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ABSTRACT OF THE DISSERTATION

A Categorical Consideration of Physical Formalisms
By
Sarita Dalya Rosenstock
Doctor of Philosophy in Philosophy
University of California, Irvine, 2019

Professor James O. Weatherall, Chair

In the progression from Newtonian physics to general relativity, the structural feature of
absolute rest was abandoned because it was not necessary to account for the empirical
validity of Newtonian physics. Ockhams razor-type arguments like this one, which appeal to
a desire for minimal ontologies and more unified physical laws are often invoked in favor of
one theory or model over another. But how do we distinguish between essential “structure”
in a theory, and inessential contingencies of a particular description? Is there a precise way
to “compare structure” across theories expressed with different language and mathematical

constructs?

In my dissertation, “Structure and Equivalence in Physical Theories,” 1 adopt and adapt a
method of comparing the structure of different formalisms that I call “theories as categories
of models” (TCM), recently suggested by J. Weatherall (2016) and H. Halvorson (2012). The
motivating idea is that information about relationships between formal theoretical models
provide crucial insight into the way in which these models are intended to represent real-
world systems. Incorporating this so-called “functorial” information into the presentation
of a theory naturally yields a mathematical object called a category. Formal methods from
category theory can then be used to enrich our understanding of the nature of these models

and the systems they represent.

X


https://link.springer.com/article/10.1007%2Fs10670-015-9783-5
https://www.journals.uchicago.edu/doi/10.1086/664745

While I aim to develop a rich and rigorous account of TCM, I focus primarily on the ways in
which it has been and can be productively employed by scientists and philosophers, rather
than merely considering this method in the abstract. I couch my analysis in three primary
case studies in which TCM has produced novel insights into physical theories. Two of these
applications, in general relativity (2015) and Yang-Mills theory (2016), are based on original
theorems that I proved and published with co-authors, establishing that formalisms that
many theorists consider meaningfully distinct are in fact equivalent in a precise, category
theoretic sense. In the dissertation, I present these examples with a closer eye towards
explicating the role that TCM plays in scaffolding the arguments in these papers. In the
second case, I demonstrate how TCM opens the door to a larger and richer space of possible
Yang-Mills formalisms, and indicate how the category theoretic structure in this space reveals

the relationships between quantum field theories based in different classical formalisms.

[ also consider topological data science (TDA), a popular method of analyzing the “shape”
of large data sets. This represents a departure from other philosophical work on TCM, which
has focused on theoretical foundations of theories from physics, whereas TDA is employed
by a variety of researchers in multiple fields at a less theoretical, more practical level. TDA
is a promising candidate for TCM because category theory is invoked by data scientists
themselves to justify the use of its core methods. This case study reveals how scientists
are and can be motivated by category theoretic considerations, and the ways in which these
motivations do and do not align with those of philosophers of science employing the same
tools. This chapter points towards new ways philosophers of physics might enhance TCM
by analogy with TDA. In the other direction, the philosophical framework of TCM enhances
the story data scientists want to tell about how TDA gets at the underlying “structure” of

data.


http://aip.scitation.org/doi/abs/10.1063/1.4965445
http://www.sciencedirect.com/science/article/pii/S1355219815000866

Chapter 0O

Introduction

This dissertation involves a variety of disciplinary aims and methods. The original motiva-
tion for the project comes from the philosophy of physics. I was unsatisfied with the reasons
both physicists and philosophers gave for why one formalism should be preferred to another
as a foundation for Yang-Mills theory. In this I am aligned with the burgeoning sub-field
of philosophy of modeling, which seeks to clarify the diverse and puzzling roles that math-
ematical models play in mediating scientific understanding of the world. I was hung up,
however, on the more fundamental philosophical issue of how to identify and individuate the
formal models themselves, independent of arbitrary linguistic and stylistic choices made in
their presentation. This quest to extract meaning from symbols aligns me with philosophers
of language. My background in mathematics biases me towards a formal answer to this
question, inspired by the work of logicians to connect syntax to semantics. Unfortunately,
the messiness of how physicists employ formal models did not properly align with the sterile
precision of logic. To accommodate scientific practice, models need to be imprecise enough
to encompass a variety of possibilities, but capable of being sharpened when careful distinc-

tions are warranted and useful. Scientific models are dynamic—evolving and adapting to



changing goals and evidence. I needed a way to sketch the outlines of physical formalisms

without holding them too tightly, but still being clear and consistent.

These considerations led me to category theory, a field of mathematics designed to character-
ize abstract mathematical structures. Category theory is often presented as an alternative
to set theory which describes mathematical concepts abstractly by the role they play in
mathematics rather than by concretely building them out of sets.! In doing so, it allows
one to work with a mathematical concept without conceiving of a particular instantiation of
it—the abstraction underlying equivalent descriptions. Category theory reveals core similar-
ities between seemingly different ways of describing mathematical formalisms. In this text,
it serves a scaffold for presenting formalisms, and conducting analyses and debates about

whether and how one may be preferable to another for a given representational purpose.

This is the backdrop of the first project I engaged in associated in this dissertation, presented
in chapter 3. The goal was to present “alternative” Yang-Mills formalisms as categories in
order to bring clarity to current debates in the foundations of physics. In practice, this
involved doing much more differential geometry (the branch of mathematics used to formulate
Yang-Mills theory) than category theory. The category theory served to frame the questions
and summarize the results, but the “hard part” involved employing the formalisms in the
language they are presented (differential geometry) in order to fit into this simple category
theoretic framework. Category theory was an essential part of the context of discovery,
but was arguably eliminable from the ultimate presentation and justification of the results.
This made its utility in the project difficult to pin down. The insight it yielded into the
foundations of physics was interesting in its own right, but I was also curious as to how
those insights were achieved using category theory. Understanding this required applying

the technique—which I refer to here as “theories as categories of models”, or TCM—to other

!This text does not take a stance on the debate in philosophy of mathematics as to whether category
theory or set theory better serves as a foundation for mathematics. One can view mathematical objects as
being concretely built from sets while still benefiting from a category theoretic perspective on them.



questions in the philosophy of science. The second project I pursued, presented in chapter 2,
employs TCM to adjudicate a debate on the foundations of general relativity. This case
study did provide additional insight into how TCM works, but it was still too similar to
the Yang-Mills case to reveal the full scope of what TCM has to offer. This inspired a
third project, discussed in chapter 4, which presents a novel perspective by examining the
role of category theory in data science. It is with the knowledge acquired from these three

applications that I developed the account of TCM you will read in chapter 1.

Chapter 1 is in a sense the culmination of this work, but also its starting point. Here
I present both the motivation and ultimate justification for the “theories as categories of
models” framework employed in the chapters that follow. This framing contrasts with the
presentation of TCM as other philosophers of physics see it (Weatherall, 2017; Barrett and
Halvorson, 2016; Hudetz, 2019, for example.). In these works, establishing an (in)equivalence
of categories (that meets certain criteria) is presented as a method for establishing when two
theories are (in)equivalent to one another. A fully adequate presentation of TCM would then
involve offering necessary and sufficient conditions for an equivalence of categories to serve
this role in philosophy of physics. Such conditions include “commuting with observations”
(Weatherall, 2017) and “definability” (Hudetz, 2019). In contrast, I view TCM as a way of
presenting a pre-established account of how physical formalisms relate to one another and
the systems they represent. The only restrictions I take TCM to impose are what is required
for such an account to be internally consistent. The role of TCM, I argue, is to reveal the
commitments and entailments of the presumed relationship between formalisms, and expose

them to further analysis.

I proceed in chapter 2 to apply TCM to demystify a proposed alternative formalism to
general relativity. I discuss this application first because it is the easiest to both comprehend
mathematically and motivate philosophically. This work responds to John Earman’s (1986)

proposal that Robert Geroch’s (1972) “Einstein algebra” formalism might provide a way to



present general relativity without the “spacetime substance” that he claims is present in the
traditional formalism of manifolds with metric. A novel theorem is proven, demonstrating
a category theoretic sense in which Einstein algebras should be understood as having the
same structural content as manifolds with metric, undercutting Earman’s argument. While
on my view of TCM this does not definitively establish that Earman’s approach cannot work
as intended, it shifts the burden of proof to Earman to present a TCM narrative that does

function as he intends, which there is reason to believe is not viable.

It is not until chapter 3 that I present the project that inspired this dissertation. Here I use
TCM to illuminate the relationships between different ways of formalizing Yang-Mills theory,
a generalization of electromagnetism that, in its quantized form, underlies much of modern
particle physics. This application is much messier, but arguably more illuminating and rele-
vant to practicing physicists than the previous one. This work responds to Richard Healey’s
(2007) argument that formulations of Yang-Mills in terms of what are called “holonomies” are
preferable to formulations in terms of “principal bundles,” largely on the basis of parsimony
considerations. Healey claims that principal bundle formulations posit “surplus structure”
relative to holonomy formulations (p. 30), so we should expect that the latter captures the
true structure of the world, whereas the former possesses unnecessary mathematical fluff
that obscures the physical interpretation. I prove a novel theorem demonstrating a category
theoretic sense in which the holonomy formalism can be taken to in fact posit more struc-
ture than the principal bundle formalism. I discuss how Healey’s account can nonetheless

be modified to fit the TCM framework.

Chapter 4 investigates a field of research—topological data analysis (TDA)—in which cat-
egory theoretic considerations are already taken seriously by scientists in their modeling
practices. TDA aims to identify the essential “structure” of a data set as it “appears” in an
abstract space of measurement outcomes. At the heart of TDA is the concept of homology,

an abstract mathematical interpretation of “hole” structure. Homology exhibits the cate-



gory theoretic property of functoriality, meaning it is defined not only on models but on
structure-preserving functions between them. There are ubiquitous hints in the TDA litera-
ture that its practitioners consider the functoriality of homology to be central to its utility in
application, but this maxim does not appear to be explored in much depth. This discussion
of TDA aims to provide insight into how scientists are and can be motivated by category
TCM-esque considerations, and the ways in which these motivations do and do not align with
those of philosophers of physics employing the same tools. I argue that the utility of category
theoretic methods to researchers in this context is rooted in the particular geometric nature
of the mathematical models. The category theoretic framework helps to connect topological
models, which have straightforward physical interpretations, with algebraic models, which

are more abstract but easier to process computationally.

This dissertation can be read in two different ways. One might take TCM as a means to an
end, a tool whose value lies in its ability to help resolve the sorts of philosophical questions
that the proceeding chapters address. Alternatively, one might view these applications as
valuable insofar as they serve to articulate TCM, which is of philosophical interest in itself.
In truth, this text is a product of both perspectives. Each application is of independent
value to the philosophies of particular sciences, and in aggregate they provide window into

the nature of scientific representation more generally.



Chapter 1

Theories as Categories of Models

1.1 Introduction

In this chapter, I introduce a philosophical program I call “theories as categories of models”
(TCM), which forms the backbone of this dissertation. Variations on TCM have recently
been deployed by a number of philosophers of science to analyze the content of theoretical
formalisms and determine inter-theoretic relations in physics.! The central premise of TCM,
as indicated by the name, is to use the mathematical concept of “category” to encode the

formal content of physical theories.

TCM is applied in this text and elsewhere in situations where there is a question or dis-
agreement about the relationship between two different theoretical formalisms that are used
to represent the same class of physical system, such as a set of equations versus a geometric

figure. In particular, such questions often follow the schema:

1For example, Weatherall (2016a,c); Barrett (2018a). See Weatherall (2017) for an overview of applica-
tions.



Are formalisms A and B merely presenting the “same” physical facts in different

packaging, or does one have “more structure” than the other in some sense?

In section 1.4, I will examine how understanding A and B as categories can aid in settling
these sorts of questions, as deployed in chapters 2 and 3. Before I can do that, I need
to address the more fundamental issue of how and why one should understand theoretical
formalisms as categories in the first place. After all, answering questions about the relative

content requires settling on what we are referring to when we talk about formalisms A and

B.

The use of category theory by philosophers of physics is motivated by the observation that
understanding the language independent content of each formalism requires considering not
only the various ways in which the formalism can be used to represent a physical system (a
collection of formal models), but also the ways in which such models can stand in relation
to one another. Incorporating these relations between formal models—which include iso-
morphisms between models, and system-subsystem relations—provides crucial insight into
the way in which these models are intended to represent real-world systems. Including
these relations the presentation of a formalism leads us to construct a mathematical object
called a category. Sophisticated tools from category theory can then be used to enrich our

understanding of the nature of these models and the systems they are intended to represent.

This broad strokes summary is relatively philosophically inoffensive. What is more con-
tentious is the stronger claim that the content of theoretical formalisms is fully captured by
presenting it as a category. This stronger claim may appear to be necessary if one wants to,
as I do in this text, settle questions about the relative structural content of formalisms on the
basis of examining the relationship between categories associated with them. As I will argue
in this chapter, however, such a strong commitment to a formal physical theory as being a

particular category is not required for TCM to be useful, nor is it even recommended. I ar-



gue that we can (and should!) associate many different categories, as well as non-categorical
information, with a given formal theory. Nonetheless, if we are sufficiently clear about the
ways in which we purport to use formal mathematical objects to represent physical states
of affairs in our theory, we can uniquely define a category that abbreviates this association
of representations to states of affairs. I call this the structure category associated with a
theoretical formalism. We can then compare these categories to resolve questions of relative

structure without having to identify the physical theory with the structure category.

I begin in section 1.2 by explaining what I mean by “structure” in this text, and how
considerations about structure motivate the presentation theoretical formalisms in category
theoretic terms. In section 1.3, I describe a procedure for achieving reflective equilibrium
regarding the structural content of formalisms. This procedure begins by laying out ones
prior commitments regarding a formalism, the systems it represents, and how it is understood
to represent them, and outputs a “structure category” which serves as a minimal summary
of these prior commitments. In section 1.4, I introduce the “property-structure-stuff” (PSS)
heuristic for evaluating the relative content of a pair of structure categories. I tie up some
loose ends in section 1.5.1, and then conclude in section 1.6 with a more nuanced summary

of TCM and its role in philosophy of physics.

1.2 From Structure to Categories

1.2.1 Structure

There are a few things that philosophers and physicists appear to mean when they talk about

structure in a theoretical formalism. The term often refers to something along the lines of



Structure,;;: The relevant causal or explanatory content of a description, abstracted away from noise

and unimportant details.

I will come back to this notion of structure in chapter 4 in discussing an application of TDA
in data science. For most applications in the foundations of physics, however, including the
ones discussed in this text, the operative notion of structure under discussion is more aptly

characterized by

Structure: The content of the description, abstracted away from the particular words, symbols,

or language used to formulate it.

This is closely related to another characterization of structure:?

Structure®: That which is invariant under (left unchanged by) re-description, or shared by equiv-

alent descriptions.

The common thread in all of these is that structure plays a mediating role between a descrip-
tion and the phenomenon it describes. Structure,y; gets at the idea that a formal framework,
such as electromagnetism, can facilitate understanding and explanation even of systems we
are measuring imprecisely, or in which there are other (less relevantly) operative phenomena
present. The second two notions of structure—the focus of the majority of this text—get
at the idea that electromagnetism is the same theory whether its in English or Urdu, no
matter which symbols or fonts I use to write it down, or in which order I present Maxwell’s
equations. But the boundaries between content and description are not always known or

agreed upon, and are sometimes themselves the subject-matter of scientific inquiry.

2The connection between structure and structure* is discussed in detail and expressed formally in Barrett
(2018Db).



1.2.2 Example: spacetime structure

When Newton formulated his theory of gravitation, he intentionally included a notion of
absolute rest, and insisted that it was an ineliminable feature of the formalism.? This means
that for Newton, two models of spacetime that differ only by a constant shift in velocity
should be taken to represent distinct physical possibilities. Newton’s view was controversial
even at the time—Leibniz famously criticized it, and even before Newton was born, Galileo
presented the following thought example to refute it. For someone in the hull of a ship, there
is no experiment that could distinguish between whether the ship is in constant motion or
at rest without looking outside the ship. By analogy, if we are considering the universe
instead of a ship, there should be no way to distinguish between rest and constant motion,
as there is no “outside” perspective from which to make that distinction. Nonetheless,
Newton’s theory was the most comprehensive and empirically adequate available. And the
debate over whether and how to eliminate absolute rest from spacetime theories persisted
for centuries, and played a role in the development of physics during that time. It was not
properly resolved until Einstein’s theory of relativity provided a fully coherent and even more

empirically adequate way to describe spacetime without absolute rest.

This disagreement appears to be rooted in the structure rather than presentation of spacetime
theories. Critics of absolute rest are not (typically) troubled by the mere fact that the concept
is tnvolved in descriptions of systems—for instance, that objects are assigned velocities when
describing a physical model. This is a notational strategy that physicists employ to this day,
analogous to choosing a coordinate system to specify the location of objects in space. The
contention lies with the further insistence that this feature is structural rather than merely
notationally convenient. Such a commitment to absolute rest is captured by the claim that

two spacetime models related to one another by a constant global shift in velocity, called a

3This account is simplified to serve the present philosophical aims, but should not be taken as proper
historical scholarship.

10



Galilean transformation, represent distinct physical possibilities. Most physicists nowadays,
in contrast, view Galilean transformations as merely changes in notational convention, and

thus do not view such models as relevantly different from one another.

This example is a paradigmatic, clear cut case of two formal presentations of spacetime in
which one posits more structure than the other. Barrett associates the two views with two
different formal definitions of what spacetime is, and explains that Newtonian spacetime
can be thought of as Galilean spacetime plus the extra structure of a preferred rest frame.
Barrett (2015) argues that this relationship is captured by examining the isomorphisms—
transformations of the formalism that preserve essential structure—that are admissible in
each formalism.* All isomorphisms of Newtonian spacetime also preserve the essential struc-
ture of Galilean spacetime. But the reverse does not hold: there are many isomorphisms
of Galilean spacetime that do not preserve the rest frame, and thus do not preserve the

essential structure of Newtonian spacetime.

The idea here is that there is an intimate connection between the structure of a formalism and
its isomorphisms. Barrett captures this connection more explicitly in (Barrett, 2018b), where
he demonstrates that while isomorphisms are defined as structure preserving transformations,
there is a sense in which isomorphisms can instead be taken to define what structure is. To
add structure is to cease to consider as isomorphisms transformations that do not preserve
that structure. To do so is to instead see such transformations as real changes from one
possible state of affairs to another. To Galileo, a transformation that adds a constant velocity
to all matter results in a state of affairs that is physically equivalent to the initial spacetime,
and so constitutes an isomorphism. To Newton, in contrast, such a transformation results

in a genuinely different physical situation.

4In this paper Barrett only considers automorphisms, or structure preserving maps from a thing to itself.
I am extrapolating to his future work (2018b), in which Barrett establishes that automorphisms are not in
general sufficient.

11



1.2.3 Categories

Barrett’s argument that Newtonian spacetime has more structure than Galilean spacetime
involves associating each formal theory with both a collection of formal models of spacetime,
and a collection of isomorphisms between those formal models. In doing so, Barrett defines

a category associated with each spacetime theory.

A category C consists of a collection of objects Obj(C), and a collection of morphisms
Hom(C), or relations between the objects of the form h : C; — C, with the following

properties:

For objects A, B,C € C and morphisms h; : A — B and hy : B — (', one can compose

the morphisms as hyohy : A — C.

Such compositions are associative, meaning hsz o (hg o hy) = (hs o hy) o hy

Every object C' € C has an identity morphism 1¢ : C — C.

Identity morphisms leave objects unchanged in the sense that for any morphism h :

A— B, h=1goh=holy,.

When applied to theoretical formalisms, one considers categories in which the objects are
formal models and the morphisms are formal transformations of those models. Most TCM
applications in philosophy of physics, including chapters 2 and 3 of this text, look at only
isomorphisms of the theoretical models. This yields a specific type of category called a

groupoid.®

This use of category theory to understand the content of physical theories traces back

to Halvorson (2012)5. This paper criticizes the semantic view of the nature of scientific

5In chapter 4 I discuss the benefits of including other relations in these categories as well, such as
embeddings of subsystems into larger systems and projections to lower dimensional representations.

6See Halvorson and Tsementzis (2015) for a more recent presentation explicitly in terms of category
theory.
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theories, which identifies theories with classes of formal models. The semantic view purports
to more closely capture the structural, language independent content of theories by enu-
merating models rather than focusing on how a theory is expressed in a particular language.
Halvorson notes that merely enumerating models is insufficient to characterize the content of
the theory, since relations between models are required to understand the full representation
capacities of those models. There is a sense in which Newtonian and Galilean spacetimes
involve the same collection of formal models of spacetime. It is only when one considers that
the Newtonian picture assigns a special status to particular rest frames—which one can see

by looking at the relations between the models—that the formal distinction is revealed.

When we talk about categories rather than collections of models, the relevant way of relating
one category to another is a functor F' : C; — Cy rather than a function. Functors are
defined for both objects (models) and morphisms (relations between models), and it behaves
well with those relations. That is, it takes identity morphisms to identity morphisms, and

preserves morphism composition as F(f o g) = F(f) o F(g).

Mathematicians have long used category theory to express abstract concepts in mathematics.
Understanding physical theories as categories of models, and relations between theories as
functors, enables philosophers and physicists to similarly apply the rich tools of category
theory to understanding the abstract, language independent concepts underlying physical

theories.

To explain why Galilean spacetime has more structure than Newtonian spacetime, we can
define two categories—Gal and Newt—associated with each. In Gal, the objects are space-
times” and the morphisms are Galilean isomorphisms. In Newt, the objects are those same
spacetimes paired with an additional specified “rest frame”, and the morphisms are the sub-
collection of Galilean isomorphisms that also preserve those rest frames. We then define a

functor F' : Newt — Gal which takes Newtonian spacetimes to their underlying Galilean

" See Barrett (2015) for precise definitions.
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spacetime, thus “forgetting” the structure of of the rest-frame in a manner discussed more

formally in section 1.4.

1.3 Category selection

The TCM framework can be briefly summarized by the claim that theories are categories of
models, and relations between theories are functors between these categories. Of course, a
lot of work is being done by the word “are” here. I doubt any of the philosophers employing
TCM take themselves to be committed to fully identifying theories with a particular category.
Rather, considering the way in which a particular formalism is used to represent physical
systems tends to suggest a particular category, and the categorical presentation usefully
summarizes an otherwise cumbersome collection of features of the formalism. But if one
is not primed to be suggestible in this way, then the resulting association of theory to
category—and subsequent inference from category to (relative) structural content—will be
less than compelling. One might insist—and rightfully so—that there is more to the content

of formalisms than can be expressed by a category of models.

Consider the spacetime example discussed above. To explain how Newtonian spacetime has
more structure than Galilean spacetime, we define a functor F' : Newt — Gal to capture
the relationship between them, and point out that F' “forgets the structure” of rest frames.
This story is compelling largely because the claim that adding a rest frame adds structure
to Galilean spacetime is relatively uncontroversial. But if you were not already convinced
of this, you might dispute the choices I made for defining each of the categories associated
to the formalisms, or the functor I chose to connect them, in order to evade the conclusion.
Worse still, the same formalism might be reasonably associated with different categories. It
is perfectly valid, and even sometimes recommended, that physicists working in a Galilean

framework specify a rest frame and differentiate between isomorphisms that preserve it and
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those that do not. One does this in order to express the dynamical evolution of a point
particle. The transformation from [spacetime + object at point x| to [spacetime + object
at point y| is an isomorphism of spacetime, but even in the Galilean perspective, dynamical
evolution of this form expresses genuine changes in states of affairs. Why should we privilege

empty spacetime as the spacetime associated to a formalism?

Often, the informal procedure we have already invoked to define a category for a formalism
(and the slightly more formal version described in 1.4.3) will be sufficient. However, in the
most interesting and useful applications of TCM, like those in chapters 2 and 3, there is
likely some disagreement or uncertainty regarding the relationship of relative structure of
formalisms. In such cases, one might need to step back further and settle on how to define the
formalisms they are working with, before they can ask how different formalisms relate to one
another. In this section, I describe a procedure for achieving reflective equilibrium regarding
which category to associate with a given formalism. This involves using category theory to
lay out ones commitments, whatever they are, about the models they are using, the system
they want to represent, and how they think the models hook up to the system. Importantly,
this procedure will not tell you where these commitments should come from, merely how to
present them coherently in order to define what I call “structure category.” This category will
have a special status as a kind of minimal summary of prior representational commitments.
As such, it serves to provide motivation for why the category was chosen, and also exposes

the commitments involved to analysis and criticism.

What we are after is a procedure for constructing a category associated with a particular
theoretical formalism that captures its essential structure. Our starting point is a formal
theory presented in some language with some symbols, and a general idea about the ways
in which we can use formal objects to represent physical states of affairs. The output of
our procedure should reflect the assumptions about the representational capacities of the

formalism, and it should not depend on the language we used to write it down.
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The nice thing about category theory is that it was invented to enable mathematicians to
work with abstractions rather than particulars. In this way, I can use it to describe the
outlines of how an act of representation can be understood, while allowing that this abstract
outline be instantiated in any number of ways on the ground. So lets consider some minimal

conditions for some formal thing x to represent a state of affairs w.

In order for x to represent a physical state of affairs w, x must be implicitly or explicitly
selected from some collection Rep of representational choices, and w must similarly belong
to some collection of alternate states of affairs SoA. Representation also requires some
kind connection ¢ : Rep — SoA that “interprets” x as indicating w in some way. A more
complicated fact about language is that we almost never know exactly what these collections
of possibilities or interpretations are supposed to be. Considerations about structure in
the previous section indicate that we may additionally want to include relations between
representational possibilities in describing Rep, and thus view Rep as a category rather

than a collection.

At the extreme end, one might want to define Rep as consisting of all possible things one
could use to represent a state of affairs, and SoA as all possible ways the world could be.
I am not convinced that such definitions would be meaningful, and even if they were, they
would certainly be unwieldy. Someone communicating or receiving information about w via
x will use some combination of context cues, pragmatic considerations, and explicitly stated
rules to dramatically reduce the collections of possible states of affairs and representations
to much smaller spaces that consist of the admissible ways of altering x and w. These tend
to shift over time and between contexts, becoming more or less inclusive and fine-grained
as required for communication. This procedure assumes that what counts as admissible is
given by external considerations, and constrains how “admissibility” is understood only by

requiring internal consistency.
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Figure 1.1: A configuration of chairs

1.3.1 Example: event planning

It helps to consider a concrete example of an act of representation outside of the more
metaphysically loaded context of scientific theories. So lets assume z = figure 1.1 is intended
to represent a configuration of chairs at an event, a physical state of affairs indicated by w.

This representation is created by an event planner for their assistant to implement.

In theory, figure 1.1 has lots of features I might alter to generate a different representation
in Rep. I could move it to the left, change its color, add more squares, add some triangles,
etc. Similarly, there may be arbitrarily many ways of arranging the event room in the space
SoA. But conventions about communication and event planning, and physical restrictions
on how chairs work, will immediately reduce the scope of possibilities. It seems pretty
clear, for example, that the event planner providing figure 1.1 intends to associate individual
chairs in space with individual squares in space. So someone interpreting this diagram would
reasonably read it as indicating that there should be 12 chairs, as opposed to 11 or 13, and
moreover that these 12 chairs should be arranged evenly in 3 rows of 4 chairs. There is
some room for reasonable people to debate, however, as to whether we should attribute
significance to the spacing between the squares, and how neat the rows of chairs have to be

for the arrangement w to satisfactorily realize the schema indicated by .

Neither the event planner nor their assistant will likely have in mind a formally defined rep-
resentation ¢ : Rep — SoA. Their shared evolutionary past and social environments prime

them to nonetheless implicitly act in accordance with largely compatible representations.
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Miscommunication, when it occurs, is rooted in some discrepancy between the implicitly
defined “interpretation functors” employed by planner and assistant. For example, the as-
sistant might fail to pick up on the planner’s intention to associate the color of the squares

in figure!1.1 with chairs of the same color in the real event space.

While communication requires some way of associating representations with states of affairs,
it is often the case that it is understood by both parties that there are alternative viable
choices of interpretation on the table. For example, there is no indication in figure 1.1
as to which direction chairs should be oriented—though contextual considerations would
reasonably limit the possibilities to ones in which the chairs are co-oriented and facing
one of the four walls in the event room. So both planner and assistant might reasonably
interpret figure 1.1 to be associated with multiple different representations « : Rep — SoA.
This might lead the assistant to ask for clarification—that is, ask the planner to select a
particular (—or interpret a lack of specificity as indifference on the planner’s part as to

which interpretation is implemented.

1.3.2 Representation diagrams

To summarize: in order for signals to contain information, signals and signified must be drawn
from spaces of alternative possibilities, and there has to be at least one viable interpretation
t : Rep — SoA from possible representations to possible states of affairs. Let us refer to the
collection of admissible interpretations ¢ as I. I define a theoretical representation diagram

as a choice of representation category Rep, states of affairs category SoA, and admissible

interpretations I, as indicated by the diagram D = Rep 7> SoA. D presents a narrative
about how a representation can be interpreted as physical states of affairs in a theoretical

context, but the narrative itself is provided by external considerations about scientific theory
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and modeling practices. A theory may be associated with many different such diagrams at

different times and in different contexts.

I do not claim that all acts of representation can be formalized as representation diagrams.
I actually think most acts of representation cannot be straightforwardly interpreted in this
way, but largely because most acts of representation are vague and ill-specified. Considering
the various ways that an event planner might use figure 1.1 to indicate a spatial arrangement,
it is unsurprising but impressive that successful communication can often nonetheless occur.
But it can also break down, and these breakdowns can be explained by failures of precision

in the act of representation.

Similarly, when a physicist refers to a particular mathematical object, the need for precision
in specifying that object is less salient than it is for the mathematician. For example, when

2

a mathematician invokes the “continuum” or the “real numbers,” it is incumbent upon them
to specify exactly which properties of the real numbers are required for their results to hold.
At a minimum, this will typically involve the bare set of real numbers R = {0,329, m1/2,...}.
It may also involve an ordering relation < on this set, which tells you for any two numbers
which is bigger, or multiplication x or addition + operations, or topological or distance
structure. It generally matters to mathematicians which features of the real numbers are
at work in a proof, and in what ways facts about the real numbers can and cannot be
generalized to other mathematical objects. For physicists, in contrast, it is often sufficient
that a mathematical construct serves its intended purpose. It is only when problems arise,

or one asks theoretical questions about possible extensions and variations on a theory, that

precise specification of mathematical constructs appears necessary.

Constructing a representation diagram is a useful way to achieve full precision, transparency;,
and consistency in how one presents an act of representation. Often, science does not require
such precision. But TCM is intended for precisely those moments in theoretical development

in which vague understanding of the referent of a formal apparatus proves insufficient.
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1.3.3 The structure category

Let D = Rep 7> SoA be a theoretical representation diagram. The structure category
of D, written Sp, can be defined equivalently as either the coequalizer object coeq(D) of
D or the quotient category SoA/~; under an equivalence relation induced by I. T give
the definitions of these concepts below, along with narrative explications of the phenomena
they are supposed to capture. I do this in the hopes that one or the other will be easier
to comprehend, and also because both properties of Sp are important for the analysis that

follows justifying the coronation of Sp as a structure category.

Definition 1.1 (Coequalizer). The coequalizer diagram of the diagram D = Rep 7) SoA is
a diagram SoA % coeq(D) which is such that pot=po/ for all ¢,/ € I, and is universal

for this property.

That is, for any ¢ : SoA — C which satisfies the same property that g ot = g o/ for all

t,t € I, there exists a unique ¢’ : coeq(D) — C such that ¢ op = q.

Rep —> SoA —Y— coeq (D)

Figure 1.2: The commuting diagram of a coequalizer.

Coequalizers can be understood informally for present purposes as follows. A claim about a
physical system can be thought of as an association w + ¢ of some state of the world w with
some statement o characterizing it. The argument in section 1.3 similarly applies here: for
this association to be meaningful, o must live in a category C of statements associated with
other states of the world in SoA, thus inducing a functor ¢ : SoA — C which implicitly
underlies any sufficiently well-defined connection between the state of affairs w and the

statement o.
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For such a claim g(w) about a physical state of affairs w to be rooted in my theory, it cannot
depend on which of the admissible interpretations ¢ is used to connect the state of affairs w
to a theoretical representation in o. That is, it must be the case that ot = ¢ o/ for all
L,/ € I. Other statements might be true, interesting, relevant, etc., but they lie beyond the
scope of the sense in which the objects in Rep represent states of affairs in the theory as

specified by I.

Definition 1.2 (/-equivalent). Given a diagram D = Rep 7> SoA, the [-equivalence
relations ~; on SoA is defined on objects as w ~; w’ if there is some object € Rep and
functors ¢,/ € I such that w = «(x) and W' = /(). Similarly for morphisms f, f' € SoA,

f ~r g if there is some arrow g € Rep and functors ¢, € I such that f = «(g) and f' = /(¢g).

Definition 1.3 (Quotient). Given a diagram D = Rep 7> SoA and an equivalence relation
~, the quotient diagram is the diagram SoA LN SoA /~. The objects and arrows of SOA /~
are equivalence classes of objects and arrows in SoA, and the functor ). takes objects and

arrows to their respective equivalence classes.

It follows directly from proposition 4.1 of Bednarczyk et al. (1999) that the I-quotient and
coequalizer diagrams of D coincide. In this way we can think of Sp as states of affairs SoA
“modded out” by equivalence with respect to the class of interpretations I of the formalism
Rep. Importantly, this is not the same thing as quotienting by equivalence with respect
to isomorphism of either states of affairs or representations. This allows us to preserve
the idea that meaningful distinctions can be drawn between representations and states of
affairs that are isomorphic to one another (and moreover that such distinctions can be an
important component of the theory from which D is constructed), but decline to attribute
those distinctions to the manner in which we are able to interpret representations as states

of affairs, as indicated by the T-admissible interpretations 1.
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I define the Ockham functor associated with the theory diagram D as the functor Fp : pot
for some interpretation ¢« € I. Note that since p is a coequalizer functor for D, this definition
does not depend on the particular choice of . For a given ¢ € I, we can use the axiom of
choice to construct a functor k, : Sp — SoA as [z|_ +— y € [z]_ for any object or arrow
r € Sp, where we require that y € +~'(x) whenever this set is non-empty. Then for any
interpretation « € I, + = Kk, o Fp. I read this as an expression of the sense in which the
interpretation Rep — SoA, can be “filtered through” or “mediated by” Sp via the Ockham

diagram Rep Io, g p — SoA, as illustrated in figure 1.3.

Figure 1.3: The Ockham diagram commutes with interpretations.

1.3.4 Spacetime revisited

At the end of section 1.2, I expressed the worry that deploying TCM seems to require arbi-
trarily fixing a particular category associated with a theoretical formalism. I now argue that
this is not the case. Rather, I can grant that a given theoretical formalism can be accurately
characterized by a variety of choices of the categories Rep and SoA, and interpretation
functors ¢. I instead claim that any particular use of a formalism implicitly fixes Rep and

SoA and restricts the scope of “admissible interpretations” I, which can be summarized

by the diagram D = Rep ? SoA. It is my view that a shared structure category is a
minimal requirement for identifying the same “formal structure” as it appears in various
acts of representation. Moreover, I believe that the structure category captures what TCM
practitioners have in mind when they associate a theoretical formalism with a particular

category.
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Suppose one objects that Gal is arbitrary, since Gal*—generated by considering spacetimes
with a single idealized particle, as discussed in section 1.3 above—could just as readily cap-
ture the content of the Galilean spacetime formalism. In this new framework, this amounts
to the claim that Gal® can denote the space of representations Rep, and in a sense SoA as
well, since formal transformations also correspond to physical transformations. Nonetheless,
if I am a Galilean, I will not admit any interpretation ¢ : Rep — SoA that requires indicat-
ing a rest-frame to define. The result is that every admissible interpretation must associate
all formal models that are related to one another by rest-frame transformation to the same
state of affairs. This will yield a diagram with structure category Sp = Gal. In other words,
even though I take Rep and SoA to be indicated by Gal®, my admissible interpretations

are all mediated through Gal in the sense indicated by the Ockham diagram.

The answer to “what’s so special about empty spacetime?” for expressing the concept of
Galilean spacetimes is merely that Gal happens to correspond to the structure category
Sp for (I expect) any reasonable understanding of how the Galilean formalism purports to
latch on to possible states of affairs. In particular, the claim is not that Gal should be
thought of as playing the role of either Rep or SoA. This lets me acknowledge the fact
that rest-frame shifting isomorphisms can play a role in the theory, for both mathematical
and physical possibilities. Rather, the claim is that these distinctions vanish when one
considers the broader context of how a Galilean intends Rep to latch onto SoA. Both the
event planner and their assistant can understand the chairs and the squares to be physically
and symbolically “orientable”, without thereby taking figure 1.1 to indicate a particular

orientation.
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1.4 Properties, Structure, and Stuff

The TCM procedure for determining the relative structural content of two theoretical for-

malisms 77 and T3, as employed in chapters 2 and 3, goes roughly as follows.

We begin with a question of the form:
(Q) Does T; have [more/less/the same] structure relative to 757
Answering this question involves a step by step process along the lines of:

(1) Formalism 7) can be understood as category Cj.
(2) T3 can be understood as category Ss.
(3) The relationship between T7 and T can be understood as a functor F : S; — S;.8

(4) The functor F has the feature of (not) being [full/faithful/essentially surjective].”
From (4) is inferred that

(A) The physically relevant relationship between 77 and T is such that 77 has [more/less/the

same| [structure/properties/stuff] as Ts.

I have spent most of this chapter providing an account of how and why steps (1) and (2) make
sense. That is, I have argued that a category S; can be thought of as the structure category
that summarizes ones prior commitments regarding a formalism’s representational capacity.
This section finishes the story by describing and motivating the “property-structure-stuft”

(PSS) heuristic for comparing the relative content of formalisms.

80r else the relationship is not functorial, in which case the theories are structurally incomparable, as in
Barrett (2014).

9Perhaps along with a few other coherence criteria for the functor, such defineability (Hudetz, 2019) or
non-splitting (Rosenstock and Weatherall, 2016).
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1.4.1 Functor selection

Following the above inference schema, once we construct the structure categories S; and
S, corresponding to formalisms 77 and 75, we proceed to construct a functor F' : S; — S;
that purports to summarize the relevant relationship between 77 and T,. But just as TCM
arguments are vulnerable to accusations of arbitrariness in the choice of category to attach
to each theoretical formalism, so too is it plagued by accusations concerning the functor used

to compare the structural content of the categories chosen.

In section 1.3.3, we somewhat ameliorated the worry about arbitrariness of category choice

by introducing the idea of a structure category Sp, defined from a representation diagram

D = Rep 7) SoA. D presents an externally sourced narrative about how a representation
can be interpreted as physical states of affairs in a theoretical context, which Sp summarizes.
Similarly, the functor F' : S; — S; will serve to summarize an externally sourced story about
how T} and T5, relate to one another. This does not make the choice completely arbitrary,
nor does it make TCM meaningless decoration. TCM provides a framework for precisely and
succinctly expressing that relationship narrative in a way that is robust across insignificant
representational choices, and can provide new insights into that relationship via the analysis

presented in section 1.4.3.

Suppose [ have a story about a sense in which 75 can be thought of as having “more structure
than” T7. That is, I think that 15 = T+ something more. Then I should be able to express
T, using the the structural content Sy of T, as I] : S; — SoA;. The resulting Ockham
diagram for any ¢ € I] will induce a functor F' : Sy — S;. F'is thus constructed in a unique

way by attending to the sense in which T, = T+ something more.

25



1.4.2 Types of functors

Recall that a functor is a map F : C; — C, between categories that plays nicely with
morphisms. Below I describe three simple properties a functor can have, which we will use

to analyze the relationship between the structure categories it connects.

F is said to be essentially surjective if for every object y € Obj(Cs), there is an object x €
Obj(Cy) such that F(z) is isomorphic to y in Co—that is, Hom(Cy) includes an isomorphism
h: F(x) — y. This “up to isomorphism” caveat is ubiquitous in (and largely characteristic
of) category theory. When we have an isomorphism in a category, we are in a sense thinking
of the objects it relates as the same. So for F' to be essentially surjective is to say that every
object in C, is essentially the same as an object in the image of F. In the TCM context,
this means that every theoretical model in C; can be though of as effectively corresponding

to some theoretical model in Cs.

Similarly, F is full if for any objects x, 2’ € Cy, every morphism h : F'(x) — F(z’) in Cy has
at least one corresponding morphism A’ € C; such that F'(h') = h. In the TCM context,
this means that C; can express at least as many relations between theoretical models x and

2" as could be expressed by moving to Cy via F.

We say F'is faithful if for any objects z, 2’ € Cy, no two distinct morphisms g, h : x — 2’ are
such that F'(g) = F(h). This means that every morphism from x to y has a representative
in the image of F' in C;. This is in a sense the opposite of fullness—it means that C, can

express all of the relations between theoretical models z and z’ that C; can.

If a functor is full, faithful, and essentially surjective, then it realizes an equivalence of

categories.
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1.4.3 Mathematical gadgets

The analysis of functors used in this text is a byproduct of an email conversation in the late
1990s between mathematician John Baez and his graduate students Toby Bartels and James
Dolan, archived in (Baez et al., 2013). The “properties-structure-stuff” taxonomy is rooted
in the intuition that one can characterize what they refer to as “mathematical gadgets” as
follows. One starts with some stuff —a set or collection of sets, an abstract “space”, etc. This
stuff can be equipped with structure in the form of special functions, relations, elements,
subsets, etc. This “structured stuff” can also be conceived as satisfying properties, such as

equations, inequalities, inclusions, etc. For example, one can express a function as

a pair of sets X,Y (stuff)
equipped with f C X x Y (structure)

satisfying Ve € X 3ly € Y s.t. (z,y) € f.  (property)

This provides a rough guide for how to construct a category associated with a mathematical
gadget. One starts by specifying the objects of a category as structured stuff that satisfies a
certain property, and then adds in the morphisms as maps from stuff to stuff that preserve

the specified structure.

Now consider a functor F' : C; — Cy between two categories defined in this way to capture
mathematical gadgets G; and G,. If the relationship between the gadgets that this functor
encodes involves forgetting a property, then we should expect the functor to fail to be essen-
tially surjective. That is, Cy would have all of the “structured stuff” that C; has, plus more

structured stuff that do not satisfy the property operative in G.

Similarly, suppose the relationship encoded by the functor involves forgetting structure. That

is, we conceive of (G as possessing some additional structure relative to Go. Then we should
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expect F': C; — C, to fail to be full. This is because morphisms in C; will be required to
preserve that structure, while morphisms in C, will not. So we should expect there to be

extra morphisms in C, that do not preserve the structure that G; has but G5 does not.

Lastly, suppose F' involves forgetting some stuff—for example, G; may be built from 2 sets,
whereas (G5 involves only one of these. Then we would expect F' : C; — Cs to fail to be
faithful. That is, morphisms that behave identically on the first set but differently on the

second in C; will be mapped to the same morphism in C,.

1.4.4 Example: categories of squares

Let’s start by considering the gadget “square”, characterized by the category Sq whose
objects are the collection of all squares, and whose morphisms consist of all of the ways you
can transform one square into another. For example, you can make a square bigger, change

its color, rotate it 90°, etc.

Now consider the gadget— “green square” —associated with the category GrSq whose objects
are the collection of all green squares, and whose morphisms consist of all of the ways you can
transform one green square into another. GrSq can naturally be thought of as a subcategory

of Sq by an inclusion functor F; : GrSq — Sq that effectively acts as the identity.

Perhaps surprisingly, F} is an equivalence of categories! It is clearly full and faithful, since
it is an inclusion. It is moreover essentially surjective, since every square is isomorphic to a
green square via a color transformation. So F; forgets nothing, and conceived in this way,

squares are equivalent to green squares.

In order to get the expected answer—that greens squares are squares + the property of
greenness—one has to reify color as a meaningful feature of the squares. That is, consider

the gadget “colored square” rather than the gadget “square”. This can be associated with
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the category ColSq which has the same objects as Sq, but unlike in Sq, the morphisms of
ColSq are required to preserve color. Now the inclusion functor F5 : GrSq — ColSq fails
to be essentially surjective, and so can be thought of as “forgetting properties”. Fy allows
us to think of GrSq as the subcategory of ColSq that one obtains by requiring that objects

satisfy the additional property of being green.

The sense in which Sq is equivalent to GrSq reflects the ambiguity with which Sq was defined
in the first place. Sq is supposed to consist of “all squares”—but it is not practical, and
arguably not possible, to enumerate all squares. But by requiring that all transformations
that preserve squareness act as isomorphisms in our category, we can sidestep this issue. No
matter which squares I think to enumerate, the resulting category I generate is “naturally”
equivalent. This is what makes category theory so powerful, as it track concepts rather than
particular ways of writing them out. It is only by adding or removing morphisms from these
categories that I obtain a distinct gadget. This is how ColSq is defined—by “removing”

color changing morphisms from Sq.

Now consider the gadget “smiley square” consisting of a square with a smiley face drawn on
it. This is associated with the category SmSq whose objects are squares with smiley faces on
them, and whose morphisms are those morphisms of the underlying square which moreover
preserve the smiley face. Let F5: SmSq — Sq be the functor that takes smiley squares to
their underlying squares. This functor is essentially surjective—every square in Sq can be
thought of as the product of “removing” the smiley face from a square in SmSq. F3 is also
faithful, since every distinct smiley square transformation is also a distinct transformation of
the underlying square. But Fj is not full—there are transformations of squares in Sq—Tlike
being flipped upside-down—that do not appear in SmSq since they would not preserve the

smiley face. Thus we can conceive of Fj as “forgetting the structure” of the smiley face.

Lastly, consider the gadget “square + triangle” associated with the category TrSq whose

objects are pairs consisting of a square and a triangle, and whose morphisms take squares to
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squares and triangles to triangles. Then the functor Fy : TrSq — Sq that maps each pair
to its square forgets stuff. It is essentially surjective, since every square can be thought of
as half of a square + triangle pair. F} is full since every transformation of a square can be
associated with the square-transforming component of a morphism in TrSq. But it is not
faithful, since TrSq morphisms that act the same on their squares but differently on their

triangles (e.g. by rotating them) will nonetheless map to the same square morphism in Sq.

However, there is also a “natural” functor going in the other direction that forgets structure!
Let F5 : Sq — TrSq that pairs each square with the same triangle “A”. Fj is essentially
surjective—every square + triangle pair can be arrived at by an isomorphic transformation
of A. It is also faithful—every square morphism corresponds to exactly one morphism of the
pair consisting of that square + A. But it fails to be full—morphisms in TrSq that rotate
A do not have a preimage in Sq. The structure forgotten by F5 can be thought of as fixing

a representative /A in a particular orientation.

Which captures the “true” relationships between the gadgets “square” and “square + tri-
angle”? Neither is intrinsically “right”, but there may be reasons to prefer one to the other
based on the story one is trying to tell about Sq and TrSq in their capacity as denoting

representational structure categories.

If T start with a gadget “square”, then I can construct the gadget “square + triangle” by
adding a triangle (stuff). This relationship is captured functor Fy : TrSq — Sq. But if I
start with the gadget “square + triangle”, then there is more than one way to connect it to
the gadget square “square” via a functor F': Sq — TrSq, corresponding to different choices
of AA. To choose one of these amounts to “fixing” the triangle as it is, so that [ am no longer
free to move between triangles. This choice of triangle representative can thus be thought
of extra structure. Pinning down a triangle removes a degree of freedom from my ability to

use “square + triangle” to represent things in the world.
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Let’s look at this in terms of TCM. Consider two representation diagrams, D and D, where

D = Rep 7 SoA has structure category Sq, and Dn = Repp ? SoA A has structure
category TrSq. Suppose I take D to denote how I am using the gadget “square” to represent
states of affairs. Since Sq is the structure category of D, then every ¢ € I can be written as
k, o Fp, in accordance with its Ockham diagram. Similarly, every 1o € In can be written as

K,, o Fa. Fy allows “reconstrue” D to use Rep, for its representations by creating a new

representation diagram D’ = Rep, N SoA, where I reconstrue every « = x, 0 Fp € I as
In

! =kK,0F;0Fxn € Reppy. Conversely, I can reconstrue Da to use the representation space

of Rep as D/, = Rep 7> SoA » with interpretations (s = ], o F5o Fp.
A

In this context, F; might better capture the relationship between Sq and TrSq for someone
who initially is employing the representation diagram D. That is, from the perspective of
someone employing Sq to represent the world, TrSq appears to “add stuff” to my represen-
tations. Conversely, someone starting with an understanding of the world mediated by struc-
ture category TrSq might instead view the move from TrSq to Sq as adding the “structure”
that fixes the triangle representative and orientation. To someone with no preconceptions
about which gadget is more fundamental, both F; and F5—and their accompanying stories

about “squares” and “squares + triangles”—deserve consideration.

Because there can be multiple natural functors between gadget categories, one has to be
careful about reading too much into relationships given by a particular functors. In particu-
lar, when presenting a functor I’ : C; — C, as indicating that C; has more structure or stuff
than Cs, one should check (as I do in chapter 3) whether F' splits. That is, whether there
exists a functor GG going the other direction that composes with F' to act as the identity. The
absence of such a splitting functor indicates that the PSS verdict about F' is more binding.
The presence of one requires one to put both “stories” on equal footing as ways to compare
the gadgets each category encodes, or else bring additional extra-formal considerations about

the gadgets to bear on deciding in favor of one or another.
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In his 2015 book Ockham’s Razors, Elliott Sober considers the case of deciding between
whether to employ linear or parabolic models to represent the relationship between variables
x and y in a physical system. That is, a modeler is faced with two formalisms they might
employ. They can use a gadget of the form y = ag+a;x for real numbers ay and a,, associated
with a category Lin, or one of the form y = ag + a1x + as2?, associated with the category
Par. The morphisms for both categories would be linear and parabolic transformations,

respectively.

Sober explains how this choice poses a puzzle for philosophers of science. On the one hand,
linear models are just a special case of parabolic models, so assuming a parabolic relationship
between x and y is less presumptuous. On the other hand, if both work equally well, modelers
almost universally prefer a linear framework, since it is requires assuming the existence of
fewer constants. This ambivalence can be understood in terms of two different functors
between Lin and Par. Par has more stuff than Lin in the sense that the functor from Par
to Lin that “forgets” as fails to be faithful. But Par also has fewer properties than Lin in

the sense that the inclusion functor Lin < Par forgets the property that ay = 0.

1.4.5 Functor relativity

Talk about properties, structure, and stuff is suggestive of a characterization of individ-
ual formalisms. That was the motivation, after all—characterizing formalisms as stuff with
structure and properties. Indeed, this way of thinking can be useful for constructing the
categories to plug into TCM. However, the PSS heuristic is fundamentally attached to func-
tors, not categories themselves. This makes the TCM notion of property, structure, and
stuff fundamentally relational—a feature of relating two formalisms to one another. It is
moreover attributed to particular way of relating formalisms using a functor, when there

may be multiple viable options.
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When considering a single formal gadget, one can “carve it up” in different ways into prop-
erty + structure + stuff. For example, one can think of a metric space as a set (stuff)
+ a relation between elements (structure) that satisfies the property of being a “distance”
relation. Alternatively, metric spaces can be characterized as a set (stuff) + a structure
(distance relation) with no additional properties. Or, one could think of its stuff as being
a topological space (since all metric spaces are topological spaces) with the property of be-
ing metrizable. Or one could take metric spaces to be primitive stuff, with no additional

structure or properties.

Once a functor F': C; — C, is chosen to characterize the relationship between two gadgets
G171 and G, it essentially treats the objects of C, category as the “stuff” one builds the Gis
out of. It also treats the morphisms in Cy as a guide to the structure of G;. The structure of
(71 is indicated by which morphisms from C,; do not have a preimage in C;. The properties
of (G are defined in contrast to what would have been possible attributes of (G; in the absence

of those properties, as indicated by objects in Cy that do not have a preimage in Cj.

For example, thinking of “greenness” as a “property” of the gadget “green square” implicitly
invokes an inclusion functor GrSq — ColSq that forgets this property. But the inclusion
GrSq — Sq is an equivalence, corresponding to conceiving of green squares as primitive

stuff rather than squares (stuff) + greenness (property).

1.5 Some Caveats

The tools we have developed cannot serve as a guide to how to carve up a gadget GG; into
stuff + structure + properties. But in the giving of a functor F': C; — C, characterizing a
relationship between gadgets G; and G2, we can define a way to carve up G relative to this

functor. How much significance should we read into a PSS story about GG; so obtained, of the
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form “G; has more [structure/properties/stuff] than G5”? The terms “property”, “struc-
ture”, and “stuff” are certainly suggestive of ontologically meaningful features of theoretical
formalisms. The examples discussed in this chapter make such an interpretation promising,

but it is unclear how far that generalizes.

The PSS story seems to latch onto features of the F-relationship between GG; and G5 that
signal their relative representational capacity. When F' forgets properties, then a move from
understanding states of affairs as G; models to G5 models via F' essentially expands the
scope of the representational capacity of G;. F' connects G; to Gy in a way that allows
us to think of (G5 as encompassing more possibilities that G;—ways of being that do not
satisfy a certain property that constraints GG;. When F' forgets stuff, this move amounts to
reducing the dimensionality of G; models—eliminating a degree of freedom in representation.
When [ forgets structure, it “smooths out” features of Gy, so that they no longer have

representational significance.

These types of transformations—expanding scope, reducing dimension, increasing granular-
ity—are all significant to modelers. Insofar as the PSS heuristic latches onto these sorts
of moves, it does a good job of capturing the relevant relationships between formalisms.
But that does not make applying and interpreting the PSS heuristic straightforward. I
have already discussed that the story one gets from PSS is relative to a particular choice of
functor, and beyond the challenge of motivating the construction of categories and functors,
there may be many functors that are equally compelling. Additional challenges arise for PSS

storytelling when a functor forgets more that one of properties, structure, and stuff.

For example, consider the gadgets “square” and “colored square”. Since Sq is categorically
equivalent to GrSq, there is a sense in which “colored square” forgets properties, given by the
embedding of Sq into the green squares in ColSq. But it is not accurate to the intentions of
modelers to say the PSS resulting story—that “squares” are “colored squares” + the property

of greenness. A more promising relationship is given by the functor F' : ColSq — Sq that
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“forgets” that we’re supposed to care about color, and identifies squares that are related to
one another by a color change. This functor forgets stuff and structure. So even relative
to this particular choice of functor, the relationship between squares and colored squares
can be conceived of in two ways. One can think of colored squares as pairs consisting of a
square and its color, so that F' forgets color stuff. From this perspective, color is a degree
of freedom available to modelers using colored squares, which is removed by instead using
mere “squares”. Or one could think of colored squares as squares with “color structure”, so
that F' essentially “smooths out” this structure and presents squares more granularly. The
act of removing a degree of freedom and of smoothing out a structure, while encoded by
the same functor, imply different intentions on the part of a modeler making the modeling
choice to move from colored squares to squares. This distinction cannot be fully captured by
employing the PSS heuristic, but requires an additional narrative to accompany the category

theoretic presentation.

The PSS story can also be misleading. Consider again the relationship between linear and
parabolic models. We’ve discussed the senses in which parabolic models have more stuff than
linear models, but fewer properties. But neither of the functors discussed fully account for
what happens when a modeler transitions between linear and parabolic modeling paradigms.
When transitioning from a parabolic to a linear framework, a modeler does not merely “drop”
the as term, and when transitioning from a linear to a parabolic framework, she does not
keep the same model. Rather, in each framework, a particular linear or parabolic model is
chosen because it fits the best with the data. While each formalism does not itself allow one
to distinguish between states of affairs that have the same “best fitting curve”, they disagree
with one another about how states of affairs should be “carved up” into equivalence classes
that share a curve fit. So while I can represent the same underlying state of affairs (bare
data sets) in either framework, their representation diagrams involve different states of affairs
categories. I say that the PSS story is misleading in this case because there are nonetheless

seemingly natural functors between Lin and Par, which might incline one towards a hasty
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PSS verdict without carefully drawing out representation diagrams. I suspect that TCM
could be useful for addressing this case nonetheless, though it would require analysis beyond

simple PSS.

1.5.1 Will groupoids suffice?

While I have discussed TCM in terms of the general categories associated with theoretical
formalisms, we have so far only invoked groupoids—categories in which all arrows are iso-
morphisms. Indeed, the TCM literature, including the examples discussed in chapters 2 and
3, only consider groupoids. But in motivating TCM, I highlighted the value of including all
sorts of relations in the presentation of a formalism, including system-subsystem relations
and projections onto lower dimensional representations. I do think there is good reason to
focus on groupoids, but I also believe that such a focus fails to take advantage of all TCM

has to offer philosophers of science, as I discuss in chapter 4.

Baez et al. motivate the focus on groupoids by noting that groupoids are less sensitive
to arbitrary choices made in writing down a formalism. As an example, they discuss the

following two PSS decompositions of a “monoid” in abstract algebra.

stuff — a set M
monoidy:  structure —  a function - : M x M — M, and an element 1 € M

properties — Vz,y,z € M, (xy)z =2z(yz) & lx =z =zl

stuff — a set M
, structure —  a function - : M x M — M
monoidy:
properties — Vr,y,z € M, (xy)z =xz(yz), & Je€ M VYm e M em =m =me

(note that e is automatically unique.)
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Recall that the PSS heuristic is motivated by understanding “morphisms” as maps from

stuff to corresponding stuff that preserve structure.

For a monoid;, a morphism is:

e a function f: M — M’

e preserving multiplication and the unit: f(zy) = f(x)f(y) and f(1) = 1.

For a monoid,, a morphism is:

e a function f: M — M’

e preserving multiplication: f(zy) = f(z)f(y).

These are really different, but they are the same in the case of isomorphisms. If f is an
isomorphism of the first sort, it is obviously one of the second sort, but the converse holds

too: if f: M — M’ preserves multiplication, it preserves the unit too:

However, there is no contradiction if an arbitrary (non-isomorphism) monoidy morphism f

is such that f(1) # 1’. For example, if M = M’ = 2 x 2 matrices, the constant function
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1
is a monoids morphism, even though f #+

(g
Il

The moral is that whether we count something as a structure or a property does not affect
the isomorphisms, so the groupoid of a gadget is more robust than the category. This is also
true about stuff that can be reinterpreted as structure (e.g., the unit of a monoid could be

thought of as stuff: a one element set {*} with the function f : {x} — M).

In addition to groupoids being especially well-behaved, many other morphisms of interest in
a sense “reduce” to isomorphisms. There are category theoretic analogs of the isomorphism
theorems of abstract algebra that in many cases allow us to understand a given morphism in

terms of isomorphisms between (possibly distinct) objects. (Mac Lane, 2013, chapter VIII)

1.6 A Modest Proposal

In light of the forgoing considerations, I suppose “theories as categories of models” is an
inapt choice of designation after all. The phrasing may falsely suggest that a theory can
be identified with a particular category. Not only do I want to allow for theories to involve
physically meaningful content not captured by the formal structure of a category, I also
believe it is often not justifiable to restrict attention to a single category when characterizing

the role that a formalism plays in a theoretical context.

TCM is an attempt to characterize the structure of a theoretical formalism—the language-
independent, essential content of a formal apparatus that is used to represent a physical
system. A major barrier to doing this is the fact that the words we use to describe a theo-

retical formalism can be multiply interpreted, and often refer to genuinely different gadgets
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in a given theory depending on the particular context of application. The only sensible
thing to do is try to figure out the functional role that a formalism is playing in various

acts of theoretical representation. As I argue in section 1.3, this can be accomplished by

constructing representation diagrams D = Rep 7> SoA. I show in section 1.3.3 that one can
uniquely define a structure category Sp from a representation diagram, which summarizes
the way in which interpretations in that diagram attach states of affairs to formal represen-
tations. While constructing D will involve countless arbitrary choices, insofar as various acts
of representation can be said to employ the “same” formal structure, we can expect that the

structure categories will coincide.

This resolution does not provide The True Category™ associated with a theoretical formalism
on a platter from heaven. Rather, it shows how a particular category Sp can be constructed
in a unique way from a sufficiently precise description of the manner in which a theory uses
a formalism to interpret representations as states of affairs. In other words, the starting
place for understanding theories as categories of models is a pre-existing narrative about
how formalisms are used to represent physical systems. This narrative can be derived from
observations, experience, intuitions, or any number of sources. TCM is silent as to which
narrative is preferable; it merely amounts to imposing additional specificity and consistency
constraints to make the narrative analytically tractable. But once we have presented theories
as categories of models, we have access to additional tools from category theory, such as the
PSS heuristic, that we can employ to assist in making decisions as to which narrative is

indeed preferable.

The label “theories as categories of models” should perhaps instead be thought of as short-
hand for “the structure categories of representation diagrams are useful for pinning down
the intended structural content a theoretical formalism as employed in a given act of repre-

sentation.” The rest of this text will give explicit examples of how it can be put to use.
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Chapter 2

General Relativity

The main result in this chapter was achieved in collaboration with Thomas Barrett and James

Weatherall, now published in (Rosenstock et al., 2015).

2.1 Introduction

In chapter 1, I discussed how Leibniz viewed the concept of “absolute rest” in Newtonian
spacetime theories as unwarranted additional structure on spacetime, not necessary to ac-
count for the empirical adequacy of Newton’s theory. The act of eliminating this excess
structure can be characterized by a functor F': Newt — Gal that “forgets” the rest frame
structure. Spacetime theories have progressed since Newtons time, but the urge to continue
whittling down “excess structure” in order to reveal the fundamental nature of spacetime
has persisted among physicists and philosophers. The rest of this text will demonstrate how
TCM can be similarly invoked to address debates about the structural content of modern

physical theories.
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In this chapter, I apply the TCM framework to the question of whether the structure of a
“spacetime substance” can be eliminated from general relativity to yield a more parsimonious
formulation. This work responds to John Earman’s (1986) proposal that Robert Geroch’s
(1972) “Einstein algebra” formalism for general relativity might do the trick. To address this
question, I cast general relativity and the theory of Einstein Algebras as the categories GR
and EA using the TCM framework outlined in the previous chapter. I present a functor that
I argue captures the sense in which Einstein algebras represent the same states of affairs as
general relativity, and prove that relative to this functor, EA and GR are equivalent. The
functor that realizes the equivalence has the interesting property of being contraviariant,
meaning that it “fips” homomorphisms. Such a functor is sometimes referred to as realizing
duality rather than an equivalence, but the general TCM narrative about equivalence still

holds.

[ begin in section 2.2 by situating this project in the context of the relationism-substantivalism
debate in philosophy of physics that inspired it. Section 2.3 introduces the concept of a
smooth algebra following mathematician Jet Nestruev (2006), and demonstrates a categori-
cal equivalence between the category SmoothAlg associated with smooth algebras and the
category SmoothMan associated with more familiar formalism of smooth manifolds. Sec-
tion 2.4 formally defines an Einstein algebra, and proves an analogous equivalence between
this formalism and that of a manifold with metric—the mathematical object traditionally
associated with spacetime in general relativity. I conclude in section 2.5 by discussing the

implications of this result.
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2.2 Relationism vs. substantivalism

Among philosophers of physics, questions about the content of spacetime theories are often
cast in terms of the debate between relationist and substantivalist views.! The designa-
tions “relationism” and “substantivalism” each refer to a broad class of views that can be
understood roughly as follows. Relationists understand spacetime to be in some sense an
emergent property of matter and the relations between material objects, rather than a thing
in itself. Substantivalists conversely attribute some degree of reality to spacetime indepen-
dent of any matter present. This disagreement appears to entail meaningful differences in
beliefs about the nature of the universe, rather than merely being different ways of describ-
ing the same phenomena. Relationists and substantivalists disagree about the counterfactual

claim regarding whether spacetime would exist at all without matter.

This debate has been a fixture in philosophy since antiquity, and plays a central role in New-
ton and Leibniz’s disagreement about the nature of spacetime. A spacetime substance, if
present, might motivate setting a standard of rest in Newtonian spacetime—namely, velocity
could be thought of as defined relative to that fixed substance. Substantivalist considerations
similarly motivated late nineteenth century aether theories, which purported to provide a
standard of rest to justify the constant speed of light in Maxwell’s equations for electromag-
netism. Relationist considerations played a major role in the subsequent development of
general relativity (GR). Relationism appears somewhat explicitly in GR in the form of the
principle of relativity, which requires that admissible dynamics cannot depend on a particu-
lar frame of reference. GR has been widely accepted by physicists to be the most empirically
adequate spacetime theory to date for almost a century now (modulo some accommodations
to allow for quantum phenomena). But the broad acceptance of GR has not fully alleviated

relationist-substantivalist tensions.

!See (Huggett and Hoefer, 2018) for a historical overview.
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For some relationists, the inclusion of a spacetime manifold in standard formulations of
GR bears the stain of lingering substantival commitments. The spacetime manifold is the
geometric object on which matter fields are defined, and is often colloquially referred to as
just “spacetime”. To modern-day relationists, belief in the truth of GR then troublingly

seems to require commitment to this “spacetime” being real in some way.

It is in this context that Earman (1986) proposes that the standard formalism of general
relativity be replaced with one that instead uses Finstein algebras, which he claims possesses
all of the virtues of GR but without requiring a spacetime manifold. Instead, Einstein
algebras express the relations among possible configurations of matter in an abstract way.
Thus, Earman argues that the theory of Einstein algebras may be a fully relational spacetime

theory, strictly preferable to the traditional conception of GR.

This is exactly the sort of situation TCM has been developed to analyze. There are two
formalisms—manifolds with metric and Einstein algebras—which can be used to represent
the same class of physical system: the universe according to general relativity. Earman has
claimed that one of these eliminates superfluous structure from the other. That is, Einstein
algebras are alleged to be more parsimonious, and less metaphysically presumptuous, than
manifolds with metric. This chapter defines categories associated to each of these formalisms,

and establishes a canonical functorial relationship between them.

Manifolds with metric—or relativistic spacetimes, as we will call them, can be straightfor-
wardly understood as a category GR. The morphisms of GR are isometric embeddings,
which are the accepted standard morphism for relativistic spacetimes. Einstein algebras, on
the other hand, have not been widely employed by physicists, so there is no universally ac-
cepted notion of morphism for this object. Much of this text will be devoted to defining and
motivating “Einstein algebra morphisms” in order to establish the category EA of Einstein

algebras.
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Section 2.3 provides the necessary background for this endeavor by reviewing the concept
of a smooth algebra that underlies an Einstein algebra. It will be shown that the category
SmoothAlg of smooth algebras is dual to the category SmoothMan of smooth manifolds.
The duality between EA and GR shown in section 2.4 bootstraps off of this underlying

duality between smooth algebras and smooth manifolds.

2.3 Smooth algebras and smooth manifolds

In what follows, the term algebra refers to a commutative, associative algebra with unit
over R—i.e., a real vector space endowed with a commutative, associative product and con-
taining a multiplicative identity.? An (algebra) homomorphism is a map that preserves the
vector space operations, the product, and the multiplicative identity; a bijective algebra

homomorphism is an (algebra) isomorphism.

2.3.1 Smooth algebras

Let A be an algebra. |A| denotes the collection of homomorphisms from A to R. The elements
of |A| are known as the points of the algebra A; | A| itself is the dual space of points.> (Note,

however, that no algebraic structure is imposed on |A|.) An algebra A is geometric if there

2The treatment of smooth algebras in this text follows Nestruev (2006). For more on Einstein algebras
in particular, see Geroch (1972) and Heller (1992).

3In some treatments of related material, including Rynasiewicz (1992), “points” are reconstructed as
maximal ideals of appropriate rings. The present approach emphasizes the sense in which points are “dual”
to smooth functions in the same sense of duality that one encounters elsewhere in geometry and algebra. But
it is closely related to the approach Rynasiewicz (1992) uses. In particular, if = is an element of |A|, then
ker(z) is an ideal, since if f € ker(z), then for any g € A, z(fg) = z(f)z(g) = 0; moreover, it is maximal,
since by linearity, « is surjective, and thus A/ ker(z) = R and it is well known that for a commutative, unital
ring (or algebra) A, an ideal I is maximal if and only if A/ is a field. Conversely, as we note above, if A
is geometric, then A is canonically isomorphic to the space A, the maximal ideals of which consist in all
functions vanishing at a given point x € |A|. So points in the sense that Ryansiewicz considers uniquely
determine points in the present sense, and vice versa.
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are no non-zero elements f € A that lie in the kernel of all of the elements of |A], i.e., if

ﬂp€|A| ker(p) = {0}.4

The space A is defined as as follows:
A={f JA| = R:3f c Ast. f(z) =xz(f)}.

There is a natural algebraic structure on A, with operations given by:

There is a canonical map 7 : A — A defined by f — f. In general, 7 is a surjective homo-
morphism. For geometric algebras, however, 7 is also injective, and thus an isomorphism.
This enables us to freely identify a geometric algebra A with A through implicit appeal to

T.

Given a geometric algebra A, the weak topology on |A| is the coarsest topology on | A| relative
to which every element of A (or really, fl) is continuous. This defines a Hausdorff topology
on A. Now suppose we have an algebra homomorphism ¢ : A — B. Then 1 determines
a map [¢| : |B|] — |A| defined by |¢| : * — x 0. Any map |¢| that arises this way is

continuous in the weak topology; if ¢ is an isomorphism, then |¢| is a homeomorphism.

Now let A be a geometric algebra, and suppose that S C |A| is any subset of its dual space
of points. Then the restriction Ajg of A to S is the set of all functions f : S — R such

that for any point z € S, there exists an open neighborhood O C |A| containing z, and an

4The expression “geometric algebra” is also used (somewhat more often) to described so-called Clifford
algebras. See, for instance, Hestenes and Sobczyk (2012) or Doran et al. (2003). The present sense of the
term is unrelated.
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element f € A such that f and f agree on all points in O. One easily verifies that Ajg is an

algebra, though it is not in general a subalgebra of A.

Given any S C |A|, we can define a homomorphism pg : A — Ajg, defined by f — f5, where
here the restriction f|s is meant in the ordinary sense. The map pg is known as the restriction
homomorphism. A special case of restriction is restriction to |A|, i.e., to the dual space of
the algebra, Ajj4. This is the collection of all maps on A that are “locally equivalent” to
elements of A. We will say that A is complete if it contains all maps of this form—i.e., if the

restriction homomorphism p4 : A — Ajj4 is surjective.

A complete, geometric algebra A is called smooth if there exists a finite or countable open
covering {Uy} of the dual space |A| such that all the algebras Ay, are isomorphic to the
algebra C'*°(R™) of smooth functions on R", for some fixed n. Here n is known as the
dimension of the algebra. Note that this sense of dimension is unrelated to the dimension

of the vector space underlying A.

2.3.2 The duality of smooth algebras and manifolds

Smooth algebras and smooth manifolds bear a close relationship to one another. In what fol-
lows, this relationship is presented category theoretically, largely following Nestruev’s (2006)
non-categorical presentation. First, we define two categories: the category SmoothMan,
whose objects are smooth manifolds and whose arrows are smooth maps, and the category
SmoothAlg, whose objects are smooth algebras and whose arrows are algebra homomor-
phisms. We show that these two categories are dual to one another. This result will be of

crucial importance in our discussion of Einstein algebras and relativistic spacetimes.

There is a way to “translate” from the framework of smooth manifolds into the framework

of smooth algebras. We call this translation F' and define it as follows.
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e Given a smooth manifold M, F(M) = C*(M) is the algebra of smooth scalar functions

on M.

e Given a smooth map ¢ : M — N, F(¢) is the map (23 . O%(N) — C=(M) given by
&(f) = f o ¢ for any f € C=(N).

Before showing that it is a contravariant functor between SmoothMan and SmoothAlg, let
us notice a few features of F'. Let M be a manifold and consider the algebra F'(M) = C*(M)
of smooth scalar functions on M. There is a natural correspondence between points in M

and elements of |C*°(M)], given by the following map:

O : M — [C(M)] Ou(p)(f) = f(p) (2.1)

for any p € M and f € C°°(M). Note that 0,/(p) is indeed a homomorphism C*(M) — R.
One can easily verify that the algebra C°°(M) is geometric, so we can consider the weak
topology on |C*°(M)|. One then proves that relative to the weak topology the map 6, :
M — |C>°(M)] is a homeomorphism (Nestruev, 2006, 7.4).

This fact allows one to prove the following simple result. The map F' translates a smooth

manifold into a smooth algebra.

Proposition 2.1. If M is a smooth manifold, then F(M) = C*°(M) is a smooth algebra

(Nestruev, 2006, 7.5-7.6).

The next important result about F' captures a sense in which the smooth maps between

manifolds are characterized purely by their action on the algebras of smooth scalar functions.

Proposition 2.2. Let M and N be smooth manifolds. A map ¢ : M — N is smooth if and

only if ¢(C=(N)) € C=(M) (Nestruev, 2006, 7.16-7.18).
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These results allow one to make precise a sense in which F' is indeed a “translation” from
the framework of smooth manifolds into the framework of smooth algebras. This leads us to

the following result.

Lemma 2.3. F': SmoothMan — SmoothAlg is a contravariant functor.

Proof. Proposition 2.1 immediately implies that F'(M) is indeed an object in SmoothAlg
for every smooth manifold M. Let ¢ : M — N be a smooth map. We need to show
that the map F(¢) = ¢ : F(N) — F(M) is an algebra homomorphism. Proposition 2.2
implies that é(f) € F(M) for every f € F(N). One can easily verify that ¢ preserves
the vector space operations, the product, and the multiplicative identity, so F'(¢) = g5 is
an algebra homomorphism. Furthermore, it is easy to see that F' preserves identities and

reverses composition. This implies that F' : SmoothMan — SmoothAlg is a contravariant

functor. ]

There is also a way to “translate” from the framework of smooth algebras into the framework
of smooth manifolds. In order to describe this translation we need to do some work. Let A
be a smooth algebra. One can use the smooth algebraic structure of A to define a smooth
manifold G(A). The underlying point set of the manifold G(A) is the set |A| of points of

the algebra A.

Since A is a smooth algebra, there is a covering of |A| by open sets {Uy} along with isomor-
phisms iy, : Ay, — C°(R") for some fixed n. These open sets and isomorphisms can be used

to define charts (U, 1) on |A|. First consider the maps
hy : A — C=(R") hy, = ix o pu,,

where py, : A — Ay, is the restriction homomorphism. One can verify that the maps

\pu,| : |Ajw,| = Uk C |A| are homeomorphisms onto Uy, (Nestruev, 2006, 7.7-7.8). Since iy, is
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an isomorphism and |C*°(R")| = R™ (Nestruev, 2006, 3.16), it follows that |hg| = |py,| © |ik]
is a homeomorphism |hg| : R® — Uy. This allows us to define the charts (U, ), where
Yy, = |hg| 7! for each k € N. One can verify that these charts are compatible (Nestruev, 2006,

7.10).

In addition to these charts (U, 1), one can add charts of the form (V' N Uy, 1) where
V C |A] is an open set and k € N. It is easily verifiable that these new charts are compatible
both with each other and with the original charts (U, ). Since the topology on |A| is
Hausdorff and since there is a countable cover of charts of the form (Uy, 1), if we throw in
wholesale all of the charts on |A| that are compatible with the charts of the form (Ug, ¢x)
and (V N Uy, ), then we will have defined a smooth (Hausdorff, paracompact) manifold

(Malament, 2012, Proposition 1.1.1). This smooth manifold is denoted as G(A).

The smooth manifold G(A) bears a close relationship to the original smooth algebra A. In-
deed, the elements of A correspond to smooth scalar functions on G(A). This correspondence

is given by the following map:

na: A= FG(A)  na: fr— (p—p(f)) (2.2)

for every f € A and p € G(A) = |A|. One can prove that for every f € A the function
p — p(f) is a smooth scalar function on G(A), and furthermore, that the map 7,4 is a
bijection (Nestruev, 2006, 7.11). The elements of A can therefore be thought of as smooth

scalar functions on the manifold G(A).

The translation G from the framework of smooth algebras into the framework of smooth

manifolds is defined as follows.

e Given a smooth algebra A, G(A) is the smooth manifold defined above.
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e Given an algebra homomorphism ¢ : A — B, G(v) is the map [¢| : |B| — |A| between
the manifolds G(B) and G(A).

Note that the definition of G(¢)) makes sense since G(B) and G(A) have underlying point
sets |A| and | B, respectively. Like Lemma 2.3, the following result captures a sense in which

(G is a translation between these two frameworks.

Lemma 2.4. G : SmoothAlg — SmoothMan is a contravariant functor.

Proof. Tt has already been shown that G(A) is a smooth manifold for every smooth algebra A.
Let ¢ : A — B be an algebra homomorphism. We need to show that G(v) = [¢] : |B| — |A|

is a smooth map between the manifolds G(B) and G(A). We begin by showing that

[ ona =np ot (2.3)

For every f € A and p € |B| we see that following equations hold:

([ 0 na(£)) () = a(f) o [¥)(p)
=na(f)(po)
= (pov)(f)
= (e oY(f))(p)

The first equality follows from the definition of @, the second from the definition of |¢|, the
third from the definition of 14, and the fourth from the definition of ng. This establishes
equation (2.3). Since the maps 74 and np are bijections, (2.3) implies that |/1p\] =npoton, .
And this means that |/@D\|(FG(A)) C FG(B). Proposition 2.2 then guarantees that [¢] :
G(B) — G(A) is a smooth map. One easily verifies that G preserves identities and reverses

composition, so G : SmoothAlg — SmoothMan is a contravariant functor. m

50



This demonstrates that the maps F' : SmoothMan — SmoothAlg and G : SmoothAlg —
SmoothMan are contravariant functors. They are also “up to isomorphism” inverses of one

another. The following theorem makes this idea precise.

Theorem 2.5. The categories SmoothMan and SmoothAlg are dual.

Proof. We show that the families of maps 1 : 1smoothalg = F'0G and 0 : lgmoothMan = GoF
defined in equations (2.1) and (2.2) are natural isomorphisms. Since F' and G are contravari-

ant functors, this will imply that SmoothMan and SmoothAlg are dual categories.

We first consider 7. We need to verify that for every smooth algebra A the component 74 :
A — FG(A) is an algebra isomorphism. We have already seen that 7, is bijective. One easily
checks that n preserves the vector space operations, the product, and the multiplicative
identity. Equation (2.3) implies that naturality square for n commutes, 0 7 : lsmoothAlg =

F o G is a natural isomorphism.

We now consider . We need to verify that for every smooth manifold M the component
Oy M — GF(M) is a diffecomorphism. We already know that it is bijective. We show that
0, (FGF(M)) € F(M) and then use Proposition 2.2 to conclude that 6y is smooth. Let
f e FGF(M). Since npny : F(M) — FGF(M) is a bijection there is some g € F'(M) such

that nrr)(g) = f. We then see that the following equalities hold for every p € M:

~

001 () () = O (e (9)) (P) = (M () © 0ar) (P) = Oar(p)(9) = 9(p)

The first equality holds by our choice of the function g € F(M), the second by the definition
of éM, the third by the definition of npy), and the fourth by the definition of #5;. This
implies that 0y (f) = g € F(M). So we have shown that 0,,(FGF(M)) C F(M), which by
Proposition 2.2 means that 6, : M — GF (M) is a smooth map. One argues in an analogous

manner to show that 6, is smooth. Therefore 6y, : M — GF(M) is a diffeomorphism.
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We also need to show that the naturality square for 8 commutes. Let ¢ : M — N be a
smooth map. We show that GF(¢) o 0y = Oy o ¢. For every p € M and f € F(N) we see

that the following equalities hold:

(1] © 03 (p))(f) = (02 (p) © G)(f)
= 0u(p)(f o 9)
= foé(p)
= (On 0 6(p))(f)

The first equality follows from the definition of |<;A5], the second from the definition of QAS, the
third from the definition of 6,;, and the fourth from the definition of #y. Since p and f were
arbitrary, this implies that GF(¢) o 0y = Ox 0 @, 80 0 : lsmoothMan = G o F' is a natural

isomorphism, and the categories SmoothMan and SmoothAlg are dual. m

Theorem 2.5 allows one to identify the smooth algebra A with FG(A) = C*°(]A|) and the
smooth manifold M with GF(M) = |C*(M)|. In addition, one can identify an algebra
homomorphism ¢ : A — B between smooth algebras with FG(¢) = m and a smooth map
¢ : M — N between smooth manifolds with GF(¢) = |¢|. Now that they have been made

precise, these identifications will be implicitly assumed in what follows.

2.4 Einstein algebras and relativistic spacetimes

The theory of Einstein algebras proceeds by taking a 4-dimensional smooth algebra A—
which by Theorem 2.5 corresponds to some smooth 4-dimensional manifold—and defining
additional structure on it. This structure corresponds to the various fields that one requires

to formulate general relativity. This structure is defined as follows.
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Let A be a smooth algebra. A derivation on A is an R-linear map X : A — A that satisfies

the Leibniz rule, in the sense that

X(fg) = fX(g)+9X(f)

for all f,g € A. The space of all derivations on A is a module over A. The notation I'(A)
will denote this module and I'*(A) will denote the dual module. The elements of the dual
module T*(A) are just the A-linear maps I'*(4) — A. Derivations on A allow one to define
an analog to “tangent spaces” on smooth algebras. Given a derivation X on A and a point
p € |A|, one can consider the linear map X, : A — R defined by X,(f) = X(f)(p). The
tangent space to A at a point p € |A| is the vector space T,A whose elements are maps

Xp : A — R. The cotangent space to A at a point p € |A| is defined similarly.

Derivations X on the smooth algebra A naturally correspond to ordinary smooth vector

fields X on the manifold G(A) = |A|. The correspondence is given by

X(Np) = Xp(f) (2.4)

where f € C>®(|A]) = A and p € |A|. This correspondence plays a crucial role in the
following results, so we take a moment here to unravel the idea behind it. Given a derivation
X on A, equation (2.4) defines a vector field X on the manifold G(A). This vector field X
assigns the vector X, to the point p € G(A), where the vector X, is defined by its action
£+ X(f)(p) on smooth scalar functions f € A on the manifold G(A). One uses the fact
that X satisfies the Leibniz rule to show that X, is indeed a vector at the point p € |A|.

One also verifies that the vector field X is smooth.

Conversely, given a vector field X on the manifold G(A), equation (2.4) defines the derivation
X on A. The derivation X maps an element f € A to the element of A defined by the scalar

function X (f) on the manifold G(A). It follows immediately that X is linear and satisfies
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the Leibniz rule. One can argue in a perfectly analogous manner to show that elements of
I'*(A) correspond to smooth covariant vector fields on the manifold G(A). Note also that
given a point p € |A| the correspondence (2.4) allows one to naturally identify the elements

Xp of the tangent space T,A and the vectors X, at the point p in the manifold G(A).

A metric on a smooth algebra A is a module isomorphism § : ['(A) — IT'*(A) that is sym-
metric, in the sense that §(X)(Y) = §(Y)(X) for all derivations X and ¥ on A. A metric §

on A induces a map I'(A) x ['(4) — A defined by
XY — g(X)(Y)

Given a point p € |A|, a metric on A also induces a map T,A x T,A — R defined by
X,,Y, = §(X,Y)(p). We will occasionally abuse notation and use § to refer to all three of

these maps, but it will always be clear from context which map is intended.

If g is a metric on an n-dimensional smooth algebra A and p is a point in |A|, then there

exists an m with 0 < m < n and a basis i, ..., &, for the tangent space T),A such that
9(&i, &) = +1 if 1<i<m
9(§,8) = -1 if m<j<n
9(&.&) = 0 if i

The pair (m,n —m) is called the signature of § at the point p € |A|. A metric g on |A| that

has signature (1,n — 1) at every point p € |A] is called a metric of Lorentz signature.

This gives us the resources necessary to begin discussing the theory of Einstein algebras.
An Finstein algebra is a pair (A, g), where A is a smooth algebra and ¢ is a metric on A

of Lorentz signature. Before proving that the category of Einstein algebras is dual to the

o4



category of relativistic spacetimes, we need some basic facts about the relationship between

metrics on algebras and metrics on manifolds.

Lemma 2.6. Let M be an n-dimensional smooth manifold and let A be an n-dimensional

smooth algebra. Then the following all hold:

(1) If g is a Lorentzian metric on M, then ¢ is a Lorentzian metric on the algebra F'(M) =

~

C>®(M), where Q(X)(Y) =g(X,Y);

(2) If g is a Lorentzian metric on A, then |g| is a Lorentzian metric on the manifold

G(A) = |A], where |9](X,Y) := §(X)(V);

(3) If g is a metric on a M, then |g| = g;

—

(4) If g is a metric on A, then |g| = g.

Proof. Let g be a Lorentzian metric on M. One can easily verify that the map § : ['(F(M)) —
[*(F(M)) defined by §(X)(Y) = g(X,Y) is a symmetric module isomorphism, and therefore
a metric on the smooth algebra F'(M) = C*°(M). It immediately follows from the bilinearity

of g that ¢ is a module homomorphism; that g is bijective and symmetric follows from the

fact that ¢ is non-degenerate and symmetric.

We also need to show that g has Lorentz signature. Let p € M and let &,...,&, be an
orthonormal basis (relative to the metric g) for the tangent space T,M. Vectors at p € M
can be naturally identified via (2.4) with elements of the tangent space T,F (M) to the
algebra F'(M) = C*(M). This identification and the definition of § immediately imply that
¢ must have the same signature as g. So ¢ is a metric of Lorentz signature on F'(M) and

therefore (1) holds. One argues in an analogous manner to demonstrate (2).
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~

If ¢ is a metric on M and X and Y are vector fields on M, then [§|(X,Y) = §(X)(Y) =
¢(X,Y). Furthermore, if § is a metric on A and X and Y are derivations on A, then

—~

19](X)(Y) = |9|(X,Y) = §(X)(Y). This immediately implies (3) and (4). O

Lemma 2.6 captures a sense in which metrics on manifolds and metrics on smooth algebras
encode exactly the same information. Each kind of structure naturally induces the other.
This lemma strongly suggests, therefore, that we will be able to recover a sense in which
general relativity and the theory of Einstein algebras are equivalent theories. Recovering
this sense will require us to define a category of models for the theory of Einstein algebras.
In order to do this, we need to discuss the “structure-preserving maps” between Einstein

algebras.

Let A and B be smooth algebras with 1) : A — B an algebra homomorphism. Let g be a
point in |B| and let Xq € T,B be an element of the tangent space to B at q. The pullback
of Xq along the homomorphism v is the element w*(Xq) of Ty A defined by its action
V*(X,)(f) = X,(¥(f)) on arbitrary elements f € A. One again uses the correspondence
(2.4) between vectors at the point [1)|(¢) in the manifold G(A) and elements of Tjy A to
verify that indeed ¢*(Xq) € TjyqA- The pullback also allows us to use a homomorphism
between smooth algebras to transfer other structures between the algebras. In particular, if
§ is a metric on A, the pushforward 1,(g) of § to B is the map ¢ : I'(B) x ['(B) — B defined
by

Ue(9)(X,Y) (D) = 40" (X,), ¥ (Y,))

for derivations X and Y on B. We now have the machinery to define the structure-preserving
maps between Einstein algebras. If (A, §) and (B,¢’) are Einstein algebras, an algebra
homomorphism ¢ : A — B is an Finstein algebra homomorphism if it satisfies 1.(g) = ¢'.
Einstein algebra homomorphisms are required to preserve both algebraic structure and the

metric structure on the algebras.
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We can now define the category of models EA for the theory of Einstein algebras. The
objects of the category EA are Einstein algebras (A4, ¢), and the arrows are Einstein algebra
homomorphisms. Our aim is to prove that EA and GR are dual categories. We first isolate
two facts about the relationship between algebra homomorphisms and smooth maps in the

following lemma.

Lemma 2.7. Let ¢ : M — N be a smooth map between manifolds M and N,and ¢ : A — B
be an algebra homomorphism between smooth algebras A and B. Then the following both
hold:

(1) @ (X,) = @*(Xp) for every vector X, at the point p € M;

—

(2) ¥*(X,) = |¥|.(X,) for every X, € T,B.
Proof. Let X, be a vector at p in the manifold M and f € C*°(N) = F(N). We demonstrate
that (1) holds simply by computing the following.

—

P+ (Xp)(f) = @u(Xp)(f) = Xp(f 0 0) = X (@(f)) = Xp(2(f)) = &"(X)(f)

The first and fourth equalities follow from the correspondence (2.4), the second equality from
the standard geometric definition of the pushforward ¢,, the third from the definition of the

map (;3, and the fifth from the algebraic definition of the pullback ngS*

The argument for (2) is perfectly analogous. Let ¢ € |B| be a point with Xq € T,B and

f € A. We compute the following.

~

G (X)) = X (V) = X () = Xo(f 0 [9]) = [¥(X) () = [01(X) (/)

57



The first equality follows from the algebraic definition of the pullback *, the second and
fifth follow from the correspondence (2.4), the third by the definition of |¢|, and the fourth

by the standard geometric definition of the pushforward [¢|.. O

In conjunction with Theorem 2.5, Lemmas 2.6 and 2.7 allow us to define a pair of translations
between the framework of Einstein algebras and the standard framework of general relativity.
We first consider the natural way to translate relativistic spacetimes into Einstein algebras.

We call this translation J and define it as follows.
e Given a relativistic spacetime (M, g), J(M,g) = (C*(M),g) is the Einstein algebra
with underlying smooth algebra C*°(M) and metric ¢ defined in Lemma 2.6.

e Given an isometry ¢ : (M, g) — (M', '), J(¢) is the map ¢ : C®(M') — C=(M).
The translation J is perfectly analogous to the contravariant functor F' described above.
Indeed, as with F' we have the following simple result about J.

Lemma 2.8. J: GR — EA is a contravariant functor.
Proof. If (M, g) is an object in GR,, then it immediately follows that J(M, g) is an object in

EA. Proposition 2.1 implies that C°°(M) is a smooth algebra and Lemma 2.6 implies that

g is a metric of Lorentz signature on C*°(M), so J(M, g) is an Einstein algebra.

Now let ¢ : (M, g) — (M, ¢') be an isometry. We need to show that J(¢) = ¢ : C(M’) —
C*(M) is an Einstein algebra homomorphism. Since ¢ is a smooth map, Lemma 2.3 guar-

antees that ¢ : C°(M’) — C*(M) is an algebra homomorphism. It remains to show that

58



¢.(¢) = §. Let X and Y be derivations on C°°(M). We compute that

= 90*(9/)(XP7YZD) = g(Xp,Y;)) = Q(Xp,i/p)

for every point p € M = |C*°(M)|. The first equality follows from the definition of ., the
second from Lemma 2.7, the third from the definition of ¢’, the fourth from the definition of
¢*, the fifth since ¢ is an isometry, and the sixth from the definition of §. This implies that
$.(§') = ¢ and therefore that J(¢) = ¢ is an arrow J(M’, ¢') — J(M, g). One easily verifies

that J preserves identities and reverses composition. O

There is also a way to translate from the framework of general relativity into the framework

of Einstein algebras. We call this translation K and define it as follows.

e Given an Einstein algebra (A4, §), K(A,g) = (JA[,|g]) is the relativistic spacetime with

underlying manifold |A| = G(A) and metric |g| defined in Lemma 2.6.

e Given an Einstein algebra homomorphism ¢ : (A,§) — (A, §), K(¢) is the map
9]+ [A] — |Al

The translation K is perfectly analogous to the contravariant functor G' described above.

And again, we have the following result.

Lemma 2.9. K : EA — GR is a contravariant functor.

Proof. 1f (A, §) is an object in EA | then it immediately follows that K (A, g) is an object in
GR. Indeed, we have already seen that G(A) = |A| is a smooth manifold, and Lemma 2.6

implies that |g| is a metric on |A[, so (|A], |g|) is a relativistic spacetime.
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Now let ¥ : (A, g) — (A’,§') be an Einstein algebra homomorphism. Lemma 2.4 guarantees
that K(p) = |¢| : |A'| — |A| is a smooth map. It remains to show that ||*(|g|) = |¢'|. By
Lemma 2.6, it will suffice to show that [¢)|*(¢g) = ¢’. We let X and Y be vector fields on |A’|

and compute that

V1 (9)(Xp, Yp) = g(|9]+(Xp), [¢]:(Y3))

G191 (Xp), [91+(Y))

(7 (X,): 97 (V)

¢*(§)(Xp, p) = g/(in }A/;?) = g/(XpJ/;;)

I
N

for every point p € |A’|. The first equality follows from the definition of |¢)|*, the second
from the definition of g, the third from Lemma 2.7, the fourth from the definition of 1,, the
fifth since ¢ is an Einstein algebra homomorphism, and the sixth from the definition of §’.
This implies that |¢] is an isometry and therefore an arrow K(A’,§') — K(A, g). One again

easily verifies that K preserves identities and reverses composition. O]

We now have the resources necessary to prove our main result. The contravariant functors
J and K realize a duality between the category of models for the theory of Einstein algebras
and the category of models for general relativity. This result essentially follows as a corollary

to Theorem 2.5 along with parts (3) and (4) of Lemma 2.6.

Theorem 2.10. The categories EA and GR are dual.
Proof. The proof exactly mirrors the proof of Theorem 2.5. We again show that the families
of maps 1 : 1ga = Jo K and 6 : 1gr = K o J defined in equations (2.1) and (2.2) are

natural isomorphisms. It follows from Theorem 2.5 that the naturality squares for n and 6

commute, so we need only check that the components of n and 6 are isomorphisms.
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Let (A, g) be an object in EA and consider the component 144 : A = C*(|A]). We have
already seen in Theorem 2.5 that 744) is an algebra isomorphism. In addition, part (4) of
Lemma 2.6 implies that 744y preserves the metric and therefore is an isomorphism between
Einstein algebras. A perfectly analogous argument demonstrates that the components 6,y

are isomorphisms between relativistic spacetimes. O]

Geroch (1972) defines other structures—analogous to, for instance, tensor fields and covariant
derivative operators—in purely algebraic terms, using strategies similar to those used here to
define derivations and metrics. With this machinery, he argues, one can express any equation
one likes, including Einstein’s equation and various matter field equations, in algebraic terms.
In this way, one may proceed to do relativity theory using Einstein algebras and structures
defined on them, in much the same way that one would using Lorentzian manifolds. The
functors J and K, meanwhile, along with the results proved and methods developed here,
provide a way of translating between equations relating tensor fields on a Lorentzian manifold
(M, g) and the corresponding structures defined on the Einstein algebra J(M, g). Moreover,
there is a strong sense in which J and K preserve any possible empirical structure associated
with general relativity, on either formulation, since any of the empirical content of general
relativity on Lorentzian manifolds will be expressed using invariant geometrical structures
such as curves, tensor fields, etc. or their algebraic analogues, and it is precisely this sort of

structure that J and K preserve.

2.5 So, is there a spacetime substance or what?

Theorem 2.10 establishes a sense in which the Einstein algebra formalism as it has been
defined here has the same structural content as a manifold with metric. This result undercuts
Earman’s claim that using Einstein algebras lets us eliminate any structure, let alone a that

of a spacetime substance, from general relativity. The functor J : GR — EA allows us to
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“translate” the spacetime manifolds in GR into the language of Einstein algebras. So while
one may not need to posit a spacetime manifold in order to describe a state of the world in

terms of Einstein algebras, it is still implicitly there.

As discussed in chapter 1, the TCM verdict depends largely on way in which one chooses to
define the categories and functor, but this dependence does not make the results arbitrary.
Rather, TCM illuminates the broader connotations of ones prior beliefs about the representa-
tional capacities of the formalisms it evaluates. In order to challenge the equivalence verdict,
one would need to present a plausible alternative account of the appropriate categories and
functors. However, the fact that Einstein algebras were specifically defined to serve all of
the same functions as relativistic spacetimes indicates that no viable alternative TCM story

will be forthcoming.

An Einstein algebra has all of the building blocks to uniquely define a spacetime manifold.
The only difference is that this manifold is not named explicitly in EA as it is GR. One
might want to claim that this is a difference that indeed makes a difference—that what is
named in the statement of a theoretical framework has a special ontological status in that
framework. To claim this, however, is to give up on the goal of capturing the language

independent structure of the formalisms that TCM is designed to evaluate.

On a structural conception of the content of formalisms, then, any feature of the formalism
present in the relativistic spacetime framework is also present for Einstein algebras. This
fact can be brought to bear on the relationism-substantivalism debate in a number of ways.
If one takes classical general relativity to be committed to the reality of a spacetime, then
the theory of Einstein algebras involves a similar commitment. But if one takes the theory
of Einstein algebras to in a sense demonstrate the fundamental relational nature of general
relativity, then this feature remains when one transitions back from EA to GR via the
functor J. In this way, TCM does not (and cannot) provide a verdict as to whether belief in

the truth of general relativity commits one to a belief in the reality of a spacetime substance.
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But it does show us that contra Earman, moving to an Einstein algebra framework would

not allow us to escape such a commitment.
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Chapter 3

Yang-Mills Theory

The main result of this paper was achieved in collaboration with James Weatherall, now

published in (Rosenstock and Weatherall, 2016).

3.1 Introduction

Yang-Mills theories generalize the formalism of classical electromagnetism to cover field
theories with different symmetry groups, and in their quantized form play a central role in
many of our most successful physical theories. Since the introduction of the principal bundle
formalism of Yang-Mills theory by Wu and Yang (1975), mathematicians, physicists, and
philosophers alike have continued to explore various formalisms and their relative merits. For
philosophers of physics, the focus has been on determining which formalism best captures the
ontology of the theory, and which features of the formalisms can be understood to represent

physically real phenomena.

It has recently been argued by various philosophers, most prominently Richard Healey in his

2007 book Gauging What’s Real, that formulations of Yang-Mills theories in terms of what
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are called “holonomies” are preferable to formulations in terms of “principal bundles,” largely
on the basis of parsimony considerations. Healey claims that principal bundle formulations
posit “surplus structure” relative to holonomy formulations (p. 30), so we should expect that
the latter captures the true structure of the world, whereas the former possesses unnecessary
mathematical fluff that obscures the physical interpretation. Healey proceeds to describe
the meaningful physical differences between a principal bundle and holonomy pictures of the
world. For example, the holonomy formalism suggests that properties in Yang-Mills systems
are highly non-local, in that they are attributed to curves on spacetime, rather than to

spacetime points as they are in the principal bundle picture.

In this chapter, I argue that TCM considerations suggest that contra Healey, the holonomy
formalism in a sense possesses at least as much structure as the principal bundle formal-
ism. This indicates that features thought to be readable directly from the principal bundle
formalisms, such as “gauge”, are equally structurally present in the holonomy formalism,
even when not explicitly named. I begin by describing the principal bundle (section 3.2) and
holonomy (3.3) formalisms in the TCM framework. In section 3.4, I establish the functorial
relationship between the holonomy and principal bundle formalisms. In section 3.5, I discuss
a different formalism—that of Wilson loops—which may add even more structure to the

holonomy formalism, but nonetheless points in a promising direction for future research.

3.2 Principal Bundles

A principal bundle is a mathematical object G — P = M (abbreviated P) where P is a
smooth (n+m)-dimensional manifold, called the total space, M is an n-dimensional connected
smooth manifold called the base space (here representing space-time), G is an m-dimensional
Lie group (the group of gauge symmetries), and 7 is a projection map from P to M. 7 is

such that at every point z in M, the preimage 7~ '[z] is diffeomorphic to G. This gives us a
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Figure 3.1: A principal bundle.

picture of a principal bundle P as consisting of the manifold M with copies of G associated
with each point (see figure 3.1). We require that P is locally a product space of M and G in
the sense that every x € M has a neighborhood U C M such that there is a diffeomorphism
n:UxG — 7 U] such that mon : (q,g9) = q for all ¢ € U and g € G (n is called a
local trivialization). Lastly, there is a smooth right action G on P that preserves the fibers
(i.e., for all w € P and g € G, 7w(ug) = m(u)) and acts freely and transitively on the fibers,
meaning that only the identity element does nothing to the elements of P, and there is an

element of GG that can take any element of P to any other element of the same fiber.

Figure 3.2: A connection.
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A connection on a principal bundle P is a smooth assignment of a collection of what are
called horizontal lifts to each space-time curve « : [0,1] — M. Pick a point Z in the fiber
over the initial point = = 7(0) of the curve . There are in general many ways to associate
v with a “lift” 4 into the fibers over the curve that passes through & (i.e., there are many
curves « : [0,1] — P such that 7o a(t) = 7(¢)). A connection picks out precisely one of
these for every such curve and every element in the fiber over its initial point (see figure 3.2).

Given such a lift, the point (1) is called the parallel transport of & = 4(0) along the curve

~ according to the connection I'.

A principal connection is a connection I' that is equivariant, i.e., appropriately compatible
with the G-action on P in the following sense. Given two elements v and v in a fiber 7! [z],
where u and v are related via the G-action as v = ug for some g € GG, then for every space-
time curve 7 passing through x, the lifts of 7 through u and v are related as 4,(t) = J.(t)g
for all t € [0,1]. In other words, a principal connection lets us extend the G-action from

points in P to lifts of space-time curves.

A principal connection I' can equivalently be characterized by a one-form w on P that
takes values in g, the Lie algebra of G. On this characterization, a connection picks out
a preferred decomposition of each tangent vector & € T,P at each point u € P into the
part that’s “parallel to M” (the horizontal component) and the part that’s “parallel to the
fiber” (the vertical component). w thus tells us which vectors in Ty, M correspond “lifts” of
vectors in T, M, which lets us characterize horizontal lifts of curves in terms of infinitesimal

directions of the curves at a point.

A principal bundle isomorphism from G — P = M to G' — P’ ™ M s a pair (f,g)
consisting of a diffeomorphism f : P — P’, and a Lie group isomorphism ¢ : G — G’ such
that f(za) = f(z)g(a). (f,g) preserves the connection w on P if the connection w’ on P’ is

such that f*w’ = g, ow, where §: g — ¢’ is the Lie algebra isomorphism induced by g.
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The connection w, and its curvature form Dw (where D is the exterior covariant derivative),
can also be represented as differential forms on M, rather than P. However, this requires
pulling back along a (local) section, or map o : U — P where U C M and 7o o = idy.
There will not in general be a section definable on all of M. Given a choice of local section
o, the pullback c*w : U — g of the connection along the section is a Yang-Mills potential,

and o*(Dw) a Yang Mills field.

Both the Yang-Mills potential and field will in general depend on the choice of section used
to represent them, and this choice is referred to as a choice of gauge. When it is said that the
physically meaningful content of Yang-Mills theory must be gauge-independent, it is thus
meant that observables of the theory cannot depend on a particular choice of section used to
represent w on M. A gauge transformation is a change in choice of gauge, i.e. a smooth map
t : P — P such that wot(z) = m(x) for all z € P, which takes a section o to a section t o 0.
Equivalently, one can think of a gauge transformation as a principal bundle automorphism

while holding the section fixed.

The category of principal bundle models of Yang-Mills theory is the category PC whose
objects are principal bundles with connection and whose arrows are principal bundle iso-
morphisms that preserve the connection. Given the formalism and its intended application,

there is not much room for disagreement on how this category is defined.

It is sometimes suggested that rather than allowing general principal bundle isomorphisms,
only wvertical isomorphisms, or isomorphisms that preserve the fibers and act as the identity
on M, should be admitted. This might be motivated by substantivalism about spacetime—
the idea that once we pick a representation of space-time as a manifold M, any automorphism
of that manifold changes it, since it changes which properties are assigned to which points.
However, the formalism of classical field theory does not differentiate between space-time
manifolds related by diffeomorphisms, so long as the relevant fields are pushed forward

along the diffeomorphism. To disallow such isomorphisms would be to misunderstand the
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formalism and its role in representing field theories (see Weatherall (2016b) for more on this

line).

Another possible contention might be that principal bundle models of Yang Mills theory
should also include a privileged choice of (local) section, and further require that arrows
preserve this choice of section. Call this category PC*. Let F': PC* — PC be the functor
that “forgets” the favorite section for each object in PC*, and maps arrows accordingly. This
map is clearly surjective on objects. Since I’ acts as the identity on arrows, it is also faithful.
Let (P,w, o) be an object in PC*. Then F(P,w, o) = (P,w), which has automorphisms that
do not preserve o, since such a transformation would take you to a distinct object in PC*.

Thus F' is not full, so F' forgets structure—namely, the structure of a preferred section.

3.3 Holonomies

I will first define the notion of a holonomy in the context of the principal bundle formalism,
and then demonstrate how the notion can be formulated independently of a principal bundle

or connection.

One perhaps surprising aspect of parallel transport is its path-dependence: two space-time
curves with the same endpoints that are lifted to the same initial point in the principal
bundle might then have different endpoints in the fiber above their shared final point. If

parallel transport is path-independent, at least locally, the connection is said to be flat.

The notion of holonomy makes precise the sense in which the connection exhibits path
dependence. Given a principal bundle P with connection I'; a closed curve « : [0,1] — M
starting and ending at x € M, and a point u € 7 '[z], the holonomy of ~ (relative to P,

I, and u) is the element g of G that relates the initial point u of the lift 4, of v to its final
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point, i.e., (1) = ug = §(0)g (see figure 3.3). The holonomy g of v thus characterizes the

sense in which the space traversed by v is “curved,” or fails to be flat.

A8 =) o

H(0)$

D=0

Figure 3.3: A holonomy assignment.

In general the holonomy g of v will depend on one’s choice of lift point u € 7—![z]. However,
if we look at the holonomy map Hy, : L, — G from closed curves based at z = 7(u)
to G given by the holonomies of curves relative to I' and wu, the resulting assignments will
be related to those induced by another element v € 7~ ![z] by a Lie group isomorphism
(specifically, an inner automorphism). Thus we can say that the holonomy map gives us
the same information about closed curves regardless of lift point, insofar as isomorphisms

preserve all relevant information.

There is also a sense in which it does not matter what base point x we choose. Consider
a closed curve v based at a distinct point 2 € M. If we fix a choice of curve a from = to
', then the (reparameterized) composition of curves a ' ey e v is in L, and Hr 4,1)(7) =
Hr (o~ e~ eq). This identification will depend on one’s choice of connecting curve a, but

again, all such assignments will be related to one another by an inner automorphism.

A holonomy map can be defined independently of an underlying principal bundle and con-
nection as follows. Pick a point x € M. We'll say that two curves v1,7 € L, are thinly

equivalent, written 7, ~ 7y, if there exists a homotopy h of 7;' e 7, to the null curve
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id, : [0,1] = 2 such that the image of h is contained in the image of v; ' @ 75. In other
words, curves are thinly equivalent whenever their images differ by at most curves of empty
interior. Note that thinly equivalent curves will always have the same holonomies by the

equivariance of principal connections.

We can now define a generalized holonomy map on M with reference point x and structure
group G to be a map H : L, — G such that (1) for any 71,7 € L,, if 71 ~ 72, then
H(v1) = H(y2); (2) for any 71,72 € Ly, H(7y1 @ v2) = H(v1)H(72); and (3) H is smooth in
the appropriate sense (See Barrett (1991) and Caetano and Picken (1994), who each present
slightly different smoothness conditions.). We will thus call a holonomy model of a Yang-
Mills theory with structure group G a triple (M, x, H) consisting of the space-time manifold

M, base-point x € M, and generalized holonomy map H : L, — G.

As is apparent from the way in which holonomy maps were defined from principal bundles
with connections, there will be a holonomy map corresponding to every principal bundle
with a connection. Moreover, Barrett (1991) showed how a principal bundle with connection
can be reconstructed from a generalized holonomy map (as did (Caetano and Picken, 1994)
for a different definition of generalized holonomy map). These two processes are inverse,
giving a bijective correspondence between principal bundle and holonomy models of Yang-
Mills theory. Nonetheless, a few philosophers of physics—most notably Richard Healey in his
2007 book Gauging What’s Real—have argued that holonomy models have “less structure”
than and are thus preferable to principal bundle models. The argument rests on the claim
that holonomy models lack the excess “structure” that principal bundle models have in the

form of choice of gauge, which is not physically meaningful.

This is where TCM comes in. Theorem 3.2 sharpens the results of Barrett (1991) and
Caetano and Picken (1994) by showing that the relationship between the sets of models of
the two interpretations is more than just a bijection, it is, for a definition of the category

Hol of holonomy models, a (definable) categorical equivalence. Since this gives a precise and
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well-motivated sense in which principal bundle models do not have excess structure relative
to holonomy models, those who still want to claim otherwise must undercut either the fact
that an equivalence of categories is the appropriate notion of structural comparison, or that

this Hol is the appropriate category.

The right choice of “holonomy isomorphism” to use for defining the category Hol of holonomy
isomorphisms is a subtler business than in PC. We want it to account for the three basic ways
in which two holonomy models (M, z, H) and (M’,z’, H') can be said to represent the “same”
holonomy data: (1) M and M’ can be related by a diffeomorphism—since diffeomorphism
is the notion of isomorphism we use for manifolds, this shouldn’t change the information
encoded in M; (2) if M’ = M, H' might be the “translation” of the holonomies at x to
x’ via some curve «; and (3) the values taken by H and H’ can be related by a Lie group
isomorphism—this can be taken to correspond to a change in “lift point” in the principal

bundle language, or merely a change in how we’re using GG to represent holonomy data.

We define holonomy isomorphism for their category Hol as follows. Let H : L, — G and H' :
L, — G be (generalized) holonomy maps on manifolds M and M’. A holonomy isomorphism
from H to H'is an ordered triple (¥, o, ¢) where W : M — M’ is a diffeomorphism, ¢ : G —
G is a Lie group isomorphism, and « is an equivalence class of piece-wise smooth curves
a : [0,1] — M satisfying «(0) = ¥~!(z’) and «(1) = =z, which are all such that for any

Y€ Ly, po H(y) = H'(Vo (o' eyea)).

3.4 A PSS Analysis

In this section, I prove that the functor Cz : Hol — PC, given by the Barrett-Caetano-
Picken reconstruction, forgets structure. This functorial relationship indicates that the prin-

cipal bundle formalism does not include any additional structure absent from the holonomy
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formulation, for the general reasons suggested in chapter 1. This result implies that there is
no “gauge structure” present in the principal bundle formalism which can be eliminated by
instead using the holonomy formalism. This undercuts Healey’s primary argument for the

relative parsimony of the holonomy formalism,

This functor does split. The functor D, : PC — Hol, that takes principle bundles with
connection to holonomy maps defined at the point u in that bundle, is inverse to C'z and
forgets stuff. The stuff that D, forgets can be thought of as the rest of the principle bundle,
beyond the holonomy sub-bundle. For some principle bundles, the holonomy sub-bundle is
the entire bundle, so no stuff is forgotten for these objects. So there is a different sense
in which the holonomy can be thought of as more parsimonious than the principle bundle
formalism, in that it has “less stuft”. However, this is easily ameliorated by considering only
the holonomy sub-bundles rather than entire bundles in the principal bundle formalism. So
it is not principal bundles per se that fail to be parsimonious, only the fact that the principal

bundles used are sometimes larger than strictly necessary.

The structure that C'g forgets is indicated by the extra information that is required to define
an inverse D,—namely, a point © € P. In this sense, moving from PC to Hol requires
picking out a preferred point, whereas in PC no point has special status relative to any

other.

3.4.1 Proofs

Theorem 3.1. The Barrett reconstruction functor C' : Hol — PC forgets only structure.

The proof of Theorem 3.1 depends on the following result concerning the notion of holonomy

isomorphism we will presently define. This result is of some interest in its own right.
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Theorem 3.2. Let G — P ™ M and &/ — P’ ™ M be principal bundles with principal
connections I and [ respectively, and suppose that M and M’ are connected. Suppose there
are points u € P and v’ € P’ such that the holonomy maps based at u and ' are isomorphic.

Then there is a connection-preserving principal bundle isomorphism between P and P’

Our proof of Theorem 3.2 will depend on the following three lemmas. In what follows Tt ., (u)
denotes the parallel transport via a connection I' on a principal bundle P of a point u along

a curve v : [0, 1] — M which is such that v(0) = 7(u). In other words, Tt (u) = 4,(1).
Lemma 3.3. Let G — P 5 M be a principal bundle and let ' be a principal connection
on it. Then for all z € M, u € 7 Yz], v € L., g € G, and all piece-wise smooth curves
a,a’ :[0,1] = M such that «(0) = o/(0) = 2 and «(1) = /(1), the following hold:

(a) Tra-tear(4) = Tt a1 (TT o (1)), where a! is the reverse orientation of a.

(b) Tro-1(Tro(uw)) = u iff Tr o (u) = Tt o (u)

(c) Hru(y) = eq, the identity element of G, iff Tt ,(u) = u

(d) Tra(ug) = Tralu)g
Proof. (a) and (b) follow from the fact that every curve o has a unique horizontal lift &,

which is such that &,(0) = u. (c) follows from the definition of holonomy map. (d) follows

from the equivariance of the connection under the right action of G on P. m

Lemma 3.4. Let G — P 5 M be a principal bundle and let I" a principal connection on
it. Let a : [0,1] — M be a piece-wise smooth curve such that a(0) = z and a(1) = 2’. Then

for all u € 7 '[2] and all v € L, if v =Ty 4-1(u) € 7 '[x], then

HFM('V) = an(a_l eyeq)
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Proof. Suppose Hr,(y) = g € G, ie. that Tr,(u) = ug. Then by Lemma 3.3 (b) and
(d), vg = Tra-1(w)g = Tra-1(ug) = Tra—1Tr(v) = Tra-1T14TT0(V) = TTa-1eyea(V)-

Therefore Hr ,(a ' evyeoa) =g O

In the following lemma, we make use of the holonomy sub-bundle ®r, — Pr, X M asso-
ciated with a point u € P and principal connection I' on a principal bundle G — P 5 M,
as discussed in detail §I1.7 of Kobayashi and Nomizu (1996). This is the bundle consisting
of all points of P that may be joined to uw € P by a horizontal curve. The Reduction Theo-
rem (Theorem I1.7.1 of Kobayashi and Nomizu (1996)) establishes the following about this

bundle:

1. &ry — Pry X M is a reduced sub-bundle of G — P 5 M with the holonomy group

®r,, as its structure group and with 7 = mp., (and similarly F, ,, is a reduction of

u

P).

2. The connection I is reducible to a connection T' = I'1z on Pr, (and similarly, I reduces

tO f‘/ - F/“:{./)

That Pr, is a reduced bundle of P means in particular that ®r, is a Lie subgroup of G and
that each element of P may be written (not necessarily uniquely) as za for some z € Pr,,

and a € G.

Lemma 3.5. Let G — P ™ M and G' — P’ ™5 M’ be principal bundles with principal
connections I' and I respectively, with M and M’ connected. Let ®r, — FPr, " M and
Prv o — Proy ™ M’ be the holonomy sub-bundles of P and P’ at u and u’, respectively,
and T' and I” be the restrictions of ' and I” to Pr, and Py, respectively. If there is a

principal bundle isomorphism (f, ¥, ¢e,.,) : Pru — Ppv,, that preserves the connections I'

and I, where W : M — M’ is a diffeomorphism and ¢ : G — G’ is a Lie group isomorphism,
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then (f, ¥, ¢;e,,) can be extended to a principal bundle isomorphism (F,¥,¢) : P — P

that preserves I' and I".

Proof. Define F': P — P’ from f as:

F(pg) .= f(p)o(g) forpe Pry, g€ G

To prove that (F, V¥, ¢) is a principal bundle isomorphism, we must show that F' is well-
defined and a diffeomorphism, and that the following identities hold:

l.77oF=Vonr

2. moF 1 =U"1loq

3. Forallve P, g€ G, F(vg) = F(v)¢(g)

Finally, we must show that (F, ¥, ¢) preserves I'.. We do this by showing that the bundles

agree, via the transformation (F, ¥, ¢), on which curves are horizontal.

To see that F' is well-defined, consider any v € P, and suppose there are z,y € Pr, and

g, h € G such that v = g = yh. Then = = yhg™ ', and hence

F(zg) = F((yhg ")(9)) = flyhg™)o(g) = fy)e(h)d(g~)o(g) = f(y)d(h) = F(yh)

To show that F' is also a diffeomorphism, it is sufficient to show that F'is bijective and that
it is locally a diffeomorphism. First suppose F'(v) = F(w) for some v,w € P. Then by the
definition of F', m(v) = m(w), so we may write v = xg and w = xh for the same = € Pr,,.
Thus f(x)¢(g) = F(v) = F(w) = f(x)o(h), but since ¢ is an isomorphism, this implies that

= h and hence v = xg = yh = w. Thus I is injective. Now consider any v' € P’. Write
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v' = a'g’ for some 2’ € P, ¢ € G". Then F(f~*(a")¢~'(¢')) = 2’g' = +'. Since f and ¢

are bijections, f~!(2')¢~1(g’) is a well-defined element of P. So F is bijective.

Finally, let v € P, and let U C M be a neighborhood of m(v) which is such that a local
trivialization of 7 is defined on U and a local trivialization of 7’ is defined on W[U]. Then
there is a local section ¢ : U — Pr,, and f oo o ¥~ is a local section of Py, ,, on W[U].

Then for p € 7 ![U],

F(p)=F(oon(p)f(p)) = fooon(p)pod(p),

where 6 : 77! [U] — G as p — a, where a is the unique element of G such that p = o(7(p))a.

To see that 0 is smooth, let £ : 77 [U] — U x G be a local trivialization of P. Then

0(p) = ((projg 0§ 0 o o m)(p)) ™" (proj 0 £)(p)

where projp : U x G — G acts as (z,b) — b. Thus Fj -1y} is the product of compositions
of smooth maps, and is hence smooth. The argument for its inverse follows by analogy,
once one notes that F~!(z'¢’) = f~1(a')¢~(¢'). This completes the argument that F is a

diffeomorphism.

We now confirm that the identities 1-3 above hold. Let v € P. Then v = xg for some

x € Pr, and g € G. Since f is an isomorphism and 7(v) = 7(z),

So o F = Uor. An identical argument establishes that mo F'~! = U~ o 7/. Now suppose

we have some v € P and g € G. Then v = zh for some z € Pr, and h € G. It follows that

F(vg) = F(zhg) = f(x)¢(hg) = f(x)¢(h)d(g) = F(v)(g).
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So F(vg) = F(v)¢(g), and thus (F, ¥, ¢) is a principal bundle isomorphism.

It remains to show that (F, U, @) preserves I'. Let  be a smooth curve in M, v € 7~1(7(0)),
and suppose v = 2g, * € Pr,, g € G. Since I' is a principal connection, the lifts of v to «

and v are related as 4, (t) = 4,(t)g. Since f takes I to I", we have that

F(3:(t) = F(32(t)g) = f(32(8))0(9) = W 074 (£)d(9) = ¥ 0 7 py) (1)
Thus I and I agree on horizontal curves. O]

We now turn to the principal result of this section, which we restate here for convenience.

Theorem 3.1. Let G — P % M and & — P' ™ M’ be principal bundles with principal
connections I and I respectively, and suppose that M and M’ are connected. Suppose there
are points u € P and v’ € P’ such that the induced holonomy maps based at v and u’ are

isomorphic. Then there is a connection-preserving principal bundle isomorphism between P

and P'.

Proof. We first show that there is a principal bundle isomorphism (f, ¥, ¢) : Pr, — Pli,,u,

that preserves I', where ®r, — Pr, 5 M and P = Py Ty M’ are the holonomy

sub-bundles of P and P’ at u and u/, respectively, and T' and I are the restrictions of T
and I and Pr, and P, respectively. We then invoke Lemma 3.5 to extend (f, ¥, ¢) to a

principal bundle isomorphism (F, ¥, ¢) : P — P’ that preserves .

First, since Hr, and Hy, ,, the holonomy maps induced by I'" and I and based at u and
u/, respectively, are isomorphic by assumption, there must be some holonomy isomorphism
(V,a,¢) : Hry — Hiv,. Let z := Tpo1(u) € 7'(a(0)), where o € a. (Note that
z € Pr,, and moreover P, = Pr, i.e., every element of P, can be connected to z via

some piece-wise smooth, horizontal curve). Define f : Pr, — P[, ,, as follows:
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(i) f(z) =2

(ii) For any v € Pr,, pick some piece-wise smooth curve 8, € Chur(.) (Where Chyr(s)
denotes the set of piece-wise smooth space-time curves v : [0,1] — M such that
7(0) = 7(2) = a(0)) such that v = T} 4 (2), the parallel transport in P, of z along

f3, according to the connection T'. Then set f(v) := T (u'), the parallel transport

I, Wop,

in 7 of v’ along ¥ o S3,,.

We claim that the triple (f, ¥, ¢) realizes the desired principal bundle isomorphism. To
prove this, we must show that f is well-defined, a diffeomorphism, and that the following

identities hold:
1. 7o f=Vonr
2. 7o fl=0"tlog

3. Forallv € Pry, g € ®r., f(vg) = f(v)d(g)

Finally, we must show that (f, ¥, ¢) preserves the reduced connection r.

We begin by showing that f is well-defined. Consider any point v € Pr,. Suppose the
curves 3 and (' € Chyz(z) arve such that T 4(2) = Tf 5(2) = v. We want to show that
TIl",‘llo,B
element of G (and hence of ®r, and ®r,). By Lemma 3.3 (a) and (b), Tt g-1,5(2) =

() = T

B wop (u/). Let 87! denote the reverse orientation of 3, and e the identity

Tt 51 (Tr p(2)) = T 3-1(v) = 2. Thus by Lemma 3.3 (c), Hr (37" e ') = eg. Since ¢ is
a Lie group isomorphism, we also know that ¢(eg) = ec. By Lemma 3.4, then, we know
that e = Hr.(3'e ) = Hr,(ae 31 e 3 ea™) = Hp,(a" (B! e 3)), where & is
as in the definition of holonomy isomorphism in section 3.3. Since (¥, a, ¢) is a holonomy
isomorphism, we know that eqr = ¢ o Hr ,(a" (B~ e 3)) = (Hpwooa)(a (B efd)) =
Hrs (U o (87! e 3)). This tells us that v’ = TEs wogs-1e9) (W) = Th gog i (TF, 4op (). By
Lemma 3.3 (b), this implies that Tf,,%ﬁ(u’) =T (u'). So f is well-defined.

r I, Wop’
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We now show that f is bijective. (Later we will also show that f and f’ are smooth,
completing the proof that f is a diffeomorphism.) Let v,w € Pr,, and suppose f(v) = f(w).

We want to show that v = w. Since f(v) = f(w), we know that T%, Gos, (W)= f(v) = flw) =

Tf,\y of (v). By Lemma 3.3 (a) and (b) and the fact that ¥ is a diffeomorphism, we get

that v = T (T (u')) = T )( u') = TL Thus by

(u').
T7,(ToBy)~ 1\ 1V, Wop,, IV,(ToBy)~Le(Topf,, I’ \I/O(Bv Sw)

Lemma 3.3 (c¢) we get that Hy (¥ o (8, ® 8,)) = ec. Since (V,q,¢) is a holonomy
isomorphism, this implies that ¢(Hr (@~ (3;' e ,))) = ecr, which, since ¢ is a Lie group
isomorphism, implies that Hr, (& '(3,'e,)) = eg. By Lemma 3.4, then, Hr (3, ®3,) =
eqg. Thus by Lemma 3.3 (c), v = Ty 4 (2) = T; 45, (2) = w. So f is injective. Now let

NS Pf, ,, and let the curve 3" € Cyp () be such that T7

% B’( u') = w’. Then there is a

unique v € Pry, such that v = 15 g 1,4(2). Then f(v) =T, | (v) = Tf, @O(Qfloﬂ,)(u’) =
1%, 6/< uw') = w'. (The second equality follows from fact that f is well-defined.) Tt follows that

f is bijective.

We will now establish identities 1-3. Let v € Pr,. Then

T (f() = T (Tf yop, (1) = (¥ o B,)(1) = W(B,(1)) = ¥(7(v)).

So @ o f = W o 7. By identical reasoning, 7o f~! = U~! o 7. Finally, let v € Pr, and
g € ®r,. First note that by Lemma 3.3 (d) and the well-definedness of f, we can assume
without loss of generality that 8,, = 8, ., By Lemma 3.3 (a), f(vg) = T, Go(uep )(u’) =

T, wos, (T3, Yo, («')). By the definition of holonomy isomorphism, T g4, (4') = @' Hrrw (Po

Big) = W Hpw(Vodo (e fyea™)) =uo(Hru(oweByea)) =ud(Hr:(By)) = u'e(g).
Plugging this equality into the last one, and using Lemma 3.3 (d), we get: f(vg) =

T3 g, W 0(9)) = Th, o, (W)D(9) = [(0)0(9)-

Next we show that f preserves I'. It suffices to show that for all piece-wise smooth curves

v:[0,1] = M and all w € 7= (v(0)), f(Tt,(w)) = T} \I,owf(w). But this follows easily from
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the definition of f: f(Ty_ (w)) = T} (u') = T% )(u’) =T, (T (u)) =

F,\IloﬁTfﬂw) T Wo(vyeSBy T, Woy
T, (f(w).

To complete the proof, we have only to show that f and f~! are smooth. Then f will be a
diffeomorphism, and (f, ¥, ¢) will be a principal bundle isomorphism that preserves I'. Let
v € Pr, and let V' C M an open neighborhood of = 7(v) on which a local trivialization
of Pr,, is defined. Let V' be a neighborhood of W(z) on which a local trivialization of P},
is defined. Let g be a metric on M, ¢’ = U,(g). Let U be an open subset of V N ¥~1[V]
(containing x) on which the exponential map exp, is a diffeomorphism from a subset U, C

T.M onto U.

By definition, exp,(§) = 7¢(1), where v, is a g-geodesic in M such that ( ) =¢. We

e
may also “lift” exp, to v by defining exp, : U, — Pr,, where £ — (¢),(1). Similarly we
=V,

may define expy,) : Uy W) P, on M’ using ¢', in which case U’ [U,], and for

any £ € Uy,

exXpy () (§) = Ve (1) = ¥ o yy=(ery(1) = ¥ o exp, (¥*(&))

since ¢ = U,(g). (Recall that since ¥ is a diffeomorphism, we may define the pullback of

vectors as U* = (U~1)*.) We also get that

—

&Py (€) = (Ge) ry (1) = (Y 0 Yur(e)) (o)
= Tlf",\llo('yq,*(g/”ﬁv)(u/)

= (T g eryen (1))

= foexp, (¥'().
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Now define a smooth local section o : U — Pr,, as ¢ = exp,, o exp, . Then

o' =foooU = foexp,oexp, oW =&xpy, oV, oexp, oW

is a smooth local section of Py, ,,. Now let n: U x ®p, — 7~ '[U] be a local trivialization
of Pr, such that n~'[o[U]] = U x {eg}, and let ' : W[U] x &1, ,, — 7' [W[U]] be a local
trivialization of P}, ,, such that n~'[o’[¥[U]]] = ¥[U] x {eg'}. Then we can write f locally
as

fiu=no(Wx¢p)on!

since for all w € #71[U], we can write w = yg for some y € o[U]. Then

o (og)on(w)=1"o(¥oe)(F(w),g)
=1/ (Vo7 (w), ¢(g))
=1 (¥ o 7t(w), ear)p(g)
=o' (Vo 7(w))e(g)

= foooT™H(Tom(w))e(g)

Since v was arbitrary, f is smooth everywhere. An analogous procedure can be performed

for f=1. O

We now prove the main result. Again, we restate it first for convenience.

Theorem 3.2. The Barrett construction functor Cz : Hol — PC forgets only structure.
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Proof. Let Cp : Hol — PC be a functor that takes holonomy maps H : L, — G on a
manifold M to a principal bundle G — P 5 M and principal connection I' given by the
Barrett reconstruction theorem—i.e., to a bundle and connection (G — P = M, T') such that
there exists a point u € 7 ![z] satisfying Hr, = H—and takes a holonomy isomorphism
(®,a,¢) to the principal bundle isomorphism (F,W¥,¢) : Cp(Hr,) — Cp(Hy,,) given in
the proof of Theorem 3.2. First, note that C'g clearly preserves holonomy data, and thus
preserves empirical content in the required sense. We will first show that Cg is indeed a
functor, and then show that C'g is one half of an equivalence, by showing it is full, faithful,

and essentially surjective.

First, it is clear from the definition of F' that Cg((V,a,¢): H — H') = (F,V,¢) : Cp(H) —
Cp(H'). Tt remains to show that C'(idy) = ide, ) and that Cg(g o f) = Cs(g) o Cr(f)
for any arrows f : H — H' and g : H — H” of Hol. So let H be an arrow of Hol,
suppose Cp(H) = (G — P = M,T'), and suppose u € 7~ ![z] is such that Hy, = H. Then
Cp(idy) = C’(B(idM,%, ide)) = (idp,idps,ide) = idey ). Thus identities are preserved.
Now let (¥, o, ¢) : H — H' and (V',o/,¢') : H — H" be isomorphisms of holonomy maps
H:L,—-G H :Ly— G and H" : L,» — G". Let (P,I'), (P',I"), and (P",T") be
the corresponding principal bundles and connections in the Barrett construction, and let
uw € 7 tz], v € 77 Ya'], and " € 7"7'[2"] be such that H = Hr,, H = Hr,s, and

H = Hryw ,», respectively. Then

Ce(V,a,¢)0 (V' o, ¢)): H— H"
=Cp(V oV ae (¥ lod)¢og): H— H"

= (F", V' oW, ¢ 0¢): Cg(H) = Cg(H")
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Where for v € P, it v = zg for x € Pr,, g € G, then

F”(U) = TF”,\pflo\p(a.(\pfloa'))(U”)<¢/ © ¢> (9)
= F'(f(x)¢(g)) = (f" e f)()(¢"© 9)(9)

=F"o F(v)

We now show that C is faithful, and essentially surjective, but not full.

To see that Cp is faithful, suppose there are two holonomy isomorphisms (V,q, ¢) and
(¥, a,¢') : H— H' which are such that Cg(V,a,¢) = Cp(V,d/,¢') = (F, V", ¢"). Then
by the definition of C'z on arrows, ¥ = V' = ¥” and ¢ = ¢/ = ¢”. Thus for all v € L,

HUo(a'eyea)=¢poH(y)=¢ oH(y)=H (Vo (d/ ' evyed))

Thus o = ¢, and so (V,a, ¢) = (¥, o/, ¢') and Cp is faithful.

To see that Cp is essentially surjective, let G — P = M be a principal bundle with
connection I', (P,T") € PC. Then Cg(Hr,) = (P,T") for some u € P. So Cp is essentially

surjective.

To see that Cg is not full, consider the holonomy map H : L, — G on a contractible
manifold M defined by v — eg € Hol for some x € M, where eg is the identity in G.
Then Cp(H) = (P,T') for some principal G-bundle over M and flat connection I'. Since
this holonomy map is flat and M is contractible, there are no non-trivial equivalence classes
of curves a (under the equivalence relation ~ defined in the paper), so all elements of
Homy, (H, H) have the form (¥, id,, ¢) for some spacetime diffeomorphism ¥ and some Lie
group automorphism ¢ : G — G. Cp(V¥,id,, ¢) = (F, ¥, ¢) € Hompc((P,I'), (P,T")), where
F' is constructed by the procedure in Theorem 1. Let g be any non-identity element of G.

Then (g- F, ¥, ¢) is a distinct element of Hompc((P,T'), (P,T')) from (F, ¥, ¢). However, (g-
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F, U, ¢9) # Cp(V,q,¢) for any (¥, a, ¢) € Hompye (H, H), since elements of Homyye (H, H)
are uniquely defined by ¥ and ¢. Thus Cp restricted to the automorphisms of H is not

surjective. n

3.5 Wilson Loops

Healey (2007, p. 73) also discusses Wilson loops, or the traces of holonomy maps!, as a
possible alternate formalism for Yang-Mills theory that lacks the “excess structure” of the
principal bundle formulation. Healey here appears to follow Gambini and Pullin (2000)
and other mathematical physicists in claiming that the method introduced by Giles (1981)
to reconstruct holonomy maps from Wilson loops modulo similarity transformations proves
that Wilson loops contain all of the gauge invariant physical content of a Yang-Mills theory.
The idea is that since the trace of a Lie group matrix will be invariant under conjugation
by other group elements (i.e., transformations of the form a + gag™' for a,g € G), and
since holonomy maps defined at different base points are related by conjugation, moving
from holonomies to Wilson loops eliminates the excess baggage that comes with the choice
of base-point, and thereby expresses only the parts of the theory that are independent of

such a choice of representation.

Unfortunately, it is not clear that the proofs provided in Giles (1981) prove that holonomies
can be reconstructed from Wilson loops in full generality. Giles provides a method for
constructing matrices with traces corresponding to Wilson loop values to associate with
equivalence classes of curves. However, Giles notes that he has not imposed sufficient condi-
tions for admissible generalized Wilson loops so as to guarantee that the reconstruction has
all of the desirable properties of a holonomies. It is nonetheless a promising direction for

research.

IThe trace is the sum of diagonal elements of matrices corresponding to the holonomy values (elements
of the group G) represented on some vector space.
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This lack specificity for the conditions on Wilson loops for the Giles reconstruction prevents
us from adequately defining a category Wil of Wilson loops and comparing it to PC and
Hol. We can nonetheless still sketch what such a TCM analysis might look like. Analogously
to Hol, the objects of Wil would be a generalized Wilson loop maps W : L — C (where
loops no longer require a fixed base point x) satisfying certain properties which would allow
them to be thought of as the traces of some holonomy map. Whatever the isomorphisms
are, they should be such that isomorphic Wilson loop maps can be thought of as the traces

of the same holonomy maps under possibly different matrix representations.

The functor F), : Hol — Wil takes the trace of holonomy values according to some vector
space representation p : G — GL(V). For the Giles reconstruction C¢ : Wil — Hol
to be a proper reconstruction, it would need to be faithful and essentially surjective, and
conversely F,, would need to be full and essentially surjective. But F, might forget stuff.
Indeed, we might expect it to. The motivation for moving to Wilson loops, after all, was to
eliminate distinctions between conjugate holonomy maps. If F}, does so, it will identify maps
related by conjugation, including those related by a base-point transformation. So at the
very least, we would expect base-point transformations given by distinct curves—and thus
distinct holonomy isomorphisms—to map to the same Wilson loop isomorphism under F,,.
As with Cg : Hol — PC, the “structure” that Cg forgets is indicated by what is required
in order to define an inverse. A functor for F, : Hol — Wil will take holonomies to their
traces in some matrix representation p of G, and so requires fixing a preferred representation.
This can be expressed more abstractly as defining a character? on G, but it still involves

specifying an additional structure of some sort.

While the functor Cq : Wil — Hol might provide us a sense in which any Wilson loop map
W . L, — C allows us to construct a holonomy map H : L, — G, it does not allow us to

reconstruct all of the gauge-invariant content of the holonomy H (7y) of a specific curve v from

2See Brocker and tom Dieck (1985) chapter 2 for details.
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its Wilson loop W (7). If the holonomies of two loops are related by non-trivial conjugation
by a Lie group element, then their holonomies will be related by non-trivial conjugation by

some Lie group element in any representation of the holonomies at any base-point.

In particular, suppose that for a holonomy model H : L, — G, I have two loops v; and
Y9 € L, which are such that H(y;) = g1 and H(v,) = g2 = agia™' = aH(y;)a™! for some
g1, 92,a € G, and go # g1. Let H' be a distinct but isomorphic holonomy model on the same
base space which is such that H'(y) = bH(y)b~! for some b € G for all v € L,. In other
words, H and H' can be thought of as corresponding to the same principal bundle model with
a different choice of base point. Then H'(vs) = bH (v2)b™! = baH (y1)a= b~ # H'(7,). Thus

if holonomies of v; and v, are related by some non-trivial conjugation in some holonomy

model, they are so in any holonomy model related to it by change of base point.

Another worry is that the trace of a Lie group element is not in general invariant under
different choices of representation p of the Lie group G. This undermines a crucial role of
principal bundles with connections in coordinating the influence of the Yang-Mills field on
other fields which take values in different vector spaces (see Weatherall (2015) for details).
Performing this function requires the ability to interpret representations of GG on different
vector spaces corresponding to different space-time fields. Elements of these representations
will have different traces, and it is thus unclear how a Wilson loop picture could play this

unifying role of the principal bundle with connection.

In sum, an adequate presentation of Yang-Mills theory in terms of Wilson loops is not fully
developed, but it is promising and worthy of pursuit. It also would take the apparent non-
locality of holonomies a step further, attributing properties not just to closed curves but to
the behavior of curves when conjugated with other curves. This indicates the presence of
some interesting, possibly generalizable trade-offs between an increasingly algebraic picture
with fewer distinct but equivalent models, and the ability to describe systems locally in

space.
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PC <= Trans

cs

Hol

ca|

Wil

Figure 3.4: Yang-Mills groupoids and the functors between them.

3.6 Discussion

The goal of this chapter was to apply TCM to elucidate the relative structural content of var-
ious Yang-Mills formalisms. Doing so involved proving novel results about the relationships
between principal bundles and holonomy maps, sharpening the picture Barrett (1991) pro-
vides with his reconstruction theorem. Schreiber and Waldorf (2009) have similarly proved
an equivalence between PC and a category Trans of generalized parallel transport func-
tors. Our work expands the menagerie of Yang-Mills categories to include Hol and Wil,

generating a TCM portrait illustrated in figure 3.4.

The Barrett construction functor Cp : Hol — PC and the (not completely defined) Giles
functor Ci : Wil — Hol both simultaneously forget structure and add stuff. The structure
that each forgets is indicated by what is required to construct an inverse. For Cz : Hol —
PC, constructing an inverse involves choosing a preferred point w in each principal bundle
object. For Cg : Wil — Hol, constructing an inverse would require (at least) choosing
a preferred matrix representation of the Lie group. Cp can be thought of as adding the
non-holonomy sub-bundle “stuft” of a principal bundle, while Cs adds base points to curves

on spacetime.

This PSS story does not straightforwardly refute Healey’s claim that holonomies are more
parsimonious than principal bundles. Rather, it prompts more specificity regarding what

parsimony considerations are supposed to refer to, and in what ways they appear in this
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case. It is not the case, for example, that principal bundles have “more structure” than
holonomies in the form of gauge, since the functor D, : PC — Hol demonstrates how gauge
transformations are similarly present in the holonomy models. The Barrett construction
functor C'z : Hol — PC additionally reveals how a principal bundle (at least, the holonomy
sub-bundle), is structurally present in the holonomy formalism, even though it is not explic-
itly stated. Moreover, holonomies are in a sense more “structurally presumptuous”: moving
from PC to Hol requires picking out a preferred element u of each principal bundle in order

to define D, : PC — Hol.

Healey might nonetheless claim that the sense of parsimony he was invoking is more ad-
equately captured by the fact that D, : PC — Hol forgets stuff. Indeed, as Bradley
and Weatherall (2019) argue, philosophers of physics do sometimes implicitly invoke “stuff-
forgetting” as a way of increasing parsimony, as in Nguyen et al. (2017). As argued in
chapter 1, however, PSS analysis is less clear and more perspectival in cases involving split
functors like C'z. From this vantage, however, the even more structured but less stufty Wil-
son loops may be more appealing than holonomies. One interesting upshot of the analysis
of Wilson loops in section 3.5 is that it reveals how quite a lot can be said about a PSS re-
lationship without precisely defining the categories or functors involved. Category theoretic
tools can be employed to express the “shape” of concepts that have not been quite pinned

down, and reveal the functional role that they play.

Figure 3.4 tells a story about various formalisms that can be used to represent states of affairs
according to (classical) Yang-Mills theory. This general picture relating different formalisms
and expressing their trade-offs is the most significant upshot of this project. Physicists
do not typically think of classical Yang-Mills theories as themselves physically meaningful
prior to being quantized. But the right way to quantize Yang-Mills theories is still an
open problem. In fact, the Clay Mathematics institute offers a $1,000,000 prize for a proof

of the existence of a model of quantum Yang-Mills theory satisfying minimal conditions for
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empirical adequacy. Quantization procedures start with some classical presentation of Yang-
Mills theory, and and can be expressed functorially.® The functorial relationships between

classical formalisms described here might prove useful in this cutting edge endeavor.

3See, for example, Rejzner (2016).
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Chapter 4

Topological Data Analysis

4.1 Introduction

Data scientists take large quantities of noisy measurements and transform them into tractable,
qualitative descriptions of the phenomena being measured. While it frequently involves sta-
tistical methods, the burgeoning field of data science distinguishes itself from statistics by
branching out to a wider range of methods from mathematics and computer science. One
such distinctly non-statistical method of growing popularity is topological data analysis
(TDA). Topology is the study of the properties of shapes that are invariant under contin-
uous deformations, such as stretching, twisting, bending, or re-scaling, but not tearing or
gluing. TDA aims to identify the essential “structure” of a data set as it “appears” in an
abstract space of measurement outcomes. This paper is an attempt to understand how it

achieves this, drawing on the TCM perspective developed in chapter 1.

Data scientists themselves invoke category theory to justify TDA’s core methods. At the
heart of TDA is the concept of homology, an abstract mathematical interpretation of “hole”

structure. Homology exhibits the category theoretic property of functoriality, meaning it
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is defined not only on models but on structure-preserving functions between them. There
are ubiquitous hints in the TDA literature that its practitioners consider the functoriality of
homology to be central to its utility in application, but this maxim does not appear to be
explored in much depth. This discussion of TDA aims to provide insight into how scientists
are and can be motivated by category TCM-esque considerations, and the ways in which
these motivations do and do not align with those of philosophers of physics employing the
same tools. I argue that the utility of category theoretic methods to researchers in this con-
text is rooted in the particular geometric nature of the mathematical models. The category
theoretic framework helps to connect topological models, which have straightforward phys-
ical interpretations, with algebraic models, which are more abstract but easier to process

computationally.

In section 4.2 T describe TDA in detail. Section 4.3 discusses the role of category theory
in TDA, and section 4.4 examines the role of spatial reasoning in TDA, and how it can
give us insight into the connections between the data scientists’ and philosophers’ notions of
“structure.” I conclude by reflecting on how this discussion can enrich the account of TCM

presented in chapter 1.

One curious feature of the TCM literature in philosophy of physics is its focus on groupoids,
or categories with only isomorphisms—invertible, fully structure-preserving maps between
models. This is in stark contrast to the categories that appear in TDA, where maps between
models that “forget” some structure play a central role. This indicates that groupoids may
be insufficient for characterizing the representational capacities of formal models, and only
reveal a fraction of the potential insight TCM has to offer. Philosophers of physics have
largely relied on the notion that the groupoid tells us when two models represent the same
system. In TDA, we see how additional arrows can give insight into the internal character
of models, expressing not just the fact of sameness of models, but which parts of a model in

one formalism correspond to which in another, as well as cross-model identification of parts.
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4.2 'Topological data analysis

The phrase “topological data analysis” is used to refer to a variety of data science practices
that use tools from algebraic topology to make inferences about the “shape” of data clouds
as they appear in the “space” of possible observations. For now, the term data refers to a set
of real vectors corresponding to a series of observations. This is an adequate definition for
capturing natural language use of the term, but one might object that it does not necessarily
capture what data is. One of the goals of TDA is to circumvent some of the arbitrariness
involved in presenting data as real vectors. A data cloud can thus be thought of as a visual
representation of this set of vectors as “points” in a (high dimensional generalization of)
space. But in what space? The abstract “space” where data lives is generally some form of
metric space, or set X of points (including at least the data points) together with a notion
of “distance” d( , ) between the points. For example, I may have data about the weights
of each of a large number of potatoes. The distance between these data points would just
be the pairwise difference in weight between two potatoes according to a fixed unit, such as

pounds.

An advantage of looking at geometric properties is that it moves away from the full vector
space, which includes a choice of which value counts as “0” as well as choice of coordinate
system. For the philosopher of physics, this might be sufficient—indeed, complaints about
arbitrary choices of coordinates are common in this literature. But further complications
arise outside of physics. For example, in social science, subjects may be asked qualitative
questions (“How do you feel on a scale of 1-107”) in which the full structure of the metric
space is not so meaningful as the order, or whether the number is above or below a threshold.
Carlsson (2009) further notes that, especially in computational biology, “notions of distance
are constructed using some intuitively attractive measures of similarity (such as BLAST
scores or their relatives), but it is far from clear how much significance to attach to the

actual distances” (p. 256).
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A characteristic problem of analyzing large data sets is deciding how to combine many differ-
ent types of measurements into a shared metric space. I can also add information about the
length, color, number of eyes, etc. for each potato, creating an n-dimensional space, where
n is the number of potato attributes. The “distance” between two data points is now some
combination of the distances given by weights, lengths, color, etc. But how should the no-
tions of distance given by each variable combine into “distance” in the total space of possible
variable values? The “standard” way of aggregating one-dimensional metrics into a shared
metric space is to imagine each metric as an axis in an n-dimensional Cartesian grid, with

distance given by the Cartesian distance as follows. Let x = (z1,...,x,) and y = (y1, ..., Yn)

be two sets of potato measurements. Then d(z,y) = /(1 — y1)2 + ... + (2, — yn)?. Setting
aside the fact that there are other viable options for constructing distances from these values,
notice that this expression does not include units. Should weight be presented in pounds
or tons? Of course we know how to translate between these two units, and we consider the
choice more of notational convenience than theoretically meaningful. But if we are looking
to the “shape” of data for information about the system being measured, the data cloud will
look much more “flat” if we use tons rather than pounds. It is thus desirable to consider
properties of the data cloud that do not depend on the particular choice of metric space or

unit, but which are shared by a variety of plausible modeling choices.

Such considerations motivate the use of topological, as opposed to geometric methods. Topol-
ogy is the mathematical field that studies properties of shapes that remain constant under
stretching, twisting, or otherwise deforming. (Topology nicknamed “rubber-sheet geometry”
for this reason.) Topologists attend to more general features of metric spaces that would
be present under different modeling assumptions, called topological invariants. Since data
sets are finite, although they may suggest some underlying shape, they likely will not do so
uniquely. This is the standard curve-fitting problem in higher dimensions: for any discrete
set of points, there are an infinite number of continuous curves (or shapes) that contain (or

approximate) the locations of those points. As with the curve-fitting problem, external con-
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siderations guide the choice of continuous object, rather than just the bare, uninterpreted set
of data points. One may have a priori reasons to expect that the “right” curve is quadratic,

for example, or that the modeling goal should be to minimize mean-squared error.

4.2.1 Clusters

The simplest example of TDA, and the one most broadly used by data scientists generally,
is cluster analysis. The idea behind cluster analysis is to ask: do my data points naturally
divide into sub-categories of data points more similar to one another than the overall space?
Such a situation indicates that there is some non-trivial structure underlying the data asso-
ciated with such groupings, which one may interpret as “natural kinds” in the space. Cluster
analysis is in this way closely related to regression analysis—clusters point towards a cor-
relation among variables, one of the main “signals” data scientists hope to read off of large

data sets.

Sometimes, external considerations about the type of data under consideration can influence
how one choses to carve a data set into clusters. Even in the absence of such guidance,
natural clusters may be easily “seen” when the data is graphed. With larger and higher
dimensional data sets to analyze, these heuristics are less useful, and data scientists would
prefer a principled algorithmic approach to clustering. This would amount to a function
that takes metric spaces (X, d)—here understood as data sets X = {x1, ..., z,,} with a notion
of “distance” d(x;, z;)—as inputs, and outputs partitions of that data into clusters of data

points that are “close together.” There are two major barriers to creating such an algorithm.

The first is an impossibility theorem from (Kleinberg, 2003) showing that there is no non-
trivial clustering algorithm that simultaneously satisfies the following seemingly reasonable

minimal requirements:
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1. Scale invariance: if two metrics on the same data set differ by a constant multiple,

they output the same clusters;

2. Surjectivity: for all possible partitions of X, there is some metric on X for which the

algorithm outputs this partition;

3. Consistency: If distances are reduced between points in the same cluster, and increased

between points in distinct clusters, the output is the same partition.

This impossibility theorem is sobering for methodological purists hoping to precisely and
naturally read off clusters from metric spaces of data. The pragmatic data scientist may not
be perturbed, however, since the impossibility of a complete clustering algorithm does not
preclude useful heuristic clustering methods for cases of interest. But even the pragmatist
may be dismayed by the fact that for large, high-dimensional spaces, it is impractical to
check heuristics against our intuitions about “good” clustering algorithms in order to be

assured of the consistency of the analysis.

To make matters worse, attempts to read shapes from data clouds may give different results
when looking at the data at different “resolutions.” Again, external knowledge about the
system may indicate which resolution is of interest, but again this defeats the goal of devel-
oping tools to analyze large data sets that we do not comprehend. In section 4.3.3, we will

see how re-framing clustering as a functor rather than a function resolves these issues.

4.2.2 Constructing Shapes

The most common method to construct a shape from a data cloud is roughly as follows.
Enclose each data point in a “ball” of radius € centered on that point. As e gets larger, the
cloud will cease to look like isolated points and start to gain shape. Once it gets too large,

though, we are left with a single shapeless blob. We use this idea to construct a simplicial
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complex, beginning with the data points as vertices.! Where 2 balls intersect, we add an edge
between them. When 3 balls intersect, we add a face enclosed by the three edges. When
4 intersect, we create a cell, a triangular prism enclosed by the four edges. This process
continues, creating higher dimensional n-faces where n + 1 balls intersect. The result is

called a Cech complex.

Figure 4.1: Constructing a Cech complex as ¢ increases, from Bubenik (2015).

Setting aside for the moment the problem of selecting the right resolution (which here is
captured by the choice of ¢), this is an intuitively plausible way to construct a discrete
shape from a data cloud. A clustering can be read off of a Cech complex by grouping data
points according to whether they are connected in a single component of the complex. This
may be complicated by the presence of noise—a single anomalous data point might connect
otherwise robustly distinct clusters. This can be dealt with by either looking at only regions
that are highly connected, or avoided altogether by filtering and “cleaning” the data prior

to analysis.

1See Hatcher (2002) section 2.1 for a precise definition of a simplicial complex.
2In practice, TDA employs a more computationally tractable approximation thereof, called a witness
complex. See Carlsson (2009) section 2 for details.

97



While this seems like a reasonable way to cluster data, it nonetheless follows from the
impossibility theorem from the previous subsection that this method lacks the desirable
properties listed there. As we continue, we will see that this is not as much of a problem
as it initially appears. The reader should begin to cogitate on how we will ultimately use

category theory to get around the challenge posed by the theorem.

4.2.3 Holes and voids

To those familiar with algebraic topology, identifying the clusters of a simplicial complex
appears to be a special case of a more general phenomenon of homology. Homology refers to
a method of classifying shapes by looking at how many “holes” the shape has. No matter
how much you stretch and twist it, a circle will always have a “hole” in it, a sphere will
always have a void or cavity, an innertube will always have the “donut hole” as well as a

void in the interior that inflates.

In looking at the connected components of a Cech complex, we are considering the Hj-
homology of the complex (considered as a topological space). We can similarly attend to
the Hi-homology of the complex by looking for “holes,” or the Hy-homology by looking at

“cells,” and so on to higher dimensions with less intuitive interpretations.?

Example 4.1 (Cosmology). van de Weygaert et al. (2011) study the homology of density
level sets of an ensemble of randomly generated cosmic mass distributions. They analyze
the evolution of Hy, Hy, and Hs-homology over time in n-body simulations, revealing char-
acteristic patterns of different dark energy models. They show how homology can track
cosmological structures of independent interest to physicists, such as matter power spectra

and non-Gaussianity in the primordial density field.

31 am speaking very abstractly and non-rigorously here. I will go into a bit more detail later on, but for
a complete account of homology refer to Hatcher (2002), or Ghrist (2014) for an account catered specifically
to TDA.
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See below for a more detailed example, or feel free to skip ahead to the next section.

Example 4.2 (Natural Image classification). Carlsson et al. (2008) apply TDA to make
precise the qualitative features observed in Lee et al. (2003). The latter authors sampled a
large corpus of 3 x 3 pixel patches of gray-scale photographs, presented as 9-tuples of real
numbers corresponding to the gray-scale value at each pixel in the patch, yielding a data
cloud in R?. They normalized this data set to identify patches that relate to one another by
a shift in “brightness” or “contrast”—i.e., a function performed in image post-processing.
This projected the data onto a 7 dimensional sphere in R®. The authors noted that the points
were scattered across the sphere, but with highly varying density. They noted in particular

that the data was largely concentrated around an annulus.

Carlsson et al. (2008) show how this can be summarized by saying that natural images have
certain characteristic homology. The data is first “cleaned” by restricting attention to data
points that exist in higher density regions—this is done for varying definitions of density via
varying the k in a k-means filter. They show that for large £, i.e. a high threshold for density,
for a robust range of € choices, the resulting Cech complex consisted in a single, persistent
annulus. Data points in this annulus corresponded to patches that transition from dark to

light, with position along the annulus corresponding to “orientation” of the transition.

Relaxing the threshold for density, the resulting characteristic shape included the same
annulus, along with two secondary, perpendicular annuli. The secondary annuli roughly
corresponded to patches consisting of columns (respectively horizontal) of similar shades
that do not transition smoothly—i.e. light-dark-medium, light-dark-light, etc. Carlsson
et. al. noted that this 3-circle model embeds naturally in a Klein bottle. They construct
an algorithm to modify data such that for natural image data, the resulting Hy, Hy, and
Hs-homologies correspond to those of a Klein bottle—1:2:1, while randomly generated data

produces no notable homological features.
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Figure 4.2: From Carlsson (2009).

4.2.4 Persistence

The motivating idea behind the construction of a Cech complex is that we can imagine data
as being uniformly sampled (with noise) from some underlying “shape” in the metric state
space, and we can use these data points to infer the global structure of the “object” we are
sampling from. The more samples we look at, the more accurate our picture of the shape
will be. For sufficiently small e-balls, the complex will not have any more structure than the
bare data set. Similarly, when the balls get too large, there is nothing more to look at than a
giant blob. The “right” choice of ¢ is at some intermediate size, but how should it be chosen?
If we chose an ¢ that is too small, we will get a shape with a lot more holes, disconnected
components, etc., than we think are meaningful. In other words, we retain some of the noisy
features of the data cloud that we were trying to eliminate. But we risk going to far, and

making ¢ large enough to obscure both noise and meaningful information from the data.
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A natural way to solve this problem is to look at many different choices of e, and use
external considerations to decide which gives the best resolution of the data shape. Two
more problems arise when we do this, though. For one, the whole point of data analysis is to
simplify and compress information about a system, and having a variety of different models
we can choose from does not simplify matters. Second, there may be different features that
arise at different resolutions that are equally significant, and this multi-level picture can get
lost if we have to choose a single model among the many possibilities. For example, data may
be dense in some regions but sparse in others, where relevant shapes require larger e-balls

to be “seen”.

The key insight that unlocked the power of TDA was the idea of “topological persistence,”
introduced to data analysis in (Edelsbrunner et al., 2002). Briefly: instead of picking a
particular resolution to look at, we look at them all, but take advantage of a trick from
algebraic topology to connect complexes at different scales in a sophisticated and efficient
way (read: functorially). The result is the association of a data cloud with a persistence
module that encodes how the cloud changes structurally as € increases. Homology is then
computed for these modules, and the result is typically expressed as a homological barcode,
as in figure 4.3. The “bars” begin when a feature is “born” and end when it “dies.” Short
intervals in barcodes are often attributed to either measurement noise or inadequate sam-
pling, whereas long, “persistent” bars are thought to reveal real geometric features of the

space being sampled from.

This construction is enabled by a structure theorem of Crawley-Boevey (2015), demonstrat-
ing that persistent modules can be uniquely represented as a direct sum of interval modules.
Not only is this decomposition more computationally tractable to analyze than (sets of) com-
plexes, but the barcode itself provides a visual summary of behavior as € increases. When
the number of features is large, data analysts will also sometime use persistence diagrams

instead of barcodes. These diagrams plot features on a birth-death axis. See figure 4.4 for
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Figure 4.3: Example of a homological barcode, from Ghrist (2008).

a diagram of voids—Hsy-homological features—in a cosmological model from example 4.1.

Dots on the diagonal indicate voids that die quickly after birth, and those farther away are

more persistent.
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Figure 4.4: Birth-death diagram of voids in a cosmological model (van de Weygaert et al.,
2011).
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4.2.5 Stability

One way to interpret € is as a modeling parameter, corresponding to the resolution or scale
we use to construct a shape from the data cloud. The persistent features of a Cech complex
are those that are stable, or robust under perturbations of the parameter value. Longer
bars in barcodes represent features that appear for a wider range of € values, indicating
that these features are robust and unlikely to constitute mere noise. Cohen-Steiner et al.
(2007) made this precise by proving that for a large class of constructions (including Cech
complexes), persistence diagrams are stable, meaning that small perturbations of the initial

data set result in correspondingly small changes in the resulting persistence diagram.

We can use this same method to consider stability across other indexing parameters as well

at fixed resolution, as in the following example.

Example 4.3 (Arteries). Bendich et al. (2016) employ topological data analysis to study
the structure of arteries in the human brain. They uniformly sample a large number of points
from a blood vessel diagram (weighted by thickness of vessel), and construct a Cech complex
from this data cloud, analyzing the Hy and H; persistence diagrams over the growing size of
e-balls in the Cech complex. They look at persistent Hy over a stack of “horizontal slices”

of the artery diagram.

Figure 4.5: Horizontal slices of the artery diagram, from Bendich et al. (2016).

The authors found significant correlation between certain features of these homological bar-

codes and the age and sex of the subjects, with the age correlation a significant improvement
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over previous attempts at analyzing similar data. For example, older brains tended to have

the longest bars in the latter barcodes.

In this example, persistence is indexed over the parameter of height. One can also analyze

persistence of homological features over time.

Example 4.4 (Time-series data). (Perea and Harer, 2015) demonstrate that persistent H;-
homology over time can be used to detect periodicity in time-series data by embedding it
into a higher dimensional space. Note that in the absence of such an embedding, time series
data displays no “loops” (since prior points in time are never revisited), so as it stands, it is
not conducive to analysis of homology. It is fairly common for data analysts to modify their

data to match their methods in this way, rather than the other way around.

We can thus understand persistence modules as assembling a sequence of (n—1)-dimensional
models in a sequence indexed by an n'" parameter, such as resolution or time. Dimensional-
ity reduction is a common feature of data analysis techniques. Data often comes in the form
of large vectors, and the goal is often to compress them—express as much of the original
information as possible with in as few dimensions as possible. This amounts to selecting
features or parameters of interest and suppressing the rest in order to highlight general pat-
terns. Reducing data models to 2-3 dimensions also makes them more visualizable, making
them more useful to researchers to observe patterns, as well as easier to communicate to the
public. Persistence modules provide the benefits of low dimensional visualizability without

throwing away the information in the extra dimensions.

Summary

The general procedure for determining persistent homology is as follows.

1. Generate a sequence of shapes (CW-complexes) from the data cloud.
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2. Transform the sequence into a persistence module indexed by a parameter such as

resolution or time.

3. Construct a visual summary of the persistence module as a barcode or diagram.

1 and 3 are straightforwardly motivated—1 from the intuitive geometric interpretation of
data as (noisily) sampled from some underlying shape, and 3 from the Crawley-Boevey
structure theorem. In the next section, we how the move in 2 is motivated by the existence
of a functor between a category of topological spaces of complexes constructed from data
clouds on the one hand, and the category of homological algebras on the other. In section 4.4
I will argue that this functor is what transfers the epistemic value we grant to the shapes in

1 to the barcodes we construct in 3.

4.3 Functoriality in TDA

Whichever method we use to give shape to our data cloud, the result is a topological space.
More specifically, it is a (finitely generated) CW-complex: a particularly “well-behaved”
topological space that is constructed by “gluing” n-disks along their boundary (n — 1)-
spheres. Cech complexes are CW-complexes, as are all of the other constructions of figures

from data clouds that we will consider here.

Homology is a general way of associating, to each of these shapes X built from a data cloud,
a (finitely generated) Abelian homology group H,(X). For each group, H,(X) essentially
characterizes how many “holes” are present in each dimension. Hy(X) tracks the connected
components, H;(X) tracks holes, Hy(X) tracks cells, or the number of valves that would be
required “inflate” the hollows of the shape. This extends to higher dimensions, but most

TDA applications only look at these three, as these are the most spatially intuitive.
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In order for persistence analysis to work, we need to be able to track shapes as they appear
and disappear when ¢ increases. This is where the functoriality of homology comes in.
Homology is not merely an assignment of a group to each complex that provides information
about its shape. Homology is functorial in the sense that it comes equipped with a notion
of how to translate maps between complexes into maps between groups while preserving all
relevant topological information. This functoriality is inherited from the homology functor
from the category of CW-complexes CW to the category of abelian groups Ab that lies at the
heart of algebraic topology. The functoriality of homology enables us to do three important
things, which are essential to its utility in analyzing data: identify local structures, connect

complexes as parameters vary, and compare complexes constructed from different samples.

4.3.1 Locality

The homology group H,(C) of a complex C' tells us how many “holes” it has, but it does
not tell us where the holes are, or how big they are. This is to be expected—recall that
while these complexes “live” in metric spaces, TDA looks at more general, topological rather
than geometric features of them, which are preserved when the space is stretched or rotated.
Nonetheless, topological spaces still have a (albeit weaker) notion of “nearness” associated
with them. We can cover our topological space with “neighborhoods,” and ask, relative to

a particular cover, whether a “hole” is contained in a single neighborhood.

So, if there is a feature of interest, we can locate it in a neighborhood U C C and think of this
neighborhood as its own complex. We can then look at the inclusion map ¢ : U — X that
just acts as the identity on that neighborhood. Since homology is functorial, this induces a
corresponding map ¢, : H,(U) — H,(C), allowing us to track the n-dimensional “hole” in
the group H,(C) as the image t.(H,(U)) C H,(C). (See Zomorodian, Afra and Carlsson,

Gunnar (2008) for details on this localization method).
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We can thus refer to a particular hole as it appears in the homology group, rather than
referring to it spatially. But even more importantly, given a map f : C' — D that identifies
two complexes via their underlying metric space, we can ask whether the hole contained in
U persists under the transformation f by seeing whether f.(u.(H,(U))) vanishes. This is
what enables the use of homological barcodes to encode information about when holes form
and disappear as a complex is constructed in stages by increasing €. Each bar corresponds

to a different hole, understood locally in this way:.

4.3.2 Bootstrapping

The field of data science relies on the idea that sample data can in some situations be thought
of as representative of the full statistical population from which the sample was taken. Such
inferences from part to whole are of course not always warranted, so it is important to provide
justification for such inferences when they are made. This is often done via external con-
siderations (“I shuffled the deck really well!”), but there are also purely statistical methods
of justification, called bootstrapping methods (Efron, 1979). The idea underlying bootstrap-
ping is that inferences made from sample to population can be “modeled” as inferences from
sub-samples to the full data set. The sampling error for such models is taken to indicate
how much deviation the full data set may bear to the underlying population from which it

was sampled.

There is a direct TDA analog to statistical bootstrapping. Given two samples from a data set,
we can construct and compare sequences of complexes from each. It might not be sufficient,
however, to merely observe whether pairs of complexes from each sample are qualitatively
similar to one another. There is a possibility of a “false positive” indication that the two are
qualitatively similar given that they are isomorphic to one another (have the same shape),

but the isomorphism that relates them isn’t the “right one.” For example, at some value
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(or range) of €, the Cech complexes might each display one hole, but they are “different”
holes. Flat-footed comparisons are also prone to false negatives. If one sample is sparser
than another, the “right” way to compare them might not be at the same resolution (choice

of €).

TDA resolves these issues by directing and constraining cross-sample comparisons to be
consistent with the sense in which they are understood to be samples of the same underlying
source. Both samples can be thought of as embedded in any subset S C X that contains

1S thus provides a shared framework for comparison. Given elements z; €

their union.
H,(C.,(S;)) (i.e. n-dimensional holes), we can look at the inclusions ¢; : x; — H,(C.(95))

and check whether they map to the same features in the shared space.

4.3.3 Re-possibility theorem for clustering algorithms

The theorem in 4.2.1 shows that if one understands clustering algorithms as functions from
(metric) data sets to partitions, then there is no possible algorithm that is consistent, scale
invariant, and enables all possible partitions to be the result of some metric structure on
a data set. To get around this problem, Carlsson and Mémoli (2008) re-define clustering
algorithms as functors from a category FinMet of finite metric spaces to the category Clust.
There are a few different reasonable choices for morphisms in this category, depending on the
application. The objects of Clust are pairs (X, PX) consisting of a finite metric space and
a partition (clustering) thereof. The morphisms of Clust are functions f : X — X’ that are
such that f~1(PX) is a refinement of PX—i.e., cluster morphisms can merge clusters, but

cannot break them up. Isomorphisms in Clust are then morphisms such that f~!(PX') = PX.

4Just the union may be sufficient, unless the samples come from different regions of the data cloud. This
might be resolved by looking at the full data set, but again there are situations in which that is not feasible,
leaving many situations to require some intermediary.

108



Conceiving of clustering as a functor requires that the morphisms in FinMet be “carried
over” to Clust. Category theoretically, the requirement of “surjectivity” is replaced by
“fullness” —every object in Clust must be isomorphic to a cluster that can be achieved by
the algorithm. Which other properties you want your clustering algorithm to have will also
inform your choice of morphisms for your metric space category. For example, the motivation
behind the requirement of “consistency” is that a clustering functor should commute with
distance non-increasing isometries. Thus the category of finite metric spaces should at least

include such maps.

Where the category theoretic account of clustering really shines is in its explication of the
“scale-invariance” criterion, which is the hardest to hash out in the previous paradigm. Now,
instead of requiring that a clustering algorithm F' be such that F(X) = F(X') whenever X'
is a rescaled version of X, we instead require that for a rescaling f : X — X', there is a
corresponding isomorphism F'(f) : F(X) — F(X'). Think about the clustering induced
by Cech complexes. If you rescale your metric space, then the sense in which you should
expect “the same” clustering to result (the motivation behind the scale invariance criterion)
requires you to commensurately rescale the e-balls in your Cech complex. Without such a
corresponding rescaling on the output side, the scale invariance criterion cannot be coherently

stated. The no-go result of 4.2.1 should thus neither be surprising nor worrisome.

4.3.4 Shoe-horning

Most practitioners will admit that the interpretation of homology in data is unclear. While
increasing in popularity of late, TDA is still relatively niche. It is often reserved for situations
in which traditional data analysis tools have failed to bear fruit, and TDA is one of many

attempts to gain insight into the data—its more of a trial and error situation.

109



Since persistent homology has these nice properties, data scientists will often shoe-horn
questions about data into the shape of a homology problem in order to make it tractable.
For example, they might add extra edges to a Cech complex to turn open chains into closed
loops. Or they might chose a particular dimensional reduction in which loops arise, as
in Perea and Harer (2015). A fun example is the study of “tendrils”, another geometric
property of data clouds that is of potential interest. See image below—n tendrils emanating
from a central cluster. By supplementing TDA with a procedure for identifying such clusters,
these can be removed, and the tendrils can be tracked via the persistent Hy-homology of the

resulting data cloud. Nicolau et al. (2011) use this technique to classify breast cancer types.
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Figure 4.6: Visualization of data that features “tendrils”, from Lesnick (2013).

Data scientists study persistent homology, not because they think of “counting holes” as
the right way to characterize data, but rather because it is has really desirable features
summarized by its functoriality. While the recent proliferation of these methods might be
dismissed as mere hammer-nailing, it should rather be said that since we have very few tools

to work with, we had better hope this problem can become nail-shaped.

4.3.5 Generalizing core concepts

Category theory is probably most “famous” for working at such a general, high level fashion
as to draw analogies between seemingly disparate areas of mathematics. Bubenik and Scott

(2014) show that the features of persistent homology that make it particularly conducive to
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data analysis can be summarized by the fact that its basic constructions constitute a special

case of the much more general phenomenon.

Their paper suggests that barcodes can be used to generate meaningful persistence diagrams
of features of data-clouds that are not merely topological, so long as the desired features sat-
isfy some very general properties. Crucially, Bubenik and Scott prove a generalized version
of the stability theorem of Cohen-Steiner et al. (2007). The abstract generality of category
theory enabled Bubenik and Scott to point towards a much broader class of data analysis
techniques that share the desirable properties of persistent homology. Again here, the cate-
gory theory is not itself providing a tool for data analysis. Rather, category theory provides
an abstract framework which “clarifie[s] the key ideas and proofs” and “allow[s] previous

results to be vastly generalized” (Bubenik and Scott, 2014, p. 601).

4.4 TDA and spatial inference

4.4.1 Geometric understanding

Whether you think it is good or bad, it is an observational fact that visual, spatial, and
aesthetic intuitions play a role in science. While it appears in more subtle ways, topological
data analysts explicitly embrace the role of visual intuitions. As mentioned in section 4.3.4,
TDA is a second-line resource for data that is particularly intractable to analyze, which puts

creativity at the center of its application.

The goal of data analysis is to identify patterns in data that provide concise, comprehensible
summaries of the system that point towards features of significance in broad classes of sys-
tems. Such recognition of patterns of sufficient generality without overfitting is the holy grail

of artificial intelligence and machine learning research. In the mean-time, scientists still rely
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heavily on the je ne sais quoi features acquired through visual intuition to guide inquiry. To
aid the evocations of these intuitions, data scientists will play around with parameters and
data filtering. Since spatial intuitions exist at lower dimensions, the ability to use persistence

modules to reduce dimensionality without losing information makes it especially useful.

While subjective visual judgments clearly dominate the earlier stages of inquiry, data ana-
lysts still return to more traditional empirical methods for post hoc justification. Even if a
topological feature is robust under TDA analysis, the real measure of a successful analysis
is whether it corresponds to a feature of the system of independent interest to scientists.
Patterns found through random applications of TDA might lead scientists to look for such
an independently interesting feature of a system, but if one cannot be found, the shapes
identified in the data remain merely curiosities. In example 4.3, if barcodes did not track
gender and age but some other feature that we do not independently classify as a natural
kind, researchers would likely not have identified it. Even if they had stumbled upon a
barcode pattern by chance, it would not have mattered if they could not tell a compelling

story about what characteristic the pattern characterizes.

So spatial intuitions play a central role in the context of discovery, while their influence is
fortified by the introduction of external empirical considerations at the stage of justification.
But they reappear when the results are communicated to others, in the visual summary pro-
vided by a homological barcode or diagram. This allows data scientists to again invoke visual
intuitions in evaluating the results of the analysis, which now contain all of the information
about the persistence of shapes in an easily consumable, two-dimensional aid. The functori-
ality of TDA carries the visual information in CW-complexes through various reformulations

until it finally reappears again in yet another visual format in its presentation.
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4.4.2 Diagrammatic reasoning

Returning from our detour into the cognitive realm, we might wonder how all of this can be
incorporated into a formal epistemic story about the structure of topological data models.
Here, we can learn much from the vast literature on diagrammatic reasoning in Euclidean
geometry. Critics of the rigor of reasoning from diagrams in geometric ‘proofs’ point to the
fact that such proofs use a particular illustration to make an inference about all possible
illustrations. However, philosophers of mathematical practice have recently come to appre-
ciate the role of diagrams in generating and communicating geometric knowledge. Manders
(2008) argues that ancient geometers were careful to rely on diagrams only for demonstra-
tions about what he calls co-ezact features—those that are relatively insensitive to the range
of variation in possible visual representations, such as part-whole and boundary-interior re-
lationships (and of course, homology). Mumma (2010) takes this a step further and develops
a formal account of Euclidean proofs that includes both sentential and diagrammatic com-

ponents.

How does this bear on TDA? Earlier, I noted that data analysts are concerned with ensuring
that inferences about data rely only on real structural features of observations, rather than
incidental features of how data is embedded in a metric space. At issue is the level of
generality one can adopt when making inferences from a single visual representation of
data, picked somewhat arbitrarily from an ensemble of possible alternative, equally valid
representations. TDA resolves this issue by requiring that the analyzed features of data
models be functorial with respect to maps that preserve what they take to be the relevant
structural features of models, and persistent across parameters when the “right” value is not

known.
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4.4.3 Structure

The forgoing discussion about TDA hints at a new way to understand the relationship

between the following two conceptions of “structure” in models of scientific theories:

1. The relevant causal and explanatory features of a system, abstracted from the noise

present in any observation of the system; and

2. The content of a description of a physical system, abstracted from the particular lan-

guage and formalism used to present it.

Data science largely concerns structure;, while the philosophers of physics we met earlier are
clearly concerned with structure;. The relationship between these two notions at first appears
relatively superficial. Yes, they are both ways of getting at what is really there in a physical
system, but they seem to refer to completely different stages of scientific representation. The
first comes in at the stage of observation and experimentation, referring to the structure of a
particular physical system under observation. The second relates to extracting information
from an idealized model (perhaps constructed out of “cleaned” data from the previous stage).
The structure here consists of the components of the model that are actually doing the

representational work, rather than merely scaffolding this content in language and symbols.

Scientific practice is a holistic process, and measurement cannot and should not be wholly
separated from formal representation. Among other connections, observations inform how
systems should be represented, and representations indicate directions for further research
and measurement. Of course, no one would say these two senses of structure are mere
homonyms, as they are clearly relying on similar intuitions about how structure is supposed
go beyond particulars of an instance to something more essential. However, they seem
to operate in different realms—structure; in the physical world and structure, in Platonic

heaven—and thus they surely must be orthogonal to one another.
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Nonetheless, I think TDA indicates how these two notions of structure are much closer than
one might initially suspect. The first clue to this comes upon noticing that more than being
intertwined with one another, particular acts of structural refinement by scientists may exist
between realms. For example, suppose I collect demographic data that includes the hair
color of participants, and include hair color as a feature of my initial abstract representation
of this population, recorded as an RGB hex code. I then decide that precise hair color is
not a relevant consideration for the theoretical purpose at hand, so I switch to presenting
hair color information more coarsely as either light, medium, or dark. I can think of this
“throwing away”, “rounding off” or “smoothing out” as an act of cleaning data, obscuring
noise at the observation level, and perhaps fundamentally changing the type of data I collect.
Alternatively, I can think of it as refining my model—obscuring noise at the representational
level. It amounts to the same act, viewed through different lenses. The moral is that the

boundary between data and formalism is not completely clear.

Both definitions of structure invoke notions of robustness that are present in TDA. The func-
toriality of homology on the groupoid ensures our analysis respects structure;—homology
does not change when we switch between formally isomorphic representations. The functori-
ality of homology on the full category CW ensures it respects structures—it allows us to see
how sensitive our analysis is to variations in parameter values like £, where the relationships

may not be isomorphisms.

4.5 Discussion

Data scientists are already aware of the fact that functoriality of homology is critical to
TDA’s utility in revealing and interpreting structural features of data sets. This paper offers
an account of how and why this is this case, building on the analysis of TCM presented in

previous chapters. There are various reasons to suspect that topological features correspond
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to meaningful signals in a data set. Moreover, topological features are accessible to visual
cognition to aid in scientific interpretation. Since homology is functorial relative to the
category (CW) that delineates the relevant structures, it is ensured that the reasons we had
for thinking topological features were meaningful are preserved in the translation from data

cloud to homological barcode.

Requiring functoriality constrains the tools that are available to us to analyze data, and
homology is particularly well understood mathematically. Data scientists thus often try to
apply persistent homology even if it is not immediately obvious why topological features of
the data should be important. But by identifying that functoriality is operative in enabling
robust inferences in TDA, we can use category theoretic tools to express the general features
of any data analysis that might be epistemically sufficient. Bubenik and Scott (2014) provide
the mathematical tools, and this paper supplements them by demonstrating how to construct
an inferential narrative to justify their epistemic value. An obvious next step would be to

explore new functorial data analysis methods (or functorializing old methods).

In the other direction, this discussion of TDA contributes to and clarifies the philosophical
TCM project. Philosophers of science have spilt quite a bit of ink on how categories relate to
representation in science. It is clear that they do, and in particular cases (mostly in classical
physics) we can explain how and why, but the overall “theories as categories of models”
program is far from well-developed. This exploration of TDA provides fresh perspective on
TCM by considering it in a vastly different scientific context with different epistemic aims.

There are four main takeaways here.

1. Non-isomorphism relations matter. Philosophers have focused on how TCM can
elucidate equivalence between theories and models, and so have focused on groupoids

rather than full categories. Morphisms that are not isomorphisms are necessary in
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TDA, and including them reveals important information about part-whole relations

between models.

2. Formal and informal notions of structure are intimately connected. Existing
TCM literature employs a relatively abstract notion of structure. Section 4.4.3 reveals
how TDA can provide a bridge between structure as intuitively meaningful features,

and structure as formally meaningful mathematical constructions.

3. Category theory ties geometric models to algebraic characterizations. We
already knew this because that’s how category theory started (Eilenberg and MacLane,
1945), but one may have thought that was a historical accident. What previous appli-
cations in physics shared this character, philosophers have focused more on the abstract
notion of intertranslatability between modeling schema than peculiarities of the rela-
tionships between algebraic and geometric theories. This feature is so important in

TDA as to be difficult to ignore.

4. Modeling schema are not fully reducible to category theory. This relates to
the previous point. The functoriality of homology endows homological barcodes with
the structural content of persistence modules, but this relationship is not symmetric.
Geometric models have special status in that they evoke knowledge generation through
visual cognition. Category theory helps us externalize some of these pattern-recognition

devices, but it certainly does not get us all the way there.

Taking these lessons to heart should inspire a richer understanding of how category the-
ory bears on representation in science, and help guide future expositions and applications
of TCM. And by considering TDA and TCM in tandem, we can learn a lot about how

mathematical models represent structural features of the world.
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Chapter 5

Conclusion

This text began in chapter 1 by presenting the “theories as categories of models” (TCM)
framework for analyzing formalisms used to model physical systems. The proceeding chapters
moved this discussion from abstraction to practical application, demonstrating how TCM
can enrich scientific understanding. The question lingers, however, as to what role TCM

itself performs in these applications.

At one extreme, there is a temptation to view TCM as a definitive method for establishing
the content of and relationships between theoretical formalisms. While I doubt that many
philosophers adopt this extreme view, it is natural to conceive of the case for TCM as a
defense of its superiority relative to other methods of establishing theoretical (in)equivalence.
I think this is misguided, but so is the other extreme view that takes TCM to be merely

vacuous window-dressing for other, more fundamental accounts of formal structure.

My main takeaway from working with TCM is that it is an organizing principle for other
accounts of scientific representation, but an extremely powerful one. TCM provides a scaffold
for telling a story about how formalisms represent systems, and how they relate to one

another, that is constrained to be coherent and defeasible. The process of defining a category
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to associate to a formalism amounts to being clear and precise about how the formalism
represents physical systems. Defining a functor enforces similar clarity and precision in
presenting the relationships between different physical formalisms. Presenting narratives in
this way is not merely decorative—it exposes them to illuminating analysis using the tools of
category theory. This text focused on one such tool—the property-structure-stuff heuristic—
which elegantly summarizes the story captured by a functor. I suspect this only scratches

the surface of what TCM has to offer philosophers of science.
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