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Escape From Return-Oriented Programming:

Return-oriented Programming without Returns (on the x86)

Stephen Checkoway
UC San Diego

Hovav Shacham
UC San Diego

Abstract

We show that on the x86 it is possible to mount a return-oriented programming attack without using
any return instructions. Our new attack instead makes use of certain instruction sequences that behave
like a return; we show that these sequences occur with sufficient frequency in large Linux libraries to
allow creation of a Turing-complete gadget set.

Because it does not make use of return instructions, our new attack has negative implications for
two recently proposed classes of defense against return oriented programming: those that detect the too-
frequent use of returns in the instruction stream, and those that detect violations of the last-in, first-out
invariant that is normally maintained for the return-address stack.

1 Introduction

This paper is about defenses against return-oriented programming.

Return-oriented programming. Return-oriented programming allows an attacker to exploit memory er-
rors in a program without injecting new code into the program’s address space. In a return-oriented attack,
the attacker arranges for short sequences of instructions in the target program to be executed, one sequence
after another. Through a choice of these sequences and their arrangement, the attacker can induce arbitrary
(Turing-complete) behavior in the target program. Traditionally, the instruction sequences are chosen so
that each ends in a “return” instruction, which, if the attacker has control of the stack, allows control to flow
from one sequence to the next — and gives return-oriented programming its name.

The organizational unit of return-oriented programming is the gadget, an arrangement of instruction
sequence addresses and data that, when run, induces some well-defined behavior, such as xor or an uncon-
ditional jump. Return-oriented exploits begin by devising a Turing-complete gadget set, from which any
desired attack functionality is then synthesized.

Return-oriented programming was introduced by Shacham in 2007 [24] for the x86 architecture. It
was subsequently extended to the SPARC [2], Atmel AVR [10], PowerPC [18], Z80 [3], and ARM [17]
processors. While the original attack was largely manual, later work showed that each stage of the attack
can be automated [2, 22, 14, 17].

Defenses against return-oriented programming. The instruction stream executed during a return-ori-
ented attack as described above is different from the instruction stream executed by legitimate programs in
at least two ways: first, it contains many return instructions, just a few instructions apart; second, it unwinds
the stack with return instructions for which there were no corresponding “call” instructions. These two
differences have been proposed by researchers as a way of detecting and defeating return-oriented attacks:

• The first difference suggests a defense that looks for instruction streams with frequent returns. Davi,
Sadeghi, and Winandy [7] and Chen et al. [4] both use dynamic binary instrumentation frameworks
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(Pin [20] and Valgrind [21], respectively) to instrument program code. With both systems, three
consecutive sequences of five or fewer instructions ending in a return trigger an alarm.

• The second difference suggests a defense that looks for violations of the last-in, first-out invariant
of the stack data structure that the call and return instructions usually maintain in benign programs.
Buchanan et al. [2] suggest that the shadow return-address stack maintained by the SPARC-specific
StackGhost system [12] can be used to defend against return-oriented programming. Francillon, Per-
ito, and Castelluccia [11] implement a shadow return-address stack in hardware for an Atmel AVR
microcontroller; only call and return instructions can modify the return-address stack.

Our contribution. We show that, on the x86, it is possible to perform return-oriented programming with-

out using return instructions. We show that instruction sequences exist that behave like a return, and that
these can be used instead of returns to chain useful instruction sequences together to produce Turing-
complete functionality. The particular return-like instruction sequences we use are of the form “pop x ;

jmp ∗x”, where x is any general-purpose register, though we speculate that other kinds of return-like se-
quences may be usable for return-oriented programming. We discuss our techniques for using such se-
quences in place of returns in Section 2.

Although these sequences are less frequent than returns, certain incidental characteristics of the x86
instruction set architecture (ISA) make them sufficiently frequent in large libraries to use in attacks; we
discuss this in Section 3. In Section 4 we describe a Turing-complete gadget set we have created based
on the libc and certain large libraries distributed with Debian GNU/Linux 5.0.4 (“Lenny”). For certain
classes of memory errors — notably, for setjmp buffer overwrites — it is possible for an attacker to take
over the program’s control flow without executing even one return. For other classes of memory errors, a
single overwritten return address is needed, after which no further returns are executed. We discuss this
in Section 5. For completeness we give, in Section 6, a complete return-oriented exploit without return
instructions against a sample target program.

Negative implications for defenses. Our attack has negative implications for defenses against return-
oriented programming that look for return instructions in order to recognize a return-oriented instruction
stream. Defenses of the first kind considered above, which detect the use of several return instructions in
close succession, will not detect attacks structured like the ones we introduce in this paper since these attacks
make use of either one return or none at all. When it is possible to initiate an attack without a return the
LIFO invariant of the return-address stack is not violated, so defenses of the second sort will also not detect
the attacks.

Because our attack does not violate the LIFO invariant of the return-address stack, it is not clear that
defenses of the second kind (which maintain a shadow return-address stack) can be salvaged. Maintaining
a shadow copy of jump targets would not be useful, because no simple invariant governs these targets in
benign programs.

On the other hand, it may be possible to patch defenses of the first kind to look not just for several
returns in quick succession but also for several indirect jumps in quick succession. This would detect
attacks structured as ours are. Doing so without being able, provably, to detect that every kind of return-like
instruction sequence that a return-oriented program might use risks engaging in a classic cat-and-mouse
game in which attackers switch to new return-like sequences to evade the upgraded defenses. Prior to our
results in this paper, it appeared that return-oriented programming unavoidably relied on return instructions,
making these instructions attractive targets for detection and defense. Now, however, it appears that a
different property must be found by which to detect return-oriented attacks.
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2 Return-Oriented Programming without Returns

In this section we describe how return-like instruction sequences can substitute for rets, allowing return-
oriented programming without use of return instructions.

2.1 Return-like instruction sequences

A ret instruction has the following effects: (1) it retrieves the four-byte value at the top of the stack, and sets
the instruction pointer (eip) to that value, so that the instructions beginning at that address execute; and (2) it
increases the value of the stack pointer (esp) by four, so that the top of the stack is now the word above the
word assigned to eip. This is useful for chaining return-oriented instruction sequences because the location
of each sequence can be written to the stack; when an instruction sequence has executed, reaching the ret

that ends it, that ret causes the next instruction sequence to be executed.
One way to view this arrangement, suggested by Roemer et al. [23], is that in return-oriented program-

ming the stack pointer takes the place of the instruction pointer in ordinary programming; that each gadget
on the stack is an instruction for a custom-built virtual machine; and that the ret at the end of each instruction
sequence acts like a typewriter carriage return to advance the processor to the next instruction — something
the processor does automatically for ordinary programs.

Consider the following instruction sequence

pop %eax; jmp ∗%eax.

This sequence behaves like a ret in inducing effects (1) and (2) above. Its only side effect is in overwriting
the former contents of the eax register. The pop %eax; jmp ∗%eax sequence is return-like. The set of
instruction sequences in a target program that end in pop %eax; jmp ∗%eax — provided they do not make
use of eax for dataflow — can be chained together for return-oriented programming just as if they had ended
in a ret instruction. This is the central observation of this paper.

In fact, there are many more return-like instruction sequences that can be used besides pop %eax;

jmp ∗%eax. First, any of the other general-purpose registers (esp excepted, for obvious reasons) can be
used in place of eax. Second, just because ret sets eip to the value at the top of the stack there is no reason
that all return-like instruction sequences must. For example, the sequence pop %eax; jmp ∗(%eax) uses
a doubly indirect jump to set eip to the value contained in the memory word pointed to by eax. If the
attacker wishes eip to take the value x, she simply picks some other memory location y, stores x there, and
places the value y at the top of the stack, where the pop instruction assigns it to eax. Since the attacker
controls the stack, this is no harder for her than storing the value x at the top of the stack for ordinary ret

instructions. A return-oriented exploit that uses such doubly indirect jumps can be organized to include a
sequence catalog of useful instruction sequence addresses, something like the Global Offset Table used in
dynamic linking. (As before, any other general-purpose register can substitute for eax in the pop %eax;

jmp ∗(%eax) sequence.)
What’s more, a doubly indirect jump with an immediate offset (either 8-bit or 32-bit) is just as useful as

one without an offset. To use the sequence pop %eax; jmp ∗c(%eax), where c is some constant, the attacker
must simply store not y on the stack but y− c. Once more, any register can substitute for eax.

Finally, there are two kinds of doubly indirect jumps on the x86: near and far. A near jump takes a 32-bit
address in the current segment; a far jump takes a 32-bit address together with a 16-bit segment selector. Far
jumps allow for sophisticated privilege domain regimes with restricted cross-domain calls (they are used,
for example, in the Native Client sandbox [26]). For our purposes, however, we need only the following
fact: An appropriate choice of segment selector (on our Debian system, 0x0073) leaves the code segment
unchanged; a far jump to an address with this segment selector behaves exactly like a near jump to the same
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address.1 Because the segment selector follows the address in memory, we can follow each address in the
sequence catalog with the appropriate segment selector and thereafter use far and near doubly indirect jumps
interchangeably. (This introduces zero bytes into the catalog; if this is a problem for a particular exploit, the
zero bytes can be patched in at runtime; see Section 6.)

We use all the pop-jump sequences described above in constructing our gadgets. For brevity, we refer
to all of them using the shorthand pop x ; jmp ∗x , where x refers to any general purpose register. The jump
may be indirect or doubly indirect; and, if doubly indirect, it may be near or far, and it may take an 8- or
32-bit immediate offset.

Other types of return-like sequences. More generally, there are two crucial features of ret that return-
like instruction sequences must emulate: ret transfers control to some new instruction sequence; and it
changes some global state so that a second ret transfers control to a different instruction sequence (rather
than inducing an infinite loop). Like ret, the instruction sequences we describe above, and which we use in
building our Turing-complete gadget set, change global state by increasing esp by four. But this is not an
absolute requirement. One could imagine an instruction sequence based on call ∗x , which would decrease

esp each time it is used. Or a different register could be used, as, e.g., in jmp ∗(%eax); add 0x4, %eax.
Or, using SIB addressing, a combination of registers could be used, with the index register scaled by 4 and
incremented after each dereference. Or a memory location could serve as the mutable state instead of a
register. The point here is that many possible types of instruction sequence have return-like behavior and
are potentially suitable for return-oriented programming. A defense that detects some but not all of these
types of instruction sequences would be of limited value, as attackers may be able to switch to a different
return-like sequence and thereby evade detection.

2.2 Reusing a pop-jump sequence

As shown above, a pop x ; jmp ∗x sequence can be used in place of a ret instruction in return-oriented
programming. One way to create a return-oriented attack without returns is to look, in the target binary and
the libraries it links against, for instruction sequences ending in pop x ; jmp ∗x (for various registers x), then
choose from among those sequences to construct gadgets.

As we show in Section 3, properties of the x86 ISA mean that pop x ; jmp ∗x sequences occur not
infrequently in large programs. But they are still not common. For example, our two test libcs happen to
include only a single usable pop x ; jmp ∗x between them. If there are only a few pop x ; jmp ∗x sequences
then there are only a few sequences ending in pop x ; jmp ∗x . And if only these sequences are useful for an
attacker in constructing a return-oriented attack, then she may need a very large amount of code in the target
program to find sequences sufficient for achieving Turing completeness.

But in fact there is no need for every instruction sequence to end in pop x ; jmp ∗x . Shacham ob-
served [24, Section 5.1] that if ebx contains the address of a ret instruction then any instruction sequence
ending in jmp ∗%ebx behaves just as if it had ended in ret; the same is true for other registers and for doubly
indirect jumps of various kinds.2

The crucial point is that this equivalence holds true even if ebx contains the address not of an actual ret

but of a return-like instruction sequence. Suppose the target of jmp ∗y is a pop x ; jmp ∗x sequence (where

1A 16-bit segment selector consists of a 13-bit index, a 1-bit table indicator, and a 2-bit requested privilege level. The index
specifies a 64-bit segment descriptor in either the global descriptor table or the local descriptor table as specified by the table
indicator. Each segment descriptor contains a number of bit-fields including the segment base address, segment limit and privilege
level. Since Linux uses a flat address space, most of the segment descriptors used in user programs specify a base address of zero
and a limit of 4 GB [16]. The selector 0x0073 corresponds to an index of 14 in the global descriptor table with a requested
privilege level of ring 3.

2Cf. [6, 19, 5] for the use of similar techniques in the context of code injection.
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Figure 1: Distribution of byte values following ff immediate byte, in libc from Debian 5.0.4 (“Lenny”).

x and y refer to different registers). Then any instruction sequence ending in jmp ∗y will behave just as if it
had ended in ret (except, again, that the value in the x register is overwritten).

It is not necessary that all sequences use the same register in their jmp ∗y instruction: it is easy to
load immediate values into registers (using pop or popad), so the pop x ; jmp ∗x address can be made the
target of whatever register is required for a particular instruction sequence. Thus any sequence ending in
jmp ∗y (where y refers to any general-purpose register) is useful for return-oriented programming. There are
many more such sequences than only those ending in a pop x ; jmp ∗x sequence, which means that Turing
completeness can be obtained from smaller target programs.

3 The Availability of Pop-Jump Sequences

Whereas traditional return-oriented programming relies on the availability of diverse and useful instruction
sequences ending in a ret instruction, our new return-oriented programming relies on, first, the availability
of return-like pop-jump sequences of the form pop x ; jmp ∗x ; and, second, the availability of diverse and
useful instruction sequences ending in jmp ∗x . In this section, we consider whether such sequences will
occur often enough to make construction Turing-complete gadget sets possible.

On the x86, the return instruction is a single byte, c3, which we would expect to occur with frequency
1/256 in a random byte stream, and which in fact is even more frequent in machine code because legitimate
programs regularly use ret.3 By contrast, indirect jumps through a registers are two bytes on the x86, and
these instructions are also less frequently used in legitimate programs than are rets. It is not a priori clear
that sufficiently many jmp ∗x instructions will exist in a target program, or that they will be preceded by
diverse and useful other instructions.

Here an incidental characteristic of the x86 ISA comes to our help. The first byte of all indirect jumps
(both near and far) is ff. What’s more, many x86 instructions include immediate values; immediate values
are encoded last in any instruction that includes an immediate; and immediate values, like other numbers,
are encoded in two’s complement, little endian. Thus the last byte of every instruction that includes an
immediate value that is negative and in the range −1 to −16777216 will be ff. Such immediate values are
very common. Out of the 83554 four-byte immediate values in instructions in our test libc, 46530, or 55%,
have last byte ff. (Another 36369 have last byte 00.)

3In fact, the x86 includes at least four different usable return instructions, each just a single byte.
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Figure 2: Distribution of byte values preceding ff immediate byte, in libc from Debian 5.0.4 (“Lenny”).

One way to obtain jump instructions, then, is to take the opcode byte (ff) from the last byte of the
immediate value in a legitimate instruction in the target binary. Because this byte is the very last byte in the
encoding of that first instruction, the second byte of our jump will coincide with the first byte of the next
legitimate instruction in the target binary. We thus require that this instruction’s opcode be some value that,
as a second byte following ff, is one that specifies a useful jump. Figure 1 shows the distribution of bytes
immediately after such ff bytes in our test libc. The two most common bytes are 8b (10439 occurrences)
and 89 (7389 occurrences), both forms of mov (these are opcodes for, essentially, store and load instructions,
respectively). When interpreted as a byte following ff, sadly, neither of these, specifies a jump. (Both are
kinds of ff/1, which is the decrement long instruction.)

Out of the 256 possible values for the second byte, 56 encode indirect jumps: 20–2f, 60–6f, a0–af,
and e0–e7.4 In the distribution of bytes we see immediately after a most-significant immediate ff byte, 66
(gs segment override, 1113 occurrences) and 65 (operand size override, 511 occurrences) are particularly
frequent. There is thus enough diversity in bytes following an ff immediate that jmp ∗x instructions are
available.

The fact that the last byte of an immediate value and the first byte of the following instruction frequently
makes a jump instruction would not be of value to us if that instruction were not preceded by other useful
instructions. Here again an incidental characteristic of the ISA is of help: In many cases, the byte before
the jump instruction is essentially a one-byte no-op, and the bytes before that no-op vary greatly. Figure 2
shows the distribution of second most significant bytes in immediates whose most significant byte is ff,
again in our test libc. Not surprisingly, these values are mostly ff or close, meaning they encode small
negative numbers. Although ff and fe encode two-byte instructions,5 fd and fc encode std and cld, which
respectively set and clear the direction flag. The direction flag governs the behavior of string instructions,
and its value is irrelevant for the behavior of the gadgets we construct. As libraries become larger, the
likelihood that offsets encoded as immediates will be in the range −131073 to −262144 (that is, will have
more significant half fc ff or fd ff, in little-endian) increases.

Compared to jmp ∗x instruction, pop x sequences are more frequent. A pop into each general-purpose
register has its own one-byte instruction, from 58 (pop %eax) to 5f (pop %edi).

4The values e8–ef encode far indirect jumps of the form “ljmp ∗%eax” or another register and are invalid instructions, since
far jumps target m16:32 [15].

5Including, as we have observed, indirect jumps.
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Putting everything together, we see that incidental features of the x86 ISA mean that instruction se-
quences ending “std; jmp ∗x” and “cld; jmp ∗x” are quite common in large libraries. Many of the instruction
sequences we use to construct our Turing complete gadget set in Section 4 are of this form.

Of course, ff as the last byte of an immediate value is not our only source of jump instructions. We are
able to use legitimate indirect jumps in the target binary, and ff bytes can also occur as ModR/M bytes, SIB
bytes, or as other parts of an immediate value. We focus on most-significant immediate ff bytes because the
jump instructions they engender arise naturally from properties of the x86 ISA, and would thus be difficult
to eliminate by changing the compiler.

4 A Gadget Catalog

To demonstrate that Turing-complete return-oriented computation without returns is feasible in real pro-
grams, we design a set of gadgets each of which performs a discrete computation and can be reasoned
about independently by virtue of little or no state maintained between gadgets. We build these gadgets by
looking at the C standard library found in Debian GNU/Linux 5.0.4 (“Lenny”), GNU libc 2.7, which is
1294572 bytes.6 As we will see below, by itself, Debian’s libc is almost sufficient. We need a single instruc-
tion sequence to exist in the either target program or in a library loaded by the target program. We find this
additional instruction sequence in two large libraries: Mozilla’s libxul (11857460 bytes), distributed with
Firefox and Thunderbird; and the PHP language’s libphp5 (5450680 bytes). These libraries are, of course,
used in Web browsers and Web servers, respectively, which make common targets for exploitation.

As described in Section 2, rather than using sequences of instructions that end in pop x ; jmp ∗x , we use
sequences of instructions that end in jmp ∗y where y is a pointer to a pop x ; jmp ∗x sequence. It is exactly
this pop x ; jmp ∗x that we do not find in libc7 and so must exist in the target program or one of its libraries.
We call this (facetiously) the bring your own pop-jump (BYOPJ) paradigm.

Because libc is loaded into every Linux executable, we gain confidence by using it as the corpus for
our instruction sequences (except the pop-jump) that return-oriented programming without returns is likely
possible in any large Linux program that an attacker might target. We stress that using most instruction
sequences from libc but a pop-jump from libxul is not how a real attacker would go about mounting an attack.
Libxul is larger and has more convenient instruction sequences than libc does; a Turing-complete gadget set
could be constructed more easily from libxul alone than from libc with a libxul pop-jump. However, any
program that did not link against libxul would require an entirely different gadget set. Unlike creating a new
gadget set, testing that a program contains a suitable pop-jump is simple and easily automated.

Most of the useful instruction sequences end with either a near (resp. far) indirect jump to the address
stored in the near (resp. far) pointer in memory at an address stored in register edx. That is, many instruction
sequences end with jmp ∗(%edx) or ljmp ∗(%edx).

Each gadget could be made fully independent from the others, but since register edx is so useful for
chaining instruction sequences, we ensure that at the end of each gadget, it holds the address of the sequence
catalog entry for the pop x ; jmp ∗x . In most cases, this required no additional work. The function call gadget
is the only one which required the fix up.

6There are actually two distinct libcs on our test system: /lib/libc-2.7.so and /lib/i686/cmov/libc-2.7.so.
The gadgets described in this section and the example exploit in Section 6 are constructed from the former. However, the latter
library is loaded at runtime instead on some machines, apparently those that support the conditional-move instructions cmovcc

(introduced with the Intel Pentium Pro). We have verified that this libc also provides instruction sequences sufficient for constructing
a Turing-complete gadget set without returns. (As it happens, the most convenient way of constructing gadgets from instruction
sequences in this library more closely resembles Shacham’s original gadget set [24] than the set described in this section.) That
either one of these libcs suffices for obtaining Turing-complete return-oriented programming without returns gives strong evidence
for our thesis in this paper.

7In the second libc described in footnote 6, there is a single pop %edx; jmp ∗(%edx) sequence but as we show below, edx is too
useful to use for this purpose. Other minor differences exist between the two libraries but we do not dwell on them further.
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Following Checkoway et al. [3], we design a three-address code collection of memory-memory gad-
gets — that is, our gadgets are of the form x← y op z, where x, y, and z are literal locations in memory that
hold the operands and destination. As mentioned, we use register edx to chain our instruction sequences and
for the pop x ; jmp ∗x sequence in our BYOPJ paradigm, we use register ebx. This means that we cannot
store any state in register ebx, but we need not worry about changing its contents during the course of an
instruction sequence since it will be overwritten during the pop %ebx. This leaves us with five registers,
eax, ecx, ebp, esi, and edi, to do with as we please.

Instruction sequences. We used 34 distinct instruction sequences ending with jmp ∗x to construct 19
general purpose gadgets: load immediate, move, load, store, add, add immediate, subtract, negate, and, and
immediate, or, or immediate, xor, xor immediate, complement, branch unconditional, branch conditional,
set less than, and function call. The majority of the instruction sequences contain four or fewer instructions.
The sequences were chosen by hand out of a collection of potential instruction sequences in libc discovered
by the algorithm given by Shacham [24].

Loading data from the stack into a register can be accomplished by means of a pop x ; jmp ∗y instruction
sequence:

pop %eax; sub %dh, %bl; jmp ∗(%edx)

pop %ecx; cmp %dh, %dh; jmp ∗(%edx)

pop %ebp; or $0xF3, %al; jmp ∗(%edx)

pop %esi; or $0xF3, %al; jmp ∗(%edx)

pop %edi; cmp %bl, %dl; jmp ∗(%edx)

pop %esp; or %edi, %esi; jmp ∗(%eax)

popad; cld; ljmp ∗(%edx)

The first five can be used to load any of the registers we wish to use as long as we load register eax

after registers ebp and esi. The sixth allows for a simple jump by changing the stack pointer, see below.
Instruction popad pops all seven general purpose registers off of the stack (it does not pop register esp, but it
does require 4 bytes on the stack which are ignored for a total of 32 bytes popped off of the stack). Without a
pop %edx; jmp ∗x instruction in the target binary or its libraries, popad is the only way to load register edx.
This is only an issue for our function call gadget described below.

The gadgets need to be able to move data between memory and registers as well as between multiple
registers. Moving a word from memory into a register is accomplished by means of a mov n(x), y instruction
where n is some immediate offset. The analogous instruction mov x, n(y ) allows for the reverse operation.
Movement between registers is less straight-forward because while such an x86 instruction exists, we find
none in sequences ending in jmp ∗x . Instead, the contents of two registers can be exchanged with the xchg

instruction, or by arranging for the destination register to be 0x00000000 or 0xffffffff, the source
register can be ored or anded with the destination, effecting the move.

One tricky aspect of return-oriented programming using pop x ; jmp ∗x instead of a return is that we
frequently need to use a register for holding data in one instruction sequence as well as for being the x in the
jmp ∗x in another sequence in a single gadget. Handling this requires careful structuring of the instruction
sequences inside the gadget to ensure that the register has been loaded with the address of the pointer to the
pop x ; jmp ∗x sequence before it is needed.

By now, the gadget-construction procedure is well-described in the literature [24, 2, 10, 14, 13, 18]. As
such, we only briefly describe each of our standard gadgets and focus more on the gadgets that require extra
finesse.
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Data movement. The first thing we wish to do is to load immediate values into memory at a fixed address.
This is easily accomplished by loading esi with the immediate value and eax with the fixed address plus
0xb. This takes two pops. Then we use mov %esi, -0xb(%eax) to write the immediate value to memory.

Since we want a collection of memory-memory gadgets, we need to load a word from one (constant)
location in memory and store it into another (constant) location in memory. This is accomplished by loading
the source address into eax, loading the destination address into ebp, loading from eax into edi, and finally
storing edi into memory at the address in ebp. This is the move gadget.

A simple modification to the move gadget yield the load gadget. Rather than storing the word in memory
at the source address into the destination address, that word is used as a pointer to another word in memory
which is loaded into another register and then stored at the destination address. In pseudo code, the operation
is the following.

eax ← source

ed i ← ( eax )

es i ← ( ed i )

eax ← d e s t i n a t i o n

( eax ) ← es i

A store gadget is similar except that the address where the source value is to be stored is itself stored at
a fixed location. That is, the store gadget performs the operation (A)← B where A is the word in memory
at the destination address and B is the word in memory at the source address. In fact, we can perform the
operation (A+n)← B where n is a literal value. This allows for easy constant array indexing into an array
that is not at a fixed location in memory, where A is the address of the array and n is the offset into the array.

Arithmetic operations. The add, add immediate, and subtract gadgets are straight forward. They work
by loading the source operands into registers, performing the appropriate operation, and then storing the
result back to memory. The x86 ISA allows one of the operands to be a location in memory which would
obviate the need to load one of the operands. This could potentially simplify the gadgets.

The negate gadget, loads the word from the source address, takes the two’s complement of the word
and stores it back to memory. There is an x86 instruction neg that performs the two’s complement of a
register, but it does not appear near a jmp ∗x instruction. Instead, we load esi with zero, for example by
using xor %esi, %esi and then use the sequence subl -0x7D(%ebp,%ecx), %esi; jmp ∗(%ecx) to subtract
the value from zero. The subl instruction performs the operation esi← esi− (ebp + ecx−0x7D).8 Since
our jmp ∗x uses ecx, we have to load it with the address of a pointer to the pop x ; jmp ∗x sequence. This
means that ebp must have the value of the source address plus 0x7D minus the address of the pointer to
pop x ; jmp ∗x .

Logical operations. The and, and immediate, or, and or immediate gadgets are constructed in an analo-
gous manner to the add gadget. Namely, the operands are loaded into registers, the operation is performed,
and the result is stored back to memory. The only tricky part is the movement of data between registers as
described above.

The xor and xor immediate gadgets are similar except that instead of xoring the value of two registers
and then storing the results back to memory, the first source word is written to the destination and that
location is subsequently xored with the second source word.

The complement gadget stores the one’s complement of the source value into the destination address.
Similar to the situation with the negate gadget, there is an x86 instruction not which performs the one’s
complement, but it does not appear in the useful instructions sequences in libc. Instead, we proceed exactly

8The parentheses denote dereference, not grouping.
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as for the negate gadget except instead of loading esi with zero, we load it with 0xffffffff=−1. This
works because −1− x = ¬x.

Branching. In a normal program, there are two ways to perform a branch. The branch can be to an absolute
address or to an address relative to the current instruction. In return-oriented programming, a branch is
performed by changing the stack pointer rather than the instruction pointer. An absolute branch can be
effected by popping a value off the stack into esp. Alternatively, a negative offset from the end of the gadget
can be popped into edi which is then subtracted from the stack pointer using the sequence sub %edi, %esp;

ljmp ∗(%eax) This allows stack-pointer-relative branching. This is the basis for our branch unconditional

gadget.
In order to have Turing-complete behavior, we must have a way to perform a conditional branch. The

x86 has a number of conditional branch operations; however, these are unsuitable for our purpose since they
affect the instruction pointer rather than the stack pointer. Instead, we need a way to change the stack pointer
conditioned on the word stored in memory at a known address. If the word is zero, then we do not change
the stack pointer. If the word is 0xffffffff, then we subtract an offset from the stack pointer as in the
unconditional case. The way we do this is by loading the word into a register and anding with the offset.
The result is subtracted from the stack pointer. The implementation is a straight-forward combination of the
and gadget and the branch unconditional gadget and is our branch conditional gadget.

In any collection of return-oriented gadgets, the most difficult to construct is the gadget that compares
two values and performs an operation based on the relative magnitude of the values. Taking a cue from the
MIPS architecture, we implement a set less than gadget that sets the word at the destination address equal
to 0xffffffff if the first source word is less than the second source word.

The implementation of the set less than gadget is given in Figure 3. The string compare instruction
cmpsl compares the two words pointed to by %ds:%esi and %es:%edi and sets the carry flag if the latter
is greater than the former. As a side effect, it increments or decrements registers esi and edi based on the
direction flag; however, this is of no concern since we are only comparing a single word. The sbb instruction
subtracts esi plus the value of the carry flag from esi. In essence, if the first source value is less than the
second source value, then the carry flag will be set and esi is set to 0xffffffff, otherwise, the carry flag
will not be set and so esi will be set to zero, exactly as required for the branch conditional gadget. The one
thing we have to be careful of is register cl cannot be zero otherwise a divide by zero exception will occur.

With the set less than and logical gadgets, a conditional branch based on comparing any two values for
any of the six relations <, ≤, =, 6=, ≥, and > can be formed. At this point our set of gadgets is Turing-
complete.

Function calls. Now that we have a Turing-complete set of gadgets, we extend their functionality by
adding a gadget to perform function calls. This gives us two new abilities: we can call normal return-
oriented instruction sequences — i.e., those ending in return — or we can call legitimate functions. Since
we use an actual call instruction, any return-oriented programming defense relying on the LIFO nature of
the call stack will be thwarted since this invariant is maintained. Any defense relying on the frequency of
return instructions will be thwarted as long as the number of other instructions executed between these calls
is sufficiently high.

Since calling legitimate functions is the more complicated of the two operations, we focus on it here.
Calling a sequence ending in return is roughly the same except for moving the stack pointer and handling
the return value.

Before a function call is made, the stack pointer must be moved to a new location to keep from overwrit-
ing our previous gadgets on the stack. If n is the address where the stack pointer should be when the function
begins to execute — i.e., the location where the return address will be stored — then the k arguments should
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A

0x55555555

B

C
pop %esi; or $0xf3, %al; jmp *(%edx)

pop %eax; sub %dh, %bl; jmp *(%edx)

mov %esi, -0xB(%eax); jmp *(%edx)

pop %ecx; cmp %dh, %dh; jmp *(%edx)

pop %edi; cmp %bl, %dh; jmp *(%edx)

sbb %esi, %esi; sub %dh, %bl; jmp *(%edx)

Sequence

Catalog

Set Less Than

Gadget

esp

cmpsl %es:(%edi), %ds:(%esi);

div %cl; ljmp *(%ex)

Figure 3: Set less than gadget. If the word at address B is less than the word at address C, then set the word
at address A to 0xffffffff, otherwise set it to 0x00000000. The gadget begins executing with the stack
pointer (esp) pointing to the bottom-most (smallest address) cell of the gadget. As execution proceeds, the stack
pointer moves to higher cells (higher addresses). Each cell is either a pointer to an entry in the sequence catalog —
which is itself a pointer to the instruction sequence that is actually executed — or data. After the final instruction
sequence in the gadget has executed, the stack pointer points to the next gadget to be executed.

be stored at addresses n+4, n+8, . . . , n+4k. This can be done using the load immediate or move gadgets.
The function call gadget is then used to perform the computation A← fun(arg1,arg2, . . . ,argk) with the
stack pointer set to n.

Since the Linux application binary interface (ABI) for x86 specifies that registers eax, ecx, and edx are
caller-saved while registers ebx, ebp, esi, and edi are callee-saved, some care must be taken to ensure that
after the function has returned, the gadgets can retain control.

One particularly tricky point is that since edx is caller-saved, once we return from the call we need to
restore it to the address of the pointer to the pop x ; jmp ∗x . We cannot do this using only the instruction
sequences in libc if we care about the return value which is in eax. Continuing our BYOPJ paradigm, if the
target program has either a pop %edx; jmp ∗(%edx) or a pop %edx; jmp ∗(%esi), then we can restore edx

without overwriting the return value in eax. Mozilla’s libxul has such a sequence. Without such a sequence,
the function call gadget has to be tailored for each application rather than being generic.

The implementation of the function call gadget is given in Figure 4. Some parts of the implementation
are rather subtle. The first thing it does is to load registers esi, ebp, and eax. Register esi is loaded with the
address of the sequence catalog entry for the call-jump sequence, ebp is loaded with the actual address of
the leave-jump sequence, and eax is loaded with the literal value n (plus the offset for our store sequence).
Next, the address of the sequence catalog entry for the call-jump is stored at address n. Register esi is then
loaded with 0x38 and the value of the stack pointer is added to is. At this point, esi holds the address we
will set the stack pointer to after the the function call returns.

Now that we know the location on the stack we wish to return to after our function call, we need to move
it into ebp. Unfortunately, the easiest way to do that is to store it to memory (at the location where we will
eventually store the function’s return value), load it back from memory into edi and then exchange it with
ebp. After the exchange, edi holds the address of the leave-jump sequence and ebp holds the value we will
set the stack pointer to after the function call.
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0xb + result

0x7d +

n

0x56000A00+f

0xd + result

0xb + result

0x38

0xb + n

leave

sar %cl, %bl

jmp *-0x7d(%ebp) pop %esi; or $0xf3, %al; jmp *(%edx)

pop %ebp; or $0xf3, %al; jmp *(%edx)

call *-0x56000A00(%ecx); add %bh, %bl;

inc %ebx; add %bh, %dh; jmp *%edi

pop %eax; sub %dh, %bl; jmp *(%edx)

mov %esi, -0xB(%eax); jmp *(%edx)

add %esp, %esi; jmp *(%edx)

mov -0xD(%eax), %edi; jmp *(%edx)

xchg %ebp, %edi; jmp *(%edx)

pop %ecx; cmp %dh, %dh; jmp *(%edx)

xchg %esp, %eax; dec %ebx;

std; jmp *0(%esi)

pop %edx; jmp *(%edx)

pop %ebx; jmp *(%ebx)

xchg %esi, %eax; and %dh, %dh;

jmp *(%edx)

Sequence

Catalog

Function Call

Gadget

esp

Figure 4: Function call gadget. This convoluted gadget makes the function call result← f (arg1,arg2, . . . ,argk)
where the arguments have already been placed at n+4, n+8, . . . , n+4k. The return value is stored into memory
at address result.
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Next, we load esi with the address of the sequence catalog entry for pop x ; jmp ∗x , ecx with the address
where the pointer to the function is stored (plus an offset), and eax with the value n. Registers esp and eax

are exchanged causing the stack pointer to be set to n.

Recall that the first thing the function call gadget did was to store the address of the catalog entry for the
call-jump sequence to n. At this point, the indirect call of the function fun happens. After fun returns, we
cannot rely on the values in registers ecx or edx while eax holds the return value. However, edi holds the
address of the leave-jump sequence, thus the jmp ∗%edi instruction causes a leave instruction to be executed
which sets the stack pointer to ebp — which is still holding the address we placed into it with the first xchg

instruction — and then pops the value off of the top of the stack into ebp. This causes the address of the
sequence catalog entry for pop x ; jmp ∗x (plus an offset) to be loaded into ebp causing the subsequent
jmp ∗-0x7d(%ebp) instruction to chain the next instruction sequence.

At this point, we have two choices for the implementation. If we do not have a pop %edx; jmp ∗(%edx)

sequence, then we can use a popad; jmp ∗(%edx) and lose the return value. In this case, the function call
gadget is complete. However, if we do have a pop %edx; jmp ∗(%edx) sequence, then we execute that and
then store the return value in eax into memory. This is the form of the gadget shown in Figure 4.

5 Getting Started

Return-oriented programming is an alternative to code injection when an attacker has diverted a target pro-
gram’s control flow by taking advantage of a memory error such as a buffer overflow. How the initial control
flow diversion is accomplished, then, is orthogonal to the question of return-oriented programming.9

All the same, some of the traditional means of diverting control flow require the target program to
execute a return instruction, which means they risk detection by the defenses our new return-oriented pro-
gramming are designed to evade.

In some cases, a different approach will allow attackers to avoid this initial return. In this section, we
discuss four classes of memory errors from the perspective of the pop x ; jmp ∗x return-oriented program-
ming paradigm and consider for each the prospects for an attacker to take control without using a return
instruction. Recall that, in order for a return-oriented exploit to be successful, the attacker must gain control
of both the instruction pointer and the stack pointer. In addition, the return-oriented program must be some
place in memory.

Stack buffer overflow. The traditional means of exploiting a stack buffer overflow is to overwrite the
saved instruction pointer in some function’s stack frame. When that function returns, control will flow not
to the instruction after the call that invoked the function but rather to any location of the attacker’s choosing.
In a return-oriented attack, this will be the first instruction sequence in the first gadget laid out on the stack;
conveniently, the stack pointer will point to the next word on the stack, which is also under attacker control.
By this point, however, the LIFO invariant of the return-address stack has been violated. (A single return
instruction would not, of course, be caught by defenses that look for several returns in close succession.)

To take advantage of a stack buffer overflow without a return, an attacker must overwrite stack frames
while avoiding changing the value of any saved instruction pointers. What she should change is pointer data
such as function pointers in a function frame above the one that contains the overflowed buffer. Once the
function that contains the buffer has returned (to the function that legitimately called it), the memory around
the stack pointer will be controlled by the attacker; when the pointer she modified is used, an instruction
sequence such as popad; jmp ∗y as its target will allow her to take control of the registers and begin running
return-oriented code.

9Also orthogonal are defenses against buffer overflows such as stack cookies or generally against reliable exploitation such as
address-space randomization.
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Setjmp buffer overwrite. The setjmp and longjmp functions allow for nonlocal gotos. A program will
allocate space for a jmp_buf structure which consists of at least an array of words long enough to hold
registers ebx, edi, esi, ebp, esp, and eip — the callee saved registers. When setjmp is called, it stores
the values of those registers into the jmp_buf. The instruction pointer stored into the buffer is the saved
instruction pointer pushed onto the stack by the call instruction and the stored stack pointer is the value the
esp had before the call to setjmp. When setjmp returns, it returns the value zero in eax.

At some point later, longjmp is called. This restores the general-purpose registers to their previous
values, sets eax to the second argument of longjmp, sets the stack pointer, and finally does an indirect jump
to the saved instruction pointer. In essence, setjmp returns two times while longjmp never returns.

If an attacker is able to write the exploit program to some location in memory and overwrite two words
of a jmp_buf — esp and eip — that is subsequently the first argument to a longjmp call, then the attacker
can arrange for his return-oriented exploit to run. This method of transferring control to a return-oriented
program is so convenient that it was employed for testing the gadgets described in Section 4. See Section 6
for an example this method.

In the interest of security, GNU libc’s setjmp stores the two pointers in the jmp_buf mangled. It first xors
the pointers with a fixed value and then rotates the results left 9 bits.10 In longjmp, the pointers are rotated
right and then xored before being used.

C++ vtable pointer overwrite. If the attacker overwrites an object instance of a class with virtual func-
tions on the heap, then there is (in the general case) no hope of controlling memory around the stack pointer.
However, the attacker will control the memory around the object itself, as well as around the object’s vtable,
since in overwriting the object she can cause the vtable pointer to point at some memory under her control,
such as a packet buffer on the heap. Depending on the code that the compiler generates for virtual method
invocation, then, at the time that an instruction sequence is invoked, one or more registers will point to the
object, the vtable, or both. The attacker must leverage these pointers (1) to change the stack pointer to
memory she controls, and (2) to cause a second instruction sequence to execute after the first.

Being able to leverage a vtable pointer overwrite to take control in a generic way (i.e., one that depends
only on the compiler version and flags, and not on the program being attacked) is at present an open problem.
The alternative is to generate an exploit that is specific to the program attacked, the way that, for example,
alphanumeric shellcodes must be written differently depending on what register or memory location they
can consult to find the shellcode’s location [25].

Function pointer overwrite. With a function pointer overwrite on the heap, as with a vtable pointer
overwrite, the challenge for the attacker is two fold. The first code sequence she causes to execute must
relocate the stack to memory she controls. In the same code sequence, she must arrange for a second
instruction sequence to execute in turn. It is likely the case that no generic exploitation technique exists that
avoids the use of a return instruction, and a specific exploit must be crafted for each target program.

6 Example Exploit

We construct a complete, working shellcode using a return-oriented program without returns and which
contains no zero bytes making it usable with a strcpy vulnerability. Once control flow has transferred to the
shellcode, it sets up the arguments for a call to the syscall function:

10In a blog post, Ulrich Drepper writes that the value xored is supposed to be a process-specific random value and that he added
this pointer “encryption” to jmp_buf, among other places in libc, in December 2005 [8]. On a stock Debian GNU/Linux 5.0.4
(“Lenny”) system, this value appears to be constant. Indeed, from a cursory inspection of the source code for GNU libc 2.7 used
in this version of Debian, it appears that the random value is supposed to come from the high-precision timer, but that this code is
never enabled.
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Listing 1: Target program for our example exploit.

struct foo

{

char buffer[160];

jmp_buf jb;

};

int main( int argc, char **argv )

{

struct foo *f = malloc( sizeof *f );

if( setjmp(f->jb) )

return 0;

strcpy( f->buffer, argv[1] );

longjmp( f->jb, 1 );

}

syscall( SYS_execve, "/bin/sh", argv, envp ).

The target program, given in Listing 1, allocates enough memory on the heap to hold a 160 byte character
array and a jmp_buf. Then, setjmp is called to initialize the jmp_buf and the target program’s first argument
is copied to the character array. Finally, longjmp causes control flow back to the point of the setjmp’s return
and the program exits. The target program is compiled and linked with Mozilla’s libxul to provide the two
instruction sequences pop %ebx; jmp ∗(%ebx) and pop %edx; jmp ∗(%edx) as described in Section 4.

The shellcode “egg” in Listing 2 consists of four parts: (1) the return-oriented program; (2) data used by
the program; (3) the instruction sequence catalog; and (4) the data to overwrite the jmp_buf. The program
consists of a sequence of pointers to the sequence catalog and values to load into registers. The jmp_buf

pointers are overwritten to point the stack pointer at the beginning of the program and the instruction pointer
at the instruction sequence pop %edx; jmp ∗(%edx) in libxul. Then, it xors esi with itself to clear it and uses
this register to write zero words in the data section as needed. After the zeros have been written, important,
nonzero data that was overwritten is restored. Finally, the program ends with a call to the syscall function
followed by its arguments which reside in the data.

The pop %edx; jmp ∗(%edx) sequence used is not strictly necessary, it could have been replaced by
popad; cld; ljmp ∗(%edx) sequence from libc. This sequence requires the use of a far pointer which contains
00 as its final byte. Normally, strcpy vulnerabilities do not allow zero bytes; however, as part of the copy, a
final 00 is written to terminate the string. Thus, our shellcode egg can contain exactly one far pointer at the
very end.

When the target program is run with the exploit egg as its first argument, the result is a new shell.

steve@vdebian:~/noret/exploit$ ./target "‘cat egg‘"

sh-3.2$

7 Conclusions and Open Problems

We have shown that on the x86 it is possible to mount a return-oriented programming attack without using
any return instructions. In the new attack, certain return-like instruction sequences take the place of return
instructions. Incidental features of the x86 ISA mean that these sequences are sufficiently frequent to make
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Listing 2: Shellcode egg. Each group of four bytes is a single (little-endian) word that makes up the basic unit
of return-oriented code and data.

0000000: 4cbf0408 40bf0408 34bf0408 14bf0408 3cbf0408 L...@...4.......<...

0000014: 34bf0408 32bf0408 3cbf0408 34bf0408 3bbf0408 4...2...<...4...;...

0000028: 3cbf0408 34bf0408 24bf0408 3cbf0408 38bf0408 <...4...$...<...8...

000003c: 20bf0408 34bf0408 17bf0408 3cbf0408 44bf0408 ...4.......<...D...

0000050: 1cc9045e 48bf0408 0b010101 20bf0408 2cbf0408 ...^H....... ...,...

0000064: 30bf0408 55555555 01273fb7 2f62696e 2f736801 0...UUUU.’?./bin/sh.

0000078: 55555555 20bf0408 01010101 393845b7 f93045b7 UUUU .......98E..0E.

000008c: a97d45b7 ca8a45b7 b98d45b7 115744b7 6779deb7 .}E...E...E..WD.gy..

00000a0: 55aa55aa 55aa55aa 55aa55aa 55aa55aa ee617d1d U.U.U.U.U.U.U.U..a}.

00000b4: 9122a1ae ."..

constructing a Turing-complete gadget set without return instructions feasible given large Linux libraries
such as Mozilla’s libxul, or libphp.

Because it does not make use of return instructions, our new attack has negative implications for two
recently proposed classes of defense against return oriented programming: those that detect the too-frequent
use of returns in the instruction stream, and those that detect violations of the LIFO invariant normally
maintained for the return-address stack. It does not appear that defenses that maintain a shadow return-
address stack can be salvaged. On the other hand, defenses that look for too-frequent use of returns in a
program’s instruction stream could be modified to look also for too-frequent use of indirect jumps, though
this risks a cat-and-mouse game if attackers can switch again to different ways of chaining code sequences.

The major open problem suggested by our work is whether it is possible to find some property that all

return-oriented attacks provably must share. The use of return instructions to chain sequences appeared to
be such a property, but we have shown that it is not. Such a property could be used as part of a defense
against return-oriented programming, assuming that it can be efficiently tested. (Indeed, it is not clear that
effective defenses against return-oriented programming can be deployed at lower overhead than full control-
flow integrity [1, 9].) A second open problem is whether return-oriented programming without returns is
feasible on architectures other than the x86.
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