anvil under a microscope, and secured with thin layer of adhesive. Leads
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Figure 4.3: (a) Geometry of the gasket and sample region. The inner diameter is
260 µm, the culet diameter is 600 µm, and the thickness of the sample region is
150 µm. The gasket is copper-beryllium with conductivity 1.16×107 S/m. The gold
antenna has width 11µm, thickness 8 µm and length 600 µm, and has conductivity
4.6×107 S/m. There is also a thin insulating layer between the antenna and gasket
with conductivity 10−18 S/m. (b) Fabricated microwave antenna secured onto culet of
the anvil (diameter 600 µm). The antenna has width 10 µm and thickness 8 µm. (c)
Pre-indented gasket with insulating layer of boronitride, aluminum oxide and epoxy.
The sample space in the center hole has diameter 260 µm.

95



were attached to the ends of the antenna pads with silver epoxy, and then attached

to larger wires (not shown) that lead out of the cell. The antenna is insulated from

the pre-indented region of the gasket (Fig. 4.3(c)). This approach enables us to

reliably apply pressure to the gasket without comprising the antenna performance.

The antenna leads are malleable and are compressed under pressure as the anvil

presses into the gasket. In one test[84], the MW power starts to decrease dramatically

as pressure reaches 6 GPa. It is very likely due to that the leads get severed as the

gasket deforms. Moreover, at higher pressures (on the order of ∼ 10 − 30 GPa)

the anvil will eventually cups inward [57]. In such cases it may be better to utilize

alternative designs, such as a wave guide to transfer MW power through the anvil

rather than a wire located between the anvil and gasket.

4.1.2 MW field simulation

In order to better understand the H1 field distribution and radiofrequency screening

effects of the gasket, we have modeled the antenna and gasket system and carried

out finite element analysis calculations of the electromagnetic fields. Fig. 4.3(a)

illustrates the gasket and antenna strip, including the ridge surrounding the indented

region around the anvils (not shown). A thin insulating gap separates the antenna

from the gasket. Using the COMSOL package, we find that the field radiates radially

from the anvil, as illustrated in Fig. 4.2(c), but drops off quickly with distance.

The ratio of power dissipated to resistance in the antenna to the radiated power

is 3.2%, and that the power dissipated by induced currents in the gasket is 0.5%.

These numbers indicate that the thin gold wire radiates power into the sample space

efficiently. On the other hand, for a loop antenna located outside the sample space

(Fig. 4.2(b)), but in close proximity to the gasket and anvil, the magnetic field in the

sample space is well-screened by the conducting gasket.
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Figure 4.4: (a) Rabi oscillations (|0⟩ ↔ |− 1⟩) for various pressures in the DAC with
a microwave power of 44 dBm. (b) Computed histograms of H1⊥/I based upon the
finite element simulations shown in Fig. 4.2(c), for for a loop antenna with insulating
gasket, with a conducting gasket, and for the straight antenna design illustrated in
Fig. 4.3(a). Note that the field has been normalized by the current in the wire and
have been computed at 2 GHz.

4.1.3 Rabi oscillations

As seen in Fig. 4.2, the H1 field profile is inhomogeneous. It is largest in the region

closest to the antenna but drops off quickly along the vertical axis. Fig. 4.4(b)

displays a histogram of the field to current ratio of magnitude of H1⊥, the component

of H1 perpendicular to H0 along the [111] direction (see Fig. 4.1), within a volume of

100× 75× 20 µm3 representing the NV diamond (illustrated by the green box in Fig.

4.2(c)). The size and shape of this histogram depends critically on the location of the

NV diamond within the sample space. This distribution of fields means that each of

the ∼ 8 × 109 NV centers in the NV diamond experiences a slightly different Rabi

frequency. As a result, the oscillations die out faster under pressure, as observed in

Fig. 4.4(a). We also considered a loop, rather than a straight antenna, as shown in

Fig. 4.4(b). If the gasket remains insulating, the distribution remains narrow. For

the conducting gasket, the distribution broadens and is shifted to lower fields because

the gasket efficiently screens the field. The highest field to current ratios are achieved

with the straight antenna because the distance to the sample is smallest in this case,
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however the field is inhomogeneous.

Experimentally, we find that the Rabi power is pressure dependent as shown

in Fig. 4.4(a). The decrease of the MW power is possibly due to the MW strip

deformation under the pressure, and the change of the total circuit impedance. After

all, the power delivered to the antenna is dominated by the reflectance coefficient of

the combination of leads and antenna. Although most of the power is reflected, in

practice the transferred MW power is sufficient to manipulate NV spin to perform

AC sensing protocols at different pressures.

4.2 NV properties under pressure

In order to facilitate quantum sensing with an NV ensemble in a diamond anvil cell,

one needs to understand how NV spins respond to pressure. In this section, we will

explain some basic properties of NV such as energy levels and coherence time as

pressure increases.

4.2.1 CW ESR under pressure

Fig. 4.5 presents a series of NV spectra as a function of pressure. Under zero pressure,

we noticed the higher frequency lines of the spectra (blue) are not completely over-

lapping. This is due to a slight misalignment between external field H0 and diamond

chip [111] direction. During pressurization, the zero field splitting D increases and

the lines gets broader as pressure increases.

Using a linear relation between the zero field splitting D and the pressure P, one

can estimate the pressure at each taken measurements to be:

Pest =
D −D0

A
, (4.1)

where we choose D(0) = 2866 MHz and A = 11.72 MHz/GPa [77], and D can be
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extracted by fitting the NV ESR spectra. The line broadening can be caused by

various reasons. One of the most important reasons is the pressure inhomogeneity,

which will be discussed later.

We also noticed that the peak intensity ratio between low frequency and high

frequency peaks varies under pressure. Even though all the measurements are taken

with the same light polarization direction (see Section 3.2), the resonance intensity

is dominated by the MW power reflectance. It is very likely that the reflectance

coefficient changes dramatically as the antenna deforms during the pressurization,

which is the same reason for Rabi power pressure dependence.

Figure 4.5: Pulsed ESR spectra of a diamond with NV− centers under different pres-
sure when H0 = 29mT. The resonance condition depends on the zero field splitting
D and four possible orientations of the NV− axis in the diamond lattice. The mea-
surement only captures lower half of the whole spectra (4 peaks out of 8 in total).
The pressure is calibrated from the spectra by subtracting D(P) using curve fitting.

4.2.2 Ramsey interferometry

Under pressure, the NV− spin dephases much faster than under ambient condition, as

shown in Fig. 4.6. The Ramsey signal contains information about hyperfine coupling
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to nearby 14N nuclear spin (if the MW excitation is wide enough) and its amplitude

decays exponentially with characteristic time 1/T ∗
2 . However as pressure increases,

T ∗
2 decreases by a factor 30 – from 3 µs to 100 ns.

So far as we know from Fig. 4.5, the |0⟩ to |−1⟩ is still a single transition under

pressure. However, if both hydrostatic and shear pressure are generating local inho-

mogeneity, that might introduce extra term into dephasing process, which makes T ∗
2

faster. In next section we shall see that by utilizing dynamical decoupling sequences

such as spin echo, the local strain inhomogeneity can be refocused, which preserves

the relaxation time T2 to be about same as that under ambient condition.

Figure 4.6: Ramsey interference measured by 90x − τ − 90±x and the 90x − τ − 90±y

sequences under (a) ambient condition and (b) 3.60 GPa pressure.
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4.2.3 Spin echo

4.2.3.1 Coherence time T2

Figure 4.7: Spin echo coherence versus τ under various pressure. The contrast is
measured by 90x − τ − 180x − τ − 90±x. The oscillations are due to the AC field
created by nearby 13C nuclear spins.

In contrast to Ramsey interference, the coherence time T2 measured by a spin echo

sequence stays the same under pressure. Fig. 4.7 shows the spin echo contrast versus

the pulse spacing τ as pressure increases. T2 is approximately 40 µs at all pressure

levels. The oscillations in the echo signal occur at f ∼ 0.3 MHz, which is close to the

Larmor frequency of the 13C: f13C = γ13CH0 = 0.31 MHz.

The reason that the coherence time T2 is unaffected by strain inhomogeneity can

be understood by considering the static line broadening. As mentioned in Eq. 1.49,
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the spin Hamiltonian under hydrostatic pressure can be written as:

HNV = (D + δ(x))S2
z + γH0Sz + σ(x)(S2

x − S2
y), (4.2)

where δ(x) and σ(x) are parameters that are directly proportional to hydrostatic and

shear strain, respectively. These quantities are usually spatial dependent [51]. If we

assume D ≫ δ, σ, one can apply second order perturbation theory to get the energy

eigenvalues:

E
′

+1 = D + γH0 + δ +
σ2

2γH0

(4.3)

E
′

0 = 0 (4.4)

E
′

−1 = D − γH0 + δ − σ2

2γH0

(4.5)

Now if we just consider the |0⟩, |−1⟩ two level subsystem, we find that phase term

e−iE
′
−1t can be cancelled by the spin echo approaches despite there is a spatial distri-

bution (similar to spin echo to cancel magnetic field inhomogeneity in conventional

NMR). Meanwhile for Ramsey interference, the spatial inhomogeneity in δ(x) and

σ(x) will exaggerate the dephasing process, which reduces T ∗
2 as strain increases

(similar to free induction decay in conventional NMR).

4.2.3.2 FFTSUM

Different from spin echo T2 measurement, one can fix first τ = τ0, then sweep τ1

as illstrated in Fig. 4.8 – eventually the signal will form an echo when τ1 = τ0.

The spectra can be measured at various frequencies and their Fourier transform can

be summed together. This so called FFTSUM approach is often utilized to obtain

spectra in conventional NMR (see Fig. 6.5). Fig. 4.8 displays FFTSUM spectra versus

pressure. The spectra clearly broaden with pressure, and the hyperfine coupling peaks

have been washed out under pressure. We find that the linewidths increase by a factor
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Figure 4.8: Spectra of the |0⟩ ↔ | − 1⟩ transition of the NV ensemble as a function
of pressure, measured by spin echo sequences. Each spectra is obtained by gluing
several τ1 sweeping spectra together. τ0 here is choose to be around 8 µs.

of eight over this range, which is as expected since the width is still dominated by

T ∗
2 . The frequency shift is comparable with continuous-wave ESR results.
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4.3 AC quantum sensing under pressure

In the previous section we have shown that despite the non-hydrostatic pressure

environment, the signal can still be refocused by dynamical decoupling sequences,

making AC quantum sensing possible. Here we display two quantum sensing protocols

to detect AC magnetic signals. These methods can detect AC fields generated by

nearby nuclear spins and small test AC signals.

4.3.1 XY8-N pulse spacing sweep

The most straightforward approach to detect an AC field is to sweep the pulse spacing,

τ , and search for changes in signal contrast ∆I. As shown in Eq. 3.20, ∆I ∼

1− (Mγhac

4πfac
)2 if τ = (2fac)

−1 (2πfac ≫ γhac), where M is the number of π pulses and

the AC signal is hac sin(2πfact+ ϕ). If τ is matched with fac, the contrast will have

a observable dip whose depth is proportional to Bac (see Fig. 3.17(b)).

Figure 4.9 shows XY8-N pulse sweeping spectra without any external driving

AC field at ambient pressure, 3.6 GPa and 5.0 GPa respectively. The contrast decays

exponentially as τ increases due to the dephasing effect. There is a dip in the contrast

at ∼ 0.3 MHz, which corresponds to the Larmor frequency of 13C in the applied

H0 field. The 1% abundant 13C nuclear spins in the diamond lattice precess at this

frequency and create AC fields at the NV site that are not refocused by the dynamical

decoupling. The dips around 0.6 and 1.2 MHz are corresponds to 2fac and 4fac, which

can also be picked up by XY8-N sequences if the MW pulses are imperfect [47]. The

peaks at 1.2 MHz may alaso arise from 1H nuclei since γ1H ∼ 4γ13C . Based on the

sensitivity of our system and other AC sensing methods we tried, it is almost certain

that the three dips are all contributed by 13C nuclear spin.

It is also obvious that the dip depth drops as pressure increase, which is possi-

bly due to inhomogeneous pressure distribution, leading to a reduction on the NV
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sensitivity.

Figure 4.9: Optical contrast versus frequency, (2τ)−1, where τ is the pulse spacing
of an XY8-16 sequence, measured at various pressures. The dips around 0.3, 0.6 and
1.2 MHz arise from precessing 13C spins in the diamond lattice.

4.3.2 Synchronized readout

Instead of averaging the signal over randomly-distributed initial phases at the begin-

ning of each repeat of the dynamical decoupling sequence, it is possible to collect each

fluorescence measurement and perform a Fourier transform. After each NV fluores-

cence measurement, the NV is re-initialized into the ground state without affecting

the AC source. As a result, the phase of Bac(t) will evolve in a coherent fashion for

each measurement. The phase of detecting AC field at mth acquisition should be:

ϕm = 2mπ(fac − (2τ)−1)Tmeas + 2nπ + ϕ0 (4.6)

according to Eq. 3.24, where Tmeas = 2nτ is the total measurement duration for

each cycle, and δf ≡ fac − (2τ)−1 is the frequency offset between target signal and
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Figure 4.10: (a) Optical contrast, ∆I measured for NVs in the DAC with a test signal
at frequency fac = 1.2001 MHz, where τ = 416.667 ns (corresponding to a detection
frequency at 1.2 MHz), for a XY8-16 sequence of equally-spaced measurements at
with Tmeas = 45 µs, as described in the text. (b) Fourier transform of ∆I at ambient
pressure. The spectra exhibits a single large peak at 100 Hz, and the vertical axis
has been scaled to match the known applied field magnitude. The 3.61 GPa data
has been offset vertically by 500 nT for clarity. (c) Sensitivity, η (•), versus pressure.
The dashed blue line corresponds to the necessary sensitivity to achieve unity signal
to noise ratio after 1 minute, and the pink square (■) at 0 GPa corresponds to the
sensitivity reported in [33].

detection signal. For a 90x − 90y sequence in the limit of small Bac, the fluorescence

contrast will vary as (Eq. 3.26):

∆I(T ) ∼
(
2NγBac

2πfac

)
cos(2πδfT + ϕ0), (4.7)

where T = mTmeas. In effect, the AC field is demodulated by the dynamical decou-

pling sequence, and imprinted on ∆I. A Fourier transform of ∆I(T ) thus provides

a spectrum of Bac(t) relative to the detection frequency (2τ)−1.The frequency reso-

lution is determined by the number of points m, Tmeas, the stability of the field H0,

and the stability of the microwave pulse timing. The resolution can be as low as a

mHz, which is sufficient to resolve many chemical shifts even at low applied fields [70,
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33]. This technique requires coherently averaging many repeated measurements, but

sufficient signal-to-noise ratio can be obtained within a few hours.

In practice, the nuclear spins we want to measure – protons in Daphne oil as an

example – are dominated by statistical polarization under our experimental conditions

[89], which leads to rather weak (in the range of pT) AC field magnitude Bac and

random phases ϕ0. The same is true for the 13C spins – the phases are random even

though with stronger magnitude. Therefore, we tried to generate a uniform, single-

phased test AC signal by a copper coil outside of DAC, in order to demonstrate

accessibility of this sensing method under pressure. The results are illustrated in Fig.

4.10.

4.4 Discussion

4.4.1 Sensing sensitivity

The data shown in Fig. 4.10 was acquired for a large applied test AC field for a

single acquisition sequence without signal averaging with a total measurement time

of approximately 1.5 s, corresponding to a sensitivity, η = 1.9 nT/Hz1/2 at ambient

pressure. The test field magnitude is calibrated using the same method described in

Section .3.7.3. At 3.6 GPa, we find the sensitivity decreases to η = 7.6 nT/Hz1/2.

Here we define sensitivity as the minimum detectable signal per unit time. Ideally

η should be as low as possible to achieve a high signal to noise ratio. Our values

are not as low as previous reports, which reach down to 32 pT/Hz1/2 [33]. One of

the primary reasons for the difference in the DAC is the wide distribution of Rabi

frequencies, which means that not all of the NVs in the ensemble experience the same

H1 field. The pulse width for the dynamical decoupling 180◦ pulses, given by π/(γH1),

will differ for each of these NVs. As a result, the accumulated phase is not as high

as it would be for a uniform H1. To illustrate this point, Fig. 4.11 shows how the
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signal intensity varies as a function of the pulse width time. Numerical simulations

of the Bloch equations under these conditions indicate that the sensitivity is reduced

by ≈ 10% if the dynamical decoupling pulses are either 10% shorter or longer than

ideal. As shown in Fig. 4.4, the H1 field for the straight antenna is inhomogeneous

over the sample volume, such that the width of the distribution is approximately 40%

of the average. Although this antenna is able to provide large H1 fields within the

sample space, the field inhomogeneity reduces the synchronized readout sensitivity.

Figure 4.11: Signal intensity (arbitrary units) for a synchronized readout measure-
ment of an AC signal (as in Fig. 4.10) versus the width of a 90◦ pulse. The dynamical
decoupling pulses (180◦) are twice as long as the time t90 given on the horizontal axis.

Another limiting factor for the sensitivity is the large ratio of the 180◦ pulse width,

t180, to the pulse spacing, τ . The data in Fig. 4.10 utilized t180/τ ≈ 0.43, which is far

from the idealized case of the infinitely-narrow pulses. Numerical simulations indicate

that the sensitivity will be suppressed when the ratio t180/τ ≳ 0.2. This provides an

effective upper limit on ωmax
ac ≈ 0.2Ω for a given value of the Rabi frequency, Ω.

Under pressure we find that η increases by a factor of four, as shown in Fig.

4.10(c). There are two possible reasons for this change. Under pressure the NV

spectrum is broadened due to the pressure gradients. If the spectrum is sufficiently
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broad, the dynamical decoupling pulses will not fully refocus the NV magnetization,

similar to the effect of a non-uniform H1 field as discussed above. Moreover, the

antenna deforms under pressure, and as a result the impedance changes and affects

the magnitude of the H1 field. Consequently both Ω and ∆I can be reduced, affecting

the sensitivity.

4.4.2 Pressure inhomogeneity

Figure 4.12: (a) Experimental data of pressure spatial distribution in the DAC.
Flat plate, natural diamond (R = 100µm); gasket, capacitor paper of thickness 12
µm; applied load, 150 N[28]; (b) Pressure probability distribution of a 80 µm × 80
µm sample in the DAC center under the pressure spatial distribution in (a). The
histogram is obtained using the Monte Carlo method.

As shown in Fig. 4.12(a), the pressure inside the sample chamber of a DAC

reaches its maximum at the center (r = 0), and drops to zero when it is away from

culet region (r ≥ rculet). Using a Monte Carlo simulation, one can obtain the pressure

distribution within a square sample of 80×80 µm2, as shown Fig. 4.12(b) (assuming

pressure distribution only occurs in the xy plane). We can then approximate the

109



pressure distribution with a Lorentzian form:

ρ(P ) ∼ σP/2π

(P − P0)2 + σ2
P

. (4.8)

where P0 is the mean value and σP is the standard deviation of the original distribu-

tion.

Under ambient condition, we assume the energy spectrum to be:

S0(E) =
σ0

(E − E±)2 + σ2
0

, (4.9)

where E± = D0 ± γB and σ0 ∼ 1
T ∗
2
depicts the NV − spin decoherence.

Under few GPa pressure, if one only considers the effect of hydrostatic pressure

(Section 1.4.4), it is reasonable to assume Mz = AP [77, 25, 21]. Hence the energy

spectrum should be:

SP (E) =

∫
S0(E − AP )ρ(P )dP (4.10)

=

∫
S0(E − E

′
)ρ(E

′
)dE

′
(4.11)

where E
′
=Mz = AP . The new spectrum becomes a convolution between the original

one and the pressure distribution. Since they are both Lorentzian, it can be shown

that the result is still a Lorentzian and it has form:

SP (E) =
σ

′
P

(E − (E± + AP0))2 + σ
′
P
2 , (4.12)

where σ
′
P = AσP + σ0.

One major effect of pressure is the common shift – the NV− energy levels should all

shift by ωCM = AP0; another one is the line broadening – the new line width under
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pressure should increase by AσP . These phenomena are evident in high pressure

ODMR. Fig. 4.13 shows extracted P0 and σP from Fig. 4.8. It is as expected that

σP is about 0.6 GPa, where is about the same as Monte Carlo simulation on a 80 µm

× 80 µm sample in Fig. 4.12(b).

Figure 4.13: Pressure distribution characterization. Each point indicates its pressure
condition inside the DAC. P0 and σP are extracted by fitting FFTSUM spectra 4.8
with Lorentzian. A = 11.72 MHz/GPa [77].

4.4.3 Future improvements

There are several possible routes to improve the sensitivity of AC-ODMR in the DAC.

The inhomogeneity of the microwave fields from the antenna leads to an increase in

η. An antenna design that provides a more homogeneous and stable H1 field and is

less prone to distortions under pressure is vital. In the future other antenna designs

may be considered, for example a circular loop within the sample space, to improve

the homogeneity and reduce screening effects by the gasket.

Utilizing diamonds with lower NV concentrations and isotopically pure 12C would

significantly enhance T2 and also improve the sensitivity. It is also possible to im-
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prove the sensitivity by utilizing dynamic nuclear polarization. This number can

be enhanced significantly by utilizing the presence of free radicals and taking ad-

vantage of the Overhauser effect to transfer polarization to the nuclear spins in a

liquid. Bucher et al. used the TEMPOL molecule dissolved into liquid solutions to

enhance the sensitivity by more than a factor of 200 [15]. The unpaired electrons

on the TEMPOL molecule have an enhanced spin polarization that can be trans-

ferred to hyperpolarize the nuclear spins beyond their thermal polarization described

in Section .1.1. This process can enhance the signal-to-noise ratio by several orders

of magnitude, but requires pulsing the system at the Larmor frequency of the TEM-

POL electron spins for several ms prior to detection of the nuclear spins with NV

magnetometry.

The sensitivity may also be improved by utilizing double quantum coherence under

pressure [50, 51]. The AC-ODMR experiments described here are based on single

quantum coherence in which the NV is prepared in the state |0⟩+|±1⟩. The resonance

frequency of the double quantum coherent state | − 1⟩ + | + 1⟩ is independent of D.

This property could be important because pressure inhomogeneities strongly affect

D, giving rise to spectral broadening that impacts the sensitivity of the AC detection.

More details about double quantum will be discussed in the next chapter.
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Chapter 5

Double quantum resonance

metrology

This chapter describes a novel method to manipulate the NV−spins – instead of

using |Sz = 0⟩ and |Sz = −1⟩(|Sz = +1⟩), the qubit two level system is generated

by |Sz = −1⟩ and |Sz = +1⟩. This so called double quantum (DQ) method offers

advantages over traditional single quantum (SQ) method in various aspects. The

experimental setup will be introduced and preliminary results such as Rabi oscillations

and Ramsey spectroscopy will be discussed.

5.1 Motivations

In section 4.4.2, we discussed the potential hazard of the pressure inhomogeneity. The

line gets so broad that the hyperfine coupling structure to 14N nuclear spin is washed

out. It may as well undermine the AC sensing sensitivity as pressure increases. One

possible solution to get rid of hydrostatic inhomogeneity is the DQ spectroscopy. For

transition between |Sz = −1⟩ and |Sz = +1⟩, the energy spectra becomes:
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SDQ(E) =
σ0

(E − 2γB)2 + σ2
0

, (5.1)

which is pressure independent. Under pressure though there is a distribution around

the sample, it has no effect on S±(E) and there should be no common shift and line

broadening. Therefore by utilizing DQ methods the hyperfine interaction to 14N and

AC sensitivity under pressure should be improved comparing to SQ methods.

Unlike SQ transitions of NV, which can be achieved using MW fields which couples

to spin ladder operators Ŝ+, the DQ transition of NV is rather challenging to be

achieved directly. One accessible approach is creating a superposition of |±1⟩ using

SQ transition, letting the system evolve, eventually measuring reflecting the states

back to |0⟩ [50]. Although transition DQ might directly couples to strain and electric

field, the coupling to strain is in a complex form whereas coupling to electric field is

much weaker than magnetic field [48, 26].

Another advantage of DQ is the AC sensing amplitude enhancement. Instead of

γB response in SQ, the magnetic field gives rise to a differential shift ωDF , which

is 2γB, resulting in 4× sensitivity increase when measuring small AC field (due to

the statistical polarization, the AC field amplitude from surrounding nuclear spins

is proportional to B2
rms). A proton NMR measurement using single NV− center was

shown in [50].

5.2 Excitation and control of the DQ resonance

Consider an NV spin in the presence of a time independent field with two frequency

components:

HDQ = DS2
z + γB · S + γ(B1 cos (ω1t+ ϕ1) +B2 cos (ω2t+ ϕ2))Sx, (5.2)
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where ωi and ϕis are the frequency and phase for ±1 transitions. In the matrix form

it is:

HDQ =


D + γB γhMW/

√
2 0

γhMW/
√
2 0 γhMW/

√
2

0 γhMW/
√
2 D − γB

 , (5.3)

where hMW = B1 cos (ω1t+ ϕ1) + B2 cos (ω2t+ ϕ2). Analogous to S = 1
2
system,

we apply unitary transformation

U =


e−iω1t 0 0

0 0 0

0 0 eiω2t

 , (5.4)

to the Hamiltonian [50]. The transformed Hamiltonian H̃DQ = U †HDQU + i∂U
†

∂t
U

becomes:

H̃DQ =


D + γB − ω1 eiω1tγhMW/

√
2 0

e−iω1tγhMW/
√
2 0 eiω2tγhMW/

√
2

0 e−iω2tγhMW/
√
2 D − γB + ω2

 . (5.5)

Using rotating wave approximation, the off-diagonal term, taking eiω1tγhMW/
√
2

as an example, can be simplified to be:

eiω1tγhMW/
√
2 =

γB1

2
√
2
eiω1t(e−iω1te−iϕ1 + eiω1teiϕ1)

+
γB2

2
√
2
eiω1t(e−iω2te−iϕ2 + eiω2teiϕ2)

∼ γB1e
−iϕ1/2

√
2

(ω1, ω2, |ω1 − ω2| ≫ 1).

(5.6)

Eventually, the final time-independent Hamiltonian in rotating frame H̃DQ is:
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H̃DQ =


D + γB − ω1 γB1e

−iϕ1/2
√
2 0

γB1e
iϕ1/2

√
2 0 γB2e

−iϕ2/2
√
2

0 γB2e
iϕ2/2

√
2 D − γB + ω2

 . (5.7)

By controlling Bi, ωi and ϕis’ value, the dynamical decoupling sequences can be

constructed and NV−’s final state can be calculated analytically:

|Ψ⟩ = e−iH̃DQ(Bn,ωn,ϕn)tn...e−iH̃DQ(B2,ω2,ϕ2)t2e−iH̃DQ(B1,ω1,ϕ1)t1 |Ψ0⟩ , (5.8)

If we assume B1 = B2 = B and two MW pulses is turned on and off simultaneously

(two tone pulse), then we can define t180 as the time needed to pump the |0⟩ initial

state to the superposition state 1√
2
(|−1⟩+ eiθ |+1⟩) on resonance:

t180 =
π

γB
, (5.9)

which is
√
2 times quicker than SQ t180 with the same MW amplitude.

5.3 Experimental method

In principle, the only difference between SQ and DQ measurements is the MW control.

Instead of exciting from |0⟩ to |+1⟩ or |−1⟩, electrons are pumping to both energy

levels. However, in real experiments, it usually contains both SQ and DQ signals at

the same time. In order to maintain DQ signal in the meantime to get rid of SQ

signals, it is necessary to implement phase cycling to cancel unwanted components

meanwhile to keep the DQ signals.
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5.3.1 MW generation

There are two possible ways to generate DQ states: generating two different frequency

pulses simultaneously or generate them one after the other. Here we only discuss the

first method.

For AWGMW generation, in order to have more points in one period to distinguish

different phases, the higher harmonics generation is used. For generating the two tone

pulse, we use the same method – a lower frequency two tone pulse is generated, and

its higher harmonics component is isolated and amplified. The other harmonics we

are not interested in can be filtered out.

In order to keep the same pulse duration (t90) for two transitions, one can run Rabi

oscillation experiments separately on each transitions. Usually the same MW input

power for each transition does not result in the same t90 (due to circuit different

impedance @ ±1 transitions). Hence the two frequency components generated by

AWG usually have different amplitudes.

5.3.2 Phase cycling

In conventional solid state NMR, CYCLOPS cycling is often used to cancel out noise

due to imperfection of the experiments [19]. We also used partial phase cycling in

SQ NV− spectroscopy for quadrature detection (see Section 3.5.1). For DQ measure-

ments, however, the phase cycling is always required to extract the DQ component

from SQ.

Table 5.1 displays possible single phase measurements and their expected FL

signal. A preliminary version of phase cycling for DQ Ramsey is picking four phase

combinations from the first eight rows in table 5.1 to form cos 2ωτ and picking four

from the last eight rows to form sin 2ωτ . It requires four phases for each quadrature

channel since it needs to cancel the SQ and baseline offset in the same time. A

detailed study will be discussed in Section 5.5.
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Pulse 1 |−1⟩ Pulse 1 |+1⟩ Pulse 2 |−1⟩ Pulse 2 |+1⟩ FL | ⟨0|Ψ⟩ |2
x x x x cos2 ωτ
x x -y y sin2 ωτ
x x -x -x cos2 ωτ
x x y -y sin2 ωτ
x x y y cos2 ωτ
x x x -x sin2 ωτ
x x -y -y cos2 ωτ
x x -x x sin2 ωτ
y x x x (cosωτ + sinωτ)2/2
y x -y y (cosωτ − sinωτ)2/2
y x -x -x (cosωτ + sinωτ)2/2
y x y -y (cosωτ − sinωτ)2/2
y x y y (cosωτ + sinωτ)2/2
y x x -x (cosωτ − sinωτ)2/2
y x -y -y (cosωτ + sinωτ)2/2
y x -x x (cosωτ − sinωτ)2/2

Table 5.1: Expected DQ Ramsey FL output for some possible MW pulse phase
configurations. Here ω = ωrf1 − ω− = −(ωrf2 − ω+) is the differential shift frequency
(ω±: the resonance frequency of |±⟩; ωrf1,2: the applied MW fields frequencies)

5.4 Double quantum Rabi

In order to implement DQ for quantum sensing, it is important to understand the

behavior of simple MW sequences such as the Rabi sequence. Fig. 5.1(a) describes a

special DQ Rabi sequence we used in pulsed ODMR experiments. Instead of applying

two tone MW pulses, a pulse at frequency ω1 is followed by one at frequency ω2.

If ±1 MW pulses are independent events for FL, the final contrast can be written

as: FL(t−1, t+1) = FL(t−1) + FL(t+1). As a result, one should expect FL having

similar behavior versus t+1 with various t−1 – different t−1 will only lead to a different

offset. However, based on the data in Fig. 5.1(b), we find that the FL oscillation

amplitude A(t−1 = 130 ns) is less than half of A(t−1 = 0 ns), which contradicts to the

±1 MW independence. This can be explained by a common ground state |Sz = 0⟩

– when t−1 = t180, the population at |0⟩ is almost zero, which cannot afford a full

amplitude Rabi as that when t−1 = 0. Still, the FL does not become zero when
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Figure 5.1: DQ Rabi experiment demonstration. The experiment is done under 60
G bias field ambient condition. (a) DQ Rabi pulse sequence. The two MW pulses
for each transition are triggered sequentially with no overlapping in time. (b) FL
contrast versus MW pulse duration of +1 transition. The color is indicating various
-1 MW pulse duration prior to the +1 sweep. (c) FL color map versus MW duration
for both ±1 transitions.

(t−1 = 130 ns), indicating the FL is not fully controlled by DQ: the ground states

supports both SQ and DQ states.

To summarize, the DQ Rabi experiment results in a mixture between ±1 SQ and

DQ components and SQ components is outweighing the DQ. The result might be due

to the MW inhomogeneity and the mix state nature of NV− ensemble. In that case,

the phase cycling is necessary to cancel out SQ in order to study DQ. Unfortunately

phase cycling is unsuitable for Rabi experiment – it does not offer phase information.
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Figure 5.2: DQ Ramsey pulse sequence. Unlike SQ pulse sequence, the MW pulse
contains two frequency component for two NV− transitions. The inset is the phase
cycling protocol to cancel out the SQ signals [36].

5.5 Double quantum Ramsey interferometry

5.5.1 Numerical analysis

The DQ Ramsey pulse sequence is displayed in Fig. 5.2. Since in ODMR experiments

we measure FL ∝ | ⟨0|Ψ⟩ |2, we can studying FL numerically using the rotating frame

as the waiting time τ and the frequency shift δω change.

Unlike off-resonance SQ Ramsey (see Section .3.5.3), the frequency shift for DQ

in general can be defined into two kinds: common shift ωCS = ωrf1−ω− = ωrf2−ω+,

denoting to a shift that has same sign for both ±1 transitions; differential shift ωDS =

ωrf1−ω− = −(ωrf2−ω+), denoting to a shift that has opposite sign for ±1 transitions

[36].

Fig. 5.3 shows necessity of phase cycling when applying off-resonance (differential

shift) MW pulses. In ODMR experiments, off-resonance MW excitation can always

happen due to wide MW excitation window (∼ 1
t180

) and MW inhomogeneity around

NV− ensemble. It is obvious from Fig. 5.3 (a) that for a single phase measurement,

both SQ and DQ coexist – the signal can be decomposed to 3 MHz and 6 MHz com-

ponents. However in Fig. 5.3 (b), the linear combination of individual measurements
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Figure 5.3: Numerical demonstration of phase cycling. The differential shift ωDF = 3
MHz and two tone pulse is set on resonance for both ±1 transitions. The Rabi power
γBMW = 5 MHz. (a) τ dependence for individual measurement. f1 f2 f3 f4 correspond
to first 4 phase configurations in Table 5.1. All four signals have components at both
3 MHz and 6 MHz, indicating SQ and DQ contribution. (b) τ dependence for phase
cycling. These linear combinations remove the 3 MHz SQ component, leaving only
DQ contribution. 121



Figure 5.4: For Ramsey sequence, the final state probability | ⟨0|Ψ⟩ |2 takes the form
A cos(ωτ) in ideal case. The plot shows ω dependence on frequency shift δω.
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can cancel out SQ components (blue and red) and the background (purple), indicating

the pure DQ response in terms of period and intensity.

The pure DQ FL versus τ can be extracted by using the proper phase cycling. If

we concentrate mainly on the frequency δω of FL oscillation, we found that: when

MW frequencies are on resonances (δω = 0), the final states show no difference from

SQ on resonance results; when MWs have a non-zero common shift, ωCS = δω, as we

expected that DQ detection is invariant under the common shift; As for a differential

shift, ωDS = δω, the DQ Ramsey fringes have frequencies which is twice of δω. As for

SQ, the Ramsey fringes show frequencies equal to δω. The FL oscillating frequency

ω vs δω is shown in Fig. 5.4.

5.5.2 Experimental study

Fig. 5.5(a) displays the DQ Ramsey response to the waiting time τ between two t180

pulses when both ±1 transitions are on resonance. f1 f2 f3 f4 are four single phase

measurements. It is obvious that each one of them contains three components from

both SQ and DQ. In principle the resonance frequencies for both SQ and DQ are:

ESQ− = D0 − γB = 2.713 GHz (5.10)

ESQ+ = D0 + γB = 3.028 GHz (5.11)

EDQ = 2γB = 0.315 GHz (5.12)

However the τ dwell time is 4 µs, corresponding to fs = 0.25 GHz sampling rate,

which is insufficient to capture desirable frequencies in the first Nyquist zone. In

other words, the peaks in FFT spectra in Fig. 5.5(b) are actually aliases of the target
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Figure 5.5: DQ Ramsey with phase cycling. The experiment is done under a 60 G
bias field ambient condition. The Rabi power is about 5.5 MHz. The pulse sequence
is the same as Fig. 5.2. (a) Measured DQ Ramsey FL contrast with different phase
configurations. The definition of f1 f2 f3 f4 is the same as in Fig. 5.3. (b) complex
FFT of Ramsey versus τ oscillation. The three groups of peaks correspond to SQ ±1
and DQ components. The splitting of each group is due to the hyperfine coupling
from NV− spins to 14N spins.
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Figure 5.6: SQ and DQ Ramsey FFT spectra with both center shifting to 0. The plot
is showing complex FFT magnitude. The splitting is due to 14N hyperfine coupling.

signals. By shifting the signal with integer multiplies of fs. We get:

ESQ−
′

= |ESQ− − 11fs| = 37 MHz (5.13)

ESQ+
′

= |ESQ+ − 12fs| = 28 MHz (5.14)

EDQ
′

= |EDQ − fs| = 65 MHz (5.15)

Comparing with FFT spectra, we can tell that the three groups of peaks from low

to high frequencies are belonging to SQ +1, SQ -1 and DQ respectively. The ratio

based on the peak area in the spectra is roughly 1:2:1. Hence we can quantitatively

verify that only one fourth of the total signal is contributed by DQ.

By applying the proper phase cycling, both SQ components can be cancelled.

A detailed comparison between SQ and DQ Ramsey spectra is shown in Fig. 5.6.

Although the DQ signal has smaller intensity, the hyperfine splitting is twice as big

than SQ. The three peaks arise from the term ASzIz, which can be understood as

three sperate differential shifts, -A, 0, +A. Hence the DQ spectrum exhibits a 2A

response.
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The average peak width of SQ and DQ spectra are 1.265 MHz and 1.443 MHz

respectively, which indicates similar T ∗
2 for both SQ and DQ under ambient condi-

tion. In Section 4.2.2, we notice that SQ T ∗
2 decreases dramatically due to strain

distribution in DAC. We expect that DQ T ∗
2 will decay less since most of hydrostatic

pressure inhomogeneity will be cancelled.

5.6 Future work

After demonstrating DQ Ramsey for NV− ensembles, it is straightforward to apply

it onto Ramsey sensing in the DAC. The line broadening from pressure inhomogene-

ity can be reduced, which makes the study of NV− coupling to other nuclear spins

versus pressure feasible. Also, instead of DQ Ramsey, more complex dynamical de-

coupling sequence should be able to apply using DQ, and AC sensing using DQ is a

straightforward generalization.
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Chapter 6

NMR study on TmVO4

Nematicity and nematic correlations may play a role in the low temperature behavior

of a number of strongly correlated electron systems, including the iron-based super-

conductors and the high temperature superconducting cuprates. Disentangling the

effects of nematicity from other intertwined order parameters can help us understand

its role better. The preferred candidate, TmVO4, is an insulator and undergoes struc-

ture transition due to quadrupolar order at low temperature. It is a model system

to study the roles played by nematic fluctuations and quantum phase transition by

suppressing the nematic order. In this chapter, our preliminary NMR measurements

and analysis will be discussed. Some challenges and potential solutions will also be

introduced.

6.1 Crystal structure and ground state

TmVO4 is an insulator that crystallizes in space group I41/amd (see Fig. 6.1(a)).

The Tm ions is in the 4f12 configuration. From Hund’s rules, its 4f orbitals are filled

such that L = 5, S = 1 and J = 6. Thus, for a local Tm site, the spherical harmonics

Y 6
m form the natural basis to construct wavefunctions. The surrounding ions create
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Table 6.1: Character table for D2d, with the reducible representations ΓJ=6

D2d E 2S4 C2 2C
′
2 2σd

A1g 1 1 1 1 1
A2g 1 1 1 -1 -1
B1g 1 -1 1 1 -1
B2g 1 -1 1 -1 1
Eg 2 0 -2 0 0
ΓJ=6 13 -1 1 1 1

a crystalline electric field (CEF) that obeys the tetragonal point group symmetry

D2d[9], and so the degeneracy of the 13 Y 6
m states is removed.

Now let’s examine how the ΓJ=6 representation is reduced under CEF[49], which is:

ΓJ=6 =
∑
i

aiΓ
(irreducible)
i , (6.1)

where ai is the number of each irreducible representation, which can be calculated

using characters of representations:

ai =
1

h

∑
j

Njχ
ΓJ=6

(Rj)χ
Γ(irreducible)

(Rj), (6.2)

where h is the order of point symmetry group (for D2d h = 8), Nj is the number of

elements in class j, χΓ is the character of certain representation, and Rj is the group

element.

Based on the character table 6.1, the energy level can be reduced to be:

ΓJ=6 = 2A1g

⊕
1A2g

⊕
2B1g

⊕
2B2g

⊕
3Eg, (6.3)

Nevertheless group theory does not determine the relative energies of these rep-

resentations. The ground state of Tm ion can be obtained explicitly by solving CEF

Hamiltonian:
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Figure 6.1: (a)TmVO4 unit cell structure. Tm is blue, V is green (within the pyra-
mids) and O is red.(b) The energy levels of Tm when the local J = 6 state is reduced
in the D2d CEF. The experiment data [88] is in agreement with calculation results
using the CEF Hamiltonian.

HCEF = B0
2O

0
2 +B0

4O
0
4 +B0

6O
0
6 +B4

4O
4
4 +B4

6O
4
6, (6.4)

where Oj
i is spherical tensor operator (Stevens operator) and Bj

i is the coefficient.

Taking the coefficient from [88], the energy spectrum can be solved numerically

using GT pack [32, 37] and is displayed in Fig 6.1(b).

It turns out that the ground state in the Jz basis,

|ψ1,2⟩ = 0.89| ± 5⟩+ 0.42| ± 1⟩+ 0.19| ∓ 3⟩, (6.5)

is a Eg doublet, which is also a non-Kramers doublet. The degeneracy of these ground

states cannot be lifted by a magnetic field perpendicular to the z-direction because

⟨ψ1,2|J±|ψ1,2⟩ = 0. Thus TmVO4 has non-zero g-factor gc ∼ 10 and gab ∼ 0[9]. Due to

the special nature of the ground state, phenomena such as strong magnetic anisotropy
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and Jahn-Teller transition arise.

6.2 Ferroquadrupolar order

The first excited CEF state is 54 cm−1 above the ground state doublet [88], so at

low temperatures the system is mainly controlled by the non-Kramers doublet. Since

g ∼ 0, the system cannot reduce the entropy by forming a magnetic order in the

plane. Also the Tm’s ground state has a rather large quadrupolar moment. It turns

out that these local 4f quadrupolar moments spontaneously develop long-range order

at TD = 2.18 K. The heat capacity result is shown in Fig. 6.2. The transition reduces

the overall system entropy and the data can be well described by mean-field solution

of Ising model:

HQQ = −
∑
ij

JijO
2
2(i)O

2
2(j), (6.6)

where O2
2 is the Stevens operator representing the quadrupolar moments. The

ground state doublet, however, can be linearly split by either a magnetic field ori-

ented along the c-axis, or lattice strains with either a B1g (x2 − y2) or B2g (xy)

symmetry. These perturbations can be understood as a transverse field acting on

ferroquadrupolar Ising model(S̃ = 1/2)[49].

Consequently, the transverse field Hc can tune TmVO4 from ferroquadrupolar

order to a quantum critical point (QCP). QCPs are critical points of continuous

phase transitions that occur at zero temperature. Due to the absence of the thermal

fluctuations, TmVO4 offers an important platform to investigate quantum nematic

fluctuations at a QCP.
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Figure 6.2: The specific heat of TmVO4; the solid curve represents the result obtained
from mean-field model [20].

In our experiment, we intend to use magnetic field Hc as the transverse field,

which can be realized by rotating a fixed field between ab plane and c axis.

6.3 NMR method

TmVO4 crystals were grown from a Pb2V2O7 flux using 4 mole percent of Tm2O3,

following the methods described in [29, 75]. The crystals have a rod-like morphology

with the the c-axis along the long axis. A single crystal of approximate dimension
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1mm × 1mm × 4mm was selected and rotated in the cryostat. While sample is rotat-

ing, the transverse field, H0 projection on sample c-axis, should follow Hc = H0 cos θ,

where θ is the angle between crystal c-axis and H0. Therefore when Hc ∼ 0.5 T[52],

the system should reach the QCP.

The 51 V(I = 7/2, Q = 52 mb, 99.75% abundant) NMR is investigated as the

crystal is rotated [85]. Because the V has axial symmetry, the peaks frequencies are

given by (Section 1.2):

ν = γH0 (1 +K(θ)) + nνq(θ), (6.7)

where the magnetic, K(θ), and quadrupolar, νq(θ), shifts vary with θ:

K(θ) = Kcc cos
2 θ +Kaa sin

2 θ (6.8)

νq(θ) = νzz
(
3 cos2 θ − 1

)
/2. (6.9)

Here γ = 11.193 MHz/T, n = −3, · · · , 3, νzz = eQVzz/12h and Vzz is the electric field

gradient(EFG) at the V site (details in chapter 1).

In Fig. 6.3, several spectra are fitted with Lorentzians from different θ angle at

210 K. Using a global fit for all seven transitions, the magnetic shift Kaa, Kcc and

quadrupolar splitting νzz can be extracted. The absolute theta value θ0 (when θ = 90◦

and θ0 is the relative angle value set in the program) can also be determined.
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Figure 6.3: 51V peak frequencies vs θ at 210 K

6.4 Spectra and magnetic shift

6.4.1 Torque misalignment

Based on the magnetic susceptibility data (Fig. 6.8(a) inset), the crystal has a strong

anisotropy, reflecting the unusual g-factor (gc ≈ 10.2, g⊥ = 0) of the ground state

doublet. This phenomenon can give rise to a misalignment at low temperature.

To be specific, the crystal will experience a torque:

τ = |µ×H|, (6.10)

where µ is the total magnetic moment, and H is the external magnetic field. Since

g⊥ = 0, it can be simplified to be:
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τ = µH0 cos θ, (6.11)

If the initial orientation is chosen to be in the plane where θ0 = 90◦, the torque

will grow monotonically once it is deviated from the initial condition (unstable equi-

librium). Let θ0 = 89◦ for estimation, then the torque will be:

τ = µH0 cos θ = N
gcµB

ℏ
J̃zH0 cos 1

◦ ∼ 50N ·m (6.12)

This large torque inevitably rotates the sample when temperature is below 80 K,

which leads to hysteretic behavior as shown in Fig. 6.4. To alleviate this issue we

secured the crystal with epoxy to a mounting plate that is locked by mechanical gears

– the spectra remains unchanged while cooling and warming.

6.4.2 Spectra analysis

In order to avoid the backlash of our goniometer, the low temperature data were

taken always rotating in one direction. In Fig. 6.5, 51V spectra respect to differ-

ent temperature and angle θ are displayed. It is important to state that below 80

K, the magnetic shift along the c-axis becomes much larger than that of ab plane.

Therefore the angle deviation is small – in the range of 5 degrees with 0.5 degrees

step. As temperature decreases, the central line intensity has minimum around 10 K

then starts to increase, resulting in ’U’ shape spectra at intermediate temperatures.

This phenomenon arises due to fast spin-spin decoherence rates (T−1
2 ) which will be

discussed in the Section 6.5.5.

The temperature and angular dependence of the linewidths, EFG are shown in
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Figure 6.4: (a)51V waterfall Spectra without epoxy mounting. The discrepancy be-
tween cooling and warming is due to sample rotating away from 90◦; (b) Magnetic
shift vs temperature while cooling, warming and epoxy mounting.
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Figure 6.5: 51V Spectra below 100 K vs different θ.
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Figure 6.6: The (a) quadrupolar splitting and (b) full-width half maximum versus
temperature for several different angles, θ.
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Figure 6.7: Magnetic shift, K, versus temperature (a) and versus θ (b). The dotted
lines are fits as described in the text.

Fig. 6.6(a)(b). We find that the EFG is similar to previous measurements[9, 10].

However, the individual peaks become difficult to resolve at low temperatures. Each

of the satellite resonances has the same linewidth, implying that the broadening is

due to magnetic field inhomogeneity within the sample.

6.4.3 Magnetic shift

The magnetic shift shown in Fig. 6.7 is negative and strongly angular dependent at

low temperature. We fit the angular dependence to extract the tensor components

Kaa andKcc, shown as dotted lines in Fig. 6.7(b). This approach enables us to extract

the magnetic shift for the c direction without needing to fully align the crystal in this

orientation, although the error bars for Kcc are larger than for Kaa. The temperature

dependence of Kaa and Kcc are shown in Fig. 6.8(a). Kcc is large and positive.
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Fig. 6.8(b) shows these shift components plotted versus the bulk susceptibility χaa,cc,

which was measured independently in a SQUID magnetometer. The shift varies

linearly with susceptibility asKαα = Korb
αα +Aααχαα, where Aαβ are the components of

the hyperfine coupling tensor. The linear fitting reveals that Korb
aa = −0.315±0.009%,

Korb
cc = −0.4 ± 0.1%, Aaa = −0.32 ± 0.07 kOe/µB and Acc = 1.29 ± 0.05 kOe/µB.

These values of the hyperfine couplings are consistent with a direct dipolar coupling

mechanism between the Tm moments and the V nuclear spins.

The magnetic field on V site can be written as:

hdipole =
∑
i

(∇×Ai)

=
∑
i

(
3ri(µi · ri)

r5i
− µi

r3i
)

= Adip · µ,

(6.13)

where Adip is the dipolar coupling tensor, µ is the magnetic dipole moment lo-

cated at lattice site ri relative to V. Due to the symmetry, the coupling tensor only

has diagonal terms and Adip
aa = Adip

bb . Therefore the couplings can be calculated using

the total magnetic field and magnetic moments.

To be specific, a 3× 3 supercell is used to estimate the contribution from all the

magnetic moments. The target V site is chosen in the center of the supercell and each

Tm ion’s contribution is counted (oxygen ions have closed shells so it is ignored). The

numerical calculation gives: Adip
aa (A

dip
bb ) = −0.336 kOe/µB and Adip

cc = 0.671 kOe/µB

at the V site.

The simulation for the perpendicular direction is the same as the measured value

within the error limits. For the c axis, the theoretical value is within a factor of

two of the measured values, and it is likely there are larger systematic measurement
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Figure 6.8: Kaa and Kcc versus temperature (a) and versus bulk susceptibility (b).
The open points correspond to values reported in [9]. The solid lines are fits as
described in the text. The inset displays the bulk susceptibility versus temperature.
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errors involved in extracting this value through a small angle deviation. Still the

anisotropic magnetic shift tensor can be fully explained via direct dipolar interac-

tions, as expected for an insulator.

6.5 Relaxation

6.5.1 Spin lattice relaxation T1

The spin-lattice-relaxation, T1, was measured by applying inversion pulses at the

central transition (n = 0) and measuring the echo intensity as a function of recovery

time using low power inversion pulses with small bandwidths (pulse widths 6-8 µs),

repetition time 10 ms, and pulse power of 39-44 dBm. The magnetization recovery was

fit to the standard expression for magnetic fluctuations: M(t) = M0 (1− 2fϕ(t/T1))

(see Section 1.6.2), where M0 is the equilibrium magnetization, f is the inversion

fraction, and

ϕ(t) =
1225

1716
e−28t +

75

364
e−15t +

3

44
e−6t +

1

84
e−t. (6.14)

This expression fits the data well without the need for a stretching exponent. Fig. 6.9

shows the temperature and angular dependence of T−1
1 . For θ = 90◦, T−1

1 decreases

strongly below 80K as the excited crystal field levels are thermally depopulated. In

this temperature range T−1
1 become strongly angular dependent, increasing by more

than a factor of 30 as the field H0 rotates by only 4◦ away from the perpendicular

configuration. This behavior likely reflects the anisotropy of the g factor of the ground

state doublet, however the anisotropy of T−1
1 is puzzling. In most of the cases, the

relaxation is driven by magnetic fluctuations of the Tm ground state. If it is true, T−1
1

should exhibit a maximum at θ = 90◦ rather than a minimum because fluctuations of

the non-Kramers doublet should lie exclusively along the c-axis. Therefore T−1
1 (0◦)
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should be much smaller than T−1
1 (90◦), in contrast to our observations.

6.5.2 T−1
1 angular dependence – magnetic fluctuation

For most NMR measurements, the magnetic shift reflects dipolar coupling with the

static magnetic moment µ, and the spin lattice relaxation rate reflects dipolar coupling

with the time varying magnetic moment µ(t) , when magnetic fluctuations dominate

such that T−1
1 ∼ Wm.

If the external field is aligned along the crystal a(x)-axis, the relaxation rate

generated by magnetic fluctuation is given by (Section 1.6.2):

Wm =
γ2

2

∫ ∞

0

(⟨hz(τ)hz(0)⟩+ ⟨hy(τ)hy(0)⟩)e−ωLτdτ, (6.15)

where hi(t) is the fluctuating fields on V site and ωL is the Lamour frequency.

By the rotation on the y axis, when the angle between the sample c axis and the

field direction is θ, hz′ = hz sin θ + hx cos θ. If we assume that there is no correlation

between different axis, ⟨hi(τ)hj(0)⟩ = 0 if i ̸= j, then the relaxation rate becomes:

Wm(θ) =
γ2

2

∫ ∞

0

(sin2 θ⟨hz(τ)hz(0)⟩+ cos2 θ⟨hx(τ)hx(0)⟩+ ⟨hy(τ)hy(0)⟩)e−ωLτdτ

(6.16)

Using the approximation in [74], ⟨hz(τ)hz(0)⟩ = h2z0e
− |τ |

τ0 , where hz0 is the static

coupling field and τ0 is the correlation time. By integrating over τ , we obtain:

Wm(θ) =
γ2

2
(h2z0 sin

2 θ + h2x0 cos
2 θ + h2y0)

2τ0
1 + (ωLτ0)2

(6.17)

It can also be written as:

T−1
1m = Wm(θ) = Wm(0) cos

2 θ +Wm(90
◦) sin2 θ. (6.18)
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Figure 6.9: (a) T−1
1 vs temperature for multiple angles. (b) Calculated T−1

1 versus θ
for magnetic fluctuations (solid lines) and for quadrupolar fluctuations (dashed lines).
(c) Calculated T−1

1 versus temperature and angle using Eq. 6.18, where the angle is
increased in 5◦ increments between 0 and 90◦.
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We know that the static coupling field can be presented as hi0 = Adip
ii µi ∼ Adip

ii χii.

Fig. 6.9(b) displays the expected angular dependence of T−1
1m for χcc/χaa = 10 (red),

close to the experimental value, and for χcc/χaa = 0.1 (blue). The former clearly

exhibits a maximum of T−1
1m at θ = 90◦, in contrast to our observations. The latter

exhibits a shallow minimum at 90◦, but the susceptibility anisotropy does not agree

with experiment. Fig. 6.9(c) shows the temperature dependence using the measured

values of the static susceptibility. Although there is an overall decrease in T−1
1m at lower

temperatures, the detailed temperature dependence does not match experiment.

To sum up, the experiment T−1
1 data cannot be well explained by the single

magnetic fluctuation. Since the system forms ferroquadropolar order below TQ, it is

natural to take the quadrupolar fluctuations into consideration.

6.5.3 T−1
1 angular dependence – quadrupolar fluctuation

An alternative explanation is that the T−1
1 is dominated by quadrupolar fluctuations

rather than magnetic. The Tm quadrupole moments couple to the EFG at the V site,

giving rise to a second nuclear quadrupolar relaxation channel [23]. The enhancement

of T−1
1 below 20K for θ = 90◦ may represent the growth of critical fluctuations near

TQ. In the presence of both magnetic and quadrupolar relaxation, the expression

for ϕ(t) (Eq. 6.14) changes, and includes three independent rates: T−1
1m , WQ1 and

WQ2, where the latter two are associated with ∆m = ±1 and ∆m = ±2 quadrupolar

relaxation.

For a tetragonal to orthorhombic distortion, quadrupolar relaxation is driven by

fluctuations of the spherical tensor components of the EFG: V±1 = Vzx ± iVzy and

V±2 =
1
2
(Vxx − Vyy)± iVxy, where the Vαβ are the EFG tensor components relative to

the direction of H0. These give rise to nuclear spin relaxation rates (Section 1.6.2):

WQ1,Q2 = (eQ)2
∫ ∞

0

⟨V+1,2(τ)V−1,2(0)⟩e−ωLτdτ (6.19)

144



where ωL is the Larmor frequency [79]. Initially the field H0 is along c axis (θ = 0).

As the field is rotated towards the plane, the tensor operators Vm(τ) transform as:

V ′
m(τ) =

∑
m′

D
(2)
mm′Vm′(τ) (6.20)

where

D
(l)
mm′(α, β, γ) = e−imαdlmm′(β)e−im′γ, (6.21)

are the Wigner D matrices, and the Euler angles are (α = ϕ, β = θ, γ = 0). The

correlation functions ⟨Vm(τ)V−m(0)⟩ are thus given by:

⟨V ′
m(τ)V

′
−m(0)⟩ =

∑
m′,m′′

D
(2)
2m′(ϕ, θ)D

(2)
−2m′′(ϕ, θ)⟨Vm′(τ)Vm′′(0)⟩. (6.22)

Assuming ⟨Vi(τ)Vj(0)⟩ = 0 if i ̸= j, then relaxation rate turns to:

WQ1(θ) = P1(θ)WQ1(0) + P2(θ)WQ2(0)

WQ2(θ) = Q1(θ)WQ1(0) +Q2(θ)WQ2(0)

(6.23)

The ferroquadrupolar order in this system has B2g symmetry, so Vxx − Vyy ̸= 0,

where z corresponds to the c-direction and x and y are along the principal axes of the

EFG tensor, which are rotated 45◦ relative to the tetragonal a-axes. Therefore above

TQ fluctuations of V±2 should dominate those of V±1, and as a result we anticipate

that WQ1(0) can be neglected, which gives:

WQ1(θ) ∼ P2(θ)WQ2(0) =
cos4 θ + 6 cos2 θ + 1

8
WQ2(0)

WQ2(θ) ∼ Q2(θ)WQ2(0) =
sin2 θ(cos(2θ) + 3)

4
WQ2(0)

(6.24)

These quantities are shown in Fig. 6.9(b) as dashed lines. WQ2 exhibits a minimum
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for θ = 90◦, whereasWQ1 is nearly independent of θ at this angle. This behavior agrees

qualitatively with our observations, but the increases we observe are in fact a much

stronger function of angle than expected for quadrupolar relaxation. Rotating θ by

1-2◦ out of the plane enhances T−1
1 by an order of magnitude, whereas WQ2 exhibits

only a quadratic minimum at this angle.

It is worthy to mention that when θ = 90◦, WQ1 = 4WQ2, which is different from

θ = 0◦. Hence the critical fluctuation at θ = 0◦ (bottom purple data in Fig. 6.9(a))

is more likely dominated by WQ1.

6.5.4 Relation to stiffness coefficient c66

By Hooke’s law, we know:

σi = cijϵj(i, j = 1, 2, ..., 6), (6.25)

where ϵi and σi represents strain and stress respectively on the certain surface (x, y,

z) and the certain direction (x, y, z).

Based on [63], for some space groups, in the Voigt notation convention, including

that of TmVO4, the shear stress σ6 = σxy = σyx follows:

σ6 = c66ϵ6. (6.26)

In this material c66 softens as temperature decreases to TQ. Fig. 6.10 compares the

temperature dependence of T−1
1 and that of c66, which softens with decreasing temper-

ature and vanishes at TQ [58]. This behavior is driven by the nematic susceptibility:

χnem = c66,0(1 − c66,0/c66)/λ
2, where λ is the coupling between the lattice and the

Tm 4f orbitals, and c66,0 is the stiffness coefficient in the absence of the coupling [31].

If T−1
1 is also determined by the Tm orbital fluctuations, then (T1T )

−1 ∼ χnem[23,

46, 66]. We thus expect T1T ∼ (c66,0/c66 − 1)−1, which is demonstrated in Fig. 6.10.
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Figure 6.10: The shear elastic stiffness coefficient c66 (solid line, reproduced from [58])
and the quantity 1/(1+(aT1T )

−1) as a function of temperature. INSET: 1/(c66,0/c66−
1) versus T1T , with temperature implicit. The solid black line is the best linear fit,
giving a = 18.5± 0.4 sec−1 K−1.

The main panel compares the temperature dependence of c66 with the measured T−1
1

values, and the inset shows the scaling between the shear modulus and T−1
1 with

temperature as an implicit parameter. The scaling in Fig. 6.10 suggests that the spin

lattice relaxation is driven primarily by quadrupolar fluctuations, which are reflected

in the softening of c66.
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Figure 6.11: T−1
2 and T−1

1 temperature dependence when θ ∼ 90◦

6.5.5 spin-spin decoherence T2

The T−1
2 relaxation rate describes nuclear spin coherence time in superposition state.

Similar to NV− centers, the coherence can be extended by dynamical decoupling

sequence – in this case it is spin echo.

Fig. 6.11 displays both T−1
2 and T−1

1 temperature dependence at a orientation

that θ is near 90◦. Two relaxation rates have a very similar temperature dependence

except T−1
2 ∼ 66 T−1

1 .

The same temperature dependence implies T−1
2 is also driven by quadrupolar

fluctuations, which can be understood by Redfield theory (Eq. 1.79). This result

suggests that T−1
2 is a better indicator of the dynamical nematic susceptibility χnem.

6.6 Some improvements

6.6.1 FIB ellipsoid crystal

During the temperature dependence measurements, we find that 7 peaks broadens

dramatically that eventually wash out the quadrupolar splitting (∼ 150 kHz). All
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peaks are broadened in the same way and the linewidth’s temperature dependence

suggest that the broadening is due to demagnetizing field.

The prism shaped crystal is located in a homogenious applied field B0, which

polarizes the magnetic moments and creates a magnetization M in the sample. Con-

tinuity of the flux-density B = µ0M+B0 across the sample surface requires a demag-

netizing field µ0Hd in addition to B0 [12]. In an arbitrarily shaped sample µ0Hd(r)

and hence B(r) will be inhomogeneous and the NMR spectrum will be broadened

because the nuclei each resonate at the local field [43]. In most cases this broadening

is not sufficient to cause any significant problems for NMR, however in TmVO4 the

non-Kramers doublet has gc ≈ 10 and gab = 0. Although B0 can be oriented perpen-

dicular to c, parts of the crystal near edges and corners tend to have components of

B parallel to c, which exacerbates the broadening effect due to the large anisotropy

of the susceptibility.

Fortunately, µ0Hd can be made homogeneous by cutting the sample in either a

spherical or ellipsoidal shape [65]. For these studies we utilized a focused ion beam

(FIB) to cut our sample to an ellipsoid with the long-axis along the c-axis of the

crystal [60], as illustrated in Fig. 6.12(b,c) [82]. The sample is cut from a carefully

aligned cuboid from which calculated and programmed concentric circles are removed

using by a xenon plasma FIB by Kent Shirer at the MAx Planck Institute in Dresden

with a 30 kV, 1 µA beam. Sample damage from the beam is only expected on the

surface within a depth of 30−40 nm and Energy Dispersive X-Ray Analysis (EDX) of

a test surface verifies the unchanged composition of TmVO4 below. The final sample

diameter is 0.4 mm and the length of 1.3 mm require a total cutting time in excess of

25 h of each side. In the FIB process Al and C are deposited on the sample surface

layer, however these do not affect the NMR signal from the bulk of the sample.

Fig. 6.12(d) compares the NMR spectrum of the uncut with the FIB crystal.

It is clear that the magnetic broadening is dramatically reduced in the FIB crystal,
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such that each of the seven peaks separated by the quadrupolar splitting are clearly

resolved. The ability to resolve all seven peaks is important because it enables us to

extract details of the magnetic and quadrupolar contributions to the T−1
1 that would

otherwise be inaccessible, as discussed below.

6.6.2 Multi-channel relaxation fitting

In general, there are three distinct relaxation channels: a magnetic, Wm, and two

quadrupolar relaxation rates, WQ1 and WQ2. In Section 6.5 we demonstrated that by

analyzing the T−1
1 angular dependence it is certain that quadrupolar relaxation chan-

nel plays dominating role in the relaxation. However still it is difficult to disentangle

the contribution of each channel’s contribution [79]. These relaxation channels couple

different sets of the Iz nuclear spin levels. The relaxation measured at a particular

nuclear spin transition m↔ (m− 1) is a complicated function of Wm, WQ1 and WQ2

determined by a master equation (with an 8 × 8 dimensional matrix for spin 7/2 of

51V). The relaxation function for each transition is slightly different, thus by measur-

ing the relaxation at multiple transitions one can globally fit the set of seven recovery

curves to extract Wm, WQ1 and WQ2. In order to do so it is vital to resolve and excite

each transition in the spectrum individually. The inhomogeneous broadening from

the demagnetization field precluded such studies previously, but fortunately all seven

transitions are clearly visible in the FIB sample [82].

Fig. 6.13 shows values obtained at each of the seven peaks by fitting the measured

relaxation curves by the formulae corresponding to the magnetic relaxation only. The

data is measured when θ = 90◦.

If there were only magnetic fluctuations, all seven peaks would be described by a

single value of T−1
1,mag = 2Wm, shown by the dotted line in Fig. 6.13(a). Such a model

clearly does not fit the data, which reveal a significant enhancement of the relaxation

of the satellites. On the other hand, including a finite WQ1 accurately captures the
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Figure 6.12: (a) Uncut sample of TmVO4. (b) Scanning electron microscopy (SEM)
scan of the sample during the FIB process. (c) Crystal after FIB. Al and C are
deposited on the sample surface layer during the FIB processing, but do not contribute
to the NMR signal. (d) 51V-NMR spectra of ellipsoidal (FIB) and uncut samples
measured at T=10 K and B0=11.7294 T, illustrating the broadening effect of the
inhomogeneous demagnetization field on the seven nuclear spin transitions.
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Figure 6.13: (a) Plot of the magnetic relaxation rate T−1
1,mag = 2Wm (large blue

circles) with strongly enhanced relaxation rates on the outermost satellites (n = ±3)
at B0 = 2.7 T and T = 2.1 K. Purely magnetic relaxation should give identical
T−1
1,mag for all peaks (horizontal line). Fits to magnetic relaxation only of simulated

relaxation curves that include WQ1 = 2.3 s−1 and WQ2 = 0 reproduce the upward
curvature of T−1

1,mag. Inclusion of WQ2 = 2.3 s−1, but WQ1 = 0 leads to downward
curvature. Lines are quadratic fits and vertical bars link relaxation data with the
corresponding transitions of the NMR spectrum. (b) Spectrum of FIB sample at
B = 2.7 T and T = 2.1 K.
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trend visible in the data, illustrated by the solid green line in Fig. 6.13(a). Here, we

have computed the relaxation curve for each transition in the presence of bothWm and

WQ1, and fit the curves to a purely magnetic relaxation model. Thus, the enhanced

relaxation at the satellites indicates the presence of EFG fluctuations that contribute

to the nuclear spin relaxation. Including WQ2 has a minor effect that is opposite to

what is observed: if WQ2 fluctuations dominate, then the relaxation is enhanced for

the inner transitions and suppressed for the outer transitions, as illustrated by the

dashed cyan line. Thus our data suggest that WQ1 > WQ2. This behavior is also in

consistent T−1
1 angular dependence, where we find WQ1/WQ2(θ = 90◦) = 4.

6.7 Conclusion

In this chapter, we have studied rare earth insulator with quadropolar order TmVO4,

including NMR spectra nad relaxation rates as a function of temperature and field

direction. We find that the magnetic shift tensor agrees quantitatively with direct

dipolar coupling between the V nuclear moments and the Tm 4f moments. The

spin-lattice relaxation rate exhibits a steep minimum for a field oriented 90◦ to the

c axis, which is inconsistent with purely magnetic fluctuations. We find that T1

scales with the lattice constant for shear strain, c66, which softens and vanishes at the

nematic transition. It is likely that both quadrupolar and magnetic fluctuations are

present and drive spin-lattice relaxation. We also made some progress on lessening

the demagnetizing field broadening and extracting both magnetic and quadrupolar

T1 relaxation channels.
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