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Abstract
Modeling tools aim to predict potential drug side effects, although they suffer from 
imperfect performance. Specifically, protein–protein interaction models predict 
drug effects from proteins surrounding drug targets, but they tend to overpredict 
drug phenotypes and require well-defined pathway phenotypes. In this study, 
we used PathFX, a protein–protein interaction tool, to predict side effects for ac-
tive ingredient-side effect pairs extracted from drug labels. We observed limited 
performance and defined new pathway phenotypes using pathway engineering 
strategies. We defined new pathway phenotypes using a network-based and gene 
expression-based approach. Overall, we discovered a trade-off between sensitiv-
ity and specificity values and demonstrated a way to limit overprediction for side 
effects with sufficient true positive examples. We compared our predictions to 
animal models and demonstrated similar performance metrics, suggesting that 
protein–protein interaction models do not need perfect evaluation metrics to be 
useful. Pathway engineering, through the inclusion of true positive examples and 
omics measurements, emerges as a promising approach to enhance the utility of 
protein interaction network models for drug effect prediction.
Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Network-based methods in drug safety evaluation suffer from low prediction 
accuracy and overprediction due to reliance on accurate side effect pathways. 
Additionally, recent observations emphasize the significance of downstream pro-
teins, in addition to drug targets, in predicting drug side effects.
WHAT QUESTION DID THIS STUDY ADDRESS?
This study addressed the impact of defining new gene pathways through pathway 
engineering, by including true positive examples and omics data, on the predic-
tion performance of drug-induced side effects.
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
The study demonstrates that refining pathways and incorporating gene expres-
sion data can reduce overprediction, enhancing preclinical prediction of drug-
induced safety events.
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INTRODUCTION

Many newly developed drugs are not approved despite 
lengthy and expensive research and development.1,2 Even 
though drugs can save the lives of people, they sometimes 
result in serious and deadly adverse effects on humans. 
Pharmaceutical companies also suffer substantial losses 
when drugs must be pulled from the market due to these 
adverse drug reactions.3 Before new drugs are tested on 
humans, regulatory organizations need a set of standard 
tests for pharmaceuticals to guarantee their safety and ef-
fectiveness. Preclinical prediction of drug-induced adverse 
events is crucial given that safety is a leading cause of drug 
attrition and has already proven useful for some adverse 
events. Preclinical animal research, as a gold standard for 
toxicity and efficacy evaluations, on rodents, non-rodents, 
and nonhuman primates, is a key component of this regu-
latory process.4 Animal models have been a valuable tech-
nique for anticipating drug-induced side effects. However, 
other than the fact that some countries have been consid-
ering reducing and/or replacing animal use in their re-
search studies,5 animal studies are not uniformly sensitive 
to all side effects and can be costly compared with in silico 
approaches. It is also worth mentioning that in accord-
ance with legislation approved in late December 2022, the 
US Food and Drug Administration (FDA) may rely less 
on animal testing of new drugs and may not require ani-
mal models when there is sufficient computation or non-
animal studies.6

Many are applying in silico approaches to predict drug 
effects, understand potential side effects, and identify 
novel therapeutic targets.7,8 These approaches include 
machine learning,9 protein–protein interaction (PPI) net-
work methods,10,11 off-target drug-binding prediction,12 li-
gand similarity metrics,13 or side effect profile similarity.14 
Huang et al.15 developed a systems pharmacology approach 
to predict adverse drug reactions, with a focus on cardio-
toxicity. By combining clinical observation data, drug tar-
get information, PPI networks, and Gene Ontology (GO) 
annotations, their model achieved satisfactory predictive 
performance for cardiotoxic side effects. Importantly, the 
study highlighted the significance of incorporating prior 
knowledge networks to enhance side effect predictions, 
especially for drug targets in development, yet their study 
was limited to a single side effect. Li et al.16 explored the 

significance of drug-induced liver injury in drug develop-
ment, highlighting its role as a leading cause of drug fail-
ures and acute liver failure. They emphasized the absence 
of reliable clinical biomarkers and the potential of com-
putational approaches, specifically artificial intelligence, 
to address this issue. Their study surveyed drug-induced 
liver injury predictive models based on various molecular 
representations. Song et al.17 did a review that focused on 
the use of network-based computational methods in the 
field of drug repositioning to find new therapeutic uses 
for existing drugs. This paper acknowledged the rapid ad-
vancements made in this field, particularly with the ad-
vent of deep learning and the availability of large datasets. 
They aimed to provide an overview of various network-
based methods used in drug repositioning, comparing, 
and discussing their development processes. Lin et  al.18 
discussed that cancer drugs in clinical trials achieve ef-
ficacy not from the intended targets but through other, 
frequently unidentified pathway phenotypes. This find-
ing underscores the broad-acting nature of drugs and the 
prevalence of off-target effects, which may be overlooked 
in traditional evaluation methods. This understanding 
emphasizes the need for employing advanced network 
modeling techniques to predict the complex interplay of 
drug interactions and their unintended effects more ac-
curately, aiming to refine the predictive accuracy of drug 
side effects in preclinical safety evaluations. Lampa et al.19 
introduced a novel methodology for ligand-based target 
profiling in drug discovery, with a focus on providing con-
fidence measures for predictions of off-target interactions. 
Their approach holds promise for integrating target pre-
dictions into drug discovery and safety assessments, with 
a focus on confidence and model reliability. In addition, 
it is worth mentioning that discovering drug targets typi-
cally initiates the prediction of drug side effects. A study 
by Campillos et al.14 illustrated that when drug side effect 
profiles are similar, this can serve as a predictive factor for 
common drug targets.

A drug's primary target is often insufficient for un-
derstanding all drug-induced outcomes and PPI network 
approaches have the advantage of connecting drug tar-
gets to downstream adverse effect-associated proteins.20 
Furthermore, PPI networks improve the biological rele-
vance of model predictions by identifying additional sig-
naling molecules that have not been explicitly detected11 

HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, 
AND/OR THERAPEUTICS?
The findings suggest that pathway engineering and the integration of omics data 
can improve the accuracy of predicting drug-induced side effects, offering valu-
able insights for drug discovery and development strategies.
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and they provide an interpretable understanding of drug 
responses. In our own work,21 we developed the PathFX 
algorithm for anticipating drug effects from PPI networks. 
PathFX, like other network methods, assumes that pro-
teins neighboring drug target proteins are candidates for 
a drug's signaling pathway. These methods use optimiza-
tion or empirical analysis of network associations to iden-
tify the downstream proteins with the highest confidence, 
either based on experimental or database-derived data. 
Interestingly, in our previous pathway study of pharma-
cological side effects, we observed that in addition to drug 
targets, downstream proteins are significant in predicting 
drug side effects.21,22 We also learned that true positive 
(TP) and false positive (FP) network predictions were as-
sociated with subsets of pathway phenotype-associated 
proteins. This encouraged us to consider new pathway 
phenotypes that may better predict drug-induced effects.

Furthermore, the integration of gene expression data 
into PPI networks that exclusively focus on human pro-
teins, such as PathFX, can enhance our understanding of 
cellular processes and disease mechanisms. Gene expres-
sion data provide valuable information about the abun-
dance and activity levels of individual proteins in specific 
tissues or under certain conditions. By incorporating this 
data into PPI networks, we can contextualize the inter-
actions between proteins, revealing their functional rel-
evance in specific biological processes.23,24 Chen et  al.25 
presented PharmOmics, a tool in drug development, aim-
ing to combat the high failure rate in clinical trials due to 
insufficient knowledge about drug actions in diverse or-
gans and species. It harnesses species- and tissue-specific 
transcriptome data from humans, mice, and rats to enable 
gene-network-based drug repositioning. PharmOmics 
identifies therapeutic drugs and potential tissue toxicity 
through computational evaluations, validated in a non-
alcoholic fatty liver disease model. PharmOmics offers a 
valuable resource for network-based drug research, and 
relevant to our study, a comprehensive database of drug-
induced gene expression changes.

While attractive, PPI network methods have some 
limitations, yet they may still be useful in development 
pipelines. Network models tend to overpredict drug phe-
notypes and there is insufficient evidence to validate 
these predictions. For many drug outcomes, we lack bal-
anced sets of drugs that do and do not cause the outcome. 
Because we cannot validate all PPI predictions, many con-
sider these predictions as FPs, and this assumption leads 
to low-performance metrics.21,26,27 Yet, a meta-analysis of 
the predictive values of in  vivo animal models for drug 
side effect prediction achieved sensitivity and specificity 
ranges of 0.00–0.74 and 0.33–1.00 depending on the organ 
categories and species.4 This suggests that models can still 
be useful for decision-making without perfect prediction 

performance and sets a benchmark for improving PPI net-
work methods to influence decision-making. Emphasizing 
an understanding of drug-induced effects instead of over-
all performance is consistent with other computational ef-
forts that emphasize model utility over performance. This 
is a growing field of computational research that we28 and 
others have emphasized.29

We also discovered that a per-pathway phenotype 
assessment enhanced prediction accuracy and reduced 
overprediction.22 This analysis emphasized the impor-
tance of defining drug “pathway phenotypes”—or gene/
protein lists—by calibrating these lists to drugs known 
to cause severe adverse reactions, as indicated on their 
labels, as opposed to optimizing statistical approaches 
for ranking drug network associations. However, there 
are many sources for defining pathway gene lists. In our 
original development of PathFX, we merged all pathway 
phenotype-associated genes from several data sources 
and a “pathway phenotype” can include diseases or side 
effects. Yet, these pathways, or gene lists, had not been 
calibrated to known drug-induced effects. Our objective 
was to engineer pathways by incorporating network genes 
associated with drugs that cause a side effect (distinct 
TP genes) and omics measurements, specifically, drug-
induced gene expression changes, and assess PathFX sen-
sitivity and specificity per side effect. We focused on our 
previously published set of side effects outcomes because 
it contained sufficient examples of drugs that do and do 
not cause side effects. Furthermore, we sought to under-
stand general principles for pathway definition that could 
be applied when there are insufficient examples of posi-
tive and negative examples.

In this study, we aimed to address the shortcomings 
of network-based methods, which exhibit low prediction 
accuracy and a tendency to overpredict associations, to 
improve the prediction of drug-induced effects.

METHODS

Dataset

In this study, we utilized a dataset, called the “drug toxic-
ity dataset,” which comprises pairs of active ingredients 
and their corresponding side effects extracted from drug 
labels.22,30 The dataset contained 1970 drugs and 34 side 
effects, emphasizing only severe drug-induced pathway 
phenotypes that could affect a drug development pro-
gram. The entire dataset is provided with the original 
publication30 and with this study (see Data availability 
statement). For the purpose of this study, we selected and 
highlighted a subset of side effects to demonstrate the ef-
fectiveness of our proposed approaches. Throughout, we 

 21638306, 0, D
ow

nloaded from
 https://ascpt.onlinelibrary.w

iley.com
/doi/10.1002/psp4.13150, W

iley O
nline L

ibrary on [22/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



4  |      ALIDOOST and WILSON

use “side effects” to refer to the drug's effects reflected on 
their labels.

Mapping drugs and side effects

We first mapped active ingredient names and side effects 
to DrugBank31 drug names and PathFX pathway pheno-
types using string matching in Python. In the drug map-
ping procedure, we retained all active ingredients that had 
a direct match to a drug name in the DrugBank version 
5.1.6. Importantly, we retained all active ingredients in 
DrugBank and did not restrict our analysis to specific drug 
classes or targets.

It is worth mentioning that the PathFX v232 (version 2, 
released with Wilson et al.32) database contained 29,831 
pathway phenotypes merged from multiple sources of 
pathway phenotype associations,33–37 including ClinVar, 
OMIM, DisGeNet, and PhenotypeGenotype Integrator; 
thus, there were many PathFX pathway phenotypes that 
could be relevant to any side effect. Throughout, we refer 
to a PathFX-predicted drug effect as a “pathway pheno-
type.” We developed a string-matching approach, a two-
step process, to find the PathFX pathway phenotypes 
relevant to the labeled side effects. For the first step, we 
wrote an ensemble function of three distinct techniques 
capable of detecting similar matches between two lists 
of words. The first component of the string-matching 
search checks similar letters with the same positions in 
both strings and sees how many similar letters they have. 
Eventually, the algorithm takes the one with the highest 
number of similar letters and returns one match. This al-
gorithm can be changed to return more similar matches 
too. The second method uses a Python library called 
Jaro-Winkler38 that computes the similarity between two 
strings and the returned value lies in the interval of 0.0 
and 1.0. When we have no similarity, the score will be 
0.0. The last component applies a Python module, difflib.
get_close_matches,39 by giving back a list of good enough 
matches. For the second step, after applying the string-
matching search, we further validated their relevance by 
manual review of the literature.

Running PathFX for all mapped drugs

We generated drug networks for all active ingredients 
mapped to drug names (and DrugBank identifiers) in 
DrugBank. PathFX required drug-binding proteins to seed 
drug networks. Thus, PathFX was unable to generate net-
works for drugs without documented targets in DrugBank 
or targets that were not connected to the PathFX interac-
tion network. For drugs with sufficient data, PathFX made 

multiple files, two of which were important for our anal-
ysis: a network file that included the prioritized PPIs (a 
tab-delimited file containing edges between two proteins) 
and an association file that contained network-associated 
pathway phenotypes (a tab-delimited file containing the 
pathway phenotype name and drug network proteins as-
sociated to a pathway phenotype). Network proteins as-
sociated with a pathway phenotype are subsets of the full 
list of pathway phenotype genes in PathFX.

Measuring PathFX baseline predictions per 
side effect

To evaluate the predictive performance of PathFX for 
each side effect, we searched PathFX association tables of 
mapped drug names for side effect-related pathway phe-
notypes obtained previously. Because multiple PathFX 
pathway phenotypes were used to discover a single side 
effect, we ensured that synonymous pathway pheno-
types were not double-counted. To illustrate whether the 
predicted pathway phenotypes “Proteinuria” and “Mild 
Proteinuria” were both indicative of the same side effect, 
“Proteinuria,” we considered them as a single instance. 
We also devised an end-to-end method, SEPred, which 
identified pathway proteins specific to drugs that were ac-
curately associated with their corresponding labeled side 
effects and shared with drugs' networks that contained 
a FP prediction. Eventually, we computed the confusion 
matrix along with key evaluation metrics, including sen-
sitivity and specificity to quantitatively assess the perfor-
mance of the prediction methodology. In assessing the 
predictive performance of PathFX for each side effect, we 
define TP as instances where the model predicts a path-
way phenotype that is corroborated by the drug toxicity 
dataset. FP occurs when a predicted pathway phenotype is 
not supported by this dataset. True negative (TN) is identi-
fied when PathFX does not predict a pathway phenotype, 
and this is consistent with its absence in the drug toxicity 
dataset. Conversely, a false negative (FN) arises when the 
model fails to predict a pathway phenotype that is present 
in the dataset. Our approach involves comparing the drug 
names associated with each pathway phenotype, as identi-
fied by PathFX, against the labeled side effects in the drug 
toxicity dataset.

GO enrichment analysis to discover further 
biological relevance

We performed GO enrichment using the GOrilla tool,40 
to compare pathway phenotype proteins to the entire in-
teraction network. For the foreground gene list, we used 
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all shared network proteins for pathway phenotypes 
identified previously, and for the background gene list, 
we used all network proteins in the interaction network 
as published in Wilson et al.21 We repeated this process 
for all pathway phenotypes, where there were sufficient 
examples of unique or shared network proteins and we 
merged network proteins for pathway phenotypes that 
represented similar side effects (e.g., we performed GO 
enrichment for the union of all genes associated with the 
12 pathway phenotypes representative of the side effect 
“hypertension”).

Bias reduction for incorporation of new 
pathways into PathFX

When creating the original PathFX v1 (version 1, re-
leased with Wilson et  al.21), we used two procedures to 
minimize biases inherent in network prediction: interac-
tion specificity analysis and expected association analy-
sis. The former minimized biases due to connectivity in 
the interactome and the latter minimized biases due to 
pathway phenotypes having a different number of associ-
ated genes using Fisher's exact test. To incorporate new 
pathway phenotypes into PathFX, we repeated the latter 
bias reduction technique (because we were not changing 
the interactome) with several new pathways (described 
below). This procedure included generating 100 random 
networks with a range of random input targets (we as-
sessed networks with 1 to 40 random targets) and measur-
ing their association with the newly generated pathway 
phenotypes. When assessing real drug networks, we used 
these expected association scores to determine whether 
a pathway phenotype would be retained in the final net-
work. We required that the pathway phenotype have an 
association that was below the median association for that 
pathway phenotype within 100 random networks with the 
same number of input targets. This is the same process as 
described in Wilson et al.21 Every new pathway phenotype 
was subject to this bias reduction technique before we in-
corporated them into a new version of PathFX that would 
assess real drug network associations relative to these ran-
domizations (new version released with this publication, 
see Data availability statement).

Defining novel pathway phenotypes

We made a pipeline, called “DefPath,” implementing 
pathway engineering, that defined novel custom path-
way phenotypes using diverse input data: counting net-
work proteins from drugs known to cause the side effect 
in the drug toxicity dataset, as “distinct TP baseline” and 

counting network proteins from drugs not known to cause 
the side effect in the drug toxicity dataset, as “distinct FP 
baseline.” Through this pipeline, we systematically as-
sessed the performance of new pathway phenotypes for 
each side effect. Moreover, to account for scenarios with 
insufficient distinct TP example networks, we further de-
vised novel pathway phenotypes using an omics dataset, 
called the “drug signature dataset,” previously compiled 
by Chen et al.25 This dataset contains comprehensive gene 
expression changes in the human, mouse, and rat tissues, 
obtained from various databases, along with a curated list 
of crucial drugs utilized for treating diseases. Specifically, 
they curated 13,530 human, mouse, and rat transcriptome 
datasets published in Gene Expression Omnibus (GEO) 
and summarized top and bottom differentially expressed 
genes collected from more than 20 tissues and 941 drugs. 
For our analysis, we exclusively focused on the differen-
tial expression of human genes to ensure the relevance of 
the findings. Additionally, because we wanted to broadly 
explore all possible gene expression changes, we did not 
restrict our analysis to any specific tissue and instead 
used any differentially expressed gene to understand the 
drug's effects. We did not have patient-level or sample 
numbers in processing human gene expression data. The 
dataset included “top” genes, which are the top 500 dif-
ferentially expressed genes (or less if there are <500 sig-
nificant genes), as assessed by differential gene expression 
analysis (LIMMA).25 Using these gene lists, we initially 
searched for top genes shared among drugs that cause the 
same side effect. However, we discovered this to be a null 
set. Instead, we took the union of top genes from drugs 
known to cause the side effect in the drug toxicity data-
set, as “TP signature,” and for top genes from drugs not 
known to cause the side effect in the drug toxicity dataset, 
as “FP signature.” This process yielded four pathway cat-
egories for each side effect, TP baseline, FP baseline, TP 
signature, and FP signature. Afterward, we took various 
intersections between these categories, that is, the path-
way engineering process, generated new PathFX pathway 
phenotypes, and measured the ability to recover associa-
tions to drugs known to cause the side effect. Notably, we 
had insufficient data for multiple side effects.

Assessing gene pathway robustness 
through randomization techniques in 
PPI networks

To assess the robustness of our pathways, we measured 
the predictive utility of pathway phenotypes assembled 
with random genes. Firstly, we implemented a gene 
knockout process, where we randomly excluded 15% of 
the distinct TP genes linked to each pathway phenotype. 
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Subsequently, to evaluate the impact of noisy input data, 
we augmented the TP distinct genes list by including 15% 
of the shared TP and FP genes associated with pathway 
phenotype. By varying the inputs in this manner, we sys-
tematically investigated the effects of different gene sets 
on defining novel pathway phenotypes, enabling a com-
prehensive exploration of the method's robustness and re-
liability in predicting drug-induced safety events.

Generating new PathFX 
predictions and evaluation metrics 
for novel custom pathways

Having established novel custom pathway phenotypes, 
utilized distinct TP and deferentially expressed genes, 
and completed bias reduction, we executed PathFX for all 
drugs mapped from the drug toxicity dataset. PathFX gen-
erated a table of network-associated pathway phenotypes, 
ranked by their multiple-hypothesis-corrected p-values 
using the “Benjamini–Hochberg” method.41 Furthermore, 
we tracked the newly defined pathway phenotypes and 
quantified their ability to recover associations to drugs 
known to cause the side effects in the toxicity dataset. 
Subsequently, we retrieved the drugs associated with spe-
cific pathways, considering them as new PathFX predic-
tions, and compared these with the drug names present in 
the drug toxicity dataset. This pipeline, DefPath, enabled 
us to calculate evaluation metrics per side effect and for 
each pathway phenotype, providing a comprehensive as-
sessment of the predictive performance of our approach.

RESULTS

Baseline performance analysis: 
Preliminary results and evaluations

Integration of the drug toxicity dataset: 
Mapping drugs and side effects to the 
PathFX database

To test PathFX predictions, we needed to map side ef-
fects from drug labels (“labeled side effects”) to path-
way phenotypes in the PathFX database (“predicted side 
effects”) and active ingredients to DrugBank identifi-
ers (to obtain drug targets which are required inputs to 
PathFX). In the original PathFX v2, we had 8238 drugs 
(with DrugBank identifiers) and 29,831 pathway pheno-
types. In the drug toxicity dataset, we successfully mapped 
1132/1970 active ingredients to DrugBank identifiers and 
within this set, drugs were associated with an average of 
6.5 (median = 5.0, SD = 4.7) side effects. For instance, the 

drug name “Atropine” was mapped to the drug name 
“Atropine.” In case, we could not map to the drug name, 
we mapped to the DrugBank identifier. For example, the 
drug name “Valproic acid” was mapped to DrugBank 
Identifier “DB00313.” Importantly, we did not restrict our 
analysis to any therapeutic use classes or specific drug 
targets. Indeed, looking at the ATC codes of all mapped 
drugs, there were 1600 unique level-3 ATC codes in the 
dataset.

Of these 1132 drugs, we generated PathFX networks for 
890 drugs with sufficient binding targets and protein inter-
actions (Figure 1). Of the 34 side effects in the drug toxicity 
dataset, we found sufficient PathFX pathway phenotypes 
for 32: 4 side effects had a direct match to a PathFX path-
way phenotype (e.g., the side effect, “Delirium,” matched 
to pathway phenotype, “Delirium”), 8 had a synonymous 
match only (e.g., the side effect, “Sleep apnea syndrome,” 
matched to the pathway phenotype, “Sleep apnea syn-
dromes”), 20 side effects had both a synonymous and di-
rect match (e.g., the side effect, “Gastric ulcer,” matched 
to the pathway phenotypes, “Gastric ulcer” and “Peptic 
ulcer”), and 2 side effects did not match any pathway phe-
notypes tracked in PathFX (Figure 1, Table 1).

Initial assessment of PathFX predictions 
discovers low performance, yet identifies 
biologically relevant pathway connections

We next investigated PathFX networks for the 890 drugs 
with complete information and assessed PathFX v2's abil-
ity to correctly predict pathway phenotypes related to the 
drugs' labeled side effects. PathFX identifies high-priority 
downstream proteins using a drug's target proteins as in-
puts and then assesses pathway phenotypes associated 
with this network using a bias-controlled Fisher's exact 
test (see ‘Section 2’). For example, PathFX created a net-
work for the drug atropine, which has 9 drug-binding pro-
teins in our interactome. The entire network included 348 
proteins and 604 pathway phenotypes. Within the subnet-
work, atropine is associated with 4 pathway phenotypes 
relevant to our side effect prediction: “essential hyper-
tension,” “genetic hypertension,” “idiopathic pulmonary 
arterial hypertension,” and “pulmonary hypertension” 
(Figure 2a). Atropine is connected to these pathway phe-
notypes through five drug-binding proteins (CHRM-1-5) 
and three downstream proteins (KNG1, AGT, and ADN1). 
Also, PathFX analysis of caffeine, which has 19 drug-
binding proteins in our interactome, generated a network 
of 552 proteins and 1040 pathway phenotypes. Caffeine is 
associated with a pathway phenotype, “edema,” related 
to the side effect in that subnetwork (Figure 2b), through 
seven drug-binding targets (in red) and eight downstream 
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      |  7PATHWAY ENGINEERING TO PREDICT DRUG SIDE EFFECTS

proteins (in gray). In these examples, atropine is consid-
ered a “true positive” drug because PathFX correctly pre-
dicted multiple pathway phenotypes related to the drug's 
labeled side effect, “hypertension.” Further, atropine's tar-
gets and network proteins – EDN1, KING1, and AGT – are 
considered true positive proteins because they were used 
in a “correct” PathFX prediction. Similarly, caffeine is a 
true positive drug for edema because PathFX-predicted 
edema, a pathway phenotype relevant to caffeine's la-
beled side effect, “edema.” In this network, the protein, 
ERBB3, is considered “distinct” because it is not used in 
any PathFX edema predictions for drugs that are not la-
beled for the side effect. All baseline PathFX predictions, 

pathway phenotypes, and network proteins are available 
on GitHub.

Using our side effect prediction method, SEPred, 
which assessed all networks for drugs associated with 
one side effect, we observed average sensitivity and spec-
ificity values of 0.23 (Median = 0.20, SD = 0.21) and 0.83 
(Median = 0.83, SD = 0.15), respectively (two examples 
highlighted in Table 2). Additionally, in Table S1, we pro-
vide detailed PathFX predictions for drugs associated with 
all 32 side effects, providing a comprehensive overview of 
the predictive outcomes for each individual side effect. As 
anticipated, PathFX v2 prediction performance demon-
strated a relatively low and variable accuracy across dif-
ferent side effects.

Despite the modest overall performance, our approach 
discovered network genes associated with either or both 
TP and FP pathways, as depicted in Figure  2. Example 
networks for two drugs are shown in Figure 2 and demon-
strate PathFX correctly identifying pathway phenotypes 
relevant to the drug's labeled side effects. For instance, 
atropine is associated with the side effect, “hypertension,” 
and PathFX predicted four relevant pathway phenotypes: 
“essential hypertension,” “genetic hypertension,” “idio-
pathic pulmonary arterial hypertension,” and “pulmonary 
hypertension.” PathFX also used five drug-binding pro-
teins and three downstream proteins to support these pre-
dictions. Interestingly, some proteins are shared between 

F I G U R E  1   Side effects and drugs of the study. On the left, 34 side effects mapped to 121 PathFX pathway phenotypes: the pie chart 
indicates the fraction of total PathFX pathway phenotypes where red, yellow, blue, and green indicate whether the side effect matched 
to no, a direct, a synonymous, or both a synonymous and direct PathFX pathway phenotype, respectively. On the right, 890 drugs had 
sufficient data to generate network predictions: the pie chart indicates the active ingredients where blue, green, pink, and orange represent 
active ingredients that had drug bank targets and sufficient interactions, had no DrugBank identifier, had drug-binding targets but empty 
networks, or lacked drug-binding proteins, respectively.

T A B L E  1   Detailed mapping information of drug toxicity side 
effects to PathFX pathway phenotypes.

Side effects to pathway 
phenotypes Example

Four side effects only had 4 direct 
matches

‘Delirium’: ‘Delirium’

20 side effects had 98 direct or 
synonymous and/or related 
matches

‘Gastric Ulcer’: ‘Gastric 
Ulcer’, ‘Peptic Ulcer’

Eight side effects had no direct 
matches but 19 synonymous 
and/or related matches

‘Ventricular Tachycardia’: 
‘Tachycardia’, 
‘Tachyarrhythmia’
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8  |      ALIDOOST and WILSON

true and false positive drug predictions, including EDN1 
which is used in true positive networks like atropine, 
and in additional false positive drug networks. Moreover, 
PathFX correctly predicts an association between caf-
feine and the side effect, “edema.” PathFX used the net-
work protein ERBB3, and because this protein was not 
used in any false positive drug networks, it is considered 
distinct from TP edema predictions (further illustrated 

in Figure 3). In this case, genes such as EDNI would be 
considered a TP gene for the hypertension side effect, in 
this subnetwork, because it connects a drug to a relevant 
side effect pathway phenotype (Figure  2a). It should be 
emphasized that EDN1 is considered a TP and FP path-
way gene for hypertension in our interactome due to its 
connection to relevant and irrelevant side effect pathway 
phenotypes. We assessed these proteins for all side effects 

F I G U R E  2   PathFX identified hypertension (a) and edema (b) genes in subnetworks for atropine and caffeine, respectively.
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and assessed their frequencies in drug-pathway pheno-
type predictions. The most frequent genes in the TP and 
FP PathFX network associations to hypertension included 
as follows: [TP: (“AGT,” 666), (“EDN1,” 449), (“KNG,1” 
425)] and [FP: (“AGT,” 363), (“EDN1,” 245), (“KNG1,” 
186)] (Figure 2a). In addition, “ERBB3” and “DCLRE1C” 
are downstream distinct edema genes discovered by 
PathFX (Figure 2b). In total, we found PathFX network 
associations to hypertension connected with 406 genes; 
108 and 29 were uniquely associated with TP and FP asso-
ciations, respectively. Similarly, for edema, we discovered 
134 genes; 4 and 21 were uniquely associated with TP and 
FP associations, respectively (Table 2). We collected dis-
tinct TP gene lists to use as new pathway phenotypes and 
wanted to measure the ability to reduce overprediction for 
these side effects using these new pathway genes.

Furthermore, to understand the biological func-
tions of TP genes/proteins, we used GO enrichment 
(Table S2, the other GO terms in Table S3). Generally, 
GO enrichment uncovered associations to multiple cel-
lular processes, though, a few terms stood out for their 
connections to cardiovascular disease. We chose five GO 
terms from the most statistically significant GO terms 
list and found additional evidence in the literature to 
show their biological relevance (see ‘Section  2’). For 
instance, the TP genes were associated with a “regula-
tion of endothelial cell migration” (GO:0010594, false 
discovery rate (FDR) q-value of 0.0168). Research has 

elucidated that disturbances in the regulation of endo-
thelial cell migration are intricately linked with hyper-
tension—a condition where elevated blood pressure can 
compromise endothelial integrity and disrupt the nor-
mal flow regulation within blood vessels. As blood pres-
sure surges, it can precipitate endothelial dysfunction, 
potentially exacerbating the severity of hypertension.42 
The interplay between hypertension and endothelial 
dysfunction is also multifaceted, influencing a spectrum 
of cellular activities that include the migration of endo-
thelial cells.43 Reviews in the field have further detailed 
how endothelial dysfunction, as a central element of 
cardiovascular pathologies such as hypertension, cor-
relates with the regulatory mechanisms of endothelial 
cell migration.44 These results affirmed the relevance of 
PathFX-prioritized proteins per side effect.

Through meticulous examination of TP, FP, and shared 
pathways, (as illustrated in example cases in Figure 3), we 
gained a holistic understanding of the predictive perfor-
mance of our model, identified frequent molecular in-
teractions, and generated new pathways to test PathFX 
predictions. Taken together, these results suggest that pre-
diction performance is weak but biologically relevant. We 
hypothesized that meta-analysis of PathFX proteins, or 
the integration of new omics data may improve the ability 
to predict drug-induced side effects. These findings con-
tribute to our overall goal of improving preclinical safety 
evaluation and drug development strategies.

T A B L E  2   PathFX prediction results for two side effects (hypertension and edema).

Side effect Sensitivity Specificity

# of associated 
drugs in the 
toxicity dataset

# of drugs 
predicted by 
PathFX

# of shared 
TP & FP 
genes

# of distinct 
TP genes

# of distinct 
FP genes

Hypertension 0.54 0.63 448 406 255 108 29

Edema 0.15 0.85 442 134 21 4 21

F I G U R E  3   Comparison of true 
positive (TP) (in blue), false positive 
(FP) (in purple), and shared (in yellow) 
pathways in drug-induced side effect 
prediction using SEPred.
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10  |      ALIDOOST and WILSON

Pathway engineering and performance 
assessment of newly defined pathways

Pathway engineering can reduce 
overprediction of drug-induced side 
effects and increase sensitivity when side effect 
pathways are poorly defined

We hypothesized that using downstream proteins correctly 
associating a drug to its side effect to define new pathway 
phenotypes could improve our ability to predict drug-
induced effects. In a previous study,22 we made an interest-
ing discovery that edema-associated downstream proteins 
were highly predictive of whether a drug caused edema, 
even when all edema-causing drugs did not share direct 
drug targets. Furthermore, our baseline analysis confirmed 
that there were distinct sets of genes associated with TP and 
FP-predicted pathway phenotypes (e.g., case study side ef-
fects in Table 3) and that they were functionally relevant to 
drug side effects as texted by GO enrichment (Tables S2 and 
S3). These findings suggest that by gaining a better under-
standing of the pathway phenotypes and identifying genes 
that are linked with both TP and FP drugs, we could poten-
tially improve the accuracy of our predictions. However, we 
used PathFX v1 in our previous analysis and we applied the 
logistic regression on all network proteins, instead of just 
pathway phenotype-associated proteins. In this work, we 
initially examined all drug network proteins rather than just 
the pathway phenotype-associated proteins to define new 
pathway lists. Nevertheless, reviewing the lists of network 
proteins associated with TP and FP results, we found no 
significant distinctions between them. We were primarily 
interested in defining gene lists with distinct associations; 
thus, our focus shifted toward utilizing proteins with direct 
associations to pathway phenotypes.

In our study, we leveraged a list of distinct TP genes as-
sociated with side effects, identified in the previous section, 
and made new gene-to-phenotype associations. To address 
potential biases in the data, we performed random exclu-
sions, removing 15% of distinct TP genes to create knock-
out gene lists and adding 15% of shared TP and FP genes 
to the distinct TP gene list to simulate the effects of noisy 
input data. Subsequently, we included these new pathways 
with the genes associated with the previously mentioned 
121 mapped pathway phenotypes. After integrating these 
pathways into PathFX, we again generated networks for all 
TP and FP drugs for each selected side effect and assessed 
whether our new pathway phenotypes were recovered in 
positive (drugs cause the side effect in the toxicity dataset) 
or negative (drugs did not cause the side effect in our toxic-
ity dataset) drug networks, using the DefPath method. This 
analysis resulted in tables of pathway phenotypes associ-
ated with the respective drug networks.

We next assessed which of these newly defined path-
way genes were recovered in TP and FP drug networks 
(Table 3). The first three rows of Table 3 provide evidence 
of a reduced overprediction. We highlighted four selected 
side effects, that had the highest number of TP genes 
among all 32 side effects (all other side effects shown in 
Table S1). For instance, with hypertension, our baseline 
results recovered 255 shared hypertension-associated 
genes found in TP and FP drug networks; 108 and 29 
genes were also unique to TP and FP drug networks, re-
spectively. When we redefined, new pathway phenotypes 
using the 108 genes associated with only TP drugs and ran 
the new version of PathFX with 241 TP and 165 FP drugs 
identified in the baseline analysis, we found fewer genes 
recovered in PathFX networks. Specifically, for 241 TP 
drugs associated with hypertension, 21 out of 108 distinct 
TP genes were discovered (“TP defined genes-In TP drug 
networks” column in Table 3). When using a 15% knock-
out pathway, we observed that all TP predictions were 
connected through 22 pathway genes, a similar recovery to 
the TP distinct pathway. Importantly, for both pathways, 
the number of FP predictions was zero. This aligns with 
our initial hypothesis, affirming the reduction in overpre-
diction. These results further suggest that smaller, curated 
pathways may be valuable for reducing overprediction. 
For myocardial infarction, the number of TP genes falls 
below the PathFX detection threshold (PathFX requires 
at least 25 genes in a pathway; otherwise, the pathway is 
skipped entirely based on findings from Menche et al.45). 
However, for side effects with more than 25 genes, that 
is, hypertension, pancreatitis, and thrombocytopenia, our 
analysis demonstrates compelling findings, as we have not 
captured any TP-defined pathways in FP drug networks.

Subsequently, we evaluated the recovery of pathway 
genes in noisy pathways. We reasoned that it is difficult 
to precisely define a side effect pathway phenotype, and 
investigating noisy inputs would quantify the impact of 
having erroneous genes in the pathway gene lists. The 
number of noisy pathway genes discovered for all four 
side effects is relatively high and not surprisingly, noisy 
pathways were identified for both TP and FP drugs. In 
the case of hypertension, 183 and 90 genes from the noisy 
pathway were discovered in the TP and FP drug networks 
(Table 3). The relative increase in FP predictions is likely 
due to the relatively large number of genes randomly 
added to the pathways, and because these genes were 
added from the shared gene list. This further supports our 
finding that a smaller, less noisy list (i.e., the knockout 
list) is preferable for reducing overprediction compared 
with a larger, noisier list. In the case of myocardial infarc-
tion, we had insufficient genes to define TP and knock-
out pathways (discussed above), but generating a noisy 
pathway enabled prediction of the side effects when we 
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      |  11PATHWAY ENGINEERING TO PREDICT DRUG SIDE EFFECTS

previously had insufficient data. The discovery of FP as-
sociations indicates that the process is not robust to noise 
but suggests that noisy pathways may be necessary for in-
creasing sensitivity.

Integration of gene expression data increases 
pathway identification

It is important to note that, while we initially considered 
a broader range of pathway phenotypes in our analysis, 
a majority of them, except for four, exhibited fewer than 
25 distinct TP genes in their pathways. Consequently, the 
PathFX tool excluded these pathways from our study due 
to their limited gene lists. In order to address this chal-
lenge and extend the applicability of our approach to cases 
with inadequate distinct TP example networks, we under-
took the generation of novel pathway phenotypes using an 
omics dataset, the “drug signature data” published with 
the PharmOmics dataset.25 Furthermore, gene expression 
data are often widely available, especially in cases of novel 
drugs under development, and we were eager to under-
stand the utility of this data for pathway-based prediction 
of drug side effects. By leveraging this omics dataset, we 
conducted experiments to assess the effectiveness of these 
newly defined pathway phenotypes in mitigating over-
prediction and enhancing the precision of our predictive 
model. Although all side effects are not driven by gene ex-
pression changes, pathway engineering could illuminate 
whether gene expression changes had any long-range 
connections to drug targets.

Briefly, the drug signature dataset included lists of top 
genes affected by exposure to 941 drugs in three species. 
PathFX uses only human protein data; therefore, we pri-
oritized differential gene lists tested in human cells and 
drug names listed in our toxicity dataset. We originally 
hypothesized that a pathway defined by all differentially 
expressed genes shared by positive drugs, or each drug's 
“signature” would be the most sensitive for predicting a 
side effect (e.g., all top genes from hypertension-causing 
drugs would constitute a new “hypertension signature” 
pathway). However, we discovered that the intersection 
of top gene lists for all side effect drugs was zero for all side 
effects. Given this limitation, we instead used gene sets 
discovered from the union of top gene lists associated with 
both positive and negative drugs and repeated this process 
per side effect. This yielded TP and FP “signature” gene 
lists. This scenario is most like our previous definition of 
noisy pathways, and we anticipated a trade-off between 
sensitivity and specificity using this approach.

We incorporated four gene sets, namely TP and FP 
baseline genes, along with TP and FP signature genes, 
to establish new pathways as described previously (see T
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‘Section  2’). For example, hypertension was associated 
with 51 TP and 35 FP drugs, and the gene lists were as 
follows: TP baseline: 363, FP baseline: 284, TP signature: 
5502, and FP signature: 3117 drug-gene pairs, respectively. 
Initially, we took the union of all top TP signature genes 
for drugs associated with eight side effects that had the 
highest number of distinct TP genes, in the toxicity dataset. 
This resulted in side effect pathways encompassing 78,435 
gene–phenotype associations, with individual pathway 
phenotypes ranging from 250–6787 genes. Table S4 shows 
all pathway phenotypes and their corresponding path-
ways in Supplementary Materials  S1. Surprisingly, after 
incorporating these into PathFX, we were unable to de-
tect drug associations to the pathways, likely because the 
pathways were too large and not uniquely associated with 
any drug pathway. This is consistent with earlier find-
ings that PathFX is unable to detect pathway associations 
when the pathway sizes are large relative to the size of 
the interactome.21 Subsequently, we repeated the process, 
but this time, we took the top 500 ranked differentially 
expressed signature genes (per side effect) to define new 
TP signature pathways for four side effects, yet still failed 
to recover associations to these pathways in PathFX net-
works, likely since gene expression does not always align 
with protein signaling pathways. To address this issue, we 
created a process called “pathway engineering,” aiming to 
discover more performant sets of intersecting genes that 
could yield defined proteins (signals) in PathFX results.

The Venn diagram in Figure  4a visually depicts all 
possible intersections among our gene sets. After consid-
ering various intersection cases, we found that taking the 
intersection of the TP baseline and signature gene sets, 
while removing the FP baseline and signature gene sets 
(Figure  4b), could remove the FP signals in PathFX re-
sults. However, for all side effects, the final intersection 
contained fewer than 25 genes, leading to PathFX disre-
garding those networks. To overcome this limitation, we 
explored two additional cases. In one instance, we in-
cluded the intersection of all gene sets and excluded FP 
baseline genes (Figure 4c), and in the other case, we in-
corporated the intersection of all gene sets and excluded 
the FP signature genes (Figure 4d). Like before, we next 
assessed which pathway genes were recovered in PathFX 
networks (Table  4) for various cases. Zero values in the 
table represent cases with fewer than 25 genes in the net-
work. Moreover, the non-zero values in the fourth (“# of 
TP signature (not included FP distinct) genes”) and fifth 
(“# of TP signature (not included FP signature) genes”) 
columns confirm that signature genes are recovered in 
PathFX networks and validate their utility in defining new 
side effect pathways. For myocardial infarction, no path-
way genes were recovered in PathFX networks when only 
including TP distinct genes or TP signature genes without 

FP distinct genes. However, when incorporating TP signa-
ture genes without FP signature genes (a similar case to 
Figure 4d), we recovered 113 genes, highlighting the sig-
nificance of utilizing drug signature data in our analysis.

Furthermore, we considered that the inclusion of the 
FP signature data may most resemble our previous analysis 
of noisy pathways and hypothesized that these pathways 
may increase sensitivity (TP predictions) for predicting 
drug side effects at the expense of reduced specificity. We 
next sought to quantify the utility of these new pathways 
for correctly predicting drug-induced side effects.

Novel pathways increase specificity at the 
cost of reduced sensitivity

Our primary objective was to minimize FPs and over-
prediction in our model. Unlike our initial analysis, 
where we focused on TP and FP drugs for specific side 
effects, here, we studied all 890 drugs in our dataset. 
Subsequently, we calculated sensitivity and specific-
ity by comparing the PathFX drug predictions with the 
drugs listed in the drug toxicity dataset (refer to the 
‘Section 2’ section for more details). In Figure 5, we pre-
sent the evaluation metrics for four selected side effects 
and the performance of our novel side effect pathways. 
All engineered pathways had improved specificity com-
pared with the baseline analysis. For all side effects, the 
TP distinct pathway (side effect gene list generated from 
networks correctly associated with a side effect) had the 
highest specificity. However, these pathways often had 
relatively low sensitivity, likely due to having relatively 
few genes. Similarly, the “TP dist&sig/noFP dist” path-
way had high specificity and relatively low sensitivity. 
Removing FP-network genes from the pathway reduced 
overprediction, but the addition of signature genes did 
not increase sensitivity for all side effects; in pancrea-
titis, the addition of signature genes increased sensitiv-
ity, suggesting that pathway engineering could perform 
differently across pathway phenotypes. This endeavor 
resulted in a trade-off between specificity and sensitiv-
ity values. Consequently, we achieved higher specificity 
(fewer FPs) but lower sensitivity in our predictions. We 
were able to increase sensitivity, but only at the cost of 
reduced specificity. Improved sensitivity required either 
noisy pathways or the inclusion of genes associated with 
FP drugs; this suggests that there is not a single pathway 
for identifying side effects or that it is impossible to suf-
ficiently discern the networks of drugs that do or do not 
cause a side effect.

To assess the utility of our newly defined pathways for 
side effect prediction, we conducted a comparison with an 
animal testing study,4 where we observed variations in the 
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      |  13PATHWAY ENGINEERING TO PREDICT DRUG SIDE EFFECTS

performance depending on the side effect and the organ 
system category. We compared our results to Monticello 
et al.4 which collected preclinical and clinical rates of side 
effects by organ system (e.g., “cardiovascular” or “gas-
trointestinal”) and reported sensitivity and specificity of 
three animal models—“rodent,” “dogs,” and “non-human 
primates”—for their ability to anticipate clinical side 

effects (Figure 5). They observed that while animal testing 
can predict some side effects in humans, their sensitivity 
is limited, and sensitivity varies depending on the organ 
system. Comparing our results with the animal study 
findings (we matched side effect pathways to the most rel-
evant organ system—for example, hypertension, throm-
bocytopenia, and myocardial infarction were compared 

F I G U R E  4   Venn diagram illustrating all gene sets intersections in our pathway engineering process. (a) True positive (TP) and false 
poitive (FP) baseline genes are represented by blue and green circles, respectively, and include the network-identified gene lists described 
previously in our preliminary analysis. The TP and FP signature gene lists are represented by red and yellow circles, respectively, and 
include the lists of genes identified from the PharmOmics dataset. As an example, for hypertension, the number of genes in these lists were 
as follows: TP baseline: 363, FP baseline: 2 84, TP signature: 5502, and FP signature: 3117. (b) The black triangle shows that we included 
genes intersecting the TP baseline and TP signature sets and removed the FP baseline and FP signature sets. (c) The black triangle shows 
that we included genes intersecting TP baseline, TP signature, and FP signature sets and removed FP baseline sets. (d) The black triangle 
shows that we included genes intersecting TP baseline, TP signature, and FP baseline sets and removed FP signature sets.

T A B L E  4   New pathway genes recovered in updated PathFX networks.

Side effect/New pathway
# of TP distinct 
baseline genes

# of TP distinct (not 
included FP distinct) 
genes

# of TP signature 
(not included FP 
distinct) genes

# of TP signature (not 
included FP signature) 
genes

Hypertension 108 21 21 195

Pancreatitis 43 11 12 95

Thrombocytopenia 31 21 0 32

Myocardial infarction 20 0 0 113

Note: TP distinct genes: Network proteins from TP drug networks not contained in FP drug networks. FP distinct genes: Network proteins from FP drug 
networks not contained in TP drug networks. TP signature genes: Differentially expressed genes from PharmOmics TP drug networks not contained in FP drug 
networks. FP signature genes: Differentially expressed genes from PharmOmics TP drug networks not contained in FP drug networks.
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14  |      ALIDOOST and WILSON

with the cardiovascular organ system and pancreatitis 
was compared with the gastrointestinal organ system), 
it is crucial to consider that animals and humans differ 
in terms of physiology, anatomy, and genetics, leading 
to varying responses to drugs and treatments. However, 
our results are within the same range as those obtained 
from the animal study, depending on the organ system. 
For cardiovascular side effects, regarding sensitivity, the 
dog outperformed other animal models and our pathway 
predictions. Our engineered pathways had similar sensi-
tivity to the dog for gastrointestinal side effects and greater 
sensitivity than the rodent or nonhuman primate for this 
organ class. By conducting this comparative analysis, we 
demonstrate the potential of our pathway engineering 

approach to enhance the accuracy of drug-induced side 
effect predictions, considering the differences between an-
imal and human responses.

As previously discussed, each side effect can be as-
sociated with several pathway phenotypes. For exam-
ple, hypertension encompasses 12 pathway phenotypes, 
which are synonymous or related terms. Table  5 pres-
ents the evaluation results for each pathway phenotype 
associated with the hypertension side effect. Notably, 
our findings align with the outcomes of animal testing 
studies, demonstrating the potential utility of our pre-
dictions. Through our pathway engineering approach, 
we succeeded in reducing overpredictions by minimiz-
ing the number of FPs. However, achieving a specificity 

F I G U R E  5   Comparison of human in silico and animal testing4 evaluation metrics for four side effects in cardiovascular and 
gastrointestinal organ system categories. We plotted the sensitivity (y-axis) against the specificity (x-axis) for 4 PathFX pathway phenotypes, 
hypertension (upper left), pancreatitis (upper right), thrombocytopenia (lower left), and myocardial infarction (lower right), to compare 
evaluation metrics for relevant organ systems published in Monticello et al.4 In all cases, the “baseline,” “TP distinct,” “intersection of TP 
distinct, TP signature, and FP distinct, w/o FP signature,” and “intersection of TP distinct, TP signature, and FP signature, w/o FP distinct” 
genes are represented by a red circle, green square, blue diamond, and purple triangle, respectively. Rodent, dog, and nonhuman primate 
data are represented by a yellow plus, black star, and cyan x, respectively, and are as published in Monticello et al.4
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      |  15PATHWAY ENGINEERING TO PREDICT DRUG SIDE EFFECTS

of 1 remained unattainable, primarily due to limitations 
within our dataset (not having enough distinct TP genes 
to incorporate and the inclusion of a few distinct FP 
genes in our analysis, as illustrated in Figure 4d). It is 
also important to note that “TP distinct” does not rule 
out the fact that these genes could show up in a FP drug 
pathway. Because we defined the pathway from genes 
enriched in a drug's pathway in the association table, 
another drug network may have the pathway genes in 
the network but will not be enriched because of Fisher's 
exact test. Once we change the pathway length, that sec-
ond drug network may become enriched in the pathway 
phenotype, leading to the discovery of the TP distinct 
genes in the FP pathway.

More importantly, pathway engineering enhanced sig-
nal detection and uncovered previously unidentified ef-
fects. For example, after pathway engineering, caffeine's 
network included 59 new pathway phenotypes, and in-
creased support for predicting the drug's association with 
hypertension (Figure  6a). This process revealed newly 
defined pathways, such as “phen_sig_tp_noFP_Sig_hy-
pertension” and “phen_sig_tp_noFP_Dis_hypertension.” 
Moreover, we identified new pathway phenotypes that 
support a drug's labeled side effect. Specifically, we ob-
served the new pathway phenotype, “phen_sig_tp_noFP_
Sig_myocardial infarction,” in the network for acebutolol, 
which previously had no network associations with myo-
cardial infarction, demonstrating the improved detection 

capabilities of the PathFX network after pathway engi-
neering (Figure  6b). We measured the general utility of 
pathway engineering through changes in sensitivity for 
predicting additional side effects: hypertension (sensitiv-
ity: 0.44 (TP:198 and FP:104) vs 0.54 (TP:241 and FP:165), 
Table  5, Table  S1, and Figure  7, Figure  S1), myocardial 
infarction (sensitivity: 0.39 (TP:126 and FP:145) vs. 0.55 
(TP:178 and FP:218), Tables S1, S6 and Figure S2), throm-
bocytopenia (sensitivity: 0.16 (TP:72 and FP:57) vs. 0.12 
(TP:57 and FP:61), Tables  S1, S7, and Figure  S3), and 
pancreatitis (sensitivity: 0.51 (TP:142 and FP:235) vs. 0.39 
(TP:109 and FP:227), Tables S1, S8, and Figure S4). This 
shows that the impact of pathway engineering can change 
depending on the pathway phenotype.

After pathway engineering, we also discovered new 
drug predictions, and distinct predictions when compar-
ing the results with and without the integration of gene 
expression data (Figure  4b,d, respectively). For instance, 
as shown in Table S5, in the case of hypertension, among 
198 drugs associated with “phen_sig_tp_noFP_Sig_hyper-
tension” pathway phenotype, a gene expression-derived 
pathway (Table 5), only 16 were shared with the “phen_tp_
hypertension” pathway phenotype, a non-gene expression-
derived pathway, which was associated with a total of 31 
drugs (Table 5). This highlights the utility of using the drug 
signature dataset to identify new and unique drugs.

To further display our tool's performance and enhance 
clarity, we incorporated visual confusion matrices with 

T A B L E  5   Per-pathway phenotype performance metrics and comparison with animal testing results for hypertension.

Side effect Pathway phenotype TP TN FP FN Sensitivity Specificity

Hypertension Idiopathic pulmonary arterial hypertension 0 442 0 448 0.00 1.00

Hypertension Hypertension 22 438 4 426 0.05 0.99

Hypertension Phen_tp_hypertension 31 434 8 417 0.07 0.98

Hypertension Phen_sig_tp_noFP_Dis_hypertension 30 434 8 418 0.07 0.98

Hypertension Essential hypertension 26 423 19 422 0.06 0.96

Hypertension Hypertension, portal 13 419 23 435 0.03 0.95

Cardiovascular organ category (Rodent) 0.03 0.94

Hypertension Renal hypertension 19 412 30 429 0.04 0.93

Hypertension Ocular hypertension 121 396 46 327 0.27 0.90

Hypertension Idiopathic pulmonary hypertension 50 393 49 398 0.11 0.89

Cardiovascular organ category (Nonhuman primate) 0.20 0.84

Hypertension Hypertension, renovascular 121 368 74 327 0.27 0.83

Hypertension Hypertensive disease 156 362 80 292 0.35 0.82

Hypertension Genetic hypertension 98 350 92 350 0.22 0.79

Hypertension Phen_sig_tp_noFP_Sig_hypertension 198 338 104 250 0.44 0.76

Hypertension Pulmonary hypertension 191 315 127 257 0.43 0.71

Hypertension Prehypertension 225 298 144 223 0.50 0.67

Cardiovascular organ category (Dog) 0.87 0.62

Note: TP, TN, FP, and FN represent the true positive, true negative, false positive, and false negative drugs identified by each pathway phenotype.
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16  |      ALIDOOST and WILSON

an initial emphasis on hypertension for the baseline case 
as well as cases in which we considered distinct TP genes 
and omics data (Figure  7). In the case of hypertension, 
the confusion matrix shows that the engineered pathways 
have decreased overprediction compared with the base-
line. We have also provided confusion matrix visualiza-
tions for all four side effects under investigation in our 
study in Figures  S1–S4. These additions serve to offer a 
clearer and more accessible illustration of our methodolo-
gy's effectiveness across various scenarios.

In addition, we extended our analysis to three ad-
ditional side effects, and the results are available in 

Tables S6–S8. This comprehensive evaluation allows us to 
gain further insights into the performance and effective-
ness of our pathway engineering method across various 
side effects.

DISCUSSION

Network-based methods suffer from low prediction accu-
racy; their prediction relies on accurate side effect path-
ways, but there are many ways to define pathways without 
a full understanding of pathway definition on network 

F I G U R E  6   Enhanced detection of pathway phenotypes following pathway engineering, highlighting the emergence of (a) the newly 
defined and (b) previously undetected pathway phenotypes associated with caffeine and acebutolol, respectively, exemplifying the improved 
efficacy of the PathFX network in characterizing drug-related side effects.
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      |  17PATHWAY ENGINEERING TO PREDICT DRUG SIDE EFFECTS

prediction performance. Here we investigated the effect of 
defining new gene pathways on prediction performance 
of one network method for anticipating several drug-
induced side effects. We generated pathways that were 
able to reduce overprediction when there were sufficient 
examples of TP drugs. We also demonstrated that the 
incorporation of gene expression data can increase sen-
sitivity at the expense of reduced specificity. The results 
of our study demonstrate the potential of protein interac-
tion network models and pathway engineering strategies 
to enhance preclinical prediction of drug-induced safety 
events. By leveraging our PPI tool, PathFX, we studied the 
limitations of network-based methods, that is, low predic-
tion accuracy and overprediction.

By refining the pathways in our algorithm and devel-
oping pathway phenotypes that reduced overprediction, 
we made progress in improving preclinical safety eval-
uation and drug development strategies. The gene-to-
phenotype associations derived from distinct TP genes 

yielded the greatest reduction in overprediction, but at a 
great cost to sensitivity. We observed this trend for spe-
cific side effects, such as hypertension, pancreatitis, and 
thrombocytopenia. Additionally, we incorporated omics 
data from a drug signature dataset to generate novel side 
effect pathway phenotypes. These pathways generally 
improved our sensitivity to detect pathway phenotypes 
related to drug side effects and specifically enabled us 
to predict side effects missed by our baseline mode (we 
specifically highlighted an example for myocardial in-
farction). These results highlighted the potential of in-
tegrating gene expression data into pathway phenotypes 
to improve network model predictions. Generally, path-
ways with omics data increased the sensitivity of our net-
work model for prediction pathway phenotypes related 
to drugs' labeled side effects, but at the cost of reduced 
specificity (these pathways were also associated with 
false positive drug predictions). These results highlight 
the difficulty in defining highly performant pathway 

F I G U R E  7   Confusion matrices for hypertension represent the number of drugs predicted by various engineered pathway phenotypes. 
(a) The case includes only genes from the true positive (TP) baseline set. (b) The case includes genes intersecting TP baseline, TP signature, 
and FP baseline sets and removes false positive (FP) signature sets. (c) The case includes genes from the baseline analysis.
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18  |      ALIDOOST and WILSON

phenotypes and demonstrate a possible limit of pathway 
engineering. We also compared our model predictions to 
a published animal testing study and observed that net-
work predictions were better, worse, or similar to animal 
models, depending on the side effect. Essentially, animal 
models also had a trade-off in sensitivity and specificity, 
yet they are still widely used in drug development and 
provide valuable insights despite imperfect prediction 
performance. Taken together, these results highlight the 
utility of our pathway engineering approach to enhance 
drug-induced side effect predictions. We specifically en-
vision network methods to be a complementary analysis 
to other methods of preclinical side effect prediction.

Many have modeled side effect prediction, albeit with 
different datasets, and different model types. We can quali-
tatively compare their performance, but they are generally 
different from our approach in the emphasis on different 
side effects and different types of prediction. Liang et al.46 
proposed a binary classification model incorporating a re-
fined negative sample selection strategy to predict drug side 
effects. This study utilized three classification algorithms: 
Random Forest (RF), Support Vector Machine (SVM), 
and Artificial Neural Network (ANN), with RF demon-
strating superior performance, evidenced by a sensitivity 
of 0.923 and specificity of 0.999. However, their approach 
only predicted a binary classification and is distinct from 
our efforts to predict specific side effects. Galeano et al.47 
introduced geometric self-expressive model (GSEM) to 
predict unknown side effects for drugs with a small num-
ber of side effects identified in clinical trials. While they 
reported the area under the receiver operating charac-
teristic (AUROC) values above 0.9, their goals are again 
different from ours in that clinical side effects are explor-
atory, collected from small patient samples, and may in-
clude less severe outcomes, such as nausea and dizziness. 
In contrast, we emphasized severe adverse outcomes that 
warranted inclusion on drug labels, further highlighting 
our contribution to the understanding of severe adverse 
events. Lastly, Huang et al.15 developed an in silico model 
that achieved a satisfactory cardiotoxic side effect predic-
tion performance (median AUC = 0.771, Accuracy = 0.675, 
Sensitivity = 0.632, and Specificity = 0.789). Although 
these performance metrics are higher, they only represent 
prediction for a single side effect, and we aimed to apply 
pathway engineering to multiple severe adverse reactions. 
Taken together, these examples underscore the challenges 
and variations in methods for predicting side effects. They 
also highlight that our contribution—leveraging PPI net-
works to understand severe side effects—complements 
existing approaches.

However, it is important to acknowledge several lim-
itations of the study, largely related to available data. It 

should be noted that we were unable to define PathFX 
pathway phenotypes for all labeled side effects, due to 
insufficient pathway data and we were unable to cre-
ate networks for all drugs due to insufficient drug tar-
get data. Future work may consider the inclusion of 
additional, or predicted, drug targets to better connect 
drugs to side effect pathway phenotypes. We originally 
considered the full TP and FP drug network, and we ob-
served no substantial differences between the associated 
network genes; drugs with and without the labeled side 
effects shared similar networks. We next investigated 
statistically significant pathway phenotype associations 
because these were associated with subsets of drug net-
work proteins. However, using these network proteins 
to define new pathway phenotypes reduced sensitiv-
ity, likely because the pathway gene lists became too 
small. Considering these results and our prior results 
suggested that searching for distinct pathway proteins 
would not yield highly predictive pathway phenotypes. 
Instead, drugs may converge on similar network pro-
teins, but proteins may need to be weighted or directed 
(to mimic the activation or deactivation of a pathway) 
to distinguish between true and false positive effects. 
Future work could consider the discovery of weighted 
or directed pathways to better predict drug outcomes. 
Moreover, many side effects had insufficient distinct 
TP genes, leading to exclusion from the study. This lim-
itation restricted the applicability of the pathway engi-
neering approach to all side effects and emphasized that 
our approach relied on verified positive examples. Our 
analysis also indicates that the pathway engineering ap-
proach may not be entirely robust to noise, as numer-
ous noisy pathways were recovered in TP and FP drug 
networks. While the comparison with animal testing is 
informative, it is essential to recognize that animal re-
sponses may not fully reflect human reactions to drugs 
due to physiological and genetic differences. Further 
research and validation are necessary to strengthen the 
reliability and applicability of pathway engineering in 
drug development and safety evaluation processes.

The incorporation of drug signature genes had similar 
trade-offs to our noisy pathways in terms of increased sen-
sitivity at the expense of reduced specificity. This suggests 
that there may not be a single pathway to define a side 
effect or that TP and FP drug networks may be too simi-
lar to accurately predict their side effects from pathways 
alone. However, the comparison to published animal 
studies underscores the utility of these pathways, despite 
perfect performance. As highlighted, a limitation in our 
work is the requirement of positive and negative examples 
for defining pathways. Nevertheless, for pathway pheno-
types without these example cases, it may still be possible 
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to generate sufficiently performant pathways using omics 
datasets. This suggests that pathway engineering could 
be extended to pathway phenotypes other than side ef-
fects. Another limitation in our approach is the use of 
differentially expressed genes and the inclusion of effects 
in any tissues. Using all tissues gave us a larger pool of 
differentially expressed genes to consider but missed 
tissue-specific effects. Gene expression changes alone may 
insufficiently capture all drug-induced effects, and other 
omics data, such as proteomic changes, could enhance fu-
ture efforts for pathway engineering.

Overall, our study contributes to the advancement of 
network-based prediction methods for drug safety evalua-
tion. The integration of pathway engineering, distinct TP 
genes, and omics data offers valuable insights into the pre-
dictive performance of protein interaction network mod-
els for drug-induced side effects. By understanding the 
pathways connecting TP and FP predictions, we can fur-
ther improve prediction accuracy. Our findings provide 
essential guidance for future drug development endeavors 
and highlight the potential of our approach in enhancing 
the utility of protein interaction network models for pre-
clinical side effect prediction.

CONCLUSION

Our study aimed to enhance the preclinical prediction of 
drug-induced safety events through the application of pro-
tein interaction network models and pathway engineer-
ing strategies. By leveraging the PathFX algorithm and a 
drug toxicity dataset, we focused on downstream proteins. 
We defined new pathways to reduce overprediction and 
improve prediction accuracy. Our findings demonstrated 
that the identification of key genes associated with TP 
and FP pathways is essential for reliable predictions. 
Incorporating omics data from a drug-gene expression 
signature dataset further enhanced our network predic-
tions. Notably, we achieved a trade-off between sensitiv-
ity and specificity values, while predicting the drug effects. 
The comparison of our results with an animal modeling 
study provided insights into the differences between ani-
mal and human responses to drugs, emphasizing the need 
for accurate side effect pathways for effective predictions. 
Our pathway engineering approach shows promise in pre-
clinical safety evaluation and drug development strategies, 
providing valuable insights into drug-induced side effect 
predictions and pathway prioritization. Our comprehen-
sive evaluation of various side effects further supports the 
effectiveness of our pathway engineering method. Overall, 
our study contributes to advancing the field of drug safety 
evaluation and offers valuable guidance for future drug de-
velopment endeavors.
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