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Abstract

Myocardial infarction leads to changes in the geometry (remodeling) of the left ventricle (LV) of the heart. The degree and
type of remodeling provides important diagnostic information for the therapeutic management of ischemic heart disease.
In this paper, we present a novel analysis framework for characterizing remodeling after myocardial infarction, using LV
shape descriptors derived from atlas-based shape models. Cardiac magnetic resonance images from 300 patients with
myocardial infarction and 1991 asymptomatic volunteers were obtained from the Cardiac Atlas Project. Finite element
models were customized to the spatio-temporal shape and function of each case using guide-point modeling. Principal
component analysis was applied to the shape models to derive modes of shape variation across all cases. A logistic
regression analysis was performed to determine the modes of shape variation most associated with myocardial infarction.
Goodness of fit results obtained from end-diastolic and end-systolic shapes were compared against the traditional clinical
indices of remodeling: end-diastolic volume, end-systolic volume and LV mass. The combination of end-diastolic and end-
systolic shape parameter analysis achieved the lowest deviance, Akaike information criterion and Bayesian information
criterion, and the highest area under the receiver operating characteristic curve. Therefore, our framework quantitatively
characterized remodeling features associated with myocardial infarction, better than current measures. These features
enable quantification of the amount of remodeling, the progression of disease over time, and the effect of treatments
designed to reverse remodeling effects.
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Introduction

A computational atlas of image-derived shapes refers to an

alignment of maps that relate individual anatomical geometry and

function to the distribution of biological variations across a

population, which can be described at different scales from

genotype to phenotype [1]. Atlas-based analyses of patients and

healthy volunteers have recently been explored in several different

medical areas. For that purpose, large imaging databases, which

enable the construction of probabilistic shape atlases for specific

organs or diseases, have been established. Atlas-based analysis of

brain anatomy and pathology is well advanced (e.g. [2]), including

analysis of occipitalization in children [3], and MRI-based

probabilistic atlases of neuroanatomy [4]. In the heart, atlas-based

analysis has recently shown the potential to reveal new measures of

geometry and function [1]. For example, atlas-based methods have

been used to quantify subtle differences in heart shape between

individuals born prematurely compared with full term age
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matched controls [5]. In patients with cardiovascular disease,

certain changes in heart shape over time, known as remodeling,

are indicative of worse prognostic outcome [6]. After myocardial

infarction, remodeling associated with an increase in heart size is a

predictor of mortality, and remodeling associated with spherica-

lization of heart shape is linked with decreased survival [7].

However, standard clinical indices used to describe remodeling are

typically simple measures of mass and volume, such as end-

diastolic (ED) volume (largest volume), end-systolic (ES) volume

(smallest volume) or left ventricular mass. These ignore much of

the available shape information. We hypothesized that atlas-based

analysis of patients with myocardial infarction would enable better

quantification of remodeling features associated with myocardial

infarction.

The Cardiac Atlas Project (CAP, http://www.cardiacatlas.org)

is a world-wide web-accessible resource, comprising a population

atlas of asymptomatic and pathological hearts [8]. The CAP

facilitates large-scale data sharing of cardiac imaging studies and

their corresponding derived analyses that describe the cardiac

shape, structure and function across various population groups.

The data has been contributed from several studies, including

Defibrillators to Reduce Risk by Magnetic Resonance Imaging

Evaluation (DETERMINE) [9], comprising patients with myo-

cardial infarction, and the Multi Ethnic Study of Atherosclerosis

(MESA) [10], comprising asymptomatic volunteers. We used cases

from both studies to examine the principal components of shape

variation between the two cohorts, and thereby characterize shape

changes associated with myocardial infarction.

Cardiovascular magnetic resonance (CMR) imaging is a non-

invasive modality, which provides detailed, quantitative data of the

heart structure and function. Compared to other imaging

modalities, CMR does not use ionizing radiation, and is not

Table 1. Demographics for the MESA and DETERMINE datasets (mean6std).

Units DETERMINE MESA

Sex (Female/Male) ` 60/238 1034/975

Age{ years 62.76610.80 61.47610.15

Height` cm 173.9169.80 165.9769.99

Weight{ kg 79.91628.00 76.75616.50

Systolic BP mmHg 127.50620.14 126.00622.00

Diastolic BP` mmHg 73.86611.34 71.49610.33

EDV` ml 196.32652.94 125.45631.17

ESV` ml 118.60648.86 47.48618.74

MASS` g 168.55641.19 126.24636.03

{p,0.05; `p,0.01.
For continuous variables, p values report a Wilcoxon signed-rank test of the null hypothesis. For categorical variables the p-value reports a x2 test of the null hypothesis.
doi:10.1371/journal.pone.0110243.t001

Figure 1. Image and shape differences for volunteers imaged from DETERMINE (top), and MESA (bottom), for the same short-axis
(SA), long-axis (LA) planes at end diastole (ED) and end systole (ES). Green and blue contours and markers show the model’s endocardial
and epicardial boundaries and guide points, respectively. Light color markers denote fiducial landmarks (right ventricular free wall insertion points,
mitral valve hinge points) used to define the location of the model shape parameters in consistent positions relative to the anatomy of the heart.
doi:10.1371/journal.pone.0110243.g001
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dependent on restricted views of the heart. As a result, many large

research studies are using CMR to collect phenotypic data on

cardiac disease. Model-based image analyses were developed in

the last decades from the availability of large-scale data set of

CMR images. This has led to the growing number of statistical

analysis applications for cardiac shape and motion [1]. One

particular shape representation is a finite element model, which

provides an efficient and accurate representation of complex

geometries [11]. This method has been shown to provide a

compact and powerful representation of shape and function of the

LV, and has been validated against ex-vivo LV mass, against

manually-drawn contours in patients with regional wall motion

abnormalities, and against cardiac output flow in healthy subjects

[12,13]. However, the statistical analysis of shape parameters has

previously been limited by the lack of substantial sample size and/

or bias between acquisition protocols.

In this study, we applied principal component analysis (PCA) to

characterize the cardiac shape features in a large number of CMR

cases. PCA is a widely used dimensionality reduction technique,

which has been applied to heart shape analysis [14], motion

analysis [15], 3D segmentation [16], and population analysis [17]

[18]. After extracting shape features using PCA, we applied a

logistic regression to analyze the differences between myocardial

infarction patients and asymptomatic volunteers. We also com-

pared the performance (goodness of fit) of the model with standard

clinical indices, including LV mass and volume. We found that the

shape indices derived from the principal components of the shape

variation characterized remodeling better than standard LV mass

and volume indices.

Data and Methods

2.1 CMR Data
CMR datasets of 300 patients with myocardial infarction from

DETERMINE and 1991 asymptomatic volunteers from MESA

were obtained from the CAP database for inclusion in this study.

These represented a random sample of the MESA baseline and

DETERMINE CMR examinations contributed to CAP with local

Institutional Review Board approval. This retrospective study was

approved by the Health and Disability Ethics Committees of the

New Zealand Government, under reference MEC/08/04/052.

Informed participant consent compatible with sharing of de-

identified data was obtained in writing in all cases. Imaging studies

and derived analyses were de-identified, prior to analysis, in a

HIPAA compliant manner [US Health Insurance Portability and

Accountability Act of 1996 (HIPAA; Pub.L. 104–191, 110 Stat.

1936, enacted August 21, 1996)], annotated using standard

ontological schema, stored in a web-accessible picture archiving

and communication system database, and analyzed using atlas-

based techniques [8]. The asymptomatic cases were regarded as

the control group since, at the time of recruitment, they did not

present any clinical symptoms of cardiovascular disease [19].

Table 1 shows the cohort characteristics. Patients were taller and

heavier than the asymptomatic group, with larger LV mass, end-

diastolic volume (EDV), end-systolic volume (ESV), and blood

pressures. They were also more likely to be male. The CMR

imaging protocol was different between the two cohorts: the

DETERMINE protocol used steady state free precession (SSFP)

imaging with 10–12 short axis slices and two long axis slices

typically with 6 mm thickness, 4 mm gap, field of view 360–

400 mm, 2566192 matrix, flip angle 60u, echo time 1.41 ms,

repetition time 2.8 ms, with 20–40 frames per slice (temporal

resolution ,50 ms) and pixel size from 1.4 to 2.5 mm/pixel

depending on patient size. The MESA protocol used fast gradient-

recalled echo (GRE) imaging with 10–12 short axis slices and one

(four chamber) long axis slice with typical parameters 6 mm

thickness, 4 mm gap, field of view 360–400 mm, 2566160 matrix,

flip angle 20u, echo time 3–5 ms, repetition time 8–10 ms with 20–

30 frames per slice (temporal resolution ,50 ms) and pixel size

from 1.4 to 2.5 mm/pixel depending on patient size.

2.2 Finite Element Modeling
For the MESA cohort, short-axis hand-drawn contours on the

inner and outer surfaces of the left ventricle were available from

the MESA MRI core laboratory. These contours were fitted by the

finite element model by linear least squares as described previously

[20]. For the DETERMINE cohort, expert observers performed

the analysis using guide-point modeling [13] to interactively

customize a time-varying 3D cardiac finite element model of the

Figure 2. Scree plot of PCA analysis at ED and ES.
doi:10.1371/journal.pone.0110243.g002
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LV to MR images (Figure 1) using custom software (CIM version

6.0, University of Auckland, New Zealand). LV mass and volume

at ED and ES were subsequently calculated from the fitted cardiac

LV shape models. The model comprised 16 bicubic finite elements

with C1 continuity, (see [12,13] for details). Briefly, the model was

interactively fitted by least-squares optimization to guide points

provided by the analyst, as well as computer-generated points

calculated from the image using an edge detection algorithm.

Automatic feature tracking was used to track points throughout

the cardiac cycle using non-rigid registration in both short and

long axis images [12]. The model was registered to each case using

fiducial landmarks defined at the hinge points of the mitral valve

and the insertions of the right ventricular free wall into the inter-

ventricular septum. This method has been previously validated

against autopsy LV mass, in patients against manually drawn

contours and in healthy volunteers against flow-derived measure-

ments of cardiac output [13]. The finite element coordinates were

used to provide the atlas coordinates of the LV: each point was

assumed to be in approximately the same anatomical location in

every heart [21].

2.3 Alignment
For statistical analysis, the shape models were evenly sampled at

sufficient resolution to capture all the shape features available. The

Figure 3. PCA first 13 modes using shape vectors at ED.
doi:10.1371/journal.pone.0110243.g003
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surface sampling process resulted in 2738 Cartesian (xi,yi,zi)
points. A Procrustes alignment method [22] was applied to the

sampled point data to determine similarity transformations

between shapes: i.e. isotropic scale, translation and rotation. This

algorithm finds the optimal scale, rotation matrix and translation

vector, which minimizes the overall distance between two sets of

points with respect to the Euclidean norm. All LV models from the

DETERMINE and MESA datasets were aligned using translation

and rotation to their mean shape whenever required. Scale

variations were not removed since heart size is a clinical indicator

of disease.

2.4 Correction of Acquisition Bias
As outlined in Section 2.1, the MESA cohort was acquired using

a different imaging protocol (GRE) to the DETERMINE cohort

(SSFP). It is known that these two protocols result in small

differences in the placement of inner and outer surfaces of the

heart. SSFP typically gives rise to larger estimates of left ventricle

(LV) cavity volume and smaller estimates of LV mass than GRE.

The shape bias has been shown to be regionally variable, and can

be effectively removed using a maximum likelihood correction

algorithm [23]. Briefly, a transformation between GRE models

and SSFP models was learned using data from 40 asymptomatic

individuals who were scanned using both protocols. The optimal

Figure 4. PCA first 14 modes using only shape vectors at ES.
doi:10.1371/journal.pone.0110243.g004
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Figure 5. First 20 modes at ED using PCA of a combination of ED and ES.
doi:10.1371/journal.pone.0110243.g005
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Figure 6. First 20 modes at ES using PCA of a combination of ED and ES.
doi:10.1371/journal.pone.0110243.g006
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transformation was found using maximum likelihood methods and

was validated previously [23]. All MESA shape models were then

transformed using this method, with the transformed shapes then

being directly comparable to SSFP models.

2.5 Principal component analysis and Logistic regression
classification

Principal component analysis [24] is currently one of the most

widely used dimension reduction procedures. Using orthogonal

transformations, PCA projects the data onto a linear space of

maximum-variation directions, known as modes. After the

projection, the number of modes retained is typically well below

the number of original variables, yet still retains a high percentage

of the overall variability in the original set. The first mode

accounts for as much of the variability in the data as possible, and

each succeeding mode in turn has the highest residual variance

possible under the linear orthogonality constraint. The coordinates

(x, y, z) of the surface sampling points were concatenated into a

shape vector. Shape vectors from all cases were formed into a

matrix. The eigenvectors of the covariance matrix formed the

principal component modes, and their corresponding eigenvalues

indicate the proportion of the total variation explained by each

mode. Selecting the number of PCA modes to retain in subsequent

analysis is contingent on the application. In this paper, enough

Table 2. Logistic regression analysis of the baseline model.

Parameter Coefficient Standard Error Standardized coefficient Odds Ratio(OR) OR 95% Confidence Interval

Intercept* 218.8662 1.9036

Age` 0.0233 0.0085 0.1308 1.0240 1.0070 1.0410

Sex 0.4107 0.2263 0.1132 1.5080 0.9680 2.3500

Height* 0.0943 0.0111 0.5316 1.0990 1.0750 1.1230

Weight* 20.0216 0.0046 20.2148 0.9790 0.9700 0.9880

SBP 0.0045 0.0053 0.0536 1.0040 0.9940 1.0150

DBP 0.0002 0.0105 0.0010 1.0000 0.9800 1.0210

`p,0.01 * p,0.0001.
doi:10.1371/journal.pone.0110243.t002

Table 3. Logistic regression analysis of the modes at ES.

Parameter Coefficient Standard Error Standardized coefficient Odds Ratio(OR) OR 95% Confidence Interval

Intercept* 216.8281 4.1446

Age` 0.0467 0.0178 0.2629 1.0480 1.0120 1.0850

Sex 20.4471 0.4698 20.1232 0.6400 0.2550 1.6060

Height{ 0.0506 0.0245 0.2851 1.0520 1.0020 1.1040

Weight` 20.0306 0.0086 20.3048 0.9700 0.9540 0.9860

SBP` 0.0310 0.0114 0.3732 1.0320 1.0090 1.0550

DBP 20.0239 0.0206 20.1378 0.9760 0.9380 1.0170

mode1* 0.0214 0.0018 1.8503 1.0220 1.0180 1.0250

mode2* 0.0209 0.0030 0.7308 1.0210 1.0150 1.0270

mode3* 0.0111 0.0026 0.3281 1.0110 1.0060 1.0160

mode4* 0.0463 0.0049 1.1490 1.0470 1.0370 1.0580

mode5 20.0011 0.0039 20.0250 0.9990 0.9910 1.0060

mode6` 20.0126 0.0044 20.2509 0.9870 0.9790 0.9960

mode7* 0.0264 0.0043 0.4954 1.0270 1.0180 1.0350

mode8 0.0085 0.0046 0.1508 1.0090 0.9990 1.0180

mode9* 20.0245 0.0052 20.3856 0.9760 0.9660 0.9860

mode10* 0.0260 0.0063 0.3877 1.0260 1.0140 1.0390

mode11 0.0054 0.0067 0.0736 1.0050 0.9920 1.0190

mode12` 20.0242 0.0064 20.3150 0.9760 0.9640 0.9890

mode13 20.0022 0.0072 20.0248 0.9980 0.9840 1.0120

mode14* 0.0386 0.0077 0.4035 1.0390 1.0240 1.0550

{p,0.05; `p,0.01; * p,0.0001.
doi:10.1371/journal.pone.0110243.t003
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modes were retained to explain 90% of the total variance. Three

PCA cases were considered, the first using only shape vectors at

ED, the second using shape vectors at ES, and the third using a

combination of ED and ES (ED&ES). The ED&ES PCA was

formed by concatenating the shape vectors from ED and ES into a

single shape vector.

After PCA, a logistic regression model [25] was used to identify

which modes were most associated with the differences between

myocardial infarct patients and asymptomatic patients. The

weights of the PCA components (up to 90% of the total variability)

were used as predictors for classification. In statistics, logistic

regression is a type of probabilistic, statistical classification model,

which is used to predict a binary response from continuous,

binary, or canonical variables. MESA cases (non-patients) were

assigned a zero label whereas DETERMINE cases (patients) were

assigned a one label. These values were used to obtain the

coefficients in the regression models. Thus, the following equation

can be used to calculate the probability that a new case belongs to

the patient class [26]:

P~
1

1z exp½{(b0z
P

biXi)�

where P is the probability of the a certain case belonging to the

myocardial infarction set, Xi are the values of the predictors,

which in our case represent the PCA modes, bi are the coefficient

terms of Xi, and b0 is the intercept. The b terms were found by

maximum likelihood estimation. After the coefficients have been

estimated, the goodness-of-fit of the resulting model can be

examined to determine how well the regression model distinguish-

es between non-patients and patients. Three common statistics

used to quantify the goodness-of-fit of the model are deviance,

Akaike information criterion (AIC) and Bayesian information

criterion (BIC) [27,28]:

Deviance~{2 log (L)

AIC~{2 log (L)z2k

BIC~{2 log (L)z2k � log (n)

where the L represents the log-likelihood of the model (i.e. the

value that is maximized by computing the maximum likelihood

value for the bi parameters), k is the number of estimated

parameters and n is the sample size. In all three measures, a lower

number is indicative of a better model. In addition to these three

measures, we also evaluated the area under the curve (AUC) of the

receiver operating characteristic curves, since this is also an overall

measure of goodness of fit (better models having values closer to

1.0).

Results

PCA was performed on the shape models at ED and ES as well

as their combination (ED&ES). A scree plot [29] is given in Fig. 2

showing the cumulative variance explained by each mode. The

shape variation described by each mode is shown in Fig. 3 for ED,

Fig. 4 for ES, and Fig. 5 and Fig. 6 for ED&ES. Although most of

the modes do not correspond with traditional shape measures, the

first three modes in each case can be understood in terms of

commonly used clinical measures of remodeling. Mode 1

explained 50% of the total variance at ED and 55% at ES. In

both cases the first mode was primarily associated with the size of

Table 4. Logistic regression analysis of the modes at ED.

Parameter Coefficient Standard Error Standardized coefficient Odds Ratio(OR) OR 95% Confidence Interval

Intercept 26.5146 3.5722

Age* 0.0508 0.0153 0.2859 1.0520 1.0210 1.0840

Sex 20.4259 0.4037 20.1174 0.6530 0.2960 1.4410

Height 0.0119 0.0212 0.0674 1.0120 0.9710 1.0550

Weight* 20.0385 0.0078 20.3826 0.9620 0.9480 0.9770

SBP 20.0078 0.0093 20.0936 0.9920 0.9740 1.0110

DBP 20.0002 0.0174 20.0010 1.0000 0.9660 1.0340

mode1* 20.0212 0.0017 21.6175 0.9790 0.9760 0.9820

mode2* 20.0201 0.0024 20.6924 0.9800 0.9750 0.9850

mode3* 0.0112 0.0025 0.3573 1.0110 1.0060 1.0160

mode4 0.0019 0.0028 0.0497 1.0020 0.9960 1.0070

mode5* 20.0186 0.0037 20.4163 0.9820 0.9750 0.9890

mode6* 20.0557 0.0056 21.0397 0.9460 0.9360 0.9560

mode7 20.0061 0.0049 20.1010 0.9940 0.9840 1.0030

mode8* 0.0528 0.0067 0.7886 1.0540 1.0400 1.0680

mode9` 20.0142 0.0045 20.1954 0.9860 0.9770 0.9950

mode10 0.0112 0.0069 0.1442 1.0110 0.9980 1.0250

mode11* 0.0875 0.0102 0.9628 1.0910 1.0700 1.1140

mode12 0.0006 0.0071 0.0062 1.0010 0.9870 1.0150

mode13 0.0105 0.0074 0.0929 1.0110 0.9960 1.0250

{p,0.05; `p,0.01; * p,0.0001.
doi:10.1371/journal.pone.0110243.t004
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the LV. Mode 2 explained 10% of the total variance at ED and

was primarily associated with the sphericity of the left ventricle.

The third mode of ED was associated with mitral valve

orientation. At ES the second mode accounting for 8% of the

variance was associated with wall thickening. The third mode at

ES was associated with sphericity. We retained 90% of the

cumulative variance, which resulted in 13 modes at ED, 14 modes

at ES and 20 modes for the ED&ES combination.

Five logistic regression models were studied using all available

data. The coefficients (b), standard error, associated p-values,

standardized coefficients and odds ratios (OR) were calculated for

each model. A p-value of 0.05 or lower was considered significant.

The first model included age, sex, height, weight, systolic blood

pressure and diastolic blood pressure (Table 1). This was

considered the baseline model (Table 2). The second model

included the baseline model variables plus 14 ES PCA modes (ES

PCA, Table 3). The third model consisted of the baseline variables

plus 13 ED PCA modes (ED PCA, Table 4). The fourth model

consisted of the baseline variables plus the modes obtained from

the ED&ES combination of the ED and ES shape parameters

(ED&ES PCA, Table 5). The fifth model included the baseline

variables plus the ED volume (EDV), the ES volume (ESV) and

the LV mass (MASSVOL, Table 6). The baseline model showed

that the age, height and weight were statistically significant

predictors of disease (Table 2). These were also significant in the

baseline plus ES PCA model (Table 3), along with most of the

PCA modes (except modes 5, 8, 11 and 13). The baseline plus ED

modes (Table 4) also showed that most PCA modes were

significantly associated with disease (except modes 4, 7, 10, 12

and 13). The baseline plus mass and volume model showed that

EDV, ESV and MASS were all associated with disease (Table 6).

The standardized coefficients show which modes have greater

effect on the probability that the case is a patient. Mode 1 and

mode 4 have greater effect in the classification model at ES. Mode

1, mode 6 and mode 2 have greater effect in the classification

model at ED. EDV, ESV and MASS are highly related with the

disease, according to Table 6. The Odds ratios were relative

measures of the effects of the shape indicators between the

myocardial infarction patients and the normal people. Some shape

indicators (OR.1), for instance, the mode 1 and mode 4 in the ES

model (Table 3) and ED&ES model (Table 5) show higher odds of

myocardial infarction than others. Some shape indicators (OR,1)

show lower odds of the disease, for example, mode 1 and mode 6

in the ED model (Table 4). There are several modes whose OR is

not significant as their confidence intervals overlap the null value

(OR = 1).

Table 5. Logistic regression analysis of the modes combined ED and ES.

Parameter Coefficient Standard Error Standardized coefficient Odds Ratio(OR) OR 95% Confidence Interval

Intercept 215.9741 4.7246

Age 0.0384 0.0214 0.2157 1.0390 0.9960 1.0840

Sex 20.2512 0.5221 20.0692 0.7780 0.2800 2.1640

Height 0.0530 0.0285 0.2991 1.0540 0.9970 1.1150

Weight* 20.0371 0.0097 20.3694 0.9640 0.9450 0.9820

SBP 0.0195 0.0137 0.2345 1.0200 0.9930 1.0470

DBP 20.0145 0.0246 20.0834 0.9860 0.9390 1.0340

mode1* 0.0160 0.0015 1.8174 1.0160 1.0130 1.0190

mode2* 20.0122 0.0021 20.5272 0.9880 0.9840 0.9920

mode3 20.0024 0.0025 20.0971 0.9980 0.9930 1.0020

mode4* 0.0438 0.0046 1.5528 1.0450 1.0350 1.0540

mode5{ 0.0068 0.0029 0.2227 1.0070 1.0010 1.0130

mode6 0.0012 0.0037 0.0329 1.0010 0.9940 1.0080

mode7{ 20.0314 0.0045 20.8131 0.9690 0.9610 0.9780

mode8{ 0.0089 0.0043 0.1963 1.0090 1.0000 1.0180

mode9 20.0023 0.0045 20.0479 0.9980 0.9890 1.0060

mode10 0.0096 0.0050 0.1906 1.0100 1.0000 1.0200

mode11 20.0006 0.0051 20.0115 0.9990 0.9890 1.0090

mode12` 20.0217 0.0056 20.3548 0.9790 0.9680 0.9890

mode13* 20.0263 0.0067 20.4121 0.9740 0.9610 0.9870

mode14* 0.0264 0.0065 0.3784 1.0270 1.0140 1.0400

mode15* 0.0293 0.0086 0.4079 1.0300 1.0130 1.0470

mode16` 0.0195 0.0071 0.2479 1.0200 1.0060 1.0340

mode17 0.0092 0.0070 0.1122 1.0090 0.9960 1.0230

mode18 0.0076 0.0073 0.0935 1.0080 0.9930 1.0220

mode19 20.0126 0.0082 20.1451 0.9870 0.9720 1.0030

mode20 0.0033 0.0080 0.0371 1.0030 0.9880 1.0190

{p,0.05; `p,0.01; * p,0.0001.
doi:10.1371/journal.pone.0110243.t005
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The goodness of fit was compared between the five models with

the indices of Deviance, AIC, BIC and AUC of each model, which

are listed in Table 7. Overall, all the PCA mode models as well as

the mass-volume model showed good performance. The ED&ES

PCA model achieved the best performance in terms of Deviance,

AIC, SC, and AUC values, followed closely by the ES PCA model

and the ED PCA model. All PCA models better characterized

patients from non-patients than traditional mass and volume

measures. The ROC curves are shown in Fig. 7.

Discussion

We have proposed an atlas-based disease analysis framework by

means of shape parameters from LV finite element models with a

large number of subjects. The framework consisted of three steps:

(1) fitting a finite element model to the LV MR images, (2)

principal component analysis of the aligned shape parameters, and

(3) quantification of the association with disease using logistic

regression. We hypothesized that patients with myocardial

infarction have significant shape differences with respect to the

normal population, due to cardiac remodeling. The results

supported this hypothesis, with most modes significantly associated

with disease. The PCA analysis also performed better than

traditional indices of remodeling (mass and volume). This method

can therefore be used as a clinical tool for the characterization of

the patterns of change associated with remodeling. These methods

can also be used to track individual patients over time, by

quantifying the degree to which their shape modes conform to the

remodeling spectrum. Patients who are moving toward the adverse

side of the spectrum may benefit from more aggressive treatment

regimes. Conversely, the reverse remodeling associated with

treatment can also be quantified. Although in this study we

applied the method to patients with myocardial infarction, this

framework is generalizable to any disease group.

Note that we did not attempt to correct for colinearity between

EDV, ESV and Mass in the MASSVOL model, or between SBP

and DPB in the baseline model. EDV and ESV were strongly

correlated (Pearson coefficient r= 0.911, p,0.05), as were ESV

and Mass (Pearson coefficient r= 0.664, p,0.05), which would

affect these coefficient estimates and odds ratios in the model.

However, all three were input together in the MASSVOL baseline

model to show the combined goodness-of-fit of traditional

indicators, in order to assess the improvement given by the PCA

modes. SBP, DBP (Pearson coefficient r= 0.604, p,0.05) and

other baseline variables were included in all the regression models

to control for any differences between the patient and asymptom-

atic groups (Table 1).

The finite-element method is a powerful representation of the

LV model, which also provides traditional indicators such as

volume and mass. This method has been used to characterize

cardiac motion [30,31] and deformation in a variety of disease

groups [32]. Extensions to the right ventricle and atria have also

been proposed [33,34]. In this study, we have limited the

application of these models to the description of shape; however,

these models also have the capability of simulating the excitation,

contraction and relaxation of cardiac mechanics [35].

PCA clusters the variability of the finite element models into

orthogonal modes that can be interpreted from a global shape

point of view. In [5], PCA was used to determine the shape

differences between people born pre-term and people born full-

term. PCA has the disadvantage that the modes are in general

difficult to interpret from a clinical perspective. However, in

the present study the first three modes were associated with

well understood clinical indicators such as size or sphericity.
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Interestingly, both size and sphericity are associated with adverse

outcomes after myocardial infarction [7,36,37]. In the current

study, the ED_ES PCA regression model performed the best with

an AUC of 0.9905. Adding ESV, EDV and MASS into this model

did not improve this performance greatly (results not shown),

indicating that the discriminatory information included in these

mass and volume measures are already captured in the ED&ES

PCA model. Adding stroke volume or ejection fraction to the

MASSVOL model also did not improve the results greatly, since

these are very dependent on the ESV and EDV already in the

model.

Although heart size is known to be dependent on patient body

habitus, we did not correct the shape vectors for height or weight,

as done clinically using indexing methods. This was because the

baseline model already included height and weight, so all PCA

logistic regression analyses were automatically corrected for height

and weight.

Further work is needed in several areas. Although PCA is one of

the most common dimensionality reduction techniques, other

techniques may be more appropriate, such as independent

component analysis [18]. Secondly, logistic regression classifica-

tion method is only one of many methods which can be used for

the characterization of disease. For example, in [38] a three-

dimensional cortical gray matter density map was established and

validated using sparse multinomial logistic regression in the

classification of schizophrenia. In [39], a maximum a posteriori

classifier was used to distinguish brain tissue types. Expectation-

maximization (EM) [40] and k-Nearest-Neighbor [41] classifica-

tion have been successfully applied to evaluate brain tumors from

MRI. Neural networks and support vector machines have been

used to identify brain structures with MRI [42] and to predict wall

motion scores [43]. Evaluation and comparison of these methods

for the evaluation of cardiac disease should be performed. Thirdly,

the transformation from GRE to SSFP models was learned using

40 normal volunteers. While [23] showed that this was sufficient to

robustly characterize the transformation, more cases would

provide a greater variation of heart shape and might improve

the transformation parameters.

Table 7. Comparison of the five logistic models.

Deviance AIC BIC AUC

Baseline Model 1254.44 1268.44 1308.34 0.7404

MASSVOL Model 602.641 622.641 679.644 0.9530

ED PCA Model 411.088 451.088 565.094 0.9810

ES PCA Model 319.881 361.881 481.587 0.9883

ED&ES PCA Model 260.753 314.753 468.661 0.9905

doi:10.1371/journal.pone.0110243.t007

Figure 7. ROC curve for the logistic regression classification for each model.
doi:10.1371/journal.pone.0110243.g007
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