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Abstract 

Computer Vision for Morphological Evaluation of 

Musculoskeletal Disorders in Magnetic Resonance Imaging 

by Kenneth T. Gao 

With the aging of the general population, musculoskeletal (MSK) diseases have moved 

to the forefront of healthcare concerns and are the leading causes of disability globally. 

Noninvasive imaging is routinely utilized in the clinic to diagnose and monitor onset and 

progression of MSK conditions. However, due to the qualitative nature of imaging 

assessments and increasing labor costs of evaluating advanced imaging modalities, there 

is a crucial need for automatic quantitative approaches. In this dissertation, we explore 

the development of computer vision techniques for extracting morphological features 

associated with low back pain and knee osteoarthritis, two of the most prevalent and 

debilitating MSK conditions. 

 We begin by addressing the costs of image annotation via automation with deep 

learning. More specifically, we developed convolutional neural networks for two purposes: 

(1) to semantically segment various tissues, allowing for geometric tissue characterization, 

and (2) to detect and localize lesions and abnormalities. Then, leveraging these models 

for feature extraction, we harmonized tissue geometries in 3D Euclidean space using 

atlas-based registration to identify tissue shapes predisposed to disease onset. These 

techniques were applied to both large-scale and small, limited datasets, demonstrating 

the utility of computer vision techniques for morphological evaluation in a data-driven, 

exploratory manner. 
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Chapter 1  

Introduction 

In all aspects of biology, there is a deep connection between form (“morphology”) and 

function. These relationships span across every level of human biology. To paint an 

example, we will look towards knee osteoarthritis (OA), a painful degenerative disease 

characterized by the degradation of the hyaline cartilage tissue that protects and allows 

for articulation of the joint. While there are many proposed mechanisms for the 

development of OA, morphology has been established as a strong correlate. On the 

tissue-level, the two hallmark imaging features of the disease are morphological: (1) 

cartilage loss, and (2) growth of bony osteophytes. Within the cartilage, the structure of 

the dense extracellular matrix informs our understanding of how force is transmitted 

across the cartilage layers during knee flexion and extension. And the organization of 

collagen fibers, chondrocytes, and proteoglycan complexes that form the cartilage are 

critical to the tissue’s mechanical properties. In this manuscript, we will broach the 

association of these various levels of morphometry to disease, with a particular focus on 

tissue geometry. 
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 Noninvasive imaging has been a mainstay in medical diagnostics and the 

assessment of MSK diseases. Radiographs (x-rays) have been the defining method of 

diagnosis of knee OA; however, radiography is not able to depict the articular cartilage 

and is limited as a 2D projection modality. In contrast, magnetic resonance imaging (MRI) 

has proven capable of high resolution, volumetric delineation of various soft tissues and 

is now widely used in research and clinical trial settings. However, the time and labor 

involved in evaluating advanced magnetic resonance (MR) sequences are dramatically 

higher than that of plain film radiographs, particularly when accounting for the complexity 

and flexibility of MRI technology that has introduced high variability in image contrast. 

 We address this challenge with deep learning (DL), a recently coined term for a 

family of machine learning (ML) techniques that has seen dramatic leaps in outcomes, 

particularly in natural imaging (e.g., photos taken with a digital camera). The transfer of 

these technologies to the medical imaging field has been studied with necessary rigor 

and with careful regard to its application. In the efforts discussed here, we investigate the 

development of DL-based segmentation to extract tissue morphometrics and its 

application in experimental studies to quantify group-level characteristics of populations 

at risk for low back pain (LBP) and knee OA. 

1.1 Outline 

In Chapter 2, we summarize some background information in areas of disease 

epidemiology and mechanisms, imaging physics, and DL-based representation learning. 

Chapter 3 describes the implementation of DL models for tissue segmentation in the 

lumbar spine. We expand upon these DL models in Chapter 4 to demonstrate how 

segmentation models can be utilized for detecting abnormal spinal pathologies. 
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Subsequent chapters shift from LBP to knee OA, in which we spatially align DL-derived 

tissue segmentations between subjects to understand variations in tissue geometry and 

composition. Chapter 5 specifically investigates early changes of cartilage composition 

and bone shape in a high-risk population—collegiate basketball players. Meanwhile, 

Chapter 6 demonstrates a “big data” approach to understanding the role of shape of the 

meniscus tissue in OA incidence, using thousands of MRIs to fit a statistical shape model. 

Finally, in Chapter 7 we summarize the contributions of this dissertation and several future 

paths of inquiry based upon these works. 
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Chapter 2  

Background 

2.1  Landscape of MSK Conditions 

The MSK system encompasses the tissues involved in locomotion. Most commonly, we 

first think of the bones that give the body structure and the muscles that move them. Then, 

we consider secondary structures, such as tendons, ligaments, and cartilage, which play 

essential roles in facilitating forces and stability throughout the system. During the span 

of a lifetime, these components of the MSK system are vulnerable to injury and 

degeneration. Some tissues are adept at repair. However, it is often the secondary 

connective tissues in which healing is slow or nonexistent due to their hypocellular and 

hypovascular nature. Chronic MSK conditions account for the highest forms of disability 

and the most frequent visits to physicians’ offices [1] and, as humans continue to live 

longer, these diseases will become an increasingly larger socioeconomical burden. In the 

following sections, we summarize the etiology, epidemiology, and diagnostic and 

management strategies for LBP and knee OA, two of the most debilitating forms of MSK 

disease. 
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2.1.1 Low Back Pain 

2.1.1.1 Epidemiology and Impact 

LBP is the highest cause of disability globally [2], affecting 540 million people in 2015. In 

the United States, nearly 29% of the population age 18 years and older reported suffering 

from LBP [1]. The highest rates were found in those between 45-64 years of age, though 

incidence is extremely common in people of all ages. Women and non-Hispanic white 

ethnic group were subpopulations with relatively higher prevalence than their peers. 

 In 2013, 1 in 4 persons in the United States visited a healthcare professional for 

back pain, accounting for 6.4% of all healthcare visits [1]. Since 1998, the rate of physician 

visits for back pain has been rapidly increasing, with the large majority of the increase 

attributed to LBP (Figure 2.1). Estimates for direct healthcare costs in the United States 

vary widely; most reports range between $50-100 billion in annual costs [3]. 

 

Figure 2.1 Rate of physician visits for back pain in the United States between 1998-2013. 
The rapid and steady increase is driven predominantly by LBP. Image source: [1]. 
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 Typically, indirect costs of this condition are higher than direct costs [4]. Many 

people with LBP do not seek care [5], particularly those with minor forms of disease. 

Severe cases account for 77% of all LBP-related disability, amounting up to 46.5 million 

years lived with disability worldwide [6]. This can lead to profound economic effects. 

Beyond the repercussions of lost workdays, people with the disorder accumulate 

substantially less wealth than those without. LBP is the leading reason for workers to 

retire prematurely [7]. For the individual, living with LBP leads to concerns for seeking 

diagnosis and treatment, regaining previous levels of health and function, or otherwise 

coping with disease [8]. 

2.1.1.2 Clinical Presentation, Diagnosis, and Pathophysiology 

The presentation of LBP is often accompanied by concurrent pain in other locations and 

comorbidities. Psychological, social, and biophysical factors can all contribute to pain 

mechanisms. Smoking [9], obesity [10], and low levels of physical activity [11] have been 

associated with higher incidence. Past pain episodes and living with other chronic 

conditions, such as asthma, headache, and diabetes, are also associated with increased 

odds for future back pain [12]. Considering its multifactorial nature, LBP is challenging to 

evaluate in isolation. 

Acute cases can be caused by physical or psychosocial factors [13]. One-third of 

acute episodes cannot be traced to a specific trigger by the patients [14] and the large 

majority of patients that can discern the cause attribute pain to the act of lifting [15]. 

It is important to note that LBP is a symptom that can result from various 

abnormalities and diseases [16]. In the case of chronic LBP, for the vast majority of people, 

the nociceptive source cannot be identified [17]. Diagnostic triage generally consists of a 
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history and physical examination to rule out possibilities of red flags. These include 

vertebral fractures, inflammatory arthritis, cauda equina, malignancy, and infection [16], 

[17]. Further diagnostic work-up may be warranted if a specific disease is suspected. 

Imaging, for example, is urgently recommended for possible cauda equina, infection, or 

strong suspicion of cancer. Blood tests are suggested for the latter two cases. 

Neurological cases, such as radicular pain, radiculopathy, or spinal canal stenosis, rely 

on clinical findings of leg pain or pain during lumbar flexion. If the above disorders are 

ruled out, then the case is designated as non-specific. 

 Several lumbar features have been identified as contributors to pain. Degenerative 

changes to the intervertebral discs (IVD) is one such morphology associated with 

LBP [18]. Providing structural support and allowing for locomotion of the spinal column, 

IVDs are cushion-shaped tissues that sit between each vertebra. They consist of three 

major components: (1) the nucleus pulposus, a gel-like structure that consists mostly of 

water, type II collagen, and proteoglycans, (2) the annulus fibrosus, which is composed 

of highly organized concentric rings of collagen, elastic fibers, glycoproteins, and 

proteoglycans, and (3) the endplates that anchor the disc to the neighboring vertebrae. 

The nucleus pulposus sits in the center of each disc and distributes hydraulic pressure 

via its high water content, while the annulus fibrosus surrounds the nucleus pulposus to 

provide the necessary structural foundation. With age, disc desiccation is common due 

to imbalances in anabolic synthesis and catabolic breakdown of ECM [19]. This results in 

a progressive replacement of the nucleus pulposus with fibrotic tissue and a loss of 

compressive resistance. To compensate, the annulus fibrosus endures additional force 

and undergoes remodeling and morphological changes [20]. These may include prolapse, 
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herniation, or loss in disc height, which may accompany changes in the vertebrae, such 

as spondylolysis, spondylolisthesis, or degenerative endplate (Modic) changes. The 

interplay between IVD degeneration, abnormal morphologies, and biomechanical 

instability is a strong culprit for pain and has been studied heavily [18]–[22]. 

 Abnormalities of the vertebral endplates, the interface between IVDs and vertebral 

bodies, have also been linked to pain. The endplates play an essential role in nutrient 

transport between vertebral capillaries and the disc, providing glucose and oxygen to the 

cells in the disc and allowing for waste to be removed [22]. Upon skeletal maturity, 

endplates undergo remodeling and mineralization, thus becoming limited in its function of 

nutrient exchange. Modic changes (MC) are one of the initial systems used to describe 

common abnormalities of the endplate and vertebral body [23]. Three types of lesions are 

described, indicating fibrovascular replacement, fatty marrow replacement, and sclerosis, 

and are visualized using MRI. MCs are described in further detail as the primary focus of 

Chapter 4. 

 

Figure 2.2 Schematic of the vertebrae and IVD. The IVD sits between the vertebral bodies, 
allowing for flexibility while providing structure. Image source: Jmarchn, Wikipedia. 
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 While the IVD and vertebral body interface is the primary connection between each 

vertebra, the facet joints in the posterior aspect of the vertebral column are additional 

regions of articulation and are likewise vulnerable to degeneration. Characterized by loss 

of cartilage which facilitates the articulation of the superior and inferior spinal processes, 

facet joint osteoarthritis is strongly associated with disc degeneration due to the 

interdependency between the facets and disc in the transmission of force [24], [25]. 

 The function of the vertebral column relies on the coexistence of the 

abovementioned structures. It is evident that deterioration of one tissue is closely linked 

to degeneration of its neighbors [21], [26], [27]. However, the association of LBP with 

these findings is inconsistent, both in terms of sensitivity (i.e., presence of imaging 

abnormalities in patients with pain) and specificity (i.e., presence of abnormalities in 

asymptomatic patients) [28], [29]. It is crucial to move towards a holistic approach for 

evaluating LBP to improve outcomes [30], [31]. 

2.1.1.4 Prevention and Management 

Prevention strategies revolve around minimizing risk factors. Exercise has proven 

effective for improving general health and strengthening spinal stability [32]. Education 

alone did not improve outcomes; however, in conjunction with exercise, proved to be 

more effective than exercise in isolation [33]. Other forms of prevention, such as lifting 

devices, braces, ergonomic furniture, or shoe insoles, have yet to be conclusively 

investigated or show minimal effect to prevent LBP. 

Due to unknown pathoanatomical sources of pain in nonspecific LBP, 

management focuses on reducing pain while minimizing further risk to mobility. Education, 

analgesics, and moderate activity are recommended when possible [17]. 
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Pharmacological approaches (e.g., NSAIDs, paracetamol, opioids) help ease pain and 

triggers. Non-pharmacological options are available as well, including physical therapy, 

massage, and acupuncture. In cases where the pain source is identifiable, targeted 

interventions can be undergone [34]. Targeted corticosteroid injections have 

demonstrated modest, short-lived efficacy for radicular pain and antidepressants and 

anticonvulsants aid in treating neuropathic pain. Surgery can be an option to address 

morphological defects such as degenerated discs, fracture, or stenosis. Ultimately, there 

is strong consensus that multimodal treatment is most effective, leveraging education, 

pharmacology, physical therapy, and possible surgical intervention. 

2.1.2 Osteoarthritis 

OA has traditionally been considered a wear-and-tear disease, characterized by 

mechanical degradation of cartilage and narrowing of the joint space. However, joints are 

comprised of many different tissues and experience varying forms of degenerative and 

pathological changes. As we understand more about OA, we find that phenotyping this 

complex disease is challenging and multifaceted [35]. Currently, there is no single 

endpoint for clinical trials targeting OA due to its heterogeneity, making it a critical public 

health concern. 

2.1.2.1 Epidemiology and Impact 

The global prevalence of hip and knee OA was estimated to be 3.7%, affecting 303.1 

million people [36]. Incidence of knee OA increases with age due to accumulated 

exposure to risk factors and age-related biochemical changes [37], [38]. Beyond age, 

women, African Americans, and individuals with lower education status were three 

demographic groups in the United States found to be at higher risk. Other risk factors for 
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OA are closely tied to lifestyle, including body mass index (BMI), physical activity, and 

past injury. Expansion of the general population, increased lifespans, and higher rates of 

obesity have rapidly increased the prevalence of OA. According to figures from the Global 

Burden of Disease Study 2019, prevalence increased by 113.25% from 1990 to 2019 [39]. 

The knee is the most common site of OA, accounting for 60.6% of all cases globally, and 

will be the focus of the remainder of this section. 

2.1.2.3 Clinical Presentation, Diagnosis, and Pathophysiology 

Diagnosis of knee OA can be categorized into two forms: (1) symptomatic OA, and (2) 

radiographic OA. Symptomatic OA indicates that individuals experience pain, aching, and 

stiffness and is evaluated through a history and physical examination with load bearing 

and joint motion [40]. Symptoms are generally worsened with movement or after long 

periods of rest. Radiographic OA, diagnosed through imaging, has long been the 

reference standard. The most common definition is the Kellgren-Lawrence (KL) grading 

scheme [41]. Using posteroanterior radiographs in weightbearing position, the knee joints 

are assessed for osteophyte growth, sclerosis, and joint space narrowing indicative of 

cartilage loss and meniscal degeneration (Figure 2.3). There is inconsistent evidence of 

the correlation between degree of radiographic OA and pain [42]–[44] and evaluation of 

OA should not solely rely on radiography. 

 A major limitation of radiography is its inability to delineate cartilage. Providing 

resistance to external forces and allowing for articulation of the bones, cartilage is 

composed of mostly type II collagen, which provides a structural organization to the 

tissue [45] (Figure 2.4). Proteoglycans and glycosaminoglycans (GAGs) embedded in  
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Figure 2.3 Diagram of KL grading for radiographic OA. Image adapted from Spring 
Loaded Technologies. 

the collagen matrix attract water into the cartilage through its net negative charge, 

providing compressive force resistance. The composition of the tissue is regulated solely 

by chondrocytes, which respond to a variety of factors including mechanical, biochemical, 

and immune factors. In the degenerative process, compositional homeostasis is disrupted, 

leading to loss of structural integrity. Inflammatory cytokines and proteases are the main 

contributors to catabolic activities that degrade the cartilaginous ECM and predispose the 

tissue for mechanical failure [46]. Consequently, the altered ECM induce biomechanical 

repercussions. In early phases of OA, increased chondrocyte activity results in thicker 

cartilage thickness, softer ECM, and lower shear modulus. Later stages of disease are 

characterized by stiffened and thinning cartilage, due to higher prevalence of collage 

crosslinks and decreased proteoglycan content, causing greater load to shift to the 

underlying subchondral bone. This feedback loop of biochemical and mechanical 

changes is core to the destructive OA process. 
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Figure 2.4 Representation of cartilage composition. Chondrocytes, the cellular 
component, manage the ECM, which primarily comprises of type II collagen and 
proteoglycan to provide structure and force resistance. 

2.1.2.4 Prevention and Management 

The two controllable risk factors for knee OA most often addressed in preventative 

strategies are obesity and knee injury [38]. Thus far, only one randomized control trial of 

knee OA prevention exists, which found that a 5 kg or 5% weight loss in the first year led 

to a threefold reduction in incidence of symptomatic knee OA and 2.5 times reduction in 

radiographic OA incidence [47]. Additional investigations of prevention techniques are 

warranted. 

 In individuals with symptomatic OA, pain management is similar to that for LBP. 

Exercise [48], physical therapy, and weight loss [49] aim to reduce force exerted on the 

knees and improve joint motion. Analgesics like paracetamol and NSAIDs are commonly 

recommended, and for non-responders, intra-articular corticosteroids can be explored for 

short-term relief [50], though effectiveness is still unclear [51]. 

Direct interventions for knee OA attempt to reduce loading of affected areas. Knee 

osteotomy is a surgical technique that improves alignment and shifts weight to healthier 

tissue by reshaping the tibial bone. Arthroscopic surgery can be considered to repair and 



14 

recontour damaged tissue such as the meniscus. However, rigorous evidence regarding 

its efficacy is lacking and older patients are typically not good candidates [52], [53]. Knee 

arthroplasty (joint replacement) has shown to be effective in late stage disease, when all 

other conservative interventions have failed [54]. However, there are many disadvantages: 

(1) the effective lifetime of prostheses are limited, (2) up to 25% of patients who undergo 

surgery continue to endure pain and disability one-year later [55], and (3) total knee 

replacements are associated with higher rates of serious adverse events than non-

surgical options [56]. Advanced stages of disease are limited in interventional options. 

Thus, researchers are shifting focus to prevention and detection of early-stage disease. 

2.2 MRI of Low Back Pain and Osteoarthritis 

While imaging may be a weak predictor for pain, it serves as a vital tool for identifying 

abnormal morphology associated with disease. Imaging techniques continue to advance, 

pushing towards quantitative and more precise depiction of the underlying tissue for better 

understanding of pain mechanisms and disease outcomes. MRI, in particular, has 

become increasingly utilized for its powerful ability to delineate soft tissue in high 

resolution without exposure to ionizing radiation. In this section, we will introduce 

fundamentals in MRI signals. Then, we will compare the utility of conventional MRI used 

in the clinic and the advantages and disadvantages of advanced MRI techniques. 

2.2.2 MRI Physics 

Magnetic resonance was first known as nuclear magnetic resonance. By breaking down 

the individual components of its alias, we can more easily understand the physics behind 

this imaging system. 
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Figure 2.5 Magnetization of a system. (A) Without the presence of an external magnetic 
field, magnetic moments are randomly distributed, resulting in zero net magnetization. (B) 
When an external field is applied, spins align parallel to the direction of the applied field. 

2.2.2.1 Nuclear Spins and Precession 

Many biologically relevant atoms possess an intrinsic angular momentum due to having 

an odd number of protons and neutrons in the nucleus. The positive charge of protons in 

combination with nuclear spins result in these nuclei to act as magnets. A collection of 

identical nuclei, in their natural state, has zero net magnetization due to randomly oriented 

spins of individual nuclei. However, when placed in the strong magnetic field of an MRI, 

𝑩𝑩0 , the spins align in the direction of the applied field, generating a non-zero bulk 

magnetization with magnitude 𝑴𝑴0 in the longitudinal axis, as seen in Figure 2.5. 

 While in the applied magnetic field, nuclei undergo a phenomenon called 

precession, akin to the movement of a spinning top. The natural frequency at which nuclei 

precess is named the Larmor frequency, 𝜔𝜔0, and is given by: 

𝜔𝜔0 = 𝛾𝛾𝑩𝑩0 (2. 1) 
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Here, 𝛾𝛾 is the gyromagnetic ratio for each atomic species. 1H is the species of interest in 

MR due to its natural abundance in the human body. In a 3T 𝑩𝑩0, typical of modern MR 

systems, 1H protons precess at 127.74 MHz. 

2.2.2.2 Excitation and Resonance 

To induce a measurable signal, a second external magnetic field, 𝑩𝑩1, is applied. This 

process is denoted as a radiofrequency (RF) pulse and serves two main purposes by 

introducing energy into the system. 

 Under the 𝑩𝑩0 field, nuclei exist in either parallel or antiparallel states to the z-axis. 

Described by the Boltzmann distribution, the parallel direction (𝑛𝑛+) is in a lower energy 

state as it is aligned in the direction of the external field. With the introduction of 𝑩𝑩1, some 

nuclei gain sufficient energy to move to the antiparallel state (𝑛𝑛−), thus reducing 𝑴𝑴0 in the 

longitudinal direction. The Boltzmann distribution at equilibrium is described as such: 

𝑛𝑛+

𝑛𝑛−
= 𝑒𝑒

𝛾𝛾ℏ𝑩𝑩0
𝑘𝑘𝐵𝐵𝑇𝑇 (2. 2) 

ℏ is Plank’s constant (1.054 × 10-34 J s), 𝑘𝑘𝐵𝐵 is the Boltzmann constant (1.381 × 10-23 J/K), 

and T is temperature in Kelvins. 

As nuclei precess along the longitudinal z-axis, magnetization in all other directions 

is net zero. The second effect of the applied 𝑩𝑩1 is the induction of all spins to precess 

coherently. This is performed using resonance, the phenomenon in which an oscillating 

force applied to a system will induce higher amplitudes. 𝑩𝑩1 is tuned to oscillate at the 

Larmor frequency of the nuclei of interest, thus energizing spins to precess in-phase with 

one another and generating a transverse magnetization in the xy-plane at the frequency  
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Figure 2.6 Precession and RF pulse excitation. (A) The nucleus precesses about the 
longitudinal z-axis and the collection of spins have a net magnetization in the direction of 
𝑩𝑩0. (B) The application of an RF pulse tips the magnetization into the transverse xy-plane. 

of precession. This net precession frequency is ultimately the source of signal induced in 

the RF receiver coil of the MRI system. 

2.2.2.3 Relaxation and Image Contrast 

The RF pulse introduces transverse magnetization and reduces longitudinal 

magnetization by adding energy into the system. Upon its removal, nuclei will naturally 

relax to their equilibrium states in the 𝑩𝑩0  field, restoring magnetization to 𝑴𝑴0  in the 

longitudinal axis and zero in the transverse plane. These are described as T1 relaxation 

and T2 relaxation (or decay), respectively. These time constants differ depending on the 

structure, biochemical composition, and environment of the objects being imaged which 

drives image contrast. 

T1 relaxation describes the process in which energy is exchanged between spins 

and their external environment through collisions, rotations, or electromagnetic 

interactions. Specifically, the term is the time required for the longitudinal component of 
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magnetization to reach (1 − 𝑒𝑒−1), approximately 63%, of its maximum, 𝑴𝑴0 (Figure 2.7). 

Energy exchange in protons is heavily dictated by its composition. Free unbound water, 

for example, has relatively long T1, approximately 4000 ms, due to its unrestricted nature 

being ineffective at energy transfer. Similarly, hydrogen protons bound to large 

macromolecules have low rates of motion and also possess long T1, whereas protons in 

fatty acids have short T1 relaxation as carbon bonds resonate near the Larmor frequency, 

promoting energy transfer. 

While T1 relaxation describes the regrowth of the longitudinal magnetization, T2 

relaxation, or more aptly named T2 decay, describes the disappearance of transverse 

magnetization. This steady decay is caused by loss of phase coherence from internal 

inhomogeneity in the local environment. As spins precess together, their magnetic fields 

interact. Temporary random fluctuations of precession frequency in neighboring spins 

cause cumulative loss in phase, reducing overall transverse magnetization. Moreover, 

there is inhomogeneity in the magnetic field experienced by spins in different tissue 

composition and microenvironments. It follows that these small variations in magnetic 

field contribute to deviation from the Larmor frequency and subsequent loss of phase  

 

Figure 2.7 Relaxation rates of T1 and T2. Image source: Bosshard, et al. [57]. 
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coherence. As with T1 relaxation, T2 follows an exponential trajectory and describes the 

time required to decay to 𝑒𝑒−1, or approximately 37%, of 𝑴𝑴0. 

 Contrast in MRI is mainly governed by differences in T1 and T2 relaxation times of 

different tissues. To optimize for contrast in specific tissues, acquisition pulse sequences 

are designed to generate and measure signal at designated times. Three parameters that 

form the backbone of most image sequences include (1) repetition time (TR), the 

parameter between repeated RF pulses, (2) echo time (TE), the time at which electrical 

signal is measured, and (3) flip angle, the amount of rotation of the net magnetization 

during application of the RF pulse. By varying these parameters, the resultant images are 

weighted by intrinsic differences in T1, T2, or the minimization of their contribution, also 

known as proton density (PD) weighted imaging. This capability to design acquisition 

sequences optimal for contrast in targeted tissues gives MRI tremendous flexibility over 

other imaging modalities. 

2.2.3 Standard MRI Acquisition and Analysis 

In the clinic, MRI protocols are tailored with sequences most appropriate for the specific 

pathologic features to be evaluated while balancing total acquisition time, patient needs, 

and logistical constraints. A combination of T1-, T2-, and PD-weighted sequences fits most 

needs in MSK imaging. In spine MRI, a typical protocol consists of T1-weighted and T2-

weighted fast spin-echo (FSE) sequences acquired in the sagittal and axial planes [58]. 

Fat suppressed sequences are often added to minimize fat signal and enhance contrast 

in other tissues. Additionally, a short tau inversion recovery (STIR) sequence may also 

be included for improved sensitivity of ligamentous and osseous lesions [59]. 
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 Protocols for whole joint assessment of the knee are similar and usually consists 

of imaging of all three orthogonal planes [60]. Each plane allows for delineation of crucial 

tissues. For example, the central femorotibial cartilage is best visualized in the coronal 

plane, while the patellar cartilage is optimally imaged axially. Offering the best single-

plane assessment, the sagittal plane is particularly useful for delineation of the 

patellofemoral and femorotibial cartilage interfaces. Contrast is another consideration 

with respect to important tissue interfaces such as subchondral-cartilage, cartilage-

synovial fluid, cartilage-meniscus, and cartilage-cartilage. These are generally best 

visualized using a combination of intermediate-weighted FSE, T2-weighted FSE, and 

dual-echo steady-state (DESS) sequences. T1-weighted FSE, while offering poor 

cartilage-fluid and cartilage-cartilage contrast, has excellent delineation of osteophytes 

and provides important information on bone marrow. 

 Grading of MSK abnormalities from imaging is almost wholly performed using 

semiquantitative scales. In knee OA, Whole Organ MRI Score (WORMS) [61] and MRI 

OA Knee Score (MOAKS) [62] are most commonly used [63]. Performing these 

assessments requires dividing the joint into subregions for feature-specific grading of OA, 

(e.g., cartilage damage, meniscal tear or extrusion, bone marrow lesions, and 

osteophytes). Semiquantitative evaluation of spinal defects is less commonly used in the 

clinic. For example, the Pfirrmann grading system [64] is the most widely known 

classification for IVD degeneration, though its correlation with pain has shown to be 

inconsistent [65], [66] and is utilized mostly in research settings. 
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2.2.4 Advanced MRI Acquisition and Analysis 

Standard image sequences used in the clinic are often generalizable to the assessment 

of many differential diagnoses of disease while maintaining reasonable scan times. The 

benchmarks of the abovementioned sequences are used ubiquitously due to their 

capacity for excellent depiction of gross morphology with the measurement of just a single 

TE per RF excitation. However, many advanced pulse sequences and analysis tools have 

been developed for proper quantification of tissue parameters and physiology beyond 

gross morphology. Compositional MRI, which measures cartilage matrix health, and high-

resolution isotropic cube imaging are two technologies with relevance in future chapters 

that will be discussed here. Other acquisition techniques, like diffusion, perfusion, 

ultrashort TE or zero TE, or advancements in MRI reconstruction have been impactful in 

MSK imaging but are out of scope of this manuscript. 

 Detection of early biomarkers of disease has been a prominent focus in MSK 

imaging as it may allow for intervention while the condition is potentially reversible. As 

discussed earlier in this chapter, biochemical changes in tissue composition and 

organization precede many forms of degenerative disease. Compositional MRI describes 

a family of techniques with specific contrast weighting that have been empirically 

associated with distributions of contents in soft tissues. Sodium imaging and gagCEST, 

for example, correlate well with GAG content; however, acquisition times are lengthy and 

spatial resolution is poor [67]. dGEMRIC is another imaging technique to assess GAG 

content, though it requires administration of intravenous contrast. T2 and T1ρ mapping 

have gained traction and are recommended approaches for compositional imaging. 

Parameterizing relaxation on a voxel-wise basis, these mapping techniques indirectly 
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measure water content of the ECM, orientation of collagen fibers, and GAG content in 

cartilage and have been validated in several studies [68]–[70]. However, a key limitation 

are long acquisition times. Proper estimation of relaxation times requires multiple data 

points per excitation pulse to fit to exponential relaxation curves, such as those shown in 

Figure 2.7. In addition, T1ρ acquisition requires the application of a secondary RF pulse 

parallel to the transverse plane to effectively lock the magnetization vector in the 

transverse plane [71]. Recent implementations have been able to achieve simultaneous 

acquisition of both T2 and T1ρ mapping in a single sequence under 10 minutes in length. 

As acquisition capacities improve, we continue to see further push for the inclusion of 

these sequences in clinical imaging for improved detection of early degenerative disease. 

 

Figure 2.8 T2 (a, b) and T1ρ (c, d) maps obtained from patient with OA. Image source: 
Wang L and Regatte RR [72]. 
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 Another challenge in effective quantification of MSK MRI is the concern of voxel 

size. Two-dimensional sequences used in the clinic are acquired slice-by-slice. While in-

plane resolution is generally very high due to how signal is encoded in each RF excitation, 

through-plane resolution is sacrificed as acquisition time is proportional to the number of 

slices. Typical voxel sizes recommended for spine and knee imaging are 

0.3125×0.3125×1.5 mm [58], [60]. Considering that the average thickness of femoral 

cartilage ranges between 1.95-2.59 mm [73] and vertebral endplates measure 

approximately 1.03 mm in thickness [74], abnormalities in the through-plane are easily 

missed. Partial volume effects are accentuated in the through-plane, as well, as poor 

resolution results in blurring and signal spillover between voxels. This limitation is 

somewhat mitigated by the inclusion of multiple 2D planar acquisitions, though evaluation 

of multiple planes in conjunction requires proper alignment, which is not always possible 

due to patient movement. Acquiring high-resolution images with isotropic voxels is 

certainly within reach but requires tradeoff with signal-to-noise ratio (SNR) due to fewer 

counts of hydrogen protons existing in smaller voxels. To counteract this loss in SNR, 

several strategies can be pursued [60]: (1) shorten TE to limit T2 decay, (2) increase TR 

to increase T1 recovery, (3) increase the number of excitations averaged, (4) use a system 

with stronger 𝑩𝑩0, or specialized coils. Vendors have implemented 3D volumetric FSE by 

leveraging a combination of these approaches with longer echo train lengths (ETL), 

ultrashort echo spacing, and parallel imaging. These techniques have demonstrated to 

have high clinical utility in MSK imaging and have become mainstay in many clinical 

routines in need of high-resolution, contiguous imaging [75], [76]. 
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 One key advantage to the techniques described above is the greater amount of 

total imaging information generated by these modern sequences. However, the 

repercussion is the greater cost in human labor to analyze them. Furthermore, 

quantification requires accurate segmentation of the tissues of interest. In the past, 

automatic and semiautomatic image processing techniques were capable of delineating 

tissue though were often troubled with abnormal morphology or imaging artifacts [77]–

[79]. In the next section, we will lay the groundwork for DL-based image segmentation, 

which has much higher capacity for representation learning of image contents. 

2.3 Machine Learning and Image Segmentation 

Deep learning has rapidly demonstrated its potential in various applications, both within 

and outside of medicine. We will discuss the history behind the recent surge of DL, 

describe how deep neural networks have been adapted for semantic segmentation, and 

introduce strategies to overcome common challenges in generalizability. 

2.3.1 History of Deep Learning and ImageNet 

In 2009, ImageNet, the largest public image database at the time, was released with 12 

million natural images across 22,000 categories to serve as a diverse training dataset for 

the advancement of computer vision research. One year later, the ImageNet Large Scale 

Visual Recognition Challenge (ILSVRC) was born to invite the community to develop the 

best performing model in the classification of ImageNet [80]. During its lifetime, ILSVRC 

was the primary benchmark for vision tasks. However, progress was slow in its early 

years. It was not until 2012 when the first leap was made with AlexNet [81], scoring 9.8% 

ahead of its competitors in terms of top-5 classification error. Regarded as the 
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architecture that propelled DL to center spotlight, AlexNet was a multilayer convolutional 

neural network (CNN), incorporating many approaches that are still in-use today. In the 

years following, rapid improvements were made by other researchers in the field, 

modeled in various configurations of the CNN with deeper and deeper layers, thus 

spawning the era of deep learning. 

2.3.1 Convolutional Neural Networks 

Before we can discuss how the CNN impacted computer vision, we need to first 

understand the fundamentals of artificial neural networks (ANN). To illustrate this, we will 

describe the multilayer perceptron (MLP), a feedforward ANN, as seen in Figure 2.9. 

In general, an ANN is a collection of nodes, where each node is defined by a 

mathematical transformation. A simple node may be a linear transformation in the form 

of 𝑦𝑦 = 𝑚𝑚𝑚𝑚 + 𝑏𝑏, where 𝑚𝑚 is the input, 𝑦𝑦 is the output, and 𝑚𝑚 and 𝑏𝑏 are the node parameters 

or “weights”. The multilayer aspect of the MLP describes the organization of the nodes in 

layers, with one input layer, one or more hidden layers, and one output layer. Following  

 

Figure 2.9 Schematic of multilayer perceptron. Image source: Afan HA, et al. [82]. 
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each hidden layer, nonlinearity is applied with activation functions, such as a rectified 

linear unit (ReLU) [83]. The feedforward process describes the process in which inputs 

fed into the network are thereby transformed through the sequential hidden layers via the 

node weights to produce the output. 

For the network to be tailored to a designated use case, the weights are adjusted 

in the training process. Input-output pairs are processed through the MLP in a feedforward 

fashion. Based on the amount of error between the “predicted” output and the expected 

true output, the weights in the neural network are adjusted in order to produce improved 

outputs in future iterations. The type of error is defined in each problem as the loss 

function. For example, in a regression task to predict an output on a continuous scale, the 

loss function can simply be formulated as mean square error. To determine the magnitude 

and direction of weight adjustment, this error is propagated backwards through the 

network, layer-by-layer. Leveraging the chain rule, a gradient is computed at each layer 

with respect to the current weights and a step is taken in the direction of the gradient to 

minimize the loss. This cycle of feedforward, error computation, and backpropagation is 

repeated with varying batches of data to iteratively optimize the model for minimal loss. 

The traditional MLP architecture is well-defined for tabular data; however, it does 

not translate well to image data, in which each image pixel has no semantic meaning 

without context of its neighbors and suffers from multicollinearity. The convolutional layer 

addresses these issues and has been a building block in most vision architectures since 

AlexNet’s success in 2012. Based on the mathematical operation of a convolution, a 

convolutional layer consists of a set of filters or kernels that slides across an image while 

computing an elementwise dot product between the input and the filters at each spatial 
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position. In other words, the filters represent features to search for in the input, and the 

resultant feature maps represent spatial locations in which the filters were “activated” by 

the contents of the input. In a deep CNN with multiple convolutional layers, the initial 

layers capture low-level features (e.g., edges, texture) while downstream layers respond 

to high-level features (e.g., shapes, objects). The head of CNNs typically end with one or 

multiple fully connected layers, synonymous with an MLP, which utilize the features 

extracted from convolutional layers for task-specific purposes. 

 

Figure 2.10 Kernels learned by AlexNet [81]. These filters represent image features 
learned by the convolutional layers. Most were frequency- and orientation-focused. 

2.3.2 Encoder-decoder Architectures 

The MLP and architectures described above transform an image to a single output label 

for image classification. In the semantic segmentation task, the objective is to attribute a 

label to every pixel in an image. Convolutional encoder-decoder architectures were 

developed to achieve this and have been the most prevalent form of ANNs for 

segmentation across the past decade, only recently being challenged by the Transformer 

architecture [84]. The encoder branch extracts features, condensing images to a hidden 

latent space representation. Then, the decoder branch unravels the hidden 
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representation to reconstruct an image-sized output. More technically, the contracting 

encoder consists of a series of convolutional layers followed by a pooling layer (e.g., max 

pool). Meanwhile, the decoder mirrors the encoder, using transposed convolutional layers 

to expand the signal back to an image. 

The U-Net [85] is the most prevailing version of the encoder-decoder architecture 

used for semantic segmentation [86]–[88]. One of its defining features (Figure 2.11) is 

the presence of skip connections, which feed the output of encoder levels to the 

respective mirrored level in the decoder to reduce overfitting, a topic discussed further 

below. Since the inception of the U-Net in 2015, many variants have been implemented  

 

Figure 2.11 U-Net architecture. The contracting path (left) consists of repeated 3×3 
convolutions followed by ReLU and max pooling for downsampling. The expansive path 
(right) consists of upsampling by a 2×2 and two 3×3 convolutions. Image source: 
Ronneberger, et al. [85]. 
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with immediate success [87], [89]–[91]. The V-Net [90], heavily utilized in future chapters 

of this dissertation, was specialized for volumetric medical image segmentation. The key 

differences between the V-Net and its predecessor include a combination of 3D 5×5×5 

and 2×2×2 convolutional layers, an element-wise sum after the series of convolutional 

layers, and an additional level of depth. Ultimately, regardless of the variant or 

architectural parameters, these fully convolutional encoder-decoders have transcended 

previous techniques for image segmentation. 

2.3.3 The Challenge of Generalization 

The primary goal of ML is to develop models generalizable for their designated use case. 

However, there are many obstacles that interfere with models’ abilities to accurately 

predict outcomes from unseen data. These hurdles can be related to biased or limited 

training data, improper methodology, or insufficient model capacity. In the remainder of 

this chapter, we introduce several strategies to overcome these issues. 

First, if not the most important, is the topic of data. In the traditional supervised 

learning paradigm, data is divided into a training set, and one or more evaluation sets. 

The training set, as its name implies, is used in the feedforward-backpropagation cycle 

described above to optimize and fit the model. The evaluation set(s) can be configured in 

different ways depending on experimental design. Most commonly, two evaluation sets 

are used. The validation set serves to assess model improvement during training, 

hyperparameter searches, and to inform model selection after training is complete. A test 

set is used to compute a final performance metric at the end of experimentation. Other 

validation techniques can be incorporated. For example, k-fold cross validation would 

require the division of the training data into multiple independent splits to better test model 
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generalizability. Ideally, samples would be randomly split between the training and 

evaluation sets. However, because it is imperative that each set is sampled from the same 

feature distribution, pseudorandom or stratified approaches may be more practical, 

particularly in cases with small sample sizes or heavy class imbalance. 

 Limited data is a common issue for model development in medicine. As modern 

CNNs have billions of learnable parameters, they are incredibly prone to overfitting to and 

memorizing the statistical noise of the training set. Regularization is general term to 

describe mathematical techniques that reduce overfitting. For instance, explicit 

regularization involves directly imposing a cost to model complexity. Lasso (L1) or ridge 

(L2) regularization can easily be implemented as additional terms in the loss function to 

penalize high weight values. 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 (𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝐿𝐿1 𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑤𝑤𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤𝐿𝐿𝑛𝑛) =
1
𝑁𝑁
��𝑌𝑌� − 𝑌𝑌�2 + 𝜆𝜆�|𝜃𝜃𝑖𝑖|

𝑁𝑁

𝑖𝑖=1

𝑁𝑁

𝑖𝑖=1
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𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 (𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝐿𝐿2 𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑤𝑤𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤𝐿𝐿𝑛𝑛) =
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(2. 4) 

The above formulations represent a generalized loss function with the inclusion of L1 or 

L2 regularization. Here, 𝑁𝑁 is the number of samples, 𝑌𝑌� is the model prediction, 𝑌𝑌 is the 

true label, 𝜆𝜆 is a scaling hyperparameter, and 𝜃𝜃 represents the weight matrix. 

Overfitting can also be tackled via stochastic training of multiple models. Model 

ensembling describes how predictions from multiple models can be combined for 

regularization, such as majority vote or weighted vote with posterior probability. 

Ensembling may be reasonable with abundant computational resources or with smaller 

models; however, several ML techniques exist to mimic the impact of model ensembling 
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without additional overhead. Similar to the effects of gradient boosting in decision trees, 

dropout has the effect of procedurally producing multiple weaker learners and combining 

their predictions. Dropout [92] refers to the probabilistic removal of nodes and their 

connections in the network architecture during training. The ensuing effect is the learning 

of sparser representations of the data. Dropout has shown to be effective in practice, 

synergizing well with other forms of regularization [92]–[94]. 

While the abovementioned regularization techniques target the training design and 

architecture, data can be regularized as well. The most common form of this is data 

augmentation, where training samples are randomly manipulated in an engineered 

fashion to generate additional examples that fit within the overall data distribution. 

Augmentation techniques in medical imaging are borrowed heavily from image 

processing to simulate variations in signal acquisition or morphological differences in 

tissue (Figure 2.9). Image synthesis techniques, such as with generative adversarial 

networks, are more advanced but have shown promise in improving model 

generalizability [95], [96]. 

 

Figure 2.12 Example of data augmentation in lumbar spine MRI. The image and 
segmentation labels are manipulated in the conjunction to introduce plausible variance in 
the training set. 
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 Transfer learning has demonstrated to be a powerful technique that allows for the 

application of past training to new model development. Alluding back to the deep CNNs 

trained on the millions of images in ImageNet, their weights can be finetuned for medical 

image analysis. Due to the hierarchical representation learning of deep CNNs, early 

layers which activate with low-level image features can be appropriated from the natural 

image domain. Adjacently, self-supervised learning [97], [98] describes the ML paradigm 

of using unlabeled data in a pretraining phase to build background knowledge prior to 

being finetuned in a specific downstream task. These techniques have dramatically 

closed the gap for vision tasks in challenging domains like medical imaging and bring us 

closer to overcoming the challenge of generalizability. 
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Chapter 3  

Deep Learning for Multi-tissue Segmentation 

and Fully Automatic Personalized 

Biomechanical Models from BACPAC Clinical 

Lumbar Spine MRI 

Robust automation of tissue segmentation has been a sought-after application of machine 

learning and image processing for decades. The recent introduction and advancement of 

convolutional encoder-decoder architectures like the U-Net [85] have propelled the 

reliability and accessibility of semantic segmentation models capable of delineating tissue 

from MRI. In this chapter, we describe the development and training of an ensemble of 

convolutional encoder-decoder networks for voxel-wise segmentation of tissues with 

established association with low back pain. This effort demonstrates the capacity of such 

networks to learn diverse representations of image data from limited sample sizes. 
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Furthermore, we showcase the application of these tools for developing musculoskeletal 

simulations of tissue loading. 

 The following material in this chapter is adapted and reproduced with full 

permission from the publisher. The original work is referenced as: 

Hess M, Allaire B, Gao KT, Tibrewala R, Inamdar G, Bharadwaj U, Chin C, Pedoia V, 

Bouxsein M, Anderson D, Majumdar S. Deep Learning for Multi-Tissue Segmentation 

and Fully Automatic Personalized Biomechanical Models from BACPAC Clinical Lumbar 

Spine MRI. Pain Med. 2022 Oct 31:pnac142. 

3.1 Introduction 

Chronic lower back pain (cLBP) is a leading cause of disability in the United States [99] 

and is estimated to affect 540 million people worldwide [16]. Within the United States, 

cLBP is responsible for an estimated loss of 150 million workdays annually [100], [101] 

and is associated with an estimated annual cost of $100 to $200 billion [102], [103]. cLBP 

is one of the most common drivers of visits to a physician but, despite rapidly increasing 

treatment costs, patient outcomes have not improved substantially over time [104], [105]. 

cLBP is non-specific in 62.2% of cases [106], making patient-specific treatment 

interventions difficult to develop. The etiology of cLBP is multifactorial, including physical, 

psychological, environmental and socioeconomic factors [107]. Challenges in isolating 

the causes of pain can lead to overuse of imaging, opioids, and surgical treatment options. 

Magnetic resonance imaging (MRI) and other medical imaging techniques are 

often used to design and monitor treatment strategies for patients with cLBP. Imaging 

alone is a weak predictor of pain presence and pain drivers due to a lack of consistent 
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associations between imaging studies and clinical symptoms [28], [28], [108]. There is 

debate in the literature regarding the relationships between different image-based 

morphological metrics and spine-related health indicators [28], [108]–[118], in part due to 

limited sample sizes and inconsistent measurement of imaging features across readers 

and institutions. 

Segmentation of medical images is essential to unlocking scalable and reliable 

quantitative image-based markers of cLBP from spine morphology, but it can be 

prohibitively costly to perform. Manual segmentation is expensive and time intensive, 

requiring experienced readers between 15 minutes and several hours to annotate each 

exam, depending on number of slices and structures of interest. Further, despite the time 

and expertise investment required, annotations are subject to human error and bias 

across readers, making them difficult to generate and assess consistently in large-scale 

studies. Segmentation of the vertebral bodies, intervertebral discs, and paraspinous 

muscles in MRI can be valuable for diagnosing and characterizing spine degeneration 

and various pathologies related to cLBP, including stenosis, scoliosis and 

osteoporosis [119]. Estimation of internal tissue loading demands is a promising potential 

indicator for evaluating subject-specific risks for back pain and injury prevention [120]. 

Tissue loading cannot be directly measured, but biomechanical musculoskeletal models 

based on medical images can be used to provide valid estimates of tissue loading [121]. 

Segmentation of images of the spine is an essential step to creating subject-specific 

musculoskeletal models, which improve on generic models by incorporating 

measurements like spine curvature and muscle morphology [122]. If segmentation can 

be performed in a fast, low-cost manner, personalized biomechanical models of patients 
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could be automatically created as part of a clinical workflow. These models could then be 

used to evaluate measures of tissue loading as a component of back pain and to design 

patient-specific interventions. 

Deep learning-based segmentation methods offer improvements in 

standardization and scalability when compared with human segmentation and can be 

leveraged to improve data collection in cLBP research. Combining computational 

methods with MR imaging presents opportunities for improved diagnosis with potential 

for multifactorial analysis, quantitative analysis, and increased sample sizes. 

We propose a framework for automatic segmentation of vertebral bodies, 

intervertebral discs, and paraspinous muscles in clinically acquired sagittal and axial T1-

weighted MRIs of the lumbar spine and assess its efficacy as a substitute for manual 

segmentation in calculating intervertebral disc height, muscle cross sectional area and 

metrics of lumbar spine loading with subject-specific biomechanical models. 

3.2 Materials and Methods 

This study was approved by the University of California, San Francisco (UCSF) 

Institutional Review Board. A retrospective clinical dataset of 206 MR imaging exams with 

both axial and sagittal T1-weighted acquisitions was aggregated as part of UCSF’s Back 

Pain Consortium. All exams were randomly selected from clinical scans at UCSF between 

2008 and 2018. Of that set, 24/27/45 (vertebral body [VB]/disc/muscle) exams were 

annotated with the respective anatomical structure. Cases with bone fractures, extensive 

implants, primary tumors, and wide-spread metastatic disease to the spine were excluded. 

All volumes included were drawn from clinical exams obtained on GE scanners and  
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Table 3.1 Lumbar spine image acquisition parameters 

MR Imaging Sequence Acquisition Parameters Associated Network 

T1 Sagittal 

 
TR = 500 – 735 ms, 
TE = 8.184 – 21.1 ms, 
ETL = 2 – 6, 
Acquisition Size = [0, 288, 224, 0] – [384, 
0, 0, 224] 
Image Size = 512 × 512, 
Resolution = 0.4688 × 0.4688 mm – 
0.5078 × 0.5078 mm, 
Slice Thickness = 3.0 – 4.0 mm 
Space Between Slices = 3.0 – 5.0 mm 
 

Vertebral Body 
Segmentation Network 
 
Intervertebral Disc 
Segmentation Network 

T1 Axial 

 
TR = 503 – 983 ms, 
TE = 7.672 – 17.376 ms, 
ETL = 3 – 6, 
Acquisition Size = [0, 256, 160, 0] – [320, 
0, 0, 224] 
Image Size = 256 × 256 – 512x512, 
Resolution = 0.3125 × 0.3125 – 0.7031 × 
0.7031 mm, 
Slice Thickness = 3.0 – 4.0 mm 
Space Between Slices = 3.0 – 5.0 mm 
 

Muscle Segmentation 
Network 

ETL – echo train length; mm – millimeter; ms – millisecond; TE – echo time; TR – repetition time; 
 

followed the image acquisition parameters detailed in Table 3.1. Images were captured 

with subjects in head-first or feet-first supine position. 

Manual vertebral body segmentations were performed on all slices in 24 exam 

volumes by one reader. Intervertebral disc segmentations were similarly annotated on all 

slices in 27 exams by two readers. Paraspinal muscle segmentations were annotated on 

one to three slices at each lumbar disc-level in 45 exams by one reader. Both readers 

were trained by a board-certified radiologist. All annotations were performed using MD.ai 

annotation software (Figure 3.1). When annotating the vertebral bodies and intervertebral 

discs, readers were instructed to segment all structures visible on every slice of a volume,  
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Figure 3.1 MD.ai annotation software. Each anatomical structure was annotated with a 
click and drag interface using the MD.ai annotation tool. 

excluding (1) any bodies and discs that were not completely pictured in the field of view, 

and (2) structures inferior to the S1 vertebral body and L5-S1 intervertebral disc. All 

readers were trained to identify respective anatomy by a board-certified radiologist. 

Separate 2D V-Nets [90] were trained to segment each anatomical structure on 

each sequence. The V-Net architecture and associated Dice-based loss function have 
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previously been demonstrated to have improved performance and convergence time on 

medical image segmentation tasks over other popular network architectures. A 2D 

instead of 3D approach was selected to maximize use of available data as the wide 

variation in number of annotated slices per exam would have required substantial slice-

dimension coercion, which could impart bias through duplication or interpolation and loss 

of information through cropping. Because of slice thickness in clinical images is greater 

than the in-plane resolution, segmentation of these sequences was a good candidate for 

a 2-dimensional method. Two versions of each convolutional neural network were trained 

to segment the vertebral bodies, intervertebral discs, and paraspinous muscles 

respectively from T1-weighted MRI volumes. Two version splitting was required to 

maximize both training performance and unbiased testing of biomechanical models; the 

standard split was constructed to demonstrate expected network performance under 

typical conditions, while the shared split was constructed to maximize samples in a hold-

out test set to assess downstream performance without data leakage. The first version of 

each of the three models was computed with a standard random split of approximately 

75% train, 15% validation, and 10% test to demonstrate optimal model performance on 

segmentation of each anatomical structure; we call this version the standard split. To 

accommodate limitations in data quantity, the networks were then retrained with new 

splits which reserved a shared set of 10 patients across models for testing to assess the 

performance of this segmentation pipeline on automatic morphological metric and 

biomechanical model generation; we call this version the shared split. All networks were 

trained according to the hyperparameters listed in Table 3.2.  



40 

Table 3.2 Training hyperparameters of spinal segmentation 
Standard Split Networks 

 T1 Sagittal Disc 
Segmentation 

T1 Sagittal VB 
Segmentation 

T1 Axial Muscle 
Segmentation 

Network Architecture 2D V-Net 2D V-Net 2D V-Net 

Input Image Size 512 × 512 512 × 512 256 × 256 

Batch Size 8 slices 8 slices 32 slices 

Learning Rate 1e-4 1e-4 1e-4 

Dropout 0.2 0.05 0.2 

Levels in Network 4 3 3 

Optimizer Adam Adam Adam 

Loss Function Weighted Dice 
Sigmoid Dice Sigmoid Weighted Dice 

Sigmoid 

Iterations Until Convergence 14,700 12,000 13,500 

Shared Split Networks 

 T1 Sagittal Disc 
Segmentation 

T1 Sagittal VB 
Segmentation 

T1 Axial Muscle 
Segmentation 

Network Architecture 2D V-Net 2D V-Net 2D V-Net 

Input Image Size 512 × 512 512 × 512 256 × 256 

Batch Size 8 slices 8 slices 8 slices 

Learning Rate 1e-4 1e-4 1e-4 

Dropout 0.2 0.05 0.2 

Levels in Network 4 3 4 

Optimizer Adam Adam Adam 

Loss Function Weighted Dice 
Sigmoid Dice Sigmoid Weighted Dice 

Sigmoid 

Iterations Until Convergence 17,500 11,900 12,000 
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Morphological metrics and biomechanical models were only evaluated for the 

networks in the shared split. Intervertebral disc, vertebral body, and paraspinous muscle 

segmentations were inferred for each patient in the shared hold-out test set of 10 exams, 

using the respective V-Net. Postprocessing was applied to all segmentations to smooth 

edges, fill holes, and isolate largest connected components. Intervertebral disc height 

(IVDH), muscle cross-sectional area (CSA), and 2D and 3D centroid positions for each 

anatomical structure in patient-based space were then extracted from the segmentations. 

These quantitative features were then leveraged as inputs to construct subject-specific 

biomechanical models of the lumbar spine to extract measures of compressive loading 

on the vertebral bodies. 

To calculate IVDH, a 3D centroid was computed on each segmented disc to 

identify its most central slice; a minimum bounding rectangle was then constructed around 

the segmentation on the center slice to extract the shortest side length as a final height. 

Muscle CSA was constructed by calculating the sum of foreground pixels for each muscle, 

then multiplying by pixel spacing to yield area in square centimeters. Finally, a center of 

mass was computed in 3D to identify volume-wise centroids on each vertebral body and 

intervertebral disc, and in 2D to identify slice-wise centroids on each muscle (Figure 3.2). 

Each centroid point was then mapped to the patient-based coordinate system with an 

affine matrix transformation using the source exam’s metadata, yielding results distance 

from the scanner reference point. 

Subject-specific musculoskeletal models of the trunk were created with vertebral 

body centroids, muscle centroids, and muscle CSA in OpenSim [123]. Starting with an  
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Figure 3.2 Visualization of centroid construction. T1 axial and T1 sagittal MRI slices were 
input into each respective V-Net to generate inferred segmentation masks of the vertebral 
bodies, intervertebral discs, and paraspinous muscles. After postprocessing, centers of 
mass were computed on each segmentation mask to calculate the position of volume-
wise centroids for each vertebral body and intervertebral disc, and slice-wise centroids 
for each paraspinous muscle. These centroids were then converted to patient-based 
space, yielding a 3D atlas of the lumbar spine for further biomechanical modeling. 

appropriate sex-specific base model, models were scaled to the subject’s height and 

weight. Vertebral centroid locations and muscle morphology parameters were then 

incorporated into the model using custom MATLAB scripts to build the final model with 

subject-specific spine curvature and trunk muscle properties [122]. Lumbar spine 

compressive loading was evaluated using these models for a forward flexion activity (60 

degrees of trunk flexion with 5 kg weights in each hand) at L1-L5 for each patient in the 

shared test set. 

A volumetric Sørensen-Dice similarity coefficient [124] was calculated to assess 

the overall performance of each of the three networks. Each of the morphological metrics 

and biomechanical model outcomes were calculated on both the manual and inferred 
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segmentations for each patient, creating results that could be directly compared to assess 

the effectiveness of substituting manual for automatic annotation. Bland-Altman plots and 

Pearson R correlation coefficients were computed to assess the relationships between 

IVDH, CSA, and loading metrics generated from manually versus automatically 

segmented data. 

Visual inspection for quality control after model training revealed several errors. 

Errors on the vertebral body annotations included segmentation of the S2 vertebral body 

or lower, exclusion of lateral slices in which bone was visible, and segmentation of both 

the vertebral body and bony pedicles in some of exams. One exam was annotated with 

paraspinous muscles on all slices. Major annotation errors were identified on one exam 

after training; the exam had been incompletely annotated and included less than half of 

the intervertebral discs and was consequently excluded from the hold-out test set on the 

shared split model. 

3.3 Results 

Volumetric Dice coefficients for each segmentation method are summarized in Table 3.3. 

The three segmentation networks with standard splits performed with Dice coefficients of 

0.87 for the intervertebral disc network, 0.88 for the vertebral body network, and 

0.81/0.95/0.84/0.92 (mul/psoas/QL/ES) for the muscle network on each respective test 

set. After re-splitting and retraining to construct set of the shared split networks, Dice 

coefficients decreased to 0.86 on disc, 0.76 on vertebral body, and 0.81/0.87/0.79/0.88 

(mul/psoas/QL/ES) on muscle on the shared test set. Manual segmentations of the same 

exam demarcated by different annotators showed Dice coefficient similarities of 0.83 on  

 



44 

Table 3.3 Overall segmentation network performance on hold-out test set 
Network Intra-reader (n) Inter-reader (n) Standard (n) Shared (n) 
T1 Sagittal Intervertebral 
Disc  0.88 ± 0.056 (3) 0.83 ± 0.039 (3) 0.87 ± 0.13 (2) 0.81 ± 0.047 (9) 

T1 Sagittal Vertebral Body  0.95 ± 0.013 (3) 0.93 ± 0.025 (3) 0.82 (1) 0.86 ± 0.033 (10) 

T1 Axial 
Paraspinous 
Muscle  

Multifidus 0.88 ± 0.065 (3) 0.87 ± 0.049 (3) 0.81 ± 0.11 (2) 0.78 ± 0.082 (10) 

Psoas 0.94 ± 0.026 (3) 0.93 ± 0.028 (3) 0.95 ± 0.053 (2) 0.86 ± 0.078 (10) 

QL 0.79 ± 0.19 (3) 0.76 ± 0.21 (3) 0.84 ± 0.29 (2) 0.77 ± 0.078 (10) 

ES 0.92 ± 0.028 (3) 0.92 ± 0.029 (3) 0.92 ± 0.24 (2) 0.84 ± 0.092 (10) 

 
Table 3.4 Stratified vertebral body network performance 

Level Shared Split  
± 95% CI 

Intra-Reader  
± 95% CI 

Inter-Reader  
± 95% CI 

T11 0.0243 0.947 0. 956 

T12 0.888 ± 0.0218 0.968 ± 0.0113 0.957 ± 0.0252 

L1 0.900 ± 0.0529 0.972 ± 0.0129 0.955 ± 0.0340 

L2 0.888 ± 0.0642 0.971 ± 0.00449 0.939 ± 0.0341 

L3 0.902 ± 0.0247 0.973 ± 0.00616 0.943 ± 0.00634 

L4 0.863 ± 0.0753 0.972 ± 0.00542 0.951 ± 0.00957 

L5 0.865 ± 0.0501 0.959 ± 0.0334 0.940 ± 0.0710 

S1 0.684 ± 0.203 0.957 ± 0.0087 0.927 ± 0.162 

 
Table 3.5 Stratified disc network performance 
Level Shared Split  

± 95% CI 
Intra-Reader  

± 95% CI 
Inter-Reader  

± 95% CI 
T11T12 0.54 ± 0.311 0.867 0.791 

T12L1 0.844 ± 0.0567 0.886 ± 0.0165 0.864 ± 0.0471 

L1L2 0.731 ± 0.213 0.848 ± 0.0850 0.799 ± 0.127 

L2L3 0.813 ± 0.0586 0.868 ± 0.173 0.654 ± 0.804 

L3L4 0.730 ± 0.220 0.908 ± 0.018 0.582 ± 1.25 

L4L5 0.711 ± 0.216 0.871 ± 0.142 0.831 ± 0.116 

L5S1 0.650 ± 0.200 0.899 ± 0.0470 0.554 ± 1.19 
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disc, 0.93 on vertebral body and 0.78 or greater on muscle. Manual segmentations of the 

same exam from one reader after a washout period of at least 3 weeks showed similar 

Dice coefficients of 0.88 on disc, 0.95 on vertebral body and 0.87 or greater on muscle. 

Example images of manual and automatic segmentations are shown in Figure 3.3. The 

vertebral body network performed with level-wise volumetric Dice coefficients greater 

than or equal to its overall performance of 0.76 on all levels (Table 3.4). Level-wise 

performance on the intervertebral disc network dropped below its overall performance of 

0.86 on all disc-levels (Table 3.5). Results on the S2 vertebral body and S1S2 

intervertebral disc are not reported, as annotators were instructed to exclude the S2 

vertebral body and S1S2 intervertebral disc. 

 

Figure 3.3 Visualization of segmentation results from each network. The first, second and 
third columns show examples of vertebral body, intervertebral disc, and paraspinal 
muscle segmentation results, respectively, along with a 3D Dice coefficient of each 
network’s performance. 
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Table 3.6 Overall performance of automatically generated morphometrics 
Biomarker Pearson R (p-value) Mean Absolute Error 

Intervertebral Disc Height (mm) 0.846 (2.48 × 10-18) 1.45 ± 0.380 

Muscle CSA – Multifidus (cm2) 0.720 (3.50 × 10-63) 0.489 ± 0.122 

Muscle CSA – Psoas (cm2) 0.892 (2.36 × 10-135) 0.457 ± 0.152 

Muscle CSA – Quadratus Lumborum 0.905 (1.34 × 10-145) 0.197 ± 0.0584 

Muscle CSA – Erector Spinae 0.897 (4.08 × 10-139) 0.964 ± 0.208 

Lumbar Loading (Newtons) 0.767 (8.29 × 10-10) 143. ± 50.3 

 
Table 3.7 Stratified intervertebral disc height calculation performance (n = 9) 
Level Pearson R (p-value) Mean Absolute Error (mm) 

All Levels 0.846 (2.48 × 10-18) 1.45 ± 0.38 

T11T12/ T12L1 0.951 (8.02 × 10-05) 1.05 ± 1.03 

T12L1/L1L2 0.847 (0.00396) 1.23 ± 0.85 

L1L2/L2L3 0.155 (0.69) 2.17 ± 1.81 

L2L3/L3L4 0.696 (0.0372) 0.90 ± 0.52 

L3L4/L4L5 0.795 (0.0105)  1.24 ± 1.02 

L4L5/L5L6 0.562 (0.115) 2.24 ± 1.26 

L5S1/L6S1 0.945 (0.000124) 1.32 ± 1.18 

 
Table 3.8 Lumbar load performance (n = 9) 
Level Pearson R (p-value) Mean Absolute Error (Newtons) 

All Levels 0.767 (8.29 × 10-10) 143.26 ± 50.25 

L1 0.699 (0.0361) 101.0 ± 104.45 

L2 0.869 (0.00234) 136.66 ± 98.7 

L3 0.795 (0.0105) 142.86 ± 146.32 

L4 0.688 (0.0405) 163.64 ± 145.5 

L5 0.547 (0.127) 172.14 ± 160.08 
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Pearson R correlation coefficients and mean absolute error were used to measure 

the relationship between morphological metrics calculated from manually versus 

automatically generated segmentations (Table 3.6). IVDH calculated from network 

generated segmentations versus manually generated segmentations showed a 

correlation coefficient of 0.26 and a mean absolute error of 1.98 mm between the two 

methods (Table 3.7). Muscle CSA from automatic segmentation was correlated with that 

of manual segmentations with coefficients 0.74/0.850.70/0.37 and mean absolute errors 

1.21/1.36/0.82/3.55 cm2 (mul/psoas/QL/ES). Centroid locations differed with mean 

absolute errors of 3.03/3.64/7.23/3.58 mm in Euclidean distance between ground truth 

and inference. Vertebral body compressive loading computed between inferred and 

manually generated input data was correlated with coefficients 0.93/0.90/0.78/0.68/0.52 

(L1/L2/L3/L4/L5) as seen in Table 3.8 and Figure 3.4. Bland-Altman plots for manually 

versus automatically generated intervertebral disc height and muscle CSA show 

correlation and agreement between the two methods (Figure 3.5). 

 

Figure 3.4 Stratified loading performance. Left, difference lumbar load in Newtons 
between automatic and manually generated results is plotted for each of the 9 exams 
evaluated from the hold-out test set at each lumbar level. Right, lumbar load calculated 
from manual segmentations is plotted against lumbar load predicted from automatic 
segmentations. 
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Figure 3.5 Correlation (left) and agreement (right) between manually and automatically 
generated segmentations for each biomarker. Correlation between disc height from 
manual versus inferred disc segmentations is displayed using a scatter plot, where the 
line x=y indicated in grey. Agreement is displayed using Bland-Altman plots for disc height 
on each disc. 
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3.4 Discussion 

Previous studies have demonstrated the viability of automatic segmentation applied to 

medical images but have left notable gaps in the problem space in designing methods 

that integrate seamlessly into clinical workflow an create pathways to apply the 

technology at scale to biomechanical research. Demonstration of the feasibility of these 

networks to segment clinically acquired images is limited, instead requiring non-routine 

protocol or strict quality controls [119], [125]–[127]. Published networks do not apply this 

technology across planes and views to segment multiple anatomical structures or 

construct a fully subject-specific 3D atlas of the lumbar spine [128]. Additionally, published 

networks are specialized to downstream anomaly detection, not biomechanical modeling 

[129]. As a result, clinical translation of these methods is unfeasible on a large scale, as 

adding specialized imaging sequences to existing clinical protocol is costly and time 

intensive to institutions and patients. The generalizability of these methods to imaging 

studies routinely acquired in clinical settings is not yet proven. 

We demonstrate the feasibility of substituting manual with automatic segmentation 

of the vertebral bodies, intervertebral discs and paraspinous muscles using networks 

trained on a small amount of clinical data. Overall segmentation network performance 

indicates that manual and automatic segmentation methods perform similarly, and 

morphological metric calculation can largely be outsourced to neural networks. While 

stratified performance results indicate value in human oversight of network performance 

and morphological metric generation, there are clear efficiency gains within an acceptable 

margin of error to be found by implementing fully automatic assistance when delineating 

vertebral bodies, intervertebral discs, and paraspinous muscle in T1-weighted MRI. The 
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proposed segmentation pipeline and the associated quantitative feature generation 

methods have applications in both a clinical and a research context, as they will enable 

researchers to analyze larger datasets of potential biomarkers of cLBP and quickly 

provide those same features to clinicians to improve disease characterization and 

treatment in real time.  

Performance for both the vertebral body and intervertebral disc segmentation 

networks is strongest on the central-most lumbar levels, which was consistent variation 

in training data and anatomical boundaries. Due to natural variation in patient anatomy, 

exams in model training exhibited a range in number of vertebral bodies and intervertebral 

discs in the lumbar spine. Annotators were instructed to exclude vertebral bodies that 

were not completely pictured in the field of view, as well as to exclude the S2 vertebral 

body or the S1S2 intervertebral disc but features of vertebral body and intervertebral disc 

boundaries are similar across the lumbar spine. This led to a pattern where trained 

networks inconsistently segmented the most superior and most inferior vertebral bodies 

and intervertebral discs in the field of view, as networks were arbitrarily penalized for 

correctly identifying these bodies in training. This phenomenon is reflected in the 

network’s relatively poorer performance when segmenting the S2 vertebral body and 

T11T12 and S1S2 intervertebral discs (Tables 3.4 and 3.5). Segmentation of the 

multifidus, psoas, and erector spinae performance variance has no demonstrated 

correlation with slice level in most exams. Segmentation performance on the quadratus 

lumborum tends to drop on the most inferior and superior slices, consistent with 

anatomical expectation above L1 and below L5. 
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Error trends in automatic calculation of intervertebral disc height reflected trends 

in model error on the disc segmentation network, with statistical significance occurring 

only at the T12L1/L1L2 level. Results of all levels except L2 and L3 were inconclusive in 

the lumbar loading comparison. The decline in correlation from L1 to L5 may suggest 

greater sensitivity of lower lumbar loads to the subject-specific model inputs as models 

generate less reliable results on slices at the boundaries of anatomy. Automatic 

segmentation as an input may have tended to underestimate the height of each disc and 

load per vertebral body, but conclusions cannot be drawn given the small sample size. 

We present a highly scalable, fully automatic framework to generate quantitative 

measures of spine morphology and subject-specific biomechanical models from lumbar 

spine MRI. Results generated by this pipeline are highly correlated and agree with those 

generated by human readers, without human-in-the-loop correction. This work indicates 

that computer-generated segmentations could successfully substitute for human-

demarcated masks when quantifying metrics of lumbar spine morphology and 

biomechanical models to quantify tissue loading. These networks were trained on clinical 

exams with standard diagnostic sequences, suggesting strong generalizability with no 

extra costs associated with exam acquisition. A human-in-the-loop system to catch 

failures but improve time to acquire each segmentation could be of value to account for 

variation in performance with scan quality. A fully automatic, quantitative method for 

generating image-based features of spine morphology and validated estimates of tissue 

loading from clinically acquired MR exams combined with biomechanical modeling, like 

this one, would provide a scalable approach with which to evaluate drivers of cLBP across 

patients, institutions, and imaging archives without interrupting routine care.
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Chapter 4  

Automatic Detection and Voxel-wise Mapping 

of Lumbar Spine Modic Changes with Deep 

Learning 

Structural tissue geometry is well-linked to conditions like OA and LBP with mechanically 

induced factors. Thus, it is crucial to understand the health and composition of the 

underlying tissue that give rise to adverse tissue shape. While compositional MRI 

techniques exist, these are often not available in boilerplate imaging protocols. This will 

be discussed with additional detail in Chapter 5. Rather, in the clinic, radiologists infer 

various states of tissue health using a combination of standard imaging sequences and 

semiquantitative grading protocols. Modic changes (MCs) are abnormalities along the 

vertebral endplate characterized by fibrovascular or fibrofatty tissue changes and are 

typically associated with degenerative disc disease. They have also been associated with 

a wide array of changes in bony composition depending on hypo- or hyperintense 
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appearances in T1- and T2-weighted MRI. However, due to technical factors such as the 

evolution of imaging systems and human variability between readers and studies, MCs 

suffer from a lack of conclusive evidence regarding their associations with LBP. In this 

chapter, we describe a quantitative approach, rooted in DL-based image segmentation, 

for developing a MC detection tool with utility in the clinic. 

The following material in this chapter is adapted and reproduced with full 

permission from the publisher. The original work is referenced as: 

Gao KT, Tibrewala R, Hess M, Bharadwaj UU, Inamdar G, Link TM, Chin CT, Pedoia V, 

Majumdar S. Automatic detection and voxel-wise mapping of lumbar spine Modic 

changes with deep learning. JOR Spine. 2022 Jun 8;5(2):e1204. 

4.1 Introduction 

Low back pain (LBP) is the leading cause of disability globally, accounting for 60.1 million 

disability-adjusted life-years in 2015 [2], [16]. While the nociceptive source in the vast 

majority of LBP cases cannot be identified [16], [17], there has been a growing collection 

of evidence showing that properties of vertebral endplates are closely linked to 

intervertebral disc degeneration and LBP [130]–[133]. Modic changes (MCs) are the most 

commonly used classification system for describing changes in endplate-adjacent 

vertebral bone marrow [134]. Despite its prevalence, the association of MCs with LBP is 

inconsistent [131], [135]–[137]. 

Hypothesized to cause LBP through structural and inflammatory changes in the 

bony structures of the spine [21], [138], [139], MCs are defined as signal variations seen 

in the combined assessment of T1-weighted and T2-weighted magnetic resonance 
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imaging (MRI) [134]. Bone marrow edema-like changes or fibrovascular changes appear 

distinctly hypointense on T1-weighted images and hyperintense on T2-weighted images 

(Modic type 1) [136], [140]. Meanwhile, conversion of red hematopoeitic bone marrow to 

yellow fatty marrow is hyperintense on T1 MRI and iso- to hyperintense in fat saturated T2 

and non-fat saturated T2 sequences, respectively (Modic type 2). And lastly, sclerotic 

bone appears hypointense in both sequences (Modic type 3). 

Thus, the semiquantitative nature of the MC classification system is highly 

susceptible to variability in non-standardized imaging. Fields, et al., detailed how 

evaluation of MCs are prone to inter-rater variability through a wide range of factors 

related to equipment and image acquisition parameters [140]. Magnetic field strength, in 

particular, has been shown to have significant effects on the prevalence of MCs, with type 

2 changes being easily distinguishable in low-field MRI and type 1 changes visualized 

more easily in high-field MRI [141]. Pulse sequence design and parameters can also 

effectively influence image quality, signal-to-noise, fat suppression, and, importantly, 

tissue contrast. Due to a lack of systemic standardization in spine imaging, it is pivotal to 

adapt grading procedures with objective and quantitative methodologies. 

Several quantitative approaches have been recently applied to the assessment of 

vertebral changes. Specialized pulse sequences, such as chemical shift encoding-based 

water-fat imaging [142], magnetic resonance spectroscopy [143], diffusion, and perfusion 

[144], can provide additional information on tissue composition. Post-acquisition, Wang, 

et al., extracted morphological and signal intensity-based metrics from contours of MCs, 

reporting improved inter- and intra-rater agreement as compared to unassisted MC 
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classification [145]. However, a limitation with these approaches is the need for manual 

demarcation of MCs, which may be labor-intensive. 

Data-driven strategies to address these drawbacks have emerged from the recent 

surge of development in deep learning (DL) and convolutional neural networks. Notable 

applications to spinal imaging analysis include automated segmentation of spinal 

structures [146]–[148], detection of spinal anomalies [149]–[151], and predictive modeling 

of spinal surgery outcomes [152], [153]. Automated endplate assessments have seen 

relative success, as well. Jamaludin, et al., has shown that endplate defects can be 

detected from MRI using convolutional neural networks with approximately 83.7 and 86.9% 

accuracy in their test set for upper and lower endplates, respectively [154]. While these 

efforts automate spinal analysis to near human-performance, there remain opportunities 

to translate such models into clinical utility. 

The adoption of a DL model into widespread use to address inconsistencies of the 

assessment and reporting of MCs hinges on its interpretability. Our study aims to (1) 

develop a DL-based automatic contouring method to identify MCs in vertebral bodies, (2) 

classify these changes as Modic types 1, 2 or 3 on a voxel-wise level, thereby providing 

granular, quantitative information about the vertebral bodies as a Modic map, and (3) use 

the automatic detection as an aid to radiologists, improve agreement, and pave the way 

for more consistent evaluations of the relationship between MCs and LBP. 

4.2 Materials and Methods 

This retrospective, single-center study was approved by the local Institutional Review 

Board and the informed consent requirement was waived. 
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Table 4.1 Acquisition parameters of curated clinical lumbar spine MRI exams 
 T1-weighted T2-weighted 

Field Strength (T) 1.5, 3.0 1.5, 3.0 

Matrix 256×256-512×512 256×256-512×512 

Field-of-view (cm) 24.0-37.0 24.0-37.0 

Slice thickness (mm) 3.0-4.0 3.0-4.0 

Pixel bandwidth (Hz) 88.8-250.0 81.4-325.5 

Repetition time (ms) 377-975 2430-6307 

Echo time (ms) 6.8-31.8 26.1-107.8 

Flip angle (°) 90-180 90-160 

T – Tesla; cm – centimeter; mm – millimeter; Hz – Hertz; ms – millisecond; ° - degrees 

 

4.2.1 Dataset and Annotations 

Seventy-five exams with the following inclusion and exclusion criteria were sampled at 

random from lumbar spine MRIs acquired between 2008 and 2019 at our institution. 

Inclusion: patients aged 19 years or older presenting with acute-to-chronic LBP, 

radiculopathy, and other symptoms of the lumbar spine including numbness, tingling, 

weakness, dysesthesia, and tightness. Exclusion: (1) vertebral fractures, (2) post-

operative changes, (3) extensive hardware, (4) primary tumors, (5) metastatic spinal 

disease, (6) infection, and (7) transitional anatomy. Imaging was performed on GE Signa 

HDxt 1.5T and GE Discovery MR750 3.0T (GE Healthcare, Milwaukee, WI) with 

acquisition details of the relevant T1-weighted sagittal and T2-weighted sagittal sequences 

provided in Table 4.1. All images were deidentified for this study. 

To serve as ground truth for the DL components, vertebral bodies with visible MCs 

were segmented for these changes (Type 1, 2 and 3) by a board-certified neuroradiologist 

with 25 years of experience and a musculoskeletal junior radiologist with 3 years of 
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experience after initial adjudication for calibration on 15 exams not included in the study 

cohort. To promote further standardization between grading assessments, MCs with 

diameter less than 5 mm were excluded and mixed MCs were annotated as the 

predominant type. All manual annotations were performed using the medical imaging 

platform, MD.ai (MD.ai, New York, NY). 

4.2.2 Image Analysis 

This Modic mapping scheme consists of three stages, as depicted in Figure 4.1: (1) 

segmentation and localization of the vertebral bodies, (2) binary detection and 

segmentation of signal variabilities characteristic of MCs, and (3) voxel-wise classification 

of the detected regions to classify Modic type. 

Image Alignment 

As MCs are characterized by local signal variations in both T1- and T2-weighted images, 

these images were aligned with image position coordinates prior to processing. The rigid 

alignment was performed by first matching positions of each sagittal slice of the T2-

weighted images to the T1-weighted images in the frontal axis. Then, T2-weighted slices  

 

Figure 4.1 Schematic of the full Modic mapping approach. 
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were rotated, translated, and scaled to the dimensions of their corresponding T1 

counterpart. Finally, each slice was similarly translated and scaled to harmonize in-plane 

resolution using bicubic interpolation. 

Vertebral Body Localization 

Our first goal was to isolate vertebral bodies to fixate on image features pertaining to the 

vertebral body and endplates. To achieve this, we developed and trained a preliminary 

V-Net convolutional neural network [90] for semantic segmentation. A research associate 

manually segmented vertebral bodies from T1-weighted images in a subset of 40 exams. 

These MRIs were randomly split into training (n = 20), validation (n = 17), and test (n = 3) 

sets and then separated into 2D slices. The V-Net was trained on a single NVIDIA TITAN 

X GPU using Tensorflow v1.14 with the following hyperparameters: batch size = 3; 

optimizer = Adam; learning rate = 1e-4; loss function = Dice (4.1); dropout rate = 0.8. 

Post-training, the performance of the segmentation model was assessed using the Dice 

coefficient overlap between the manual and predicted segmentations. To evaluate inter-

rater variability, a second research associate manually segmented vertebral bodies from 

a subset of 5 exams. 

𝐷𝐷𝑤𝑤𝐷𝐷𝑒𝑒 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =
2∑ 𝑝𝑝𝑖𝑖𝑟𝑟𝑖𝑖𝑁𝑁

𝑖𝑖
∑ 𝑝𝑝𝑖𝑖2𝑁𝑁
𝑖𝑖 + ∑ 𝑟𝑟𝑖𝑖2𝑁𝑁

𝑖𝑖
 (4. 1) 

where 𝑁𝑁 is the total number of voxels, 𝑝𝑝𝑖𝑖 ∈ 𝑃𝑃 represents voxel values of the prediction, 

and 𝑟𝑟𝑖𝑖 ∈ 𝐺𝐺 represents voxel values of the ground truth. 

We utilized this model to segment vertebral bodies of the 75 lumbar spine MRI 

exams in the dataset. The individual vertebral bodies in the inferred masks were identified 

using 3D connected component labeling, in which segmented masks joined within a 6-
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connected neighborhood were given a unique label. The masked vertebral body masks 

were then zero-padded to a standardized size of 100×100. 

Modic Detection and Segmentation 

MC detection was achieved using a second segmentation neural network which utilized 

these localized vertebral bodies and the radiologist-annotated MCs. In each exam, we 

used z-score standardization to convert each voxel to the number of standard deviations 

from the mean signal intensity in the segmented vertebral bodies. Next, the 100×100 

vertebral body masks were applied to the T1-weighted and aligned T2-weighted images 

and these images were stacked, producing input images of dimensions 100×100×2. 

Binary radiologist-annotated MC segmentations (presence versus absence of MCs) were 

similarly masked. The 75 exams, consisting of 1,872 vertebral body image-Modic 

segmentation pairs, were randomly split into training (n = 50), validation (n = 15), and test 

(n = 10) sets. Figure 4.2 portrays the demographic distribution of the data splits. 

 

Figure 4.2 Distribution of subject demographics of the 75 lumbar spine MRI exams after 
randomly splitting into training (n = 50), validation (n = 15), and test sets (n = 10). 
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We developed and modified the 2D V-Net for MC segmentation. The network 

consists of two branches, each with 4 levels. The encoder branch is responsible for 

compressing the input to an abstract latent space of representative features. At each level, 

convolutional layers (1, 2, 3, and 3 layers in the respective levels) extract features with 

32 kernels of size 5×5 and stride 1 followed by downsampling with a 2×2 kernel with stride 

2. The subsequent decoder branch deconvolves the latent space back to the input’s 

original dimension and passes the array through a combined cross-entropy and Dice loss 

layer with sigmoid activation to ultimately produce probabilistic segmentation masks for 

MCs. Hyperparameters for training include: batch size = 128; optimizer = Adam; learning 

rate = 1e-4; loss function = weighted cross entropy and Dice (4.2); loss weights = 20:1 

(foreground:background); dropout = 0.2. Training was deemed complete after a 

designated 15 validation cycles without improvement (500 iterations per cycle). 

𝐶𝐶𝐿𝐿𝑚𝑚𝑏𝑏𝑤𝑤𝑛𝑛𝑒𝑒𝑑𝑑 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝜆𝜆(𝐶𝐶𝑟𝑟𝐿𝐿𝐿𝐿𝐿𝐿 𝐸𝐸𝑛𝑛𝑤𝑤𝑟𝑟𝐿𝐿𝑝𝑝𝑦𝑦 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿) +  𝐷𝐷𝑤𝑤𝐷𝐷𝑒𝑒 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 (4. 2) 

where 𝜆𝜆 is a weighting coefficient set to 0.1, and 

𝐶𝐶𝑟𝑟𝐿𝐿𝐿𝐿𝐿𝐿 𝐸𝐸𝑛𝑛𝑤𝑤𝑟𝑟𝐿𝐿𝑝𝑝𝑦𝑦 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = −�𝑟𝑟𝑖𝑖 log(𝑝𝑝𝑖𝑖) + (1 − 𝑟𝑟𝑖𝑖) log(1 − 𝑝𝑝𝑖𝑖)
𝑁𝑁

𝑖𝑖=1

(4. 3) 

Voxel-wise Modic Change Mapping 

With a trained model for Modic segmentation, we then utilized a nearest-neighbor 

algorithm to classify each voxel in the detected MCs into one of three types. Again, we 

utilized the training set; each voxel in the regions annotated by the radiologist was 

characterized by its T1 z-score and T2 z-score and then grouped into the appropriate MC 

group. The centroid of the [T1 z-score, T2 z-score] clusters were computed. To classify 

the test set and exams in inference, each voxel in detected MCs were similarly 
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characterized by [T1 z-score, T2 z-score] then categorized by the nearest cluster centroid 

neighbor. This ultimately produced voxel-wise Modic maps. 

4.2.3 Statistical Analysis 

We created a rule-based algorithm that produces binary labels of each MC in upper and 

lower vertebral bodies to assess the effectiveness of this scheme as compared to human 

performance and past works. Upper and lower sections were approximated by finding the 

convex hull of the vertebral body mask and bisecting them along the long axis. Thus, 

each bisection was described with three binary labels, representing the presence or 

absence of voxels characteristic of Modic types 1, 2, and 3, respectively. Sensitivity, 

specificity, and Cohen’s kappa score (κ) were computed to evaluate the overall Modic 

detection performance, and the subsequent classification. 

AI-assisted Experiment 

A second dataset (n = 20) was curated to explore the effect of inter-rater agreement of 

Modic grading with the aid of this Modic mapping pipeline. A senior neuroradiologist (over 

25 years of experience), a senior musculoskeletal radiologist (over 25 years of 

experience), and a junior radiologist in-training (3 years of experience) graded these 

exams independently. Inter-rater reliability was assessed using Cohen’s kappa coefficient. 

After a four-week washout period, the musculoskeletal radiologist and junior radiologist 

re-graded the same dataset, with the aid of Modic maps generated from our developed 

pipeline. Agreement was reassessed to measure differences with the initial trial using 

Cohen’s kappa score and the McNemar’s test, with the neuroradiologist established as 

the baseline. The experimental setup is summarized in Figure 4.3. 
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4.3 Results 

Vertebral Body Localization 

Training the vertebral body segmentation network completed in approximately 10 hours 

with 20,000 iterations. Evaluated with the unseen test set, the model achieved 0.882 ± 

0.018 Dice overlap with the ground truth segmentations. This performance is comparable 

to the inter-rater Dice overlap between two research associates, which was reported as 

0.927 ± 0.011. 

 

 

Figure 4.3 Experimental setup of the AI-assisted assessments in the labeling platform, 
MD.ai. Three readers graded an independently curated dataset (n = 20). Using the trained 
Modic mapping schema, predictions for MCs were generated in the same dataset, and 
after a 4-week washout period, readers 2 and 3 re-graded these exams with the 
assistance of the model predictions. 
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Post hoc analysis of vertebral body segmentation was performed (Figure 4.4). The 

mean volumetric error of the model prediction was 0.28 cm3 per vertebral body, 

approximately 1.1% of the average vertebral volume. Manually segmented ground truth 

and model predictions were well correlated with an R-value of 0.94 and p-value < 0.001 

using Pearson correlation. 

Modic Detection and Segmentation 

The Modic detection model, after training for 11,500 iterations, successfully identified the 

presence or absence of changes in 85.7% of samples in the unseen test set. Sensitivity 

and specificity of the model were computed and summarized in Table 4.2, resulting in 

0.71 (±0.072) and 0.95 (±0.022), respectively. Cohen’s kappa score was similarly 

computed against the radiologist-annotated ground truth as 0.63, interpreted as 

substantial agreement. 

 

 

Figure 4.4 Post hoc analysis of vertebral body segmentation of the test set. (A) Bland-
Altman plot indicate the average difference in vertebral body volume between model 
prediction and ground truth was 0.28 cm3. The grey areas portray the 95% confidence 
intervals. (B) The correlation plot of vertebral body volume has an intercept of 14.8 cm3, 
demonstrating a measurement bias, and R-value of 0.94. (C) Representative example of 
vertebral body segmentation contours on T1-weighted image. 
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Table 4.2 Performance of the full Modic pipeline on the unseen test set 

 Sensitivity 
(95% CI) 

Specificity 
(95% CI) 

Overall 0.71 (±0.072) 0.95 (±0.022) 

    MC 1 0.67 (±0.113) 0.87 (±0.030) 

    MC 2 0.67 (±0.102) 0.89 (±0.028) 

    MC 3 0.44 (±0.324) 0.83 (±0.032) 

CI – 95% confidence interval; MC – Modic change 

 

Voxel-wise Modic Change Mapping 

Figure 4.5 shows the [T1 z-score, T2 z-score] voxel-wise characterization of MCs in the 

training set. Cluster centroids of Modic 1, 2, and 3 were centered at [0.23 (±0.73), 1.20 

(±1.16)], [1.04 (±1.00), 0.37 (±0.85)], and [-0.53 (±0.41), -0.52 (±0.85)], respectively, 

corresponding well with the qualitative classification system defined by hyper- and hypo-

intensities. Labeling of upper and lower vertebral bodies using the rule-based 

classification system resulted in sensitivities of [0.67 (±0.113), 0.67 (±0.102), and 0.44 

(±0.324)] and specificities of [0.87 (±0.030), 0.89 (±0.028), and 0.83 (±0.032)] for Modic 

Figure 4.5 Paired T1 and T2 z-score 
coordinates of each voxel within Modic 
changes in the training set. These 
centroid coordinates align well with the 
qualitative Modic grading system and 
its corresponding variations in signal 
intensity (e.g.: Modic type 1 is 
hyperintense in T2-weighted imaging, 
Modic type 2 is hyperintense in T1-
weighted imaging). Detected Modic 
changes in the test set were classified 
on a voxel-by-voxel basis using a 
nearest neighbor algorithm to these 
cluster centroids. 
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types 1, 2, and 3, respectively, as seen in Table 4.2. The overall prevalence of MCs in 

the test set was 0.27 in the ground truth and, correspondingly, 0.23 in the model 

predictions. Further stratification of MC prevalence is described in Figure 4.6. In Figure 

4.7, representative examples of Modic maps are shown with their corresponding T1 and 

T2 images. 

AI-assisted Experiment 

Inter-rater agreement was initially assessed with an independently curated dataset 

(n = 20) (Table 4.3). Between the three radiologists, the two senior readers (reader 1 and 

reader 2) were in the most agreement, with a Cohen’s kappa score κ = 0.63. The junior 

radiologist (reader 3) had moderate agreement, κ = 0.52, with reader 1 and, κ = 0.45, with 

reader 2. 

 

Figure 4.6 Representative examples of 
the model inputs (T1 and T2 images), 

radiologist-annotated ground truth 
segmentations, and the predicted Modic 

maps. The mapping technique is 
advantageous for visualizing 

heterogeneity and transitional pathology. 
Notably, in the top row, the model detects 

MC 3-like characteristics in the anterior 
inferior endplate. In the second row, a 

small MC 1 region in the anterior superior 
endplate, unnoticed by the radiologist, 

was annotated by the automatic model. 
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Table 4.3 Cohen's kappa coefficients in AI-assisted experiment 

 Initial 
Agreement (κ) 

Post-AI-assist 
Experiment (κ) Δκ p-value 

Reader 1 and 2 0.63 0.62 -0.01 NS 

Reader 1 and 3 0.52 0.58 +0.06 <0.05 

Reader 2 and 3 0.45 0.48 +0.03 NS 

NS – not significant 
 

With the assistance of the model prediction, agreement of reader 3 with reader 1 

significantly improved to κ = 0.58 (p < 0.05). Agreement between readers 3 and 2 

increased to κ = 0.48, though this result was insignificant by the McNemar’s test. 

Meanwhile, reliability between readers 1 and 2 decreased slightly to κ = 0.62, again, 

without statistical significance. 

 

Figure 4.7 Prevalence of MCs in the ground truth and prediction of the test set, 
stratified by vertebral body level. The two distributions share similarities, with the 
highest number of MCs in the lower lumbar region (L4-S1). The prevalence is further 
apportioned by the relative ratios of each Modic type. The model tends to overestimate 
MC 3s due to low representation in the ground truth and inductive bias. 
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4.4 Discussion 

This study used deep learning-based models to automatically localize and map MCs in 

vertebral bodies. Overall, these results demonstrate substantial agreement of the 

detection model with radiologist-annotated grading and a novel Modic mapping technique 

that provides grading assistance when incorporated into a radiology workflow. A design 

goal of this schema is to provide clinical utility through objective and interpretable models. 

We aimed to achieve this in two ways: 

The first pertains to reducing and streamlining the semiquantitative Modic 

classification system into a data-driven, yet easily understood multistep algorithm. To limit 

the effective field-of-view to regions of the vertebral bone, rather than confounding 

structures such as the neighboring intervertebral discs, foramen, or spinal cord, we 

performed vertebral body segmentation using the V-Net [90], a widely used encoder-

decoder for biomedical image segmentation. This is particularly important when 

considering intervertebral disc degeneration due to the strong correlation between 

presence of the two anomalies [155], [156]. The performance of this model is consistent 

with previous works in spinal segmentation [146], [148] and conveys to users of this tool 

which regions were evaluated by the subsequent Modic detection tool. Similarly, the rule-

based classification system proposed here, based on T1 and T2 z-scores, intuitively 

follows the semiquantitative blueprint originally proposed by Modic, et al. [134]. Ultimately, 

the availability of intermediary results and interfaces for the pipeline’s decision-making 

process may build confidence toward the adoption of such methodologies into clinical 

settings. 
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The second strategy adopted in this approach capitalizes on the ability of Modic 

maps to describe heterogeneous tissues. Systematic reviews of works involving MCs 

note inconsistencies in reporting procedures [136], [140]. In both research studies and in 

clinical practice, MCs are dictated as isolated, homogeneous lesions when they are often 

conglomerated and characterized by spatial heterogeneity. Past literature suggested that 

MRI changes may progress from Modic type 1 to type 2 to type 3 in a linear fashion [157], 

though recent studies have demonstrated that pathologies are often reversible [158]. Not 

only can MCs be transitional, it has been reported that 27.2% of MCs are regarded as 

mixed, comprising of characteristics of multiple Modic types [159]. Capturing the 

granularity of mixed MCs is challenging for the human eye, yet neural networks have 

proven capable of identifying detailed textural and shape features from medical imaging 

[160], [161]. In this work, we chose to implement a voxel-wise MC segmentation method 

over a classification model due to the key capability of visualizing the heterogeneity of 

mixed MCs. In addition, the segmentation methodology offers higher degree of 

supervision, where each voxel in an image is attributed with a label. This granular 

supervision retains context of the neighboring tissue and improves label specificity. 

Further works using this approach can unravel attributes of progressive or transitional 

MCs that may interact with LBP, as heterogeneous tissues are often correlated with 

degeneration. 

Performance of the vertebral body segmentation and MC detection components 

reached or neared human reliabilities. Error analysis showed predictive inaccuracies in 

the lateral-most slices where partial volume effects tend to impact the delineation of bone 

from surrounding tissues. The performance metric is artificially deflated as the research 
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associate manually segmented complete vertebral bodies while the model would be apt 

to predict all instances of bone, some of which were only partially visible in the prescribed 

field of view. In the MC detection component, the distribution of predicted MCs across the 

lumbar vertebras were predominantly in the L4-S1 range (74.4%), which matches well 

with the radiologist annotations (78.8%) and past work (75.5%) [159]. Detection of MCs 

in L1 was notably underestimated by the model. We speculate this is due to signal loss 

at the periphery of the coil. Voxel-wise classification of MCs yielded high predictive value 

of Modic types 1 and 2, arguably the two groups most important to classify due to their 

prevalence [159], [162] and the strong association of MC 1 with nonspecific LBP [163], 

[164]. Notably, the models are trained and evaluated on a dataset with a wide 

arrangement of acquisition parameters to capture the variability in non-standardized 

imaging procedures. 

In the pilot AI-assisted experiment, we found that the additional utility of the model 

predictions improved agreement of the junior radiologist with the senior radiologists (Δκ 

= +0.06 and Δκ = +0.03 with reader 1 and reader 2, respectively). However, agreement 

did not improve, but rather slightly decreased (Δκ = -0.01 with reader 1), for reassessment 

by reader 2. This is likely explained by the differences in training and preferences between 

neuroradiology and musculoskeletal radiology. The participating readers reported that a 

key advantage of the tool was its utility as “attention focuses,” which may have contributed 

to boosting agreement between reader 3 with reader 1. 

The technologies developed in this study can be applied in various ways. With 

further development, this tool could potentially assist training efforts of junior radiologists 

by highlighting complex cases which depict the nuances of heterogeneous spinal 
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pathologies. Furthermore, because this model was trained using non-standardized 

clinical data, the AI-assist tool can be adapted to a continuous learning paradigm to 

improve model generalizability and utility without the need for additional data curation. 

Specifically, this model demonstrates the capability to predict transitional and 

heterogenous MCs which have been hypothesized to be associated with LBP. Using this 

tool, more data can be gathered on these changes to make consistent associations with 

LBP and help pave the path to elucidate the mechanisms of nonspecific LBP. 

While our results demonstrate that deep learning-based approaches can 

contribute to identifying MCs, there are several notable limitations. First, despite the 

quantitative nature of this methodology, data-driven techniques are still biased by its 

training data and annotators. Two participants of the AI-assisted experiment were 

responsible for labeling the training data, which may have biased the agreement metrics 

against other readers. For these reasons, this algorithm is not intended to be a standalone 

fully diagnostic tool. Second, relatedly, we acknowledge that the exams used in this study 

are from a single institution and the model is not validated with multi-institutional testing. 

Lastly, our results are limited by the small sample size with poor representation of Modic 

type 3. Modic type 3 is described by signal void in both T1- and T2-weighted images, which 

makes it difficult to grade and susceptible to errors in cases with low signal-to-noise ratio. 

This is impactful in the nearest neighbor component of the pipeline, which is notably 

sensitive. Fortunately, several collaborative efforts are in-progress to amass additional 

data from other institutions with wider variability in imaging equipment and acquisition 

parameters. We also aim to extend this work by exploring domain adaptation strategies 
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to improve generalizability and performing longitudinal analysis to further investigate 

transitional pathologies. 

4.5 Conclusion 

In this work, we present a novel deep learning-based approach to localize and segment 

MCs, with results that demonstrate high agreement with radiologist grading. The 

introduction of this fully automatic, quantitative mapping technique may increase inter-

rater reliability and ultimately improve robustness in understanding the associations of 

MCs with LBP and spinal degeneration. 
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Chapter 5  

Multiparametric MRI Characterization of Knee 

Articular Cartilage and Subchondral Bone 

Shape in Collegiate Basketball Players 

In the previous chapters, we established the utility of ML/DL models for automatically 

extracting imaging-derived tissue morphology. The remainder of this dissertation will 

focus on the harmonization of these morphologies between subjects which enables us to 

draw population-level conclusions. 

 We introduce this subject by investigating a group with high risk for injury and 

degeneration. Young, elite basketball players exert large amounts of force to their joints, 

particularly their knees. Complex repeated loading of the knee joint leads to biochemical 

and structural degeneration that occur prior to any visible morphological changes. In this 

study, we implemented a voxel-based relaxometry approach to evaluate localized 

compositional analyses of the knee cartilage and a statistical shape model to understand 
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differences in subchondral bone shape. Using these advanced computer vision 

methodologies, we found several characteristics unique to collegiate basketball players 

when compared to a low knee impact control group which may expand our understanding 

of local degenerative patterns in this population. 

The following material in this chapter is adapted and reproduced with full 

permission from the publisher. The original work is referenced as: 

Gao KT, Pedoia V, Young KA, Kogan F, Koff MF, Gold GE, Potter HG, Majumdar S. 

Multiparametric MRI characterization of knee articular cartilage and subchondral bone 

shape in collegiate basketball players. J Orthop Res. 2021 Jul;39(7):1512-1522. 

5.1 Introduction 

The knee is vulnerable to articular cartilage degeneration and injury in jumping athletes 

who exert high compressive and shear forces during practice and competitive play [1], 

[165]–[168]. Imparting large loads to the articular cartilage is a known risk factor for 

chronic musculoskeletal conditions such as early-onset osteoarthritis [165] and pain [1]. 

Accordingly, there is wide interest in studying associations between high-knee impact 

sports and long-term health of the knee joint. 

Articular cartilage is of distinct concern due to its specialized function for 

distributing loads and its limited capacity for repair. Previous studies have used magnetic 

resonance imaging (MRI) to find that degenerative changes are consistently prevalent in 

knee cartilage of basketball players across all levels of competition [166]–[168]. A 2005 

study [166] observed articular cartilage lesions on MRI in 47.5% of asymptomatic 

professional NBA players, with the majority of cartilage lesions found in the patellofemoral 
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joint. A recent study by Pappas, et al., [167] imaged 24 NCAA Division I collegiate 

basketball players and found increased abnormal findings (fat pad edema, patellar 

tendinopathy, articular cartilage and meniscal injury) after one season of play in every 

knee imaged. 

Though the high prevalence of abnormal imaging findings in high-knee impact 

athletes is well-established, biochemical changes of macromolecules associated with 

cartilage degeneration occur prior to visible morphological changes [169], [170]. 

Biomechanical stiffness of articular cartilage is provided by the collagen and proteoglycan 

(PG) organization and content, respectively, of the extracellular matrix. Damage to this 

macromolecular environment results in an increase of mobile water and a concomitant 

reduction in tissue stiffness. Compositional MRI techniques, such as T1ρ- and T2-

relaxation time mapping, can quantify such changes in cartilage matrix biochemistry [171], 

[172]. T1ρ relaxation times reflect interactions between movement-restricted water and 

surrounding large macromolecules and has been related to glycosaminoglycan (GAG) 

and PG content and early OA. Some studies demonstrated elevated T1ρ relaxation times 

with disruption of the ECM through decreased PG content via ex vivo enzymatic removal, 

[173], [174] yet others have seen no relation between T1ρ abnormalities and GAG [175], 

[176]. While the mechanism is not yet fully understood, prolonged T1ρ has associated with 

populations at risk of and living with osteoarthritis [177]–[179]. Meanwhile, T2 relaxation 

is associated with loss of collagen and disorganization of collagen fibrils [179]. T2 is 

prolonged in the setting of degeneration of articular cartilage [174]. Newer methods permit 

acquisitions of T1ρ and T2 in a single combined sequence and have been used to evaluate 

patients with anterior cruciate ligament injuries and those with osteoarthritis (OA) [179], 
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[180], but its use to investigate the status of knee cartilage health in young elite athletes 

is limited. 

Quantitative analysis of T1ρ and T2 relaxation time maps are traditionally performed 

using region of interest (ROI)-based approaches, which presents several challenges: (1) 

cartilage ROIs are often segmented manually or semi-automatically and are prone to 

inter- and intra-user variation; (2) statistical analyses are performed based on the average 

T1ρ or T2 value of all voxels within the ROIs, limiting the spatial assessment of relaxation 

times within the defined regions. Methods for segmentation have recently advanced to be 

less reliant on manual input. Advanced segmentation methods transform images from 

individual knees to a single reference template, allowing comparison of local spatial 

distribution between subjects on a voxel-by-voxel basis. This technique, voxel-based 

relaxometry (VBR), has been shown to agree with ROI-based analyses [181]. Notably, it 

can be performed in a fully automated fashion and can provide local information and 

patterns of imaging markers in articular cartilage evaluation. 

Another component that plays a key role in the transmission of load across the 

knee joint is geometric bone shape. Through skeletal homeostatic signal pathways [182], 

high intensity mechanical loading is associated with increased subchondral bone 

thickness and reduced bone resorption [182]–[184]. Stimulation of these pathways occurs 

in an anatomic site-specific manner depending on intensity and type of load. In turn, 

exercise-induced variations in bone architecture influence biomechanics of the knee joint 

[185], [186] and incidence rates of injury [187], [188] and osteoarthritis [188]. Due to 

frequent heavy loads exerted onto the knees of athletes in high-knee impact sports, it is 

important to classify regional bone shapes in sports with low- and high-knee impact. 
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Statistical shape modeling has recently gained traction as an analytical method for 

modeling variation in surface geometry from imaging [189], [190]. Varying algorithms 

have demonstrated submillimeter level matching precision, allowing for analysis of 

complex 3D shapes generated from medical imaging [189]–[192]. 

The purpose of this study was to use quantitative MRI techniques to characterize 

the articular cartilage and subchondral bone within the knee of two athletic groups: (1) a 

high-knee impact group consisting of collegiate basketball players, and (2) a non-knee 

impact group of collegiate swimmers. We hypothesized that the basketball players would 

demonstrate localized prolonged T1ρ and T2 relaxation times and bone shape differences 

as compared to the swimmers. 

5.2 Materials and Methods 

 

Figure 5.1 Schematic overview of multiparametric knee MRI methodology. 
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5.2.1 Subject Demographics 

In this multicenter cross-sectional study, two cohorts of age-matched NCAA collegiate-

level athletes were recruited for this study: 40 basketball players (22 female / 18 male, 

19.5 ± 1.5 years, body mass index [BMI] = 24.6 ± 5.6 kg/m2), and 25 swimmers (12 

female / 13 male, 19.0 ± 1.0 years, BMI = 25.4 ± 4.9 kg/m2). Participants were questioned 

about overall knee health and past history of competitive sport participation. Swimmers 

with prior knee injury, pain, surgery, or participation in competitive jumping sports were 

excluded. Procedures were performed in accordance with the rules approved by the 

Institutional Review Boards of the 3 participating sites. All participants provided informed 

written consent. 

5.2.2 MRI Protocol 

Imaging was performed using clinical 3T MRI (GE Healthcare, Milwaukee, WI) scanners 

with an 8-channel T/R (Invivo, Gainesville, FL) or an 18-channel T/R knee coil (Quality 

Electrodynamics, Mayfield Village, OH). Images were acquired prior to the subjects’ 

respective basketball and swimming competitive seasons. The single-knee MRI protocol 

included a sagittal 2D fast spin echo (FSE) proton-density (PD)-weighted sequence, a 

sagittal intermediate-weighted 3D FSE CUBE sequence, and a 3D sagittal combined 

T1ρ/T2 magnetization-prepared angle-modulated portioned k-space spoiled gradient echo 

snapshots (MAPSS) research sequence [180]. In the T1ρ component of the MAPSS 

acquisition, time of spin-lock (TSL) was set to 0/10/40/80 ms using RF pulse with 

frequency at 500 Hz. Simultaneous T2 acquisition used echo time (TE) = 0/12.8/25.7/51.4 

ms, sharing the first image with the first T1ρ TSL. Additional acquisition parameters are 

listed in Table 5.1. 
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Table 5.1 Multiparametric MRI imaging acquisition parameters 
 2D PD FSE 3D CUBE 3D MAPSS 

Matrix 512 × 384 512 × 512 256 × 128 

Field-of-view (cm) 16 16 14 or 16 

Pixel bandwidth (Hz) 163 244 488 

Slice thickness (mm) 3 0.7 4 

Number of slices 30-45 145-210 24 

Repetition time (ms) 5800 1200 5400 

Echo time (ms) 40 27 0/12.8/25.7/51.4 

Echo train length 14 35 1 

Spin lock time (ms) - - 0/10/40/80 

Flip angle 142° 90° 60° 

ARC acceleration factor - phase: 2.0 
slice: 2.0 

phase: 2.0 
slice: 1.0 

Approximate scan time (min:sec) 4:30 6:30 9:40 

 

 To assess biases in quantitative measurements across the sites of acquisition, an 

identical phantom was imaged on all scanners. The phantom was constructed with two 

instances of three varying amounts of agarose to encompass a range of relaxation times 

and scanned with the T1ρ/T2 MAPSS sequence [180]. The phantom acquisition was 

repeated two additional times at a single site to evaluate intra-scanner variability. 

Coefficients of intra-scanner variation ranged from 0.2-2.2%, while coefficients of inter-

scanner variation ranged from 4.1-6.6% [193]. 

5.2.3 Morphological Characterization 

A board-certified musculoskeletal radiologist with 25 years of experience evaluated the 

MR images. Cartilage lesions were graded in a blinded fashion using the Modified Noyes 
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Score, where grade 0 classified cartilage with no lesions by PD-weighted MRI, and grades 

1 and above indicated increased signal intensity or cartilage defects. 

5.2.4 Voxel-based Relaxometry 

Image postprocessing was performed using toolboxes implemented in MATLAB 

(MathWorks, Natick, MA). 

For compositional analysis, all cases with cartilage lesions (modified Noyes ≥ 1) in 

any compartment, identified by morphological characterization, were not considered in 

order to focus on pre-structural abnormalities and early signs of biochemical change. 

Sagittal MAPSS images in all echoes were rigidly registered to the first TSL/TE = 0 of 

each case using VTK CISG registration toolkit [194]. Next, nonrigid registration to an atlas 

was then applied on all cases to morph the images to a common reference space. This 

was performed using elastix [195], a medical imaging registration toolbox based on 

maximizing mutual information between the fixed and moving images. The resulting 

nonrigid transformations between the atlas and each TSL/TE = 0 case was then applied 

to all other echoes/spin-lock images. As all images were morphed to the same coordinate 

space, T1ρ and T2 maps were calculated on a voxel-by-voxel basis using Levenberg-

Marquardt mono-exponential fitting. 

5.2.5 ROI-based Relaxometry 

Using a semiautomatic method based on edge-detection [196], cartilage of the atlas was 

segmented into 6 compartments: lateral femoral condyle (LFC), medial femoral condyle 

(MFC), patella (PAT), trochlea (TRO), lateral tibia (LT), and medial tibia (MT). The 

resulting masks were then applied to all morphed images. 
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A depth-dependent ROI analysis was performed to evaluate variation between 

cartilage layers. Each of the above-mentioned compartments were divided in half into a 

deep layer, closest to the subchondral bone, and a superficial layer, closest to the articular 

surface. 

5.2.6 Statistical Shape Modeling (SSM) 

Segmentation of femur, tibia, and patella bones were performed automatically using V-

Net [90], a fully convolutional neural network. Bones from 36 3D CUBE images were 

manually segmented for training, validation, and testing (26/6/4 split). Prior to training, all 

images were downsampled to 256×256×212 for computational efficiency. All training 

images were augmented with a random permutation of the following preprocessing 

techniques: additive gaussian noise, histogram matching, gaussian filter, and affine 

transformation. 

The V-Net architecture implemented 8 output channels in the first level, doubling 

at each of the subsequent 3 levels. One, 2, and 3 convolutions were performed at each 

level, respectively, and 3 additional convolutional layers were added to the bottom level 

of the network. Dropout was implemented at 5% as a regularization penalty. Dice 

coefficient was chosen as the loss function, with sigmoid activation applied, as well as the 

metric for evaluation. The model was trained for 24,000 iterations using a batch size of 1 

and resulted in Dice coefficients of 0.98 ± 0.01, 0.98 ± 0.01, and 0.96 ± 0.01 (mean ± SD) 

for the femur, tibia, and patella, respectively. The prediction algorithm was then applied 

to each case in the dataset. 

The resulting segmentations were used to produce 3D triangulated meshes of the 

femur, tibia, and patella bones using a Marching Cube algorithm [197]. Next, with the 
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bones in all cases being represented by clouds of points, each bone was non-rigidly 

registered using FOCUSR, as proposed by Lombaert, et al. [198], This method utilized 

spectral correspondence, which parametrizes vertex similarity using Laplacian eigen-

decomposition and then performs spectrum reordering via feature matching. The 

registered femurs, tibias, and patellas were described with 50537, 33210, and 8477 

vertices, respectively. 

Principal component analysis (PCA) was then performed to simplify the complexity 

of the surface data for interpretation. PCA transformed the vertex coordinates to 

orthonormal bases, where each principal component (PC) mode is uncorrelated and is 

ordered such that the first PC describes the direction of maximal bone shape variance 

and subsequent PCs are sorted in a descending manner. In consideration of the size of 

our dataset, 10 PC modes were sufficient to capture over 80% of variance in each bone 

while still maintaining physical interpretability of the surface models. 

5.2.7 Statistical Analysis 

Morphological statistical analysis used a chi-square test to assess the relationship of the 

prevalence of cartilage abnormalities between the two groups. 

In compositional analysis, summary statistics, including mean and standard 

deviation (SD), of T1ρ and T2 times were computed and compared between basketball 

players and swimmers. This was computed for individual voxels in VBR, and in each 

cartilage compartment and between cartilage layers in ROI-based analysis. Group 

differences were assessed using one-way analysis of covariance (ANCOVA). Gender, 

BMI, and site of acquisition were used as adjustment factors to control for confounding 
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effects. A significance threshold was set at p < 0.05 (SPSS version 26.0, IBM, Armonk, 

NY). 

Bone shape analysis involved evaluating PC values to determine if specific shapes 

were associated with the basketball or swim group. PCs that described shape differences 

related to the femur and tibial shafts were disregarded, due to variations in subject 

positioning during MRI acquisition and our specific interest in characterizing subchondral 

bone. An ANCOVA test, controlled for gender, BMI, and site of acquisition, determined 

statistical difference between groups. Physical representation of each mode was 

visualized in two ways: (1) average surface ± the displacement of each vertex by 

3 standard deviations (SD), and (2) the average surface with color mapping of the 

Euclidean norm at ±3 SDs. 

5.3 Results 

5.3.1 Morphological Evaluation 

The prevalence of cartilage abnormalities was significantly higher in the basketball group 

(χ2 = 6.658, p < 0.01), occurring in 24.6% of knees of basketball players and 6.3% of 

knees of swimmers (Table 5.2). By compartment, this increase was significant in the LFC 

(χ2 = 5.51, p < 0.05). 

5.3.2 ROI Analysis 

Sixteen of 65 basketball cases and 3 of 48 swim cases included one or more defects in 

any cartilage compartment and were removed from ROI- and subsequent VBR-based 

analysis to isolate differences in tissue composition. Mean T1ρ and T2 values of the 

compartmentalized results ranged from 34.3-46.3 ms and 25.0-32.9 ms, respectively. 
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Table 5.2 Counts of cartilage abnormalities 
  Basketball 

(65 knees) 
Swim 

(48 knees) χ p-value 

LFC Noyes 0 58 (89.2%) 48 (100%) 5.51 Significant 

 1 1 (1.5%) 0 (0%)  p < 0.05 

 2 6 (9.2%) 0 (0%)   

MFC Noyes 0 64 (98.5%) 47 (97.9%) 0.47 Insignificant 

 1 0 (0%) 1 (2.1%)  p = 0.83 

 2 1 (1.5%) 0 (0%)   

TRO Noyes 0 63 (96.9%) 48 (100%) 1.50 Insignificant 

 1 1 (1.5%) 0 (0%)  p = 0.22 

 2 1 (1.5%) 0 (0%)   

PAT Noyes 0 56 (86.2%) 46 (95.8%) 2.94 Insignificant 

 1 2 (3.1%) 0 (0%)  p = 0.09 

 2 6 (9.2%) 2 (4.2%)   

LT Noyes 0 63 (96.9%) 48 (100%) 1.50 Insignificant 

 1 0 (0%) 0 (0%)  p = 0.22 

 2 2 (3.1%) 0 (0%)   

MT Noyes 0 65 (100%) 48 (100%) -- -- 

 1 0 (0%) 0 (0%)   

 2 0 (0%) 0 (0%)   

Total Knees (Noyes  ≥ 1) 16 (24.6%) 3 (6.3%) 6.66 Significant 
p < 0.01 

 

The ROI-based results demonstrate significant group differences in the medial 

compartment (Figure 5.2). The basketball group had significantly prolonged T1ρ and T2 

values in the medial femoral condyle (T1ρ: 3.54% difference, p < 0.001, and T2: 3.63% 

difference, p < 0.001) and medial tibial (T1ρ: 5.28% difference, p < 0.001, and T2: 6.04% 

difference, p < 0.001) compartments, as well as prolonged T2 values in the lateral femoral  
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Figure 5.2 Results of the ROI-based method for analysis of group differences in (A) T1ρ 
and (B) T2 within cartilage compartments. Significant differences were found in the MFC 
and MT in both T1ρ and T2, and additionally in the LFC in T2. 

condyle compartment (T2: 1.72% difference, p < 0.05), though this lateral association was 

weaker. No significant differences were detected in the patellofemoral compartment (T1ρ: 

4.30% difference, p = 0.53, and T2: 0.17% difference, p = 0.43) using the ROI-based 

technique. 

Cartilage compartments were further partitioned into a deep and superficial layer 

to evaluate variations in cartilage depth. When comparing these laminar features in each 

compartment, T1ρ and T2 of the superficial layer was significantly prolonged (p < 0.001 in 

all cases). Group analysis, shown in , demonstrated similar results to those in Figure 5.2 

prior to partitioning, with statistically prolonged T1ρ in the deep layer of the LFC (2.36% 

difference, p < 0.001), both layers of the MFC (deep: 6.05% difference, p < 0.001; 

superficial: 6.84%, p < 0.001) and MT (4.78% difference, p < 0.05; superficial: 5.21% 

difference, p < 0.001) in basketball players. T2 was similarly prolonged in basketball 

players for most cartilage compartments: LFC (deep: 4.29% difference, p < 0.001; 

superficial: 1.76% difference, p < 0.05), MFC (deep: 6.64% difference, p < 0.001; 
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Figure 5.3 Depth-dependent group comparison of mean T1ρ and T2 relaxation times. In 
sub-compartments with statistical significance, basketball players demonstrate prolonged 
relaxation times except in the superficial layer of the patellar and trochlear cartilage. 

superficial: 7.94% difference, p < 0.001), PAT (deep: 4.09% difference, p < 0.05) and MT 

(deep: 3.97% difference, p < 0.05; superficial: 4.56% difference, p < 0.001). The only sub-

compartment where relaxation times of swimmers were higher than those of basketball 

players was the superficial layer of the patellar (T1ρ: 6.68% difference, p < 0.05; T2: 3.77% 

difference, p < 0.05), and trochlear cartilage (T2 deep: 1.52% difference, p < 0.05; T2 

superficial: 0.20% difference, p < 0.001). 
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5.3.3 VBR Analysis 

Interpretation of the mean T1ρ and T2 maps from VBR displayed prolongation near the 

trochlear groove and areas of shortening in the anterior and posterior regions of the tibio-

femoral articulation. 

Comparison of the two groups demonstrated significant differences by sport, with 

basketball players generally with longer T1ρ and T2 values, particularly in both femoral 

condyles (lateral: 12.63% average % difference, 42.7% significant voxels; medial: 3.48% 

average % difference, 29.2% significant voxels) (Figure 5.4). The voxels that depicted 

significant prolongation were heavily focused in the posterolateral and posteromedial 

femur. Diffuse elevation was also noted in the antero-cartilage. 

 

Figure 5.4 Representative examples of VBR group analysis. (a)-(b) Percentage 
difference map ( 𝑇𝑇

� ,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏−𝑇𝑇� ,𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠
𝑇𝑇�𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏+𝑇𝑇�𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠

2

), where 𝑇𝑇�  is mean relaxation time, and (c)-(d) the 

respective p-maps generated by VBR. Basketball players have significantly prolonged T1ρ 
values in the posterior medial and lateral femoral condyles and tibial plateau. Meanwhile, 
there are laminar differences in the deep and superficial layers of the patellofemoral joint. 
Basketball players present with prolonged T1ρ values in the deep layer and shorter T1ρ 
values in the superficial layer, as compared to swimmers. (e)-(h) T2 difference and p-
maps show similar differences between groups. 
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Voxel-based group analysis also revealed differences through the depth of the 

articular cartilage in the patellofemoral joint: basketball players had higher T1ρ and T2 

values in the deep layer of cartilage while swimmers had prolonged values in the 

superficial layer. This depth-dependent distribution was not obviously evident in other 

regions evaluated and is of notable interest due to the vital role of the patellofemoral joint 

in the translation of weight. 

5.3.4 Bone Shape Analysis 

The femur, tibia, and patella were each described in domains defined by 10 PC modes 

which maximize variation in shape. The amount of variability within the entire dataset, as 

represented by the PCs were 80.8%, 89.7%, and 82.5%, respectively. 

Among the 10 PCs of each bone, ANCOVA tests showed 3 total modes that were 

significantly different between groups (Figure 5.5): the 2nd and 7th modes of the tibia, and 

the 4th mode of the patella. Tibia mode 2 (p < 0.01, 22.0% of variance) describes size of 

the lateral plateau relative to the medial plateau, particularly in the anterolateral aspect. 

Tibia mode 7 (p < 0.05, 1.87% of variance) represents the relative heights of the 

intercondylar eminence. Patella mode 4 (p < 0.01, 4.24% of variance) is related to the 

curvature and convexity of the lateral articular facet. Variance in this mode also seemed 

be connected to patellar symmetry. As the lateral facet extended, in relation to the medial 

facet, it demonstrated increased convexity. 
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Figure 5.5 Bone shapes demonstrated significant group differences in the tibia and 
patella. In the first column, an average surface mesh is mapped in color by the Euclidean 
distance between the average surface mesh and +3 SD. Models of basketball players 
and swimmers are shown in the second and third columns, respectively, represented by 
mean vertices displaced by ±3 SD. (Top) Tibia mode 2 relates the size of lateral plateau, 
(middle) tibia mode 7 primarily describes to relative heights of intercondylar spines, and 
(bottom) patella mode 4 show symmetry and curvature of medial and lateral facets. 

5.4 Discussion 

This multicenter study used multiparametric MRI to extensively characterize the articular 

cartilage and bone shape of knees of basketball players (high knee-impact) and 

swimmers (no knee-impact). We demonstrated significant group differences using 

morphological evaluation, compositional evaluation through a traditional ROI-based and 
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a fully automatic VBR-based techniques, and statistical subchondral bone shape 

comparison in the femur, tibia, and patella. 

Imaging abnormalities in the articular cartilage of basketball players has been a 

heavily studied area [1], [165]–[168]. Frequent jumping, running, pivoting/cutting motions 

applies heavy mechanical load to the cartilage. The prevalence of morphological cartilage 

defects found in this study relates well to past findings in imaging studies of professional 

basketball players [166], [168]. Distribution of defects across the cartilage compartments 

was also consistent, with remarkably high pervasiveness of findings in the patellar 

cartilage, followed by the trochlear and femoral cartilage. 

MRI studies of knee cartilage composition in basketball players is much more 

limited. In this study, we identified and removed knees with morphological abnormalities 

from analysis to highlight key differences in biochemistry between groups. Classic ROI 

segmentation and analysis of T1ρ and T2 led to findings of significant group differences in 

the medial compartments. Recent in vivo experiments of compartmental strain of the tibia 

show increased strain on the medial side of the tibial plateau with increased normalized 

walking speed, but not for the lateral side [199]. Additionally, medial compartment OA is 

the most common form of OA [200], [201]. Our ROI-based analysis captured a pattern 

representative of this asymmetry; however, this method was not effective in finding local 

findings in other compartments. The traditional ROI-based analysis detected no 

differences between groups for patellar cartilage, despite previous research indicating 

prevalence of imaging findings in this compartment [166], [168]. 

Overall, the VBR analysis was more sensitive to local differences. The prevalence 

of significant T1ρ and T2 prolongation in the medial femur and medial tibia was consistent 
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with results found in ROI analysis and was characterized by a dominance of higher values 

in the posterior cartilage of the basketball group. Depth dependent differences were 

detected, as well. Basketball players demonstrated higher values in the superficial layer 

of the medial cartilages, as seen in both VBR and depth-dependent ROI results. However, 

an opposite pattern was displayed on the lateral side where diffuse patches of higher 

relaxation times are evident in the deep layer. The superficial layer of cartilage is 

composed primarily of type II and IX collagen, aligned parallel to the surface to protect 

the deep layer from shear stress, while the deep layer contains higher proteoglycan 

content and collagen aligned perpendicular to the surface to resist compressive 

forces [202]. The VBR results may suggest cartilage degeneration in areas of prolonged 

T1ρ and T2. We speculate, these differences could be attributed to the complexity of joint 

loading, and the differences in mechanical loading between the two sports: the basketball 

group experiences relatively more compressive loading on the lateral side, possibly from 

pivoting/cutting motions and high magnitude jump-landing. Similarly, the dichotomy of 

relaxation patterns in the patellar cartilage could possibly be due to its role in facilitating 

extension during jumping and squatting. Conversely, swimmers use high frequency, low 

magnitude flexion/extension movements, which may exert higher shearing and tensile 

forces on the superficial layer of the patella and trochlea. Clearly, further experiments are 

warranted in support of these mechanistic hypothesis. 

External loading is known to influence subchondral bone shape and thickness via 

bone remodeling [184], [185]. While our SSM results demonstrated no differences in 

femur shape, the significant modes of the tibia are especially relevant in controlling the 

biomechanics of the tibiofemoral joint. We found more symmetry between lateral and 
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medial plateaus in basketball players as compared to swimmers. Functionally, the lateral 

plateau is convex in shape and performs translational motion to the concave medial 

plateau. The anterolateral plateau, specifically, experiences tibial subluxation during knee 

flexion, indicating tibio-femoral internal rotation [203]. High degree of rotation due to 

pivoting/cutting in basketball may contribute to the symmetry seen in the lateral plateau 

shape. Similarly, tibia mode 7 shows higher prominence of the medial spine in basketball 

players. With its physical connection to the anterior cruciate ligament and its proximity to 

the medial meniscus, a vital tissue in shock absorption, the asymmetric heights could be 

explained by increased mechanical loading and subsequent bone remodeling. The size 

of the tibial plateau [204] and heights of the intercondylar eminence have been positively 

correlated with the prevalence of tibial osteophytes [205] and osteoarthritis [206]. 

Therefore, tibia shape may be an important consideration in identifying progression of 

knee kinematics, degeneration, and risk of injury in young athletes. 

In regard to patella shape, there was significant variation in the lateral facet 

between groups. The representative patella of basketball players was more symmetric 

with a concave lateral facet, whereas that of swimmers was elongated and convex. Using 

Wiberg shape classification [207], the patellar shape of basketball players can be 

categorized as type I, showing congruency and concavity on both facets of the patella. 

Meanwhile, the non-impact group shows similarity to type III, with a convex and posterior-

sloping medial facet much smaller than the lateral facet. It is unclear how this shape is 

associated with swimmers, as there may be hidden confounding factors that were not 

accounted for in this study. 
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In summary, we identified several characteristics associated with high-knee impact 

athletes, including prolonged T1ρ and T2 relaxation in cartilage compartments and local 

depth-dependent differences, as well as bone shape variations in the tibia and patella. 

This study had several limitations. First, morphological evaluation was performed by a 

single senior musculoskeletal radiologist. Second, the voxels generated with the 3D 

MAPSS sequence were large (0.6 mm × 1.2 mm × 4 mm) as compared to the cartilage 

thickness, a known intrinsic MRI limitation when balancing the factors of scan time, 

anatomic coverage, and voxel size. Even with the possible influence of partial volume 

artifacts, our results show significant statistical results sensitive to local distributions. This 

is particularly evident in the patella, where cartilage is thicker. Finally, the playing season 

training regimen of the basketball players and swimmers was not incorporated into the 

current analysis. Further evaluation of this dataset may incorporate the effects of position 

played, for basketball, or primary stroke, for swim. It is worthwhile to note that the findings 

of this study do not establish causation between play and T1ρ or T2 prolongation or bone 

shape. This cross-sectional study evaluates absolute quantitative measures at a single 

timepoint; future evaluations will incorporate the effect of one season of play and 

longitudinal changes in these populations to further establish our findings. The 

relationships described in the current study provide a comprehensive characterization of 

the knees of young athletes with considerably different loading patterns, derived from 

imaging alone. 
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Chapter 6  

Large-Scale Analysis of Meniscus 

Morphology as Risk Factor for Knee 

Osteoarthritis 

One of the major draws of DL-based pipelines is the ability to automatically process 

unprecedentedly large amounts of data with improved generalizability. We have seen a 

commensurate curation of big datasets in medical imaging. In the osteoarthritis field, the 

Osteoarthritis Initiative (OAI) [208] has been foundational in large-scale analyses, 

following 4,796 participants across 8 years of clinical and imaging visits. Researchers in 

our group have developed and validated several tissue segmentation models for MRIs in 

the OAI dataset. Please see their work: [209], [210], and [211]. These efforts have 

enabled surveys of morphological OA features on a scale unlike we have seen before. 

 In this chapter, we describe how to integrate DL segmentation and SSM to draw 

population-level conclusions about tissue geometry. More specifically, we utilize 
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computer vision tools to investigate the geometric shape of the meniscus in the knee joint 

and determine their relationship to future OA onset. However, as alluded to in Section 

2.1.2, knee OA is a whole joint disease. Thus, we leverage the cartilage and bone 

segmentations to spatially encode rates of change in cartilage thickness to find 

relationships between meniscus shapes and cartilage degeneration. 

The following material in this chapter is currently in press at Arthritis & 

Rheumatology. The reference is below: 

Gao KT, Xie E, Chen V, Iriondo C, Calivá F, Souza RB, Majumdar S, Pedoia V. Large-

scale Analysis of Meniscus Morphology as Risk Factor for Knee Osteoarthritis. 

Accepted by Arthritis Rheum. 2023. 

6.1 Introduction 

One of the leading causes of global disability [212], knee osteoarthritis (OA) is a whole 

joint disease with complex, multifactorial pathophysiology [45]. The growing recognition 

of interactions between structural tissues of the knee joint have pushed the research 

community to categorize distinct OA phenotypes using biochemical and imaging findings 

[213]. Traditionally, articular cartilage degeneration and changes in subchondral bone 

have been established as the foremost biomarkers of disease; however, the meniscus 

has garnered attention for its integral role in dispersion of load to the articular cartilage 

and overall mechanical stability of the joint [214], [215]. Damage to the meniscus, 

particularly tears and tibial extrusion, are strongly associated with knee pain, cartilage 

loss, and OA progression [216]–[221]. Several widely disseminated semiquantitative 
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imaging scoring systems have acknowledged meniscal injury as one of the main 

structural phenotypes in the standardized assessment of knee OA [61], [62], [222]. 

While links between meniscus injury and knee OA are well established, the 

characterization of the geometric shape of the meniscus and its relationship with knee 

OA remains a challenging area of research. Past efforts identify and manually measure 

meniscal shape features hypothesized to be associated with OA risk factors. Wirth, et al. 

[223], segmented the meniscus from 31 proton density-weighted magnetic resonance 

images (MRIs) of knees with and without radiographic OA and found that knees with OA 

had greater meniscus volume, surface area, thickness, and increased extrusion. 

Kawahara, et al. [224], similarly extracted measurements from menisci of 51 subjects 

using manual segmentation of T1ρ-weighted MRI. Knees in the severe OA group were 

characterized with larger longitudinal diameter and posterior wedge angle and smaller 

posterior wedge width of the medial meniscus. Recently, Wenger, et al. [225], discovered 

that both the medial and lateral menisci of OA knees bulged at the periphery and were 

more extruded, and additionally, the lateral menisci were larger in volume. Exploration of 

meniscus geometry has uncovered aspects of the relationship between coverage, 

disruption of cartilage, and OA but may be insensitive to nuanced shape features beyond 

the engineered constructs specified in the abovementioned studies. Moreover, due to the 

complexity of meniscus morphologies, there is a need to evaluate shape on a larger scale. 

The recent surge of deep learning-based segmentation techniques has impacted 

various areas of imaging-derived morphological analyses, including those of knee OA. 

The U-Net [85] and other convolutional neural network models have been shown to 

delineate cartilage, bone, meniscus, and other soft tissues with high reproducibility, 
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equivalent to or surpassing human inter-operator variability [226]–[232]. Specialized 

techniques have pushed the performance of knee joint segmentation models, including 

anatomical shape-assisted model training [226], self-attention mechanisms [227], and 

adversarial learning schemes [229]. Irrespective of the underlying components, deep 

learning-based models have quickly become pervasive for their ability to automatically 

output high-quality segmentation of complex structures. 

The capacity to expeditiously extract and analyze tissue morphology with deep 

learning has enabled advancements in large-scale shape analysis. Benefitting greatly 

from increased sample sizes, statistical shape modeling (SSM) is a technique that 

parameterizes and compactly describes population-level geometric features [233]. The 

methodology, grounded in computer vision, commonly begins by algorithmically matching 

anatomical landmarks between subjects. By forming this inter-subject correspondence, 

the geometric variations within a population can be quantified and then condensed into a 

hierarchy of major modes of deviation from the average shape. A key advantage to SSM 

is the aspect of statistical parameterization, which allows for the identification and 

reconstruction of tissue geometries representative of subpopulations. Several shape 

models have been developed for the knee joint to describe variations in bone shape such 

as intercondylar narrowing in subjects with acute anterior cruciate ligament injuries [189], 

prominence of the medial tibial spine in athletes with high-knee impact [234], and classical 

structural signs of disease progression in OA patients [190], [235], [236]. Notably, Bowes, 

et al. [236], established a quantitative SSM measure of bone shape to reflect OA status, 

a step towards the development of personalized shape metrics. While limited by small 

sample sizes, pilot shape models have been developed for the meniscus as well [237], 
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[238], typically utilizing manual or semiautomatic techniques. Automated shape extraction 

and data-driven analysis powered by expanded sample sizes capable of capturing natural 

shape variability would greatly benefit the discovery of the relationships between meniscal 

morphology and OA onset or progression. 

In this study, we leveraged deep learning-based segmentation of multiple tissues 

in the knee joint to perform shape analysis of the meniscus. We constructed an SSM of 

the meniscus with the following aims: (1) to identify meniscus shapes associated with 

future onset of OA, and (2) to localize future changes in cartilage thickness with respect 

to at-risk meniscus shapes. This automated methodology was scaled for evaluation of the 

Osteoarthritis Initiative (OAI), a multicenter, prospective, observational imaging dataset 

sponsored by the National Institutes of Health. 

6.2 Materials and Methods 

This analysis utilized baseline MRI acquisitions from the OAI dataset to generate a 

statistical model of meniscus shape. Shape features associated with future development 

of OA were identified via group analysis between a healthy Control group and an OA 

Incidence group. Each baseline meniscus shape was subsequently evaluated with 

longitudinal cartilage thickness changes. The study design overview is outlined in Figure 

6.1. 

6.2.1 Dataset 

Imaging data was obtained from the 4,796 participants with, or at risk for, symptomatic 

femoral-tibial knee OA enrolled in the OAI study. Knee radiographs and MRIs (Siemens  
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Figure 6.1 Meniscus shape study design. This analysis of meniscus shape utilized 4,790 
DESS-we MRI acquisitions from the OAI dataset. A statistical shape model was 
generated for the meniscus and shape scores between the Control and OA Incidence 
groups identified features associated with future OA onset. These features were then 
assessed with localized cartilage thickness changes to investigate the link between 
meniscus shapes and future cartilage degeneration. 

Trio 3.0 Tesla) were acquired annually at baseline to 48-month visits, and every two years 

between 48-month and 96-month visits [239], [240]. 

Kellgren-Lawrence (KL) grades of OA severity were performed centrally using 

bilateral PA fixed flexion knee radiographs to describe cases with osteoarthritic signs of 

cartilage and bone such as joint space narrowing and osteophytes. Meanwhile, MRIs 

were graded with the MRI Osteoarthritis Knee Score (MOAKS) system by the Boston 

Imaging Core Lab, encapsulating morphological and signal abnormalities of the cartilage, 

bone, meniscus, ligaments, and tendons. 
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Table 6.1 Demographic information of OAI participants and study subsets 

Dataset Number of 
Participants 

Number 
of Knees 

Gender 
(M/F) 

Age 
(years) 

Height 
(m) 

Weight 
(kg) 

BMI 
(kg/m2) 

Total 4,790 9,418 1,991 / 
2,799 

61.2 
(±9.2) 

1.68 
(±0.097) 

81.3 
(±16.4) 

28.6 
(±4.8) 

Normal at 
Baseline 3,105 5,017 1,360 / 

1,745 
60.3 

(±9.2) 
1.69 

(±0.096) 
79.2 

(±15.9) 
27.8 

(±4.5) 

Control 2,778 4,434 1,242 / 
1,536 

60.2 
(±9.2) 

1.69 
(±0.096) 

78.7 
(±15.9) 

27.6 
(±4.5) 

OA 
Incidence 528 575 178 / 350 60.4 

(±8.7) 
1.67 

(±0.097) 
81.7 

(±15.7) 
29.1 

(±4.6) 
Cartilage 
Thickness 
Subset 

1,036 1,419 455 / 581 59.1 
(±8.6) 

1.69 
(±0.094) 

78.5 
(±15.7) 

27.4 
(±4.3) 

*Continuous variables are described by the mean and standard deviation. 

 

9,418 knee MRIs at the baseline timepoint from 4,790 participants were used to 

build the meniscus shape model. Six participants were excluded due to unavailable 

imaging. Statistical analysis considered 5,009 knees from 3,103 participants with no OA 

(KL grade ≤ 1) at baseline. In the longitudinal cartilage thickness analysis, 1,419 knees 

from the 1,036 participants with complete MRIs at all seven timepoints were included. 

Demographic data of all participants and the abovementioned subsets can be found in 

Table 6.1. 

6.2.2 Image Processing 

The summary of the technical methodology is illustrated in Figure 6.2. 

Tissue Segmentation 

With high spatial resolution and excellent delineation of the cartilage-bone and cartilage-

meniscus interfaces [240], sagittal 3D dual-echo steady-state images with selective water 

excitation (DESS-we) were automatically segmented to extract tissue morphology. This  
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Figure 6.2 Schema of technical methodology. Menisci, bone, and cartilage are 
segmented from DESS-we MRI. The menisci are transformed into surface meshes and 
registered to the menisci of a selected atlas, aligning all cases to a common coordinate 
system. Using PCA, geometric shape features of the meniscus can be extracted from the 
registered surface meshes. Meanwhile, segmentations of the femur and tibia are similarly 
characterized. Points on the subchondral bone are further encoded by cartilage thickness 
and average velocity values. 

was performed using neural network-based models that have been trained and validated 

for the OAI in previous efforts [209], [210]. Performance of these models were measured 

using mean (standard deviation [SD]) Dice coefficients to describe average overlap 

between human-annotated and model-predicted segmentations: meniscus = 0.874 

(±0.024), femur = 0.972 (±0.011), tibia = 0.973 (±0.013), femoral cartilage = 0.890 

(±0.023), and tibial cartilage = 0.880 (±0.036). 

Automatic Landmark Correspondence 

Next, the segmentation masks of the meniscus and bones were transformed to triangular 

meshes using the Marching Cubes algorithm [197]. This effectively reduced the 

complexity of tissue morphology to its surface topology. 

A healthy knee within the dataset was chosen to serve as an atlas. The criteria for 

atlas selection were as follows: (1) KL grade = 0, (2) no meniscal abnormalities by 



101 

MOAKS, (3) no imaging abnormalities, and (4) minimal deviation from mean age and BMI 

of the dataset. After flipping knees of opposite laterality (i.e., right versus left) to match 

the atlas, all surface meshes were then algorithmically aligned. For the menisci, this 

included scaling to the size of the atlas menisci, rigid alignment using Iterative Closest 

Point, and re-scaling to the original size. Due to the prominence of anatomical bony 

features, the femur and tibia were instead independently aligned using a landmark 

matching algorithm [198]. With the atlas-matched correspondence, geometric features of 

the surface topology could be compared in the downstream statistical analysis. 

Statistical Shape Modeling of the Meniscus 

Principal component analysis (PCA) of the matched meniscal meshes served to reduce 

the dimensionality of the feature-spaces from nm and nl to k, where nm and nl are the 

numbers of x, y, and z coordinates of the vertices in the medial and lateral menisci surface 

meshes, and k is a designated number of representative shape features, known as modes 

of variation [189]. To highlight shapes as risk factors for OA, only meshes of baseline 

visits were considered to build the initial nm- and nl-dimensional spaces. Each mode was 

then assessed by simulating variation around the mean shape to assign a morphological 

description to the quantitative variance. 

Localization of Cartilage Thickness Trajectories 

Cartilage thickness values were encoded to the subchondral surfaces of the bone mesh. 

Thicknesses were derived using a Euclidean distance transform of the binary cartilage 

segmentation mask on a slice-wise basis. The distance maps were skeletonized along 

the long axis of each cartilage and encoded to the nearest vertex of the surface mesh. 
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Longitudinal changes in cartilage thickness, i.e., thickness velocities, were 

computed for participants with complete MRI across the seven timepoints (baseline to 8 

years). Velocities at each vertex of the cartilage skeletons were independently computed 

as the first-order derivatives of the observed thicknesses and averaged to estimate future 

localized thinning or thickening from baseline. 

6.2.3 Statistical Analysis 

To determine meniscus shape features associated with future OA incidence, two groups 

were established: (a) Control: knees with KL grade of 0 or 1 throughout participation in 

the OAI, and (b) OA Incidence: knees with KL grade of 0 or 1 at baseline and subsequent 

incidence of radiographic OA (KL grade ≥ 2) within 8 years. Group analysis was 

performed using one-way analysis of covariance and least-squares mean, controlling for 

age, sex, race, and body mass index (BMI). Statistical significance was established as 

𝑝𝑝 < 0.05
𝑘𝑘

 to correct for independent comparisons of each mode. 

It is plausible that meniscal damage, such as tears and extrusion, are linked with 

meniscal shapes identified as OA risk factors. To investigate this assumption, knees in 

the Control and OA Incidence groups with complete MOAKS grading for meniscal anterior, 

body, and posterior tears, posterior root tear, and anterior extrusion were fitted in a 

multiple linear regression using at-risk meniscal shapes, the aforementioned MOAKS 

grades, and demographics (age, sex, race, and BMI) as predictors for OA incidence. 

Additional analysis was performed to establish cross-sectional patterns in 

meniscus shapes with relevant demographic subpopulations. One-way analysis of 

covariance was used to evaluate differences in gender, while Pearson correlation 
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assessed associations with age, height, weight, and BMI. Demographic values were 

extracted from the baseline visit. 

Furthermore, the prognostic capacity of meniscus shapes and their relationship to 

future development of common imaging abnormalities were assessed. These included 

tears of the anterior horn, meniscal body, posterior horn, posterior root, and anterior 

cruciate ligament (ACL), as well as extrusion from the tibial plateau. Similar to the 

evaluation of OA incidence, subgroups were delineated as subjects that remained healthy 

and those that developed meniscal injuries within four years, as determined by MOAKS 

grading. Damage to the posterior cruciate ligament was not considered due to insufficient 

number of grades. 

To establish relationships between meniscus shape and future cartilage thickness 

trajectory, knees were repartitioned by PC score to either Control-Associated Quartiles or 

OA Incidence-Associated Quartiles for each statistically significant mode. Group analysis 

was similarly performed to compare average velocity between quartiles. 

6.3 Results 

6.3.1 Statistical Shape Modeling of the Meniscus 

The primary ten modes of each meniscus are described in Figure 6.3 and capture 90.17% 

and 87.71% of the total variance in the medial and lateral meniscus, respectively. More 

information regarding the compactness and cumulative geometric variance retained by 

these models can be found in Figure 6.4. 
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Figure 6.3 Modes of meniscus shape produced by PCA eigendecomposition of the 
geometric feature covariance. The visualization depicts the renderings of the average 
surface with color overlay of the Euclidean norm at ±3 standard deviations (SD). Modes 
are ordered by amount of variance captured by projection to each principal component. 
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Demographic Analysis of Meniscus Shape 

The association matrix, in Figure 6.5A, demonstrates cross-sectional relationships 

between meniscus shapes and demographics. Gender was the most prevalent category, 

with group differences between male and female in 17 of the observed 20 modes. The 

first mode, meniscal volume, was associated with all studied variables. Notably, shapes 

of the lateral meniscus were found to be more closely related to demographics than those 

of the medial meniscus. 

Shape-Associated Development of Meniscal Damage 

Figure 6.5B describes associations of meniscus shapes with future incidence of 

morphological damage. In the medial meniscus, posterior root tears and medial-side 

extrusion were the most predictable from shape information, with statistical dependence 

found in 8 and 7 out of 10 modes, respectively. Other relationships with meniscal tears, 

ACL tears, and anterior-side extrusion were less extensive. Patterns in the lateral 

meniscus were, again, more prevalent than in the medial meniscus. Mode 1, volume, was 

found to be associated with almost all forms of future damage. 

Figure 6.4 Cumulative percent variance 
captured by increasing number of PCs. 
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Figure 6.5 (A) Demographic analysis of meniscus shapes. Statistical significance (p < 
0.005) was determined with ANCOVA for gender, and Pearson correlation for age, height, 
weight, and BMI. In the correlation analysis, the cell colors map to the R-value. (B) 
Prognostic analysis of meniscus shapes with presence of morphological imaging findings. 
Heatmap colors represent significant differences between menisci that develop damage 
within four years and those that remain normal, while grey cells depict non-statistical 
significance. 

Meniscus Shapes as Risk Factor for Future OA 

The Control group consisted of 2,778 subjects (1,536 female, age = 60.2 ± 9.2, BMI = 

27.6 ± 4.5 kg/m2) while the OA Incidence group contained 528 subjects (350 female, age 

= 60.4 ± 8.7, BMI = 29.1 ± 4.6 kg/m2). Four of ten modes that describe medial meniscus 

shape and three of ten modes that describe lateral meniscus shape were significantly 

different between the Control and OA Incidence groups (Figure 6.6). Features of the 

medial meniscus that characterized the OA Incidence group were described as wider 

transverse diameter (mode 2m: p < 0.001; % variance = 5.05%), longer anterior root 

accompanied by shorter posterior root (mode 5m: p < 0.001; % variance = 1.45%), flaring 

of the outer wall (mode 7m: p < 0.001; % variance = 0.87%), and increased concavity of 

the posterior horn and inward angling of the posterior root (mode 8m: p < 0.001; %  
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variance = 0.70%). While for the lateral meniscus, we observed the following in the OA 

Incidence group: larger transverse length-width ratio (mode 2l: p < 0.001; % variance = 

14.60%), inward angling (mode 3l: p < 0.001; % variance = 8.60%) and increased length 

of the anterior horn (mode 5l: p < 0.001; % variance = 1.31%). 

Further investigation of the abovementioned shapes in conjunction with MOAKS 

grading of meniscal damage is detailed in Table 6.2. 703 participants from the Control 

group and 372 participants from the OA Incidence group were previously graded for 

MOAKS scoring of meniscal anterior, body, and posterior tears, posterior root tear, and 

anterior extrusion and included in this analysis. The effect size of each variable is 

described by the regression slope coefficient. To give physical meaning to the shape 

variable coefficients, the slopes are scaled by one SD, i.e. one-third of the deviation 

illustrated in Figure 6.6. In the medial meniscus, the addition of meniscal damage to the 

Figure 6.6 Statistically 
generated (A) medial and (B) 
lateral menisci representative 

of the Control and OA 
Incidence groups. The 

modes depicted, four in the 
medial side and three in the 

lateral side, were determined 
to be precursors to OA 

incidence. Arrows depict the 
qualitative shape 

interpretation that describe 
the OA Incidence group. 
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regression did not change the statistical relationship of the shape variables. The 

coefficients of all four modes increased, indicating higher response to OA incidence after 

adjusting for tears and extrusion. Of the MOAKS variables, posterior tears and anterior 

extrusion were expectedly statistically associated with OA incidence. The effect size of 

 

Table 6.2 Comparison of effect size of meniscal shapes with OA incidence 

Independent Variable 
Regression Slope Coefficientc 

Shape Only Shape and Damage 

Medial Meniscus Shape   

Mode 2m 0.0148* 0.0385* 

Mode 5m 0.0182** 0.0351* 

Mode 7m 0.0259** 0.0382* 

Mode 8m 0.0186** 0.0452* 

Medial Meniscus Damage   

Anterior Tear -- -0.0297 

Body Tear -- -0.0914 

Posterior Tear -- 0.133* 

Posterior Root Tear -- -0.017 

Anterior Extrusion -- 0.0985* 

Lateral Meniscus Shape   

Mode 2l -0.00287* 0.00389 

Mode 3l 0.0449* 0.0368* 

Mode 5l 0.0299* 0.0267 

Lateral Meniscus Damage   

Anterior Tear -- 0.153 

Body Tear -- -0.0724 

Posterior Tear -- -0.0063 

Posterior Root Tear -- -0.353 

Anterior Extrusion -- 0.182* 
*: 

**: 
c:  

p < 0.05 
p < 0.001 
Shape coefficients are scaled by one standard deviation 
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these forms of damage are equal to approximately 3 SD of the shape variables. In the 

lateral meniscus, anterior extrusions were associated with OA incidence, accounting for 

five times the average response of mode 3l. Modes 2l and 5l were no longer statistically 

significant with the inclusion of meniscal damage variables. 

6.3.2 Meniscus Shape-Associated Cartilage Thickness Trajectories 

In the femur, knees of both the Control and OA Incidence groups were observed with 

overall cartilage thinning when spatially averaged: mean (SD) rate of −0.0026 (±0.0038) 

mm/year and −0.0035 (±0.0057) mm/year, respectively. 54.1% (±10.0%) of the cartilage 

surfaces in the Control velocity maps demonstrated thinning, as compared to 53.0% 

(±12.4%) of the surfaces in the OA Incidence maps. Similar patterns were seen in the 

tibial cartilage trajectories. Average velocities were −0.0044 (±0.0057) mm/year and 

−0.0067 (±0.0073) mm/year with thinning in 62.2% (12.0%) and 64.8% (12.3%) of the 

surfaces in the Control and OA Incidence groups, respectively. 

Localized associations between meniscus shape and cartilage trajectory are 

shown in Figure 6.7. In all but one assessment (mode 8m), the velocity differences were 

predominantly negative, implying lower overall velocities (i.e., more rapid thinning or less 

rapid thickening) in the statistically significant regions of the OA Incidence-Associated 

Quartiles relative to those in the Control-Associated Quartiles. In general, regions of 

statistical difference in the femoral cartilage were more focal, whereas differences in the 

tibial cartilage were sparse and generally located around the cartilage periphery. 
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Figure 6.7 Cartilage thickness changes within the femoral and tibial compartments in 
relation to (A) medial and (B) lateral meniscus shapes. The significant focal cartilage 
thinning of the medial condyle in modes 2m and 7m may be attributed to decreased 
meniscal coverage. In mode 5m, the increased length of the meniscal anterior horn may 
contribute to the thinning pattern in the opposite posterolateral tibia. The femoral velocity 
map of mode 8m is the only studied feature in which the majority of significant points 
demonstrated decreased rates of cartilage thinning in the Incidence group. Mode 2l, 
depicts a medial-lateral imbalance in the anterior aspect of the femoral cartilage. Mode 3l, 
the inward angling of the meniscal anterior horn, may contribute to the significant thinning 
of femoral cartilage in the same area. Conversely, the increased length of the anterior 
horn in mode 5l is associated with cartilage thickening in the lateral femoral cartilage and 
thinning in the lateral tibial compartment. 
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6.4 Discussion 

In this study, we investigated the association of meniscus shape with future incidence of 

OA. Deep learning has enabled large-scale multi-tissue morphological evaluations. 

Combined with statistical shape modeling, an exploratory technique for parameterizing 

population-level shape features, human supervised feature engineering is no longer 

necessary to discover geometric characteristics of this nuanced tissue in relation to OA. 

The characterization of meniscal geometry has been historically studied in the 

context of meniscus transplant. Several efforts have investigated non-invasive techniques 

for the optimization of meniscal replacement matching [241], [242], such as using 

demographic information as predictors for meniscus size. Modes 1m and 1l in this study, 

representative of meniscal volume, were found to have strong relationships with gender, 

age, height, weight, and BMI, relating well to past work [223], [225]. Our results describe 

gender as the most predictive of these demographics, which is consistent with a 

multivariate regression model developed by Van Thiel, et al. [241], that utilized similar 

variables in allograft sizing. Aside from gender, other basic demographics were 

statistically correlated to several shape features; however, the strengths of correlation 

were relatively weak with the exceptions of height and weight to meniscus size. 

Notwithstanding, these results serve as a preliminary benchmark for future analyses of 

meniscus shape stratification in demographic subpopulations. 

Overall, the SSM produced anatomically consistent shape constructs. For example, 

structurally, the medial meniscus has more peripheral fixation, is less mobile than the 

lateral meniscus [243], and often moves as a single unit [244]. This is appreciable in that 

variations in the medial modes were generally radial and engages multiple sections of the 
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tissue, whereas those of the lateral meniscus were primarily found in the horns. Moreover, 

the medial posterior horn is the most anchored section of both menisci, and the most 

susceptible to damage [238]. In our results, shape variations in this area involved 

differences in thickness or cross-section, as opposed to length or position more 

commonly seen in the anterior or lateral horns. In relation to OA incidence, the shapes 

identified in this study are compatible with and expand upon past literature [223]–[225]. 

Features such as larger posterior wedge angle, smaller medial posterior wedge width 

[224], and bulging of the periphery found in OA populations [225], are related to modes 

identified here as OA precursors (modes 7m and 8m). However, these relationships should 

be evaluated with consideration to interactions between shape and tissue damage or 

injury. The multivariate sub-analysis with shape and MOAKS grading in Table 6.2 found 

consistent associations with OA incidence in the medial meniscus, but two of three 

relationships of the lateral meniscus were no longer statistically significant, suggesting 

tears and extrusions playing confounding roles. It is important to note that further 

longitudinal analysis using this framework can help identify how meniscus shape 

progresses over time, both in the presence and absence of OA. 

A key strength of this approach is the joint assessment of meniscal shape with 

future cartilage thickness changes to reveal localized patterns of knee joint degeneration. 

The seven shapes identified as OA risk factors each presented with unique cartilage 

trajectories. Group differences in the femoral compartments were more prevalent than 

those in the tibia, likely due to the complexity of meniscal shape being primarily in the 

concave meniscal-femoral interface as opposed to the flat, fixated meniscal-tibial surface. 
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Differences in cartilage thickness changes due to medial meniscus shapes were 

more prevalent than lateral meniscus shapes. Modes 2m and 7m both presented with large, 

central regions of increased rates of thinning in the medial femoral condyle of the OA 

Incidence-Associated Quartile, despite describing distinct shape features (wider 

transverse diameter and flaring of outer wall, respectively). Considering that both modes 

were also identified as predictors of extrusion, we suspect that these modes are linked to 

decreased central coverage in the medial compartment and progressive cartilage 

degeneration. Differences in mode 5m were more divergent, with moderately increased 

rates of thinning in the medial compartment and dramatically increased rates in the 

opposite lateral trochlea. Similarly, we observed increased thinning near the medial tibial 

eminence accompanied by decreased thinning in the anterolateral plateau. The meniscal 

shape, interpreted as an elongation of the anterior horn and perhaps influenced by the 

presence or prominence of the transverse ligament, may suggest rotational imbalance 

that causes pressure points along the medial wall of the intercondylar notch and lateral 

trochlea. Lastly, mode 8m also presented with focal differences in the lateral trochlea, yet 

the cartilage of the OA Incidence-Associated Quartile thinned at a slower rate than the 

Control-Associated Quartile. This mode may be more closely related to non-cartilage 

subtypes or OA of the patellofemoral joint. 

Relative to medial meniscus shape-related cartilage trajectories, those associated 

with lateral meniscus shapes were sparser. Regions of significant differences were 

located on both medial and lateral sides in the femoral, trochlear, and tibial compartments. 

Notably, medial regions tend to describe increased rates of thinning in the OA Incidence-

Associated Quartile whereas lateral regions presented with decreased rates. This 
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suggests that lateral meniscus shape may play a secondary role in this population with 

predominantly medial compartment OA. 

An advantage of this approach is that it is quantitative and automated, however 

this also introduces some limitations. While this methodology is capable of evaluating 

meniscus, cartilage, and bone collectively, it lacks true localization of the overall joint 

structure. Secondly, discoid meniscus, an abnormal and congenital development 

involving morphological and structural deformations, was not evaluated in our study due 

to low and varied incidence rates ranging from 0.06-17% [245]. It is evident from the 

cartilage analysis that the trochlea, and possibly the patellar cartilage, are impacted by 

meniscus shape. In this work, we constrained our scope to tibiofemoral OA, yet it would 

be informative to evaluate patellofemoral OA in future studies. 

In summary, this data-driven method presented a general foundation of common 

variations of meniscus geometry, broadened the description of meniscus characteristics 

that are associated with the onset of OA, and also discovered novel shape features that 

have yet to be investigated in the context of OA risk. Furthermore, localized longitudinal 

changes in cartilage thickness were associated with each meniscus shape, contributing 

additional granularity to prognosis of cartilage degeneration. This work describes a 

quantitative approach toward integrating meniscus morphology into the assessment of 

knee OA as a whole joint disease. 
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Chapter 7  

Summary and Future Directions 

There has been rapid advancement in the application of DL techniques in medical 

imaging. When joined with recent growth in the rate of data collection and the explosion 

in the capacity of computing power, there is immense potential for computer vision to 

push the boundaries of our knowledge of disease. 

MSK imaging, in particular, is an apt candidate for these applications. We 

demonstrated the utility of fully convolutional encoder-decoders for tissue segmentation 

in lumbar spine MRI. Through our experimental process, we present guidelines for 

adapting techniques proven useful in natural images to clinical MRI, overcoming 

challenges such as variations in acquisition protocols, highly anisotropic voxels, and small 

sample sizes. We employed these models in subject-specific biomechanical models, 

showing that machine-derived segmentations were highly correlated with those 

generated with human segmentations. 
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DL-based tissue segmentation served as the foundation of this dissertation. Upon 

it, we constructed pipelines for anomaly detection, geometric analysis, and explored 

clinical applications. 

 In the Modic mapping tool, we presented the use of segmentation for lesion 

detection. This tool was designed for clinical utility, producing intermediate results at 

multiple stages for human interpretation. Though not intended for use as a standalone 

diagnostic tool, we found that the introduction of Modic maps as computer-generated aid 

was beneficial for improving agreement between radiologists-in-training and attendings. 

Notably, this technique promoted heterogeneous assessment of MCs. Capturing tissue 

features during the transitional phase is challenging for the human eye. We hope that the 

granular nature of the voxel-wise mapping will encourage more attention to mixed-type 

MCs and their relationship to pain. 

 Beyond clinical imaging, tissue segmentation has increased our capacity to assess 

advanced imaging techniques. Imaging sequences like compositional MRI and high-

resolution Cube would traditionally have high labor costs for analysis. With the application 

of DL segmentation, multiple tissues spanning hundreds of slices and numerous TSL/TE 

acquisitions in a single MR exam can be expeditiously delineated. Through automation 

of tissue extraction, we are able to efficiently perform multiparametric analysis, leveraging 

information from an assortment of MR sequences. In our study of knee morphology in 

young athletes, we determined that basketball players had elevated T1ρ and T2 in the 

posteromedial and posterolateral femoral cartilage and deep layer of patellar cartilage 

with decreased values in the superficial layer of patellar cartilage. These patterns were 

not detected in the classical ROI-based analysis, demonstrating the utility of the spatially 
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sensitive analysis of VBR. Furthermore, we found three bone shape variations between 

basketball players with high-knee impact and swimmers with low knee-impact. These 

relationships characterized the knees of young athletes with imaging alone and provide 

compelling direction in terms of understanding how to minimize degenerative changes 

while keeping these young athletes at the top of their game. 

 In the final chapter of this work, we applied the earlier techniques in a population-

level effort to characterize meniscus shape. Leveraging DL techniques and experimental 

design, tissues were segmented from 4,790 subjects of the OAI dataset. Adopting 

statistical shape modeling used for bone shape analysis, a meniscus shape model was 

built, forming a data-driven PCA-space of general variations in meniscal geometry. Our 

statistical analysis found seven meniscal shapes that were more prevalent in populations 

that eventually developed knee OA. The key distinction to this methodology is the 

incorporation of cartilage and bone geometry. We investigated the relationship between 

meniscus shape and longitudinal changes in cartilage by encoding the trajectory of 

cartilage thickness to points on the subchondral bone. Knee OA is a whole joint disease, 

and this work contributes a quantitative approach to the prognosis of cartilage 

degeneration in relation to its neighboring tissues. 

 Returning to the primary objective of improving outcomes of LBP and knee OA, 

there are two paths of future research that I hope would unfold from these works. 

 In the clinical application of LBP, the models we developed were intended for use 

in the BACPAC consortium (https://heal.nih.gov/research/clinical-research/back-pain), a 

large, multicenter effort to develop a state-of-the-art model for cLBP. Though we have 

demonstrated excellent model performance using images from our institution, we have 

https://heal.nih.gov/research/clinical-research/back-pain
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yet to perform validation with images from other BACPAC sites. Despite efforts to 

harmonize imaging protocols across the consortium, we expect domain shifts with 

external data. Further model fine-tuning may be necessary to improve generalizability. 

Self supervised learning may be a fitting contender for this purpose. RadImageNet [246] 

is a medical imaging dataset containing 1.35 million MRI, computed tomography, and 

ultrasound images. Without the need for annotation, pretraining with self supervised 

techniques may induce more robust learning and model convergence at more 

generalizable local minima. 

 With respect to knee OA, there is exciting work currently being pursued to 

holistically characterize the knee joint from a single MRI exam. In this effort, we generated 

a 100-dimensional PC space, composed of various OA biomarkers that were discussed 

in this dissertation, spanning from tissue geometry to cartilage compositional mapping. 

Validated on the OAI dataset, this multiparametric characterization of the knee will allow 

for large-scale analyses of the relationships between tissue composition, morphology, 

and OA. 

 In summary, computer vision and deep learning have enabled tissue morphology 

to be assessed in a quantitative and exploratory manner. Feature extraction no longer 

requires human engineering but can rather be performed through data-driven pattern 

recognition. Through the methods presented here, we developed robust models and 

assessed the interaction between various tissues of interest, bringing us closer to 

evaluating these heterogeneous diseases with a multifaceted lens. 
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