
UCSF
UC San Francisco Electronic Theses and Dissertations

Title
Developing Artificial Intelligence Tools for Biologists

Permalink
https://escholarship.org/uc/item/2768w8wt

Author
Shub, Laura

Publication Date
2024
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2768w8wt
https://escholarship.org
http://www.cdlib.org/


 

 

 
 
 
by 
 
 
 
 
Submitted in partial satisfaction of the requirements for degree of 
 
 
in 
 
 
 
in the 
 
GRADUATE DIVISION 
of the 
UNIVERSITY OF CALIFORNIA, SAN FRANCISCO 
 
 
 
 
 
 
 
 
 
 
 
 
Approved: 
 
______________________________________________________________________________ 

       Chair 
 
 

______________________________________________________________________________ 

______________________________________________________________________________ 

______________________________________________________________________________ 

______________________________________________________________________________ 
Committee Members 

DISSERTATION

Laura Shub

Biological and Medical Informatics

DOCTOR OF PHILOSOPHY

Developing Artificial Intelligence Tools for Biologists

Michael Keiser

brian shoichet

William DeGrado



 ii 

Copyright 2024 

by  

Laura Shub 

 

  



 iii 

 

For Mom, Dad, Allie, and Neko. 

  



 iv 

ACKNOWLEDGEMENTS 

As cliche as it may be, we do indeed stand on the shoulders of giants, and exist in the context of 

all that came before us. This work would not have been possible without the support of so many 

incredible people at UCSF and beyond. 

First and foremost, I would like to thank my advisor, Michael Keiser. Mike is an incredible 

resource of computational expertise, interesting philosophical discussions about the ethics of 

artificial intelligence, and knowledge of Russian and sci-fi literature. I was not initially planning 

on doing anything with machine learning, but his enthusiasm and mentorship convinced me to try 

it out. Mike has provided invaluable guidance over these past few years and I know he’ll go on to 

do incredible work in the next stage of his career. 

 Second, I’d like to thank the professors at UCSF and elsewhere for their support. Thank 

you to the members of my thesis committee: Brain Shoichet and Bill DeGrado. Brian was a source 

of stability at UCSF, starting from my very first rotation through graduation and beyond. Bill 

provided incredible insight into how my work could interact with that of biologists and chemists 

to make a greater impact. Thank you to Tony Capra for being on my qualifying exam committee 

and good-naturedly letting me distract his lab members as I borrowed a desk in his space. Thank 

you to Georgios Skiniotis for his useful project discussions. Additionally, special thanks to 

Michael J. Robertson, who somehow managed to mentor me through a structural biology project 

while landing a faculty job. Hope you’re enjoying Texas! 

From the moment I joined Mike’s lab, I benefited from the guidance provided by other lab 

members. Luca Ponzoni was a great rotation mentor, and through him, I learned about chemical 

fingerprints, variational autoencoders, hyperparameter optimization, and more that would be 

pivotal to my doctoral studies. Jessica McKinley was a role model for how I could succeed in 



 v 

higher education and provided useful advice throughout her time in the lab. Alexandre Fassio 

developed the LUNA software, which was integral to many of my projects. Thank you to the all 

members of the former Keiser group, postdocs, students, RDAs, system administrators, and 

administrative assistants alike, whose time in the lab overlapped with my own, however briefly: 

Kangway Chuang, Mahdi Ghorbani, Elena Caceres, Garrett Gaskins, Douglas Myers-Turnbull, 

Dan Wong, Laura Gunsalus, Will Connell, Wren Saylor, Parker Grosjean, Ben Orr, Brendan Hall, 

Duncan Muir, Umair Khan, Victor Rabesquine, Halimat Afolabi, Chimno Nnadi, Mikio Tada, 

Varun Sharma, Rish Sharma, Noah Weber, Sina Ghandian, Liane Albargouthi, Lise Minaud, 

Taline Mardirossian, Nick Mew, John Gallias, Sahru Keiser, and Fedelle Austria. Thank you to 

Selina Liu for doing all the grunt work I assigned her, and good luck in graduate school! To my 

original iPQB cohort, Adamo Mancino, Aiden Winters, Connor Galvin, Erin Gilbertson, Hasan 

Alkhairo, Hersh Bhargava, Matthew Hancock, Matthew Smith, Muziyue Wang, Scott Nanda, 

Tianna Grant, Wilson Vasquez, and Zach Cutts: We’ll all make it.  

 Thank you to my parents, Lisa Horvath and Ben Shub, for their unending support and for 

encouraging my decision to move myself and my cat all the way to San Francisco. I know the last 

few years have been tumultuous, but my love for both of you will never change. Thank you 

especially to my sister Allie, who was always a source of levity when I was rethinking my choices 

in life and needed to get out of my own head. And, of course, thank you to my extended families 

on both sides, who were always willing to entertain me talking about my projects whether they 

cared or not: Grandma and Grandpa, Grand Alice, Aunt Sara, Aunt Stephanie, Aunt Sam, Uncle 

Doug and Aunt Jennifer, Will and Hannah, Olivia and Woodrow, Celeste, Dominic, Maddie, 

Genna, Hannah, Hailey, and many, many more.   



 vi 

Thank you to the Deep Apple family for my first real foray into working in biotech: Elissa 

Fink, who was a great rotation mentor and introduced me to virtual screening. Stefan Gahbauer, 

for this great feedback and suggestions during our machine learning meetings. Rishikesh Magar, 

for dealing with my questionable code. Jazon Zbieg, for letting me play around in AI generative 

space with little oversight. I’m looking forward to joining y’all soon. 

 I’d like to thank the friends that have reminded me that a world exists beyond the lab: Erin 

Gilbertson (again) and Mark Richard for trivia nights, wine tastings, baseball games, country 

concerts, and showing me how great Minnesota and its people are; Luke Masters, for being the 

ultimate concert buddy and just as obsessed with Joanna Newsom as I am; Gabrielle Rabadam, for 

adopting an introvert and somehow convincing me to go backpacking multiple times; and Justin 

Salonia, for late-night gaming and walking me home. From my days at the University of Texas, 

thank you to Rachel Rapagnani for hard carrying me through organic chemistry lab all those years 

ago, and Justin Kang for late nights commiserating about computer science projects, along with 

the full Dean's Scholars family. I wouldn’t have made it this far without all of you. 

 Thank you to Joanna Newsom for being the soundtrack of my graduate career. 

 And finally, thank you to my cat, Neko, for keeping me relatively sane. You deserve all 

the cat treats in the world. 

 

 

 

 

  



 vii 

CONTRIBUTIONS 

This dissertation was supervised by Dr. Michael Keiser. Additional guidance was provided by Dr. 

Brian Shoichet and Dr. Michael J. Robertson. 

 

 Chapter 2 contains material from a manuscript currently under review and available in open-

access format: 

 

Shub L, Liu W, Skiniotis G, Keiser MJ, Robertson MJ. Metric Ion Classification (MIC): A Deep 

Learning Tool for Assigning Ions and Waters in Cryo-EM and X-Ray Crystallography Structures. 

bioRxiv March 19, 2024, https://doi.org/10.1101/2024.03.18.585639. 

 

Chapter 3 contains material from a manuscript in preparation: 

 

Shub L, Lin F-Y, Muir D, Mathiowetz A, Keiser MJ. Autoparty: Machine Learning-guided Visual 

Inspection of Molecular Docking Results.  

 

 

 

 

 

 

 

  



 viii 

We seek our name, we seek our fame, and our credentials, 

Paned in glass, trained to master incidentals. 

- Joanna Newsom, Leaving the City 

  



 ix 

Developing Artificial Intelligence Tools for Biologists 

Laura Shub 

 

ABSTRACT 

With the growth of biological and chemical datasets and the development of novel computational 

techniques, applications of artificial intelligence (AI) and machine learning (ML) methods that 

leverage these datasets to assist experimentalists become more critical than ever. This dissertation 

presents an overview of commonly used AI/ML tools for molecular biology and introduces two 

novel tools, as well as details their specific use cases. In Chapter 1, I provide a review of traditional 

techniques and their machine learning counterparts for ligand- and structure-based drug discovery 

and protein structure elucidation and design. In Chapter 2, I introduce Metric Ion Classification 

(MIC), a method for determining the identity of experimentally identified waters and ions in 

biomolecular structures. MIC builds upon recent advancements in protein-ligand interface 

representations and metric learning techniques to introduce a novel classification scheme with 

extensive validation on a variety of experimental structures. In Chapter 3, we present Autoparty, a 

tool for AI-assisted human-in-the-loop molecule annotation designed to facilitate the manual 

assessment of virtual screening results. Autoparty uses the principles of active learning to direct 

chemists toward useful compounds and limit the amount of labor required when evaluating 

compounds. These applications do not attempt to replace existing techniques; rather, they act in 

service of scientists to accelerate both structure determination and drug discovery pipelines. This 

work broadly highlights the utility of these tools and others like them and encourages their 

adoption alongside classical approaches.  
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CHAPTER 1: ARTIFICIAL INTELLIGENCE IN STRUCTURAL BIOLOGY: FROM 

SMALL MOLECULES TO PROTEINS 

Introduction 

Artificial intelligence (AI) as a field has existed since as early as the 1950s, and has continued to 

see development despite periodic “winters” of depressed activity and funding.1 Growing interest 

in the applications of AI to biology specifically has corresponded with expanding data sets, 

prompting the development of techniques to match.2 AI, and more specifically machine learning 

(ML), has the capacity to vastly improve upon current methods if properly employed. However, 

these approaches require communication between computational researchers, chemists, and 

biologists to design these models, from the initial training sets to the final implementations and 

beyond. This ensures that AI/ML tools do not just serve as interesting technical demonstrations 

but provide actionable predictions that can be validated experimentally. 

In this dissertation, we seek to demonstrate how machine learning, and specifically deep 

neural networks, can be applied to various structural biology problems to help accelerate existing 

pipelines and assist scientists in a variety of ways. In this chapter, we motivate this work by 

summarizing the current state of AI/ML for two major areas of molecular biology: small molecules 

and proteins. In addition, we provide an overview of common cheminformatics and machine 

learning techniques. We describe major advances in the application of ML to these questions and 

the current state-of-the-art technologies, as well as the potential areas for further improvement in 

these fields. 
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Artificial Intelligence vs. Machine Learning vs. Deep Learning: What’s the difference? 

Machine learning refers to a broad array of techniques united by the fundamental concept of self-

learning rules from large databases of examples.3,4 ML is a subset of a broader class of algorithms 

known as artificial intelligence (AI) concerned with the science and engineering of machines with 

similar decision-making capabilities to humans.5–7 However, the two are often conflated in media 

and popular culture, both due to sensationalism and a lack of field-specific expertise, adding to 

confusion regarding the terms in the broader public consciousness.8–10 

Both AI and its subset ML have wide utility in real-world problems. Examples of AI that 

are not ML are still common and include more traditional computer programs that follow 

predefined protocols given input data, such as pathing algorithms like those used by Google 

Maps.11 The fields of robotics and self-driving cars similarly have continued to use non-ML AI to 

direct movement and decision-making due to a need for pre-programmed responses in specific 

situations (i.e., stopping if a pedestrian is detected in front of the car).12 In the clinic, AI has long 

been used in the form of medical diagnosis expert systems that assist physicians with difficult 

tasks, including bacterial infection identification13–16 and determining post-operative care.17 In each 

of these cases, the algorithms follow a priori rule systems programmed by a human operator, with 

no updates to these rules over time, classifying them as artificial intelligence but not machine 

learning. 

By contrast, machine learning refers specifically to algorithms that can adapt their own 

performance without following specific instructions. Generally stated, a supervised ML model 

consists of three major components: 1) a decision process, in which the algorithm produces an 

output in response to input, often a class label; 2) an error function that evaluates the quality of 

this output by comparison with the known label or desired output; and 3) an update or optimization 
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process, in which the decision process is modified to minimize the calculated error. ML 

applications have increased dramatically in recent years in virtually every field, from facial 

recognition,18,19 spam detection,20,21 content recommendation,22–24 and machine translation25–28 to 

more controversial uses such as customer service29,30 and advertising.31–36 In each of these cases, 

the ML model leverages large bodies of existing data (faces, customer behavior, emails) to learn 

ideal behavior. ML problems typically fall into either supervised, where labels are known and the 

model attempts to learn how to classify new data, or unsupervised, where the goal is to learn 

patterns in the absence of existing labels. Examples of techniques for supervised ML include 

decision trees and random forests,37 gradient boosting variants such as AdaBoost and XGBoost,38 

support vector machines/classifiers,39 and Bayesian classifiers.40  

Many applications of ML discussed above are examples of a specific ML paradigm known 

as deep learning (DL). Deep learning approaches utilize multi-layer neural networks (NNs) to learn 

to make highly accurate predictions from increasingly large bodies of data. The classic example 

of a DL paradigm is the feedforward (FF) neural network, first published in 1965.41 FF-NNs 

operate on vector inputs through matrix multiplication followed by a non-linear activation 

function, such as rectified linear unit (ReLU) or Swish.42 The values of the matrices, otherwise 

known as the model weights, are updated to minimize model error (loss) by stochastic gradient 

descent with backpropagation.43  

Since the introduction of standard FF-NNs, there have been numerous advances to apply 

this same logic to alternative input data structures. Convolutional neural networks (CNNs) operate 

on multidimensional inputs such as 2D images, 3D voxels, and videos, capturing spatial 

relationships between pixels in the input data.44 Recurrent neural networks (RNNs) were 

developed to work on sequential data of variable lengths such as text input.45 Graph neural 
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networks (GNNs)46 operate on graph structures to output either graph-level or node-level 

predictions. Most recently, the concept of transformers based on the multi-head attention 

mechanism47 has been incorporated into a wide variety of architectures, enabling the development 

of large language models (LLMs)48 that achieve unprecedented success in text prediction. Each of 

these architectures has been adapted to address outstanding problems in biology and chemistry, 

which we will cover in the following sections. 

Artificial Intelligence for Small Molecules 

Chemical representation 

One of the most critical questions when designing a model architecture to operate on small 

molecules is the choice of representation, typically either string- vector, or graph-based. The most 

ubiquitous string representation of molecular structure is the Simplified Molecular Input Line 

Entry System (SMILES), first proposed by Weininger in 199849 and expanded to canonical 

SMILES in 1989.50 SMILES are constructed by “breaking” all cycles in a molecule followed by a 

full traversal, appending a character at each node of the tree representing the corresponding atom. 

This results in a one-to-many relationship between a molecule and its SMILES strings depending 

on the specific path traveled, a potential problem that is addressed in canonical SMILES by 

imposing an order to this traversal based on initial atomic features. Since their introduction, 

SMILES have seen widespread use for storing databases of molecules, for example recording 

known actives for protein targets51 or in virtual screening libraries.52,53 SMILES and similar string-

based representations (InChi,54 SELFIES55) provide an opportunity for utilizing RNNs that operate 

on sequences, typically used in the field of natural language processing. There are a variety of 

these architectures, such as long short-term memory and gated recurrent units, with the unifying 

logic that these approaches maintain a hidden state calculated from the prior sequence.56 This 
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hidden state, together with the current element, determine the next prediction. RNNs can operate 

on inputs of any length to learn complex syntaxes, such as those that govern SMILES construction 

and validity. More recently, transformers have emerged as the state-of-the-art approach for text 

processing. Both of these architectures have seen use in molecular generation and property 

prediction, discussed further in the following sections. 

While line inputs such as SMILES have seen widespread use, they remain unideal for 

certain ML approaches. They cannot be used with standard FF architectures that require fixed-

length vector inputs. Furthermore, distance calculations between molecules using SMILES is 

difficult, as similar molecules can encode to very different sequences based on decisions made 

during construction by molecular traversal. This problem persists despite the invention of 

canonical smiles. The original canonicalization algorithm was proprietary, and many 

cheminformatics packages including RDKit57 and OpenEye58 implement their own variant of this 

canonicalization protocol. Handling chirality also remains difficult, with many databases including 

Zinc 2D opting to remove any chiral information from the stored representation. Rather, for 

standard ligand-based approaches, an ideal representation would be invariant to traversal order and 

capture increasingly large substructures of the molecule. Early methods to create these vector 

molecular representations, referred to as fingerprints, include Molecular ACCess keys fingerprints 

(MACCS)59 and PubChem60 fingerprints. The former is a vector of 166 selected input features, 

while the latter encodes 881 potential elements. Both these formulations required expert feature 

engineering to design, thus introducing the potential for the exclusion of relevant properties in the 

final representation. This was the problem addressed by extended-connectivity fingerprints 

(ECFPs) for molecules, introduced by Rogers and Hahn in 2010.61 ECFPs use the Daylight atomic 

invariants and circular expansion based on the Morgan algorithm62 along with a fixed hash function 
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that encodes individual atoms or neighborhoods of atoms into a fixed-length vector of 1s and 0s. 

The 1 at a given position thus indicates the presence of a specific substructure that is consistent 

across fingerprints constructed by the same algorithm. ECFPs are used primarily for rapid 

similarity measurements between two molecules and are often employed in virtual screening to 

find nearby molecules with a high chance of displaying similar biological activities against a given 

target,63,64  but they also provide an ideal input for typical ML architectures and have been used as 

the input representation in a variety of molecular property prediction tasks. This concept has been 

expanded to include three-dimensional information about molecule structure.65 Similarly, some 

efforts have been made to extend the concept of molecular fingerprints to protein-small molecule 

interfaces,66–68 capturing the contacting geometries and non-covalent intermolecular interactions 

contributing to binding. 

The most recent advancement in molecular representation is the development of learned 

molecular fingerprints, proposed by Duvenaud et al.69 Rather than being generated by a fixed 

predetermined algorithm, these task-specific representations perform graph convolutions on 

molecular topology before typically feeding into a standard linear predictor. This process improves 

on standard fingerprints in a few critical ways. ECFPs weigh all input features equally through the 

formulation as a string of bits, while this may not be appropriate for the given task. Graph-based 

fingerprints allow the model to determine the most salient input features, resulting in improved 

accuracy and improving model interpretability. These learned representations also circumvent the 

known problem of bit-collisions in fingerprints, wherein multiple features encode to the same bit, 

complicating property prediction.70 This approach was formalized into the current message-

passing neural network (MPNN) terminology and proven to be the state-of-the-art for molecular 

property prediction in Gilmer et al,71 discussed further in the following section. 
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Molecular property prediction  

As mentioned previously, one of the most common applications for ML in chemistry is that of 

molecular property prediction. The obvious example is the use of ML in Quantitative Structure-

Property Relationship (QSPR) and Quantitative Structure-Activity Relationship (QSAR) studies 

that seek to quantify the interaction between input molecular features and downstream effects.72,73 

In their initial iterations, QSPR/QSAR analyses were performed by fitting a linear correlation 

between the relevant value and 2D- or 3D-molecular features engineered by medicinal chemists.74–

77 Early work in using neural networks and molecular fingerprints for this process showed 

improved results over traditional QSAR, representing an important early step in ML ligand-based 

drug discovery.78,79 Recently, it’s been demonstrated that learned GNN-based representations 

typically outperform traditional fingerprinting techniques for property prediction tasks, leading to 

widespread interest and adoption of this architecture.80,81 In just the past few years, GNNs have 

been used to predict a variety of molecular properties including polar surface area,82,83 

bioavailability,84 octanol solubility,85 aqueous solubility,85–90 blood-brain barrier permeability,89–94 

hydrophobicity,82,83,95,96 toxicity,85,90,93,97–103, synthetic accessibility,82 and cost,104 to name a few.  

 One advantage of GNNs/MPNNs over traditional fingerprinting methods is their ability to 

operate directly on molecular structure, and in many cases, incorporate geometric information. 

Early iterations of MPNNs operated on graph structure alone, analogous to the generation of 2D 

fingerprints that do not consider chirality. Variants of architectures that place greater emphasis on 

node connectivity include directed message passing NNs as implemented in Heid et al.105 and 

edge-memory networks as presented by Withnall et al.89 One of the earliest architectures to include 

explicit positional information was the Equivariant Graph Neural Network (EGNN),106 designed 

specifically to address the need for rotation and translation invariance in 3D graphs by 
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incorporating the relative distance between nodes into the message passing steps. EGNNs have 

been used for toxicity prediction,103 molecule conformer minimization,107 and in various other 

applications including ML-based docking software108,109 and target-aware de novo molecule 

generation,110,111 both discussed in greater detail below. 

 The area where GNNs for property prediction have seen the greatest success is quantum 

chemistry. With the release of datasets such as QM9,112 MD17,113,114  GEOM,115 and QMugs116 that 

record the result of very computationally expensive quantum chemistry calculations, many models 

have been trained to predict the approximate energies of molecular conformational states. SchNet 

introduced continuous convolutional filters based on radial basis functions to reproduce inter-

atomic forces and predict total energy of molecules.117 DimeNet118 and DimeNet++119 build upon 

this advancement to incorporate spherical Bessel functions using both radial and angle information 

during message-passing convolutions for more accurate predictions. SphereNet120 similarly 

provides angle information through a spherical coordinate system used during message passing. 

Architectures like GEM121 and AliGNN122 incorporate geometric information by running message 

passing on two graphs simultaneously, one representing atoms and bonds and the other 

representing bonds and the angles between them. These increasingly feature-aware architectures 

enable further predictive power and more accurate models. 

 

Computer-assisted drug discovery 

There is a commonly cited figure that the total cost of developing a novel pharmaceutical exceeds 

two billion US dollars.123,124 Virtual screening, the process by which libraries of compounds are 

pre-screened against a given receptor, has been used since the 1990s as an upstream step to 

discover lead molecules with novel chemotypes, resulting in many successful drug 
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candidates.125,126 Virtual screening methods differ in their exact implementations and intended use 

cases. Each docking program must solve two major problems: 1) how to sample molecule 

conformations within a protein pocket and 2) how to rank, or score, the generated pose. UCSF 

DOCK employs a graph-matching algorithm to place rigid fragments based on precalculated 

molecule conformers into a static protein structure.127,128 A similar approach is taken by the rigid 

docking protocols in Schrodinger’s Glide129 and FlexX.130 Alternatively, some implementations 

that allow ligand flexibility arrive at a final pose through optimization techniques such as Monte 

Carlo Minimization or genetic algorithms.131 This includes approaches such as AutoDock and 

AutoDock Vina132 as well as GOLD,133 ICM,134 and flexible protocols in FlexX. Finally, some 

programs consider receptor flexibility as well. RosettaLigand, part of the larger Rosetta protein-

modeling suite, uses a two-staged sequence with flexible small-molecule and protein bond angles 

to identify the predicted pose of a given ligand, a much more time-intensive process.135,136 Recent 

modifications to the AutoDock program have similarly allowed for limited receptor flexibility but 

only in the case where the user has significant available computational resources.137 

 Like sampling algorithms, there are multiple categories of scoring functions (SFs) utilized 

to rank ligands that vary in implementation, accuracy, and computational expense. Historically, 

these have been divided into force field-based, empirical, and knowledge-based methods.138,139 

Recent developments in the field and confusion over the boundaries of these terms have resulted 

in reconsideration of these categories, leading some scientists to propose an updated categorization 

scheme: physics-based, regression-based, potential-based, and machine learning-based.140 

Physics-based (or force-field) SFs evaluate a ligand using fundamental molecular mechanical 

calculations such as van der Waals and electrostatics, with many iterations incorporating a term 

for desolvation.141,142 DOCK and GOLD both use this approach, with the latter incorporating an 
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additional explicit term for hydrogen bonding. Empirical (regression-based) SFs compute a linear 

combination of individual terms to fit experimentally measured binding affinities.143,144 Despite 

assuming similar forms, this differs from physics-based approaches as the individual contributions 

of each term are calculated using methods such as multivariate linear regression or partial least 

squares, leading to some overlap between empirical and ML scores. ChemScore145 (implemented 

in GOLD), X-score,146 and GlideScore-XP147 SFs all fall under this approach. Knowledge 

(potential)-based SFs calculate the sum of the distance-dependent pairwise statistical potential 

between atoms within a given interaction radius.144 The exact parameters of these potential 

functions are determined by analyzing large protein-ligand structure databases, primarily the 

Protein Data Bank.148,149 Finally, as the name suggests, approaches belonging to the newly-

introduced category of ML-based SFs use machine learning to predict scores and binding affinities 

for protein-ligand interfaces, discussed in more detail below. The boundaries between these 

categories are not exact; the Rosetta scoring function is a weighted combination of both physics-

based and knowledge-based terms,150 and many empirical methods could arguably be a type of 

machine learning scoring function. 

 

Machine learning in drug discovery 

ML SFs have emerged in recent years as an alternative to these more classical approaches. 

Traditional SFs like those above require extensive domain knowledge to develop and evaluate. 

Furthermore, they often omit critical terms such as entropy and require many simplifying 

assumptions to be tractable, especially regarding quantum mechanical calculations.151 There has 

been significant interest in the creation of a generic ML SF that is able to take as input any protein-

small molecule complex and predict an accurate binding affinity. Such a score would massively 
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accelerate the drug-discovery process but remains elusive; however, that does not mean there has 

not been significant progress made towards that goal. One of the earliest iterations of this was RF-

score, which uses a random forest regressor on the frequency of pairs of heavy atoms at the protein-

ligand interface.152 Das et al. used support vector machines on shape-based representations to 

predict binding affinity from property-encoded shape distributions, achieving R2 values in the 0.5-

0.7 range.153 NNScore154 and its successor NNScore 2.0155 represent some of the earliest efforts to 

apply deep learning to selected interface features for distinguishing between potent and weak 

binders or predicting binding affinity, respectively. These methods showed improved performance 

over classical scoring functions in some cases but still suffered from scarce training data, simple 

architectures, failure to generalize to new systems, and overall concerns about the validity of the 

learned logic of the model.156 As mentioned above, protein-ligand IFPs attempt to encode the full 

range or potential protein interactions into fixed-length vector representations, allowing for 

similarity analysis and ML model training.66–68,157 Alternately, Kdeep158 utilizes 3D-CNNs centered 

on the binding pocket as input. GNINA,159 one of the first attempts to bridge traditional docking 

methods with ML scoring, uses exhaustive sampling of ligand orientations along with Monte-

Carlo minimization of a 3D-CNN-based SF to dock molecules. OnionNet160 uses a 3D-CNN that 

covers both local and longer-form interactions for binding affinity prediction, while OnionNet-2161 

uses a 2D-CNN on atom pairs in distance shells, an extension to the original RFscore feature set. 

MPNNs have been applied to the tasks of scoring as well, using graphs to represent either the 

protein and ligand separately or the bound complex structure. Many of these methods achieve high 

accuracy on the PDBbind162 and CASF163 test sets for binding affinity prediction. These include 

Proximity Graph Networks,164 SIGN,165 PLANET,166 SS-GNN,167 GIaNt,168 and graphLambda,169 

among others.  
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Historically, ML applications in virtual screening have focused on scoring. In the past few 

years, ML-based sampling and protein-ligand complex pose generation methods have emerged as 

well, corresponding with advancements in generative architectures. Among the most notable of 

these are EquiBind108 and EquiDock.109 Both approaches use graph-matching neural networks to 

directly predict the bound structures of an input protein-ligand or protein-protein complex, 

respectively. TANKbind170 uses angle-aware message passing to predict both structure and binding 

affinity. DiffDock171 uses diffusion models that learn translational, rotational, and torsional 

transformations to arrive at a predicted protein-ligand pose, achieving greater accuracy than 

traditional GLIDE docking in some cases. These methods still struggle to recapitulate realistic 

binding modes and can often produce strained or invalid geometries, but they provide significant 

speedup over exhaustive searches. In time, they may come to consistently outperform traditional 

methods. 

 

Addressing expanding library sizes 

Advancements in combinatorial chemistry have resulted in a significant expansion in the size of 

virtual libraries available for screening. Zinc22 has grown to over 30 billion compounds,52 while 

eMolecule’s eXplore boasts having over 4.9 trillion individual molecules in its database.172 While 

this opens up the possibility of screening for drugs with novel chemotypes and still only represents 

a small fraction of the total drug-like chemical space (>1063 compounds!173), it introduces 

significant technical challenges. Current virtual screening methods can evaluate billions of 

compounds, but the looming explosion in potential chemical matter necessitates methodologies 

that better identify important regions of chemical space to explore for a given target. Some 

traditional similarity-based library traversal strategies have been proposed to address this problem 
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and have shown very promising results in retrospective screens.174 Still, ML represents an 

appealing potential avenue due to its accuracy and high throughput. Active learning (AL) has 

already been applied to virtual screens to successfully recover top compounds from screening a 

fraction of the full compound library.175,176 This same concept opens the possibility for rapid 

prediction of more computationally intense scores such as free energy perturbation (FEP).177 In 

Chapter 3 of this work, we discuss another potential application for AL in the context of human-

in-the-loop training during hit-picking, another bottleneck in the overall drug discovery process.  

Alternatively, implicit molecular libraries have seen significant development in recent 

years. Under this paradigm, rather than explicitly enumerating millions to billions (and beyond) of 

compounds, a model is trained that can generate novel, valid molecules property-matched to those 

in the training set. This model is queried when new molecules are needed, such as in preparation 

for a docking screen. Early iterations of these implicit libraries used SMILES with recurrent neural 

networks178,179 or autoencoders180,181 to generate valid chemical structures in similar topological and 

property space to the training sets. Graph-based methods were developed to address the problems 

inherent in this approach, specifically the potential disconnect between string representation and 

molecular structure.182 These generators offer some advantages over traditional chemical library 

approaches, removing the need to combinatorically build molecules and requiring fewer 

computational resources to store. However, they introduce some potential pitfalls, such as the 

possibility of invalid structures, no enforced synthesizability constraints, and a lack of guaranteed 

enumeration of all possible molecules. 
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De novo molecule generation 

Building on this idea of implicit libraries opens the potential for target-specific library generation. 

Approaches following this paradigm take a generic molecule generator and employ reinforcement 

learning (RL) with a target-specific reward function to bias the model towards producing well-

scoring compounds by this external metric. Zhavoronkov et al. used this technique along with a 

novel generative tensorial reinforcement-learning algorithm to discover DDR1 kinase inhibitors 

in only 21 days.183 One benefit of this technique is that it is applicable to multiple architectures, 

including transformers: Mazuz et al.184 and Noutahi et al.185 both used RL with transformers to 

generate molecules with desired properties (predicted binding affinity for Beta-secretase 1 and 

central nervous system penetrance, respectively). These techniques have historically been used to 

directly produce compounds for experimental testing but could be used in combination with 

standard docking programs to generate full libraries of high-quality candidate molecules to use in 

virtual screening. 

These 2-stage approaches still rely on classical virtual screening and ligand-based SFs to 

tune the reward function used in RL to modulate the properties of generated molecules. 

Furthermore, they typically do not produce a three-dimensional complex structure, a critical step 

for evaluating compounds in silico. This has encouraged the development of pocket-based de novo 

drug design, in which models are able to directly build a new small molecule into the selected 

protein. This concept of “pocket-to-lead” design was used by Kojima et al.186 in designing HIV-1 

protease inhibitors by manually optimizing weak hits from a fragment screen to better match the 

pharmacophoric properties of the pocket. Since then, many DL approaches have been developed 

that condition molecular generation on 3D ligand or pocket structure. Skalic et al. created 

LigDream187 and LiGANN188 which use a combination of CNNs and RNNs to output compounds 
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matching a desired 3D pharmacophore from the ligand and the pocket, respectively. Other 

approaches include the structure-conditioned RNN from Xu et al.,189 Monte Carlo tree search with 

a graph-based molecule generator in DeepLigBinder,190 encoder-decoders trained on interface 

properties as in RELATION,191 and many more.192–196 

Diffusion models have gained significant attention recently for their ability to generate 

strikingly realistic images.197 These models are trained to reconstruct the original input following 

perturbation, a process that has been applied to both design linkers for existing fragments198 and 

generate 3D molecules in full.199 These approaches can similarly be conditioned on an existing 

protein pocket for fragment-based110or whole-molecule111,200,201 generation from the binding site 

alone, an idea that has the potential to revolutionize the standard virtual screening pipeline. Similar 

to ML-based sampling, these approaches can suffer from unrealistic and strained geometries, but 

new variants will almost be developed that address these problems by incorporating explicit 

hybridization states and other chemically-motivated features.  

Artificial Intelligence for Proteins 

Protein structure determination 

It is commonly accepted in the field of protein biology that structure determines function202 but it 

is up to structural biologists to determine structure. There are three primary methods used for 

protein structure elucidation. The most common by far is x-ray crystallography, used to obtain 

macromolecular structures by constructing electron density maps from the x-ray diffraction 

patterns of crystals.203 Crystallizing a protein is much easier said than done and is by far the rate-

limiting step of this protocol, with many proteins proving unable to crystallize at all.204 Nuclear 

magnetic resonance (NMR) spectroscopy exists as an alternative method of structure 

determination.205 Protein NMR can determine secondary structures by measuring the difference in 
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chemical shift between folded and individual residues, and coupling between nuclei can provide 

information about peptide dihedral angles. These data are then used with molecular dynamics 

simulations to arrive at the protein's folded structure.206 Cryogenic electron microscopy (cryo-EM) 

has gained traction as an alternative to x-ray crystallography and NMR.207 In cryo-EM, rather than 

requiring crystallization, structures are frozen down to approximately -180°C. Multiple 2D images 

are collected in various orientations and combined to create a three-dimensional view of the 

molecule. Historically, cryo-EM has been the lower resolution method,208 though this is changing 

rapidly. Within the past few years, cryo-EM was used to solve the structure of apoferritin at sub-

2Å resolution, allowing for the visualization of even ordered waters.209,210  Cryo-EM is becoming 

increasingly popular; in 2015, the ratio of new x-ray crystallography structures to cryo-EM 

structures deposited in the PDB was 40:1 (8,578:216), while in 2024 that number has reduced to 

1.7:1 (2,924:1,743) structures (so far).211 These advances in experimental methodologies have 

encouraged the development of computational techniques to similarly accelerate the process of 

biomolecular structure elucidation, discussed in the following section. 

 

Machine learning in protein structure elucidation 

There are a variety of ML methods that have been used to assist with the modeling of biomolecular 

structures from x-ray crystallography and cryo-EM maps.212,213 Many applications of ML to x-ray 

crystallography have focused on automating image analysis to determine the presence or absence 

of crystals, a typically laborious process that requires expert annotation. Bruno et al214 developed 

MARCO, a CNN-based method for classifying biomolecular images into clear, precipitate, crystal, 

and other categories. DeepFreak215 was similarly developed to classify x-ray diffraction images 

into five potential categories based on successful crystallization, denoting the quality of the 
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diffraction pattern. Other similar methods include the AlexNet-based model presented by Ke et 

al.216 and CrystalNet.217 Further downstream, QAEmap218 used 3D-CNNs to estimate the local 

quality of protein modeling in low-resolution electron density maps, building on the statistically 

informed methods of real-space correlation coefficient219 and MolProbity score.220 

By comparison, cryo-EM has seen wide interest in ML for modeling. Early methods in ML 

for cryo-EM include CryoSPARC221 which uses a stochastic gradient descent algorithm for 

structure determination and 3D classification, and Emap2sec(+)222,223 to predict nucleic acids and 

protein secondary structures from low resolution (5-10Å) cryo-EM maps. For higher resolution 

maps, Si et al.224 applied a cascaded-CNN approach to predict protein backbone structure that 

outperformed more classical techniques like Rosetta and MAINMAST.225 Terashi et al.226 

introduced the deep-learning-based amino-acid-wise model quality (DAQ) score that uses 3D-

CNNs to estimate the quality of protein modeling from cryo-EM maps at the secondary structure, 

amino acid, and alpha-carbon levels. DeepMainmast227 built upon the original minimum-spanning-

tree-based MAINMAST for main-chain protein modeling, incorporating AlphaFold (discussed 

below) predictions for improved accuracy. Most notably, ModelAngelo,228 a graph-neural network 

approach to predict the refined structure from Cryo-EM maps, has demonstrated performance on 

par with human experts for proteins and nucleic acids. Additionally, it demonstrated high accuracy 

in determining the amino acid of unknown sequences. These methods can work with classical 

techniques to facilitate their use and remove some of the subjectivity of human analysis (or even 

the chance for fraud229). 
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Protein structure prediction 

Any discussion of machine learning in protein structure prediction must begin with AlphaFold 

(AF)230 and, more specifically, its successor AlphaFold2 (AF2).231 Both AlphaFold variants use 

multiple sequence alignment (MSA) of natural proteins with known structures to determine 

evolutionarily correlated residues, inferring putative contacts from which 3-dimensional structure 

is calculated. AlphaFold generated significant interest when it won the 13th Critical Assessment 

of Protein Structure Prediction (CASP) competition by a wide margin.232 AlphaFold2 utilizes an 

SE(3)-invariant transformer architecture (“evoformer”) with self-attention that allows it to capture 

longer-range interactions, leading to significantly improved performance: AF2 won the following 

CASP14 by an even wider margin (cumulative z-score of 244.0 by human assessment, compared 

to the next highest score of 90.8).233 While these approaches can use templates for an approach 

closer to homology modeling, removing these templates for ab initio prediction (free modeling) 

often results in a sharp decrease in accuracy.234 Still, both approaches and their demonstrated 

success revolutionized the way that we think about protein structure prediction and led to a flood 

of similar methods and widespread application. Nature Methods named protein structure 

prediction as its 2021 method of the year235.  

 Shortly after CASP13, Yang et al. released trRosetta236 using similar approaches as AF to 

generate contacts from MSA, though it incorporated relative residue orientation information along 

with a constrained relaxation step to ensure more realistic geometries. RoseTTAFold (RF),237 the 

Rosetta community’s response to AF2, uses a three-track approach that simultaneously operates 

on sequences, distances, and coordinates to learn relationships between these structural properties. 

OpenFold238 was created as an open-source, trainable, less memory-intensive variant of 

AlphaFold2 to improve accessibility to the larger scientific community. Efforts have been made 



 19 

to predict structure from sequence alone, without the need for MSAs. Facebook’s research team 

produced ESMfold,239 a language-based model that operates on input amino acid sequences. Other 

similar approaches include RGN2240 and EMBER2,241 all of which require no MSA information.  

 The impacts of AF and similar techniques have been far-reaching.242,243 DeepMind and the 

European Bioinformatics Institute released the predicted structures of over 200M sequences, 

covering a wide range of proteins across species.244 AF predictions have been used in combination 

with x-ray crystallography245 and cryo-EM246–248 to solve protein structures. Databases of binding 

pockets from both solved and AF protein structures have been created for use in drug repurposing 

and to gain a greater understanding of protein structure-function relationships.249,250 AF predictions 

have seen success in drug discovery, performing comparably to known experimental structures in 

GLIDE in some studies251 (though it should be noted that this is not always the case252). AF2-

predicted structures of the serotonin receptor 5-HT2A were used in a successful virtual screening 

campaign, demonstrating that AF2 can potentially identify druggable structures not discovered 

through traditional structural biology.253 Similarly, AF2 was used to predict the structures of the 

unresolved hERG closed and inactivated states, providing an explanation for known anti-target 

activity.254 These uses suggest that despite known issues in AF (need for MSA information, lack 

of protein dynamics, lack of ability to predict proteins in complex with small molecules, 

difficulties with disordered regions), these predictions can be an incredibly useful resource for 

biologists as they approach these problems. During the writing of this thesis, AlphaFold3255 was 

released (controversially without an associated codebase256). AF3 uses a diffusion-based 

architecture to allow for the prediction of proteins, nucleic acids, small molecules, and ions with a 

single model. AF3 displays high accuracy in a variety of tasks from protein-ligand complex 
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structure prediction to antibody-antigen prediction, and there is little doubt that it will see 

widespread use across related fields, though its true impact on biology remains to be seen. 

 

De novo protein design 

Another area of interest for ML application is de novo protein design, a longstanding goal of 

synthetic biology.257–260 Similar to the number of potential drug-like molecules, the space of all 

possible protein sequences is vast. For any 200-residue protein, there are 20200 potential sequences 

considering natural amino acids alone. This expands further if one includes unnatural amino acids, 

i.e. for potential therapeutic development.261 Deep-learning protein structure prediction 

technologies have been applied to protein design by predicting structures of random amino acid 

sequences, then modifying the sequence to optimize the divergence between these starting 

structures and known naturally occurring geometries to result in novel folds, a process known as 

hallucination.262 Direct sequence design from a provided backbone was presented in 

ProteinMPNN,263 which uses the message-passing architecture on an input graph of protein 

backbone atoms to predict the amino acid identity of each residue. ProteinMPNN designs from 

AF-generated backbones showed high success rates for solubility and stability, exceeding that of 

designs produced by hallucination with AF. Multiple approaches have used modifications of 

RoseTTAFold for protein design. Wang et al.264 used a finetuned RF approach to optimize 

sequences that contain a specific functional site. RFdiffusion265 modifies the RF structure 

prediction module to instead denoise 3D coordinates and predict new potential backbone 

orientations. Additionally, RFdiffusion allows for guided conformational generation, such as 

designing sequences to bind other proteins or small molecules. The most recent iterations of both 

RF and RFdiffusion include all-atom representations to allow for the modeling of more complex 
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assemblies that contain nucleic acids, small molecules, and metals.266 Future iterations of these 

methods could begin to address outstanding problems, including prediction of conformational 

dynamics and the design of engineerable functions. 

Machine Learning-related Controversy: What Could Go Wrong? 

The introduction of ML into the pharmacology and structural biology realms has not been without 

its detractors, and for good reason. There are numerous examples of AI/ML models recapitulating 

problematic trends in training datasets across fields, including hiring,267 healthcare,36,268 facial 

recognition,269,270 and financial services.271 ChatGPT, the revolutionary LLM released by OpenAI, 

has seen widespread adoption272,273 in spite of the known tendency of the chatbot to reference 

spurious publications or court rulings.274 Similarly, Google’s AI chatbot Bard (now Gemini) has 

been used to assist scientific research despite an infamous factual error made during its debut.275,276 

These types of faulty outputs are relatively simple to fact-check, but models used in fields requiring 

extensive domain knowledge may have hidden artifacts that are yet to be uncovered. In the field 

of drug discovery specifically, many ligand-based classifiers have used DUD-E277 as a training set 

to distinguish between actives and decoys despite known hidden bias making it particularly 

unsuitable for this task.278 Even the widely used PDBbind dataset for binding affinity prediction 

has been subject to additional scrutiny due to concerns over data leakage and limited 

generalization.279,280 In protein structure prediction, analysis of the AF2 performance for different 

protein groups has revealed significant discrepancies in the success of the model structure across 

amino acid types, secondary structures, and overall protein size.281 While AF predictions have been 

successfully used in drug discovery, they cannot yet replace experimental structure 

determination.282,283 On the other hand, some of these methods are subject to potential misuse by 

bad actors, a problem highlighted by the successful rapid generation of novel biochemical 
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weapons.284 Despite these concerns over its application, AI is likely here to stay. In the future, to 

ensure proper use of these techniques, AI/ML models and the datasets they are trained on need to 

be thoroughly interrogated. Furthermore, experimental validation of all ML predictions remains 

critical. 

Conclusion 

We live in the midst of the golden age of machine learning in biology. New applications for AI/ML 

are developed near daily, demonstrating successes across a variety of fields, including the 

aforementioned uses in drug discovery, de novo protein design, and structure prediction. These 

applications will only grow more accurate with the development of new databases and 

computational architectures to better leverage them. I believe that they will have a profound impact 

on how we approach biological questions as they arise, whether that be drugging new targets or 

understanding novel mechanisms of action. This highlights the need for dialogue between 

biologists, chemists, and computer scientists to better identify problems to address and design the 

corresponding solutions. Additionally, it is critical that the resulting tools are available to biologists 

and chemists working on these projects. Many useful computational tools require command-line 

familiarity to install and use and thus go underutilized among the people who would otherwise be 

the primary beneficiaries. Growing lists of software dependencies require more and more 

sophisticated package managers and environments to support them, which can quickly become 

prohibitively difficult to work with for many. The integration of techniques like AlphaFold and 

ESMfold into widely-used tools like ChimeraX285 represents a step in the right direction, as does 

ColabFold286 for browser-based use of AlphaFold. However, many tools remain trapped behind 

the technical know-how required to run them. As developers, we must endeavor not to lock our 

colleagues out of this brave new world.  
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CHAPTER 2: DEEP LEARNING ASSIGNS IDENTITIES TO IONS AND WATERS IN 

CRYO-EM AND X-RAY CRYSTALLOGRAPHY STRUCTURES 

Abstract 

At sufficiently high resolution, x-ray crystallography and cryogenic electron microscopy are 

capable of resolving small spherical map features corresponding to either water or ions. Correct 

classification of these sites provides crucial insight for understanding structure and function as 

well as guiding downstream design tasks, including structure-based drug discovery and de novo 

biomolecule design. However, direct identification of these sites from experimental data can prove 

extremely challenging, and existing empirical approaches leveraging the local environment can 

only characterize limited ion types. We present a novel representation of chemical environments 

using interaction fingerprints and develop a machine-learning model to predict the identity of input 

water and ion sites. We validate the method, named Metric Ion Classification (MIC), on a wide 

variety of biomolecular examples to demonstrate its utility, identifying many probable mismodeled 

ions deposited in the PDB. Finally, we collect all steps of this approach into an easy-to-use open-

source package that can integrate with existing structure determination pipelines. 

Introduction 

Hydration and ion binding are vital for biomolecular function, contributing to structure,287,288 ligand 

binding,289–291 enzymatic catalysis,292 and dynamics,287,293 Proper rationalization of their effects in 

structures requires accurate identification of these sites as either water or a specific ion bound. 

However, pinpointing the identity of spherical features in experimental maps can be challenging, 

as the experimental data may be of insufficient quality or interpretability to definitively classify 

the scatterer. In structures derived from x-ray crystallography, individual ions and water can often 



 24 

be distinguished by examining the Fo-Fc difference map or OMIT map.294 However, this depends 

on data quality and can be difficult if the scattering is similar, for example when differentiating 

between water, sodium, and magnesium. Cryogenic electron microscopy data is even more 

problematic due to intrinsic challenges in generating meaningful difference maps.295 While 

scattering differences between atoms of different charges in certain resolution ranges can be used 

to discriminate atomic charges from cryo-EM data in theory,296 this often proves difficult in 

practice.  

Rather than directly determining the identity of the spherical feature from the experimental 

data, one can also consider the environment around the feature responsible for its coordination. 

Cations generally have a coordination shell of several partial or formal negatively charged atoms 

with well-defined geometry and coordination distances.297 Water has an ideal tetrahedral 

coordination with two hydrogen bond donors and two hydrogen bond acceptors. Anions tend to 

have a less well-defined coordination shell than cations but with positive interaction partners, 

specifically the guanidinium of arginine.298 While computational tools exist for classification based 

on the local environment, these methods tend to be focused on more specific subsets, for example, 

comparing different metal ions299–302 or validating waters.303 

In recent years, machine learning (ML) has been successfully applied to various 

biomolecular modeling tasks including structure prediction,231,237 protein design,265 molecular 

docking,108,171 and molecular dynamics simulations.304 The field of cryo-EM specifically has seen 

increased interest in ML for modeling proteins222,224,227,228 and nucleic acids,305 as well as improving 

and evaluating map and model quality.226,306,307 ML methods have been explored for identifying 

potential binding sites for specific ions or ion subclasses,308–310 but assigning the identity of 

experimentally determined sites remains underexplored. One complicating factor is the relative 
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scarcity of high-quality experimental structures with the full set of possible ions bound compared 

to what is needed for the 3-dimensional convolutional architectures typically used in these 

applications, highlighting the need to consider both alternate site representations and model 

architectures for this task. 

In cheminformatics, molecular fingerprints are vector representations that encode chemical 

structure.61,70 They have been used in mapping chemical space,311 virtual drug screening,312 and as 

input to quantitative structure-activity relationship models.313 In recent years, this concept has been 

expanded to interface fingerprints that capture the geometry of ligand-receptor complexes.67,68,314,315 

These representations have been used to filter virtual screening results by binding mode and as 

inputs to ML models for binding affinity prediction.316,317 One such example is the extended 

interaction fingerprint presented as part of the LUNA Python toolkit,66 designed for calculating 

and encoding protein-ligand interactions. In this work, we implement an extension to LUNA to 

generate identity-blinded geometric fingerprints that capture the chemical microenvironment of 

ion and water coordination sites.318 

Deep metric learning is an ML framework employed for facial recognition, anomaly 

detection, and signature verification applications.18,319–321 In contrast to classic ML approaches 

trained to predict a 1:1 label for each example, deep metric learning models learn an efficient 

virtual landscape that maximizes the distance between objects of different classes. It has been used 

in cheminformatics to learn molecular similarity and improve molecular property prediction.322,323 

Metric models are often trained on triplets of examples sampled from each batch, consisting of an 

anchor, a positive example from the same class as the anchor, and a negative example of a different 

class.324–326 While this near-cubic increase in potential training examples can introduce 

implementation challenges, it is a useful property when operating in a data-sparse regime. We 
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exploit this property by training a metric learning model on a relatively small dataset of ions in 

structures from the Protein Data Bank (PDB) to learn a low-dimensional embedding (landscape) 

conditioned on deposited ion identity and use these embeddings for downstream identity 

classification. 

 Here, we present Metric Ion Classifier (MIC), an open-source tool for assigning identities 

to sites in PDB structures. MIC utilizes a novel ion-fingerprint representation and deep metric 

learning approach to predict the class of placed ions and waters in input structures. We demonstrate 

MIC’s accuracy on a test set of structures from the PDB and use explainable AI feature attribution 

techniques to understand the biophysical rationale behind these predictions. Finally, we evaluate 

the performance on diverse x-ray crystallography and cryo-EM structures of both proteins and 

RNA, demonstrating the widespread utility of this approach. We hope this will prove a vital 

verification tool in structural biology workflows and represent an important step towards 

interpretable machine learning in the field. 

Results 

Architecture and Performance of MIC 

The MIC tool assigns identities to waters and ions modeled in PDB structures. The overall 

workflow consists of three steps: 1) generating the fingerprint representation for the chemical 

environment of the density, 2) condensing this representation into a lower-dimensional embedding 

using a trained deep metric model, and 3) passing this embedding through a support vector 

classifier (SVC) to obtain final probabilities for all classes as well as prediction confidence (Figure 

2.1). The class with the highest probability is then taken as the final prediction.  

Prior approaches to conceptually similar tasks have used voxel representations as input to 

neural networks, necessitating large 3D-convolutional architectures that are both orientation-
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dependent and rely on abundant training data to tune properly309,310. We overcome these limitations 

in two ways. To represent each density, we use a modified version of the LUNA toolkit developed 

to calculate intermolecular interactions at protein-ligand interfaces and encode them into a fixed-

length vector representation known as a "fingerprint." This greatly reduces the size of our models 

while meaningfully capturing information required for downstream classification. The generation 

process for these ion fingerprints is closely related to interface fingerprints with a few key 

exceptions (Figure 2.1). First, a proximity graph is constructed comprising all atoms < 6Å from 

the center of mass of the ion or water of interest. Each atom in this graph is assigned a set of atomic 

identifiers depending on its chemical identity and user-selected fingerprint type (Supplemental 

Table 2.1). Crucially, we remove the initial features of both the density itself and any additional 

waters or ions in the graph, effectively blinding the representation to any existing label to protect 

against data leakage during downstream prediction. The final list of modified atomic identifiers 

and all interactions are passed through a distance-dependent hash function that converts these input 

features into numeric values, which are folded down to 4,096 dimensions following standard 

molecular fingerprinting procedures.61,318 

These fingerprints are further condensed using a deep metric model. This model, 

constructed as a small feed-forward network, is trained to learn low-dimensional embeddings that 

maximize the distance between members of different classes (Figure 2.1). This step establishes 

the discriminative capabilities of the model, enabling accurate differentiation between closely 

related density types. The final predictions are generated by an SVC that uses these learned latent 

embeddings to calculate a probability for each class, the maximum of which is taken as the label 

(Figure 2.1). Full details for fingerprint generation and model training are provided in Methods, 

and the full list of sites used for training and testing are provided in Supplementary Table 2.1 
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and Supplemental Figure 2.1. The model was trained for 1000 epochs (Supplemental Figure 

2.2). 

In Figure 2.2, we present the performance of the MIC protocol trained on the six most 

prevalent classes from our curation of the Protein Data Bank:  water, magnesium, sodium, zinc, 

calcium, and chloride. The model achieves an initial accuracy of 76.7% on a held-out test set and 

displays notable trends in performance by class, specifically showing high accuracy for zinc, 

magnesium, calcium, and water recovery. (Figure 2.2). A particularly interesting property of these 

learned embeddings is the organization by charge, visualized here with UMAP and confirmed by 

both PCA and the learned latent embeddings (Figure 2.2, Supplemental Figure 2.2). This 

constraint was not explicitly included in the representation or loss function during training, and 

the model was provided with no information about class relationships. Rather, this is an emergent 

learned quality of the transition of the chemical microenvironment of the sites themselves. The 

model's ability to learn the underlying structure inherent to the dataset supports the utility of our 

representation in capturing relevant information. Additionally, this reasonably organized 

continuous landscape also allows for confidence estimation through proximity to the classifier 

decision boundary, discussed below. 

One potential drawback to MIC, and in fact most machine learning-based approaches, is a 

lack of interpretability of the resulting models, also known as the “black box” problem. We aimed 

to address this and provide further validation of the model through pairwise feature attribution 

with integrated gradients, a technique used to quantify the importance of input features to the 

model’s output.327,328 By calculating the attribution of fingerprints near the centroid of an ion cluster 

in embedding space, we can form hypotheses about which bits in the input fingerprint are most 

salient for a given class. Furthermore, we can use LUNA to trace back these features to their origin 
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in the input structure’s atoms or interactions, allowing us to support the predictions with a 

biophysical rationale (The full details of feature attribution protocol as implemented by L. Ponzoni, 

PhD are provided in the Methods section). 

To investigate the model’s rationale behind the emergent organization by chemical 

microenvironment in the embedding space, we used pairwise attribution to probe the features most 

useful to the model for differentiating between closely related classes. Comparing two 

representative zinc and magnesium fingerprints (4L9P:B:ZN:601 and 4OKE:A:MG:202, 

Supplemental Figure 2.2) provides insight into how the model separates these embeddings 

despite similar charges. The nearby Cys367 sulfur appears in the top features by importance for 

zinc when compared against magnesium along with the short distance to the Asp365 sidechain 

carboxylate group. Visualizing the embedding space by the value of the corresponding fingerprint 

bit (2497) shows strong localization in the zinc cluster, following known properties of zinc binding 

sites and likely contributing to the high confidence prediction for this example (Figure 2.2).329 

Conversely, our analysis showed that salient features for magnesium similarly prioritized the 

slightly longer distances of nearby carboxylates (Asp6, Glu8) and the number of nearby waters, 

commonly observed features of magnesium sites330. Comparing this same zinc against a calcium 

example (3BMV:CA:A:684, Supplemental Fig. 2.2) also yields known important features. In 

addition to the Cys367 and Asp365 recovered against magnesium, the attribution value of bit 3541 

corresponding to the nearby His433 imidazole nitrogen is higher, indicating additional importance 

of this feature for the model in distinguishing calcium and zinc examples (Figure 2.2). In 

comparing the calcium and magnesium fingerprints, both assign high attribution to oxygens in 

their top features, but calcium includes backbone carbonyl oxygens while magnesium again 

includes the Asp6 carboxyl and the AMP phosphate oxygen, agreeing with known properties of 
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these sites.330,331 Interestingly, one feature that consistently returned high attribution was the null 

shell corresponding to the ion itself and any proximal waters and ions. The magnitude of the value 

at this index is consistently high and indicates the number of total sites encoded in the 

representation, a feature that is evidently useful to the model in structuring the learned latent space. 

In addition to predicting the identity of a site, MIC provides a measure of confidence 

through the probability estimates output by the SVC. Because the latent representation transitions 

smoothly between chemically related classes, we can use the proximity to the decision boundary 

to measure confidence in a given prediction. Indeed, we found that our model was well-calibrated 

such that this simple metric showed statistically significant separation between test set predictions 

that agreed and disagreed with the deposited PBD label (P-value<<<1e-10, Figure 2.2, 

Supplemental Table 3). This property could assist the user in interpreting MIC results and 

encouraged us to further investigate these high-confidence disagreeing examples from the test set. 

 

Manual Inspection of Disagreeing Sites 

Following model prediction, we manually reviewed 455 disagreeing test examples and considered 

what the correct label should be based upon several factors including favorable/unfavorable 

interactions, experimental map agreement (x-ray structures were re-refined with the alternative 

density and Fo-Fc maps were inspected in both cases), and coordination geometric features 

(Supplemental Figure 2.3). We assigned each structure a score between -3 and 3, with 

increasingly positive scores denoting more support for the MIC prediction and increasingly 

negative scores support for the original label. We identified 135 sites where we believe the 

provided label in the PDB to be incorrect and MIC accurate in its assignment and 176 sites where 

MIC is likely incorrect and the deposited label is correct. A further 80 sites were scored as 0, 
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reflecting that even after manual inspection and re-refinement it was unclear which of the two 

labels were correct. 64 sites were also labeled as having unusual issues that would prevent proper 

prediction, including extended densities indicating the site represents a larger chemical entity than 

an ion or water, extensive heterogeneity and/or partial occupancy, the presence of an unusual 

multi-ion cluster, or that the likely correct identity of the ion did not fall within the set of predicted 

ions; indicated by a manual label of 30 (Supplemental Figure 2.3). In the manually annotated 

cases where the MIC assignment was correct over the deposited label, the average confidence was 

78.0±17.2%, while the confirmed incorrect MIC predictions had an average confidence of 

61.5±15.4% (Figure 2.2). The revised overall test set accuracy following manual annotation is 

83.3% with an average confidence of 84.8±15.3% for correct predictions (Figure 2.2). The most 

common corrections made by MIC were reassigning spurious sodium and chloride ions to water 

(53 and 18 examples, respectively), followed by reassigning sodium to chloride and calcium to 

magnesium (11 examples) (Supplemental Figure 2.2). Given that 52 of the 258 total sodium sites 

in the test set were changed upon manual review, up to 20% of the sodium in the PDB may instead 

be water and up to 25% of all sodium in the PDB could be misannotated. Manually reviewing 

these examples additionally allowed us to provide an estimated accuracy cutoff by confidence 

(Figure 2.2). Except for sodium, the confidence of correctly predicted examples was significantly 

higher (P-value < 1e-5, Supplemental Table 2.3) than mispredicted examples. Overall, we found 

that a confidence of 70% was a useful cutoff in practice for most classes, and predictions below 

this cutoff typically require further review. Sodium is more challenging to predict confidently, 

likely due to the modest quality of annotated sodium ions in the dataset, and these predictions often 

require additional inspection. 
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Four diverse examples of high-confidence probable mismodeling captured by MIC are 

presented in Figure 2.2, showing sodium to chloride (PDB:1JG8), magnesium to chloride 

(PDB:3S70), chloride to water (PDB:2RL1), and sodium to water (PDB:6JIZ) substitution. In each 

case, there is at least one short-range (3.0-3.2 Å) unfavorable interaction and often several modest-

range (3.5-4.0 Å) unfavorable charge interactions while lacking any opposite charge/partial charge 

interactions that would support the original assignment (for example, carbonyl interactions with a 

cation). None of the three deposited cations has the extended coordination shell or short 

coordination distances one would expect of a cation. Further, experimental difference maps were 

typically improved upon re-refinement with the MIC ion (Supplemental Figure 2.3), providing 

additional support for the corrected label.  

 

Validation of MIC on Structures Derived from Cryo-EM Maps 

As all but 9 structures in the training set derive from x-ray crystallography, we wanted to examine 

how well MIC would work on cryo-EM structures. For this purpose, we examined two disparate 

cases, representing the lower bound of resolution where an ion can still be resolved in a cryo-EM 

map (structures of melanocortin receptor 4 MC4R with bound calcium, nominal reported 

resolutions ranging from 2.6 Å to 3.1Å) and the upper bound of resolutions currently possible with 

cryo-EM (apoferritin, 1.15-1.27Å nominal resolution). In the first case, three different groups have 

determined several structures of MC4R bound to various ligands, resolving in each a spherical 

feature in the map thought by all three groups to be the calcium that has been biochemically 

demonstrated to be necessary for MC4R ligand binding.332–335 Further, some structures also resolve 

water molecules providing additional coordination for calcium ion binding. In the single structure 

from Israeli et al.332 of MC4R bound to setmelanotide (PDB:7AUE, Figure 2.3), MIC correctly 
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identified calcium with 56.0% confidence, followed by sodium with 22.8% and magnesium with 

13.8% confidence. In contrast, in the only other structure with an identical ligand, PDB:7PIU333 

(Figure 2.3), the site was predicted to be either water (63.1%) or sodium (31.0%). This likely 

stems from the unexpectedly long carboxylate-calcium interaction distances modeled (Figure 2.3), 

which at 2.9-3.4Å are substantially longer than the ~2.4Å average one would expect for a 

carboxylate-calcium interaction.300 These coordination distances are similar to those of the other 

structure from Heyder et al., PDB:7PIV333 (Figure 2.3), which MIC predicted to be sodium 

(40.4%) or calcium (35.9%), with the improved classification likely due to the presence of an 

additional carbonyl interaction. All four structures from Zhang et al.334 (PDB:7F53, 7F54, 7F55, 

7F58; Fig. 2.3) are predicted to have a calcium ion at this site with high confidence (96.4%, 77.3%, 

84.9%, 90.8%). Given the biochemical demonstration in Yu et al.335 that this is the site responsible 

for the calcium-dependence of ligand binding, all structures almost certainly did make the correct 

assignment as calcium, a result typically correctly predicted by MIC. In the case of 7PIV and 

particularly 7PIU, the discrepancy can be attributed to unusual coordination modeling, which is 

not unexpected in the ~2.5-3.0Å nominal resolution range where ions can begin to be resolved but 

extremely precise placement of sidechain atoms remains challenging. Thus, MIC in this resolution 

range also provides some level of audit on the overall modeling of the ion/water coordination site. 

 On the other end of the resolution spectrum are the atomic-resolution structures of 

apoferritin determined by several labs,336–339 generally producing superimposable structures 

(Figure 2.3), although not without some disagreements in ion modeling. In four examples 

(PDB:7A4M, 7RRP, 7A6A, 8J5A) a common coordination site near glutamate 27 and 62 is 

modeled as either sodium (7A6A, 8J5A) or zinc (7A4M, 7RRP) (Figure 2.3). Interestingly, in 3 

of these cases (7A6A, 8J5A, 7A4M), MIC suggests a 70% or greater probability of zinc, while in 
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7RRP, where this site is modeled as zinc, MIC predicts a 71.2% chance of magnesium. Although 

the generally short coordination distances (1.9-2.1 Å) of two glutamates and a histidine support 

the choice of zinc in 7A4M, 7A6A, and 8J5A, the slight outward rotation and imidazole flip of 

histidine 65 in 7RRP weakens the case for zinc substantially as this interaction is abolished (it 

should be noted that in the case of 7A4M there is an alternative conformation for histidine 65 that 

matches 7RRP, however MIC only considers the first alternate conformation for a residue). 7RRP 

also includes several other ions not found in the other structures, including a zinc interacting with 

arginine 22 that, given the mismatched charges, should likely be a water or chloride and is 

predicted by MIC as water with 92.8% confidence (Figure 2.3). A sodium ion is also modeled 

interacting with the same arginine in 7RRP (Figure 2.3), similarly predicted by MIC to be a water 

with 97.8% confidence. These structures also have numerous waters modeled, and at this 

extremely high resolution, it is even possible at some sites to observe the slight deformation of the 

spherical densities due to the water hydrogens, providing experimental evidence for the water in 

some cases. Examining the 110 water molecules modeled in 7A4M, 106 (96.4%) are predicted to 

be water by MIC with an average confidence of 87.8±13.4%. Two sites are labeled as chloride at 

modest confidence (51.8% Cl, 47.3% water for A:HOH:380 and 78.9% Cl, 19.3% water for 

A:HOH:391), which is possible given their interactions but there is not enough evidence for the 

swap. The other two discrepant sites are immediately adjacent to the zinc site, and are also assigned 

to be cations (sodium and magnesium) at low confidence (43.7-49.8%). This is a consistent 

pathology we have observed with MIC for proteins, which is that water molecules that are part of 

the coordination sphere of a cation are often annotated as cations with low confidence 

(Supplemental Figure 2.2). This likely stems from the fact that the model is blinded to the identity 

of the other nearby sites, and waters that are part of a cation coordination shell often have relatively 
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short distances to several anionic side chains and potential ion sites themselves. To account for 

this, MIC warns when a site is part of a dense cluster of other sites to examine the central, high 

confidence site as the probable ion. Overall, the MIC method performs well for the cryo-EM 

structures, especially those obtained at very high resolution. 

 

RNA/Ribosomal structure evaluation 

We wanted to examine the performance of MIC on structures of RNA, where ion binding is also 

pivotal,288 but only 72 of the 10,364 individual structures in the prevalent-ion training set contained 

RNA or RNA/protein complexes, corresponding to 122 ion/water sites. In general, MIC was still 

able to perform reasonably well on RNA-bound ions in simple high resolution RNA structures, 

likely correctly predicting 8/9 ions in 8D2B, 2/2 ions in 5HNJ, and 5/5 non-potassium ions in 

1L2X (Table 2.1). This includes in some cases probable corrections, for example predicting the 

three sodium ions in 1L2X to have a strong potential to be water (Figure 2.4). This result is 

consistent with the overall long coordination distances for a sodium (generally 2.7-2.8 Å vs 2.4 Å 

expected) and the lack of more than 2 definitive hydrogen bond acceptors or 4 interaction partners 

total. However, where the model has more difficulties in RNA-bound structures are water 

molecules, which tend to be overpredicted as cations. For 1L2X, MIC had 73.8% accuracy over 

the 160 waters with 75.6±1.6% confidence for correct assignments and 56.5±0.13% confidence 

for incorrect, demonstrating both less accurate and less confident guesses, with every 

misassignment either sodium or magnesium. Indeed, even the sodium ions in 1L2X likely correctly 

predicted to be water only have ~50% confidence.  

This trend persists when evaluating MIC on ribosomal structures. In the case of 8CGV, the 

bacterial 50S ribosome at 1.66 Å resolution, MIC correctly predicts 212/219 magnesium with an 
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average of 94.5±8.3% confidence (although some, such as MG:V:102 and MG:A:3263 which are 

predicted to be water, are likely mismodeled, Figure 2.4), the sole zinc correctly with 99.9% 

confidence, but only 4,227/6,570 water molecules with an average confidence of 70.7±16.0%. We 

anticipate this is likely due to the relative paucity of training data (only 56 waters in the training 

set are from RNA-containing structures) and will improve with further model training on 

additional deposited structures.  

 

Extended set model training, performance, and manual review 

Another potential pitfall highlighted in the RNA work is the lack of inclusion of potassium or other 

less well-represented ions in the PDB that nevertheless can be found in structures, as the prevalent-

ion model is incapable of producing the correct answer in these cases. We trained an additional 

model that includes potassium, iron, manganese, bromide, and iodide in addition to the prevalent 

ions, although there were less than 1,000 examples of each of these new classes (Supplemental 

Figure. 2.1, Supplemental Figure 2.4). This extended-set model achieves an initial accuracy of 

69.3% against the deposited test labels and displays similar results to the prevalent-ion model in 

embedding space organization and accuracy by class. The embedding space is again organized 

primarily by charge as visualized by the UMAP and confirmed by PCA, transitioning smoothly 

from the halides to water, to monocations, and ending with the transition metals (Figure 2.5, 

Supplemental Figure 2.5). Mis-predictions on the test set were often chemically reasonable, such 

as predicting bromide as either chloride or iodide, iron as zinc, or manganese as magnesium 

(Supplemental Fig. 2.4). Among the added classes, iodide shows high AUROC and AUPRC 

values as well as separation between the confidence values of agreeing and disagreeing predictions 

(Supplemental Figure 2.4).  
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 Similar to the prevalent set, we manually reviewed the set of discrepant ions in the extended 

test set using the protocol described above (Supplemental Figure 2.5). This included 415 

examples that were predicted to belong to a class different from the deposited label by both the 

prevalent and extended models as well as an additional 161 disagreeing sites belonging to the 

added extended classes. We observed a number of similar trends, such as a large number of sodium 

sites and 12 of the 86 potassium sites corrected to water in our dataset, suggesting that potassium 

may also be misannotated throughout the PDB (Figure 2.5, Supplemental Figure 2.5). Even 

when the MIC prediction is incorrect, it can often still help identify likely changes, such as 

predicting the magnesium in 4AK8 to be a bromide (63.3% confidence), while the true identity is 

likely chloride. The final accuracy of the extended set model following manual review was 76.3%, 

and confidence was once again a strong measure of correctness for many classes in the prevalent 

set (zinc, magnesium, water, calcium) and newly introduced classes (potassium, iodide, iron, and 

bromine) (Figure 2.5). We observe worse chloride performance compared to the prevalent-only 

model, likely from the inclusion of additional halide classes that remain difficult to differentiate 

due to the low number of training examples. Despite this overall slight decrease in accuracy from 

the prevalent-only model, it is still able to successfully classify sites belonging to many different 

ions and can be used when one of these additional ion classes is likely. 

 

Comparison with existing methods 

The most ubiquitous method currently used to assign identities to ion sites is the CheckMyMetal 

(CMM) web server.299–302 CMM uses a combination of known binding site properties to evaluate 

each input structure. Each property (atomic contacts, valence, and geometry) contributes a score 

between 0 and 2 resulting in a maximum score of 6 for a given ion identity at a particular site. The 
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score of each potential metal is reported, often leading to multiple ions receiving comparably high 

scores. During manual inspection of the disagreeing test examples, we ran CMM on all structures 

to identify cases where CMM and MIC differ in either their predicted class or from the deposited 

label in the PDB.  

CMM and MIC produce concordant results for many sites. In 3FOB, MIC predicts the 

deposited sodium ion to be a magnesium (88.6%), consistent with the respective scores of 4 and 6 

for these metals from CMM, although cobalt and manganese also receive a CMM score of 6 

(Figure 2.6). Similarly, both MIC and CMM predict the calcium site in 1XPH to be a magnesium, 

receiving a CMM score of 6 and a MIC confidence of 82.4%. In sites where manual inspection 

revealed the deposited metal was likely water or chloride, CMM generally gave poor scores for 

either all metals or all metals except potassium. The sites of magnesium to chloride corrections in 

4KP1, 3S70, and 3A4X, and the magnesium to water correction in 5VX0, receive a 0 from CMM 

for all ions, but no additional distinction between these cases is provided as CMM is specifically 

designed for validating metals. Additionally, there are cases where MIC likely identifies the correct 

label while CMM does not, notably in correcting ions to water: 6RJ4 is one such example 

containing a deposited sodium ion. CMM gives this site a potassium score of 6, followed by a 

sodium score of 4, showing significant disagreement with the high-confidence MIC water 

prediction (95.8%) that was accepted upon manual review, as re-refinement with water at this 

position improves both the difference map and interactions at this site (Fig. 2.6b). Conversely, 

because CMM predicts the output for multiple classes, it can in some cases succeed where MIC 

fails; the identity of the magnesium ion in 2ICJ was confirmed experimentally340 and agrees with 

the high CMM assignment of 5 for magnesium, while MIC predicts this site to contain a high-

confidence zinc ion, which only scored a 4 by CMM. Finally, CMM and MIC have distinct output 
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classes that make each more suitable for specific cases. CMM predicts the score for several metals 

that are not in the MIC class set, including copper, cobalt, and nickel, while MIC includes an 

explicit prediction for water and halides. 

Another tool with some overlapping use is Undowser, which is intended to find waters that 

clash with nearby atoms as these could indicate that the site would better be modeled as a metal. 

We ran MIC and Undowser on a selection of identity-blinded waters and ions to compare the 

results (see Methods). Like CMM, Undowser often agrees with MIC predictions. Both tools 

identify the zinc sites in 2C1I (A:1465,1466) with a MIC zinc confidence of 98.6% and 91.4%, 

and an Undowser cumulative clash severity score of 2.797 and 2.121, respectively, each 

comprising of multiple >0.5Å polar clashes strongly indicating the presence of an ion (Figure 2.6). 

Similarly, the magnesium ion in 4RKQ is caught by both tools (MIC: 98.1%, Undowser: 2.098). 

Even when MIC is unable to predict the correct identity, it is often able to distinguish what should 

be an ion binding site, such as the iron sites in 1YFU, predicted as zinc by the MIC prevalent-only 

model with 98.6% confidence and an Undowser clash severity score of 1.985. MIC does show a 

tendency to over-predict ions compared to Undowser, though similar to the RNA/ribosomal 

predictions these assignments typically have a lower confidence (57.1±15.1%) than water 

predictions that agree with Undowser (85.5±13%), helping the user handle these cases. Undowser 

and MIC both fail where the modeling is questionable, as is the case for 6E27:C:HOH:201, which 

both MIC and Undowser flag with high zinc confidence and clash score (88.7%, 1.854Å). 

However, 6E27 shows no major positive difference density and lacks density in the 2Fo-Fc map 

for much of the protein at this site (Figure 2.6). Undowser provides information about the charge 

of clashing atoms that can assist the user in interpreting the results, but does not explicitly attempt 

to predict the true ion identity. Undowser does not calculate any clashes for halides such as the 
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chlorines in 3MUJ and 4RKQ, which are predicted correctly by MIC. Ultimately, these are 

complementary but not overlapping methods of confirming correct modeling, and users should 

choose the tool that best aligns with their specific requirements. 

Discussion 

MIC is a novel method to classify water/ion sites in biomolecular structures and provide 

confidence estimation in these predictions. It uses structured embeddings from a deep metric 

learning model to generate accurate predictions for structures from both x-ray crystallography and 

cryo-EM. Notably, this representation includes no angle information and only coarse distance 

information through constructing the initial microenvironment fingerprint by shell expansion. 

Despite this, our results show that the fingerprints contain sufficient data about the atomic 

environment to correctly distinguish ions in over 80% of our observed cases. We demonstrate that 

MIC achieves incredible accuracy for extremely high-resolution cryo-EM structures. Furthermore, 

the results for MC4R suggest that ambiguity and inaccurate assignments by MIC may result from 

problematic protein modeling. The output probabilities can be used to estimate model confidence, 

further enabling MIC’s use as a validation tool. We use MIC to identify mismodeled ions 

throughout the PDB and show that the tool can be used to evaluate the modeling of coordinating 

side-chains in low-resolution structures when the desired ion identity is known. Finally, we show 

that MIC performs comparably to field-standard approaches and offers further utility over these 

methods by including additional output classes.   

There are limitations to MIC’s use. Our dataset was restricted to ions for which at least a 

few hundred high-quality structures exist in the PDB, limiting the possible classes we could 

include when training the deep-learning model and SVC portions. As mentioned previously, there 

are concerns about the quality of the training dataset, specifically the inclusion of misannotated 
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ions from the PDB. Sodium in particular achieves lower performance and even correct sodium 

predictions are often low confidence, likely due to mislabeled sodium sites introducing noise into 

the dataset. MIC also tends to predict waters that are very close to a cation and participate in a 

larger coordination cluster as cations, necessitating an additional flag to account for these cases. 

MIC is designed to work for sites centered in experimentally determined density, and is not 

expected to give accurate results for sites with few or no interactions. 

The current MIC workflow uses a deterministic hash function to convert the site 

microenvironment to a fixed-length fingerprint as input to the deep-learning model. This 

introduces the potential for bit collisions that occur when multiple features hash to the same index 

in the fingerprint, complicating both model training and feature attribution analyses. A future 

expansion on this method could replace this fingerprinting method with a task-specific 

representation learned from this proximity graph, similar to those used for molecular property 

prediction69,105,164, further enabling downstream classification and limiting the problem of bit 

collisions. The metric model was trained using a triplet loss to maximize inter-class distances and 

successfully learns class relationships, but this could be explicitly enforced using a hierarchical 

loss function. As new structures are added to the Protein Data Bank and ion sites are subject to 

more careful validation and scrutiny, this additional training data will further improve MIC’s 

accuracy for future iterations. 

Methods 

Dataset Curation 

Our final dataset consisted of 23,101 examples split across 11 classes. In decreasing order of 

number of examples: water, magnesium, sodium, zinc, calcium, chloride, potassium, manganese, 

iodine, iron, and bromine. Candidate structures were restricted to < 2.0 Å resolution except for 
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potassium, bromide, and iodide, which were relaxed to < 3.0 Å. Structures were restricted to have 

no more than 95% sequence homology to another example in the dataset to avoid 

overrepresentation. Only the first example of each ion type and a single water was taken from a 

given structure to prevent redundant symmetry-related ions being added to the dataset and potential 

modeler-related biases. Finally, to prevent the inclusion of water molecules and/or ions modeled 

into empty space with no interaction partners, sites were filtered to have at least 2 other atoms 

within 3.5 Å. The full list of ions and their associated counts and resolutions is provided in 

Supplemental Figure 2.1.  

  

Density Fingerprint Representation 

We represented each density using a modified version of the interaction fingerprint available in 

the LUNA toolkit. LUNA fingerprints were developed to capture the interactions at the protein-

ligand interface of a bound complex. This is accomplished by assigning biochemical properties of 

individual atoms and atomic groups, then defining interactions as pairs of atoms/atomic groups in 

proximity that meet certain geometric and chemical properties. The ligand properties and final list 

of intermolecular interactions are then converted into a fixed length vector using the MurmurHash3 

algorithm, referred to as a fingerprint.61,341 

We made two crucial modifications to the generation protocol of these interface 

fingerprints for our use case. First, to ensure that any previous density assignment was not encoded 

in the representation, trivializing any downstream classification task, the initial atomic 

representation for each density of interest and nearby spherical densities was programmatically  

set to a vector of zeros. All atoms belonging to the protein or nearby small molecules are given 

their standard initial feature set (described in more detail below). The second modification was 
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limiting all calculated interactions to be proximal-only, defined as simply being located between 

2Å and 6Å from the ion. Proximal interactions are unique in that they do not rely on the chemical 

features of either participating atomic group, and thus the resulting representation continues to be 

identity-agnostic. The final fingerprint is effectively an identity-blinded representation of the 

atomic environment surrounding the density of interest. 

  

Initial atomic features and included interactions 

LUNA provides extended interaction fingerprint (EIFP) and functional interaction fingerprint 

(FIFP) featurization options for the user during fingerprint generation. EIFPs use the Daylight 

atomic invariants for the initial atomic feature set, consisting of 7 fields: number of heavy atom 

neighbors, valence minus the number of bound hydrogens, atomic number, isotope number, formal 

charge, number of hydrogen neighbors, and aromaticity.50 Functional fingerprints use 

pharmacophore-like features, such as whether an atom is aromatic, hydrophobic, or a hydrogen 

donor or acceptor. Supplemental Table 2.1 contains the full list of initial atomic features for each 

fingerprint type. In addition to these options, we also considered whether or not to include 

interactions between neighbors in our representation versus a “pruned” representation with 

interactions limited only to those between the density of interest and neighbors. We evaluated the 

four fingerprint types (non-prune/eifp, prune/eifp, non/prune-fifp, prune/fifp) by generating the 

specified fingerprint type and training an SVC to predict ion identity. We found that prune-eifp 

fingerprints performance exceeded that of the other types, especially in multi-class classification 

tasks, and used that type for all presented work (Supplemental Figure 2.1). 
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Shell Number and Radius 

During the fingerprint creation process, interactions in shells around the ligand atoms are 

iteratively converted to fixed integers, similar to the process for generating molecular Morgan 

fingerprints.61 The user sets the size and number of these shells during creation, with the default 

LUNA values being 2 shells of 6Å radius step each. We hypothesized that these values, optimized 

for longer intermolecular protein-ligand interfaces, would not provide sufficient granularity to 

differentiate between ions. To address this, we explored a range of different shell radii and depths 

by randomly selecting up to 2000 examples from each ion class in the dataset, generating 

fingerprints with the specific radii and number of shells, and training an SVC342 with 5-fold cross-

validation to predict ion identity (Supplemental Figure 2.1). Accuracies ranged from 0.44 to 0.63 

for all fingerprint types, with a general rule that the product of the radius and number of shells 

should be between 3Å and 5Å for best performance. Lower radii performed better overall, 

suggesting that the additional discrimination provided by finer shells is useful for downstream 

identity classification, though this does make the representation more sensitive to slight changes 

in atom position. All final fingerprints were generated with 18 shells of radius step 0.25Å, 

comprising a total volume of 4.5Å around each atom in the proximity graph. Count fingerprints of 

length 4,096 were used for all experiments, consistent with the original LUNA manuscript.  

 

Training and test datasets of curated densities for MIC 

Each site in our curated dataset was randomly assigned to training or testing with a 90%/10% split. 

We chose random splits because of the strict criteria during dataset curation, limiting the similarity 

between all examples. All ions belonging to a class with fewer than 1000 examples were dropped 

for the prevalent-only models, resulting in final datasets of 18,420 training and 2037 testing 
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examples. The extended set included all of these sites plus examples from potassium, manganese, 

iron, bromide, and iodide, bringing the total number of training examples to 20,801 with 2,300 

examples used for testing. Training and testing splits were consistent across all fingerprint types 

and hyperparameter optimization. 

 

Model Training 

We present two metric learning networks one trained on the prevalent set of ions and one trained 

on the extended set. Models were trained using the Pytorch Metric Learning library with triplet 

margin sampling and triplet loss.343,344 Hyperparameter optimization was performed with the 

Optuna library to evaluate the effect of learning rate, dropout, loss and miner margins, and 

embedding dimension.345 The full list of evaluated hyperparameters, ranges, and final values are 

displayed in Supplemental Table 2. Models were optimized to maximize two downstream 

metrics: the average area under the receiver operating characteristic (ROC) curve and the F1-score 

for a linear-kernel SVC trained on the embeddings from the metric learning model. Due to 

significant class imbalance, each batch was generated by weighted random sampling with 

replacement, resulting in approximately balanced batches. The architecture of all final models 

consists of 1 hidden layer of 4000 neurons each with output size of 32 for the resulting embeddings. 

The model was trained for 1000 epochs (Supplemental Figure 2.2).  

 

Feature Attribution 

Pairwise feature attribution was calculated between representative examples for each class using 

a modification of the popular integrated gradients technique implemented in the Captum 

library.327,328 The specific examples were chosen by selecting those close to the cluster centroid for 
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a given class in the learned embedding space. A baseline fingerprint of zeroes was used for all 

calculations. Following default global attribution rules, the resulting attribution vector is multiplied 

by the input fingerprint. While this is known in practice to result in cleaner attribution features and 

improve the ease of interpretation of the results, it is an important limitation to note as only features 

that are turned “on” for a given fingerprint will be assigned a non-zero attribution value. The 

features corresponding to the top ten bits with the highest attribution for both comparisons are 

available in Supplementary Table 2.3. 

 

 Undowser Comparison 

The comparison with Undowser was performed by randomly selecting structures from the PDB 

that fit our resolution requirements and contained at least one non-water density, converting all of 

the ions to water, and running Undowser to determine if the clashing “waters” matched with the 

non-water MIC predictions.  

 

Statistical Analysis 

All statistical analyses performed were two-sided t-tests for independence, as implemented in the 

Scipy346 statistics module. The full list of comparisons, number of examples, and P-values are 

provided in Supplemental Table 2.3. 

Data and Code Availability 

The complete source code for MIC, all training data, trained models, and associated tutorial Jupyter 

Notebooks are freely available under the open-source MIT license at 

https://github.com/keiserlab/metric-ion-classification.  

https://github.com/keiserlab/metric-ion-classification
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Figures 

 

Figure 2.1.  Overview of MIC workflow. 
MIC is a multi-step ML workflow for classifying experimental water and ion sites. a, Ion 
fingerprints are generated by first constructing a proximal interaction graph containing all atoms 
within 6A for the density of interest. The fingerprint generation protocol iteratively captures local 
chemical information by hashing the atomic invariants and interactions within consecutive shells 
originating from each atom. The example structure shown here is 4KU4:A:Mg:302. b, The 
fingerprints are embedded into a lower dimensional embedding space by a metric learning model 
consisting of a 4096-dimensional input layer, a single hidden layer with 4000 neurons, and an 
output layer of 32. ReLU is an activation function x=max(x,0). c, The final step of MIC is using 
an SVC on the generated fingerprints to output probabilities for each class. The class with the 
highest probability is taken as the predicted label. 
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Figure 2.2. MIC learned embeddings, performance, and validation. 
 a-b, UMAP visualization of training and test set embeddings from the MIC prevalent-set model, 
colored by deposited class. c, Confusion matrix of the deposited labels and MIC predicted labels 
for the test set. d, UMAP visualization of training set embeddings, colored by the value of the bits 
2497 (green) and 3541 (yellow), corresponding to the presence of a cysteine sulfur and imidazole 
nitrogen, respectively. The triangles indicate the position of specific examples used to perform 
feature attribution:4OKE:A:Mg:202 (green), 3A09:A:Ca:601 (yellow), and 4L9P:B:Zn:601 
(pink). e, Comparison of the confidence values for MIC predictions that agree vs disagree with the 
deposited label. f, Comparison of confidence values for manually inspected disagreeing examples 
with accurate vs inaccurate MIC-predicted labels. g, Confusion matrix of revised labels and MIC 
predictions following manual review of disagreeing test examples. h, Violin plots of the 
confidence of correct vs incorrect MIC test set predictions, split by class. i-l,  Examples of 
disagreeing annotations with probable mismodeling. i, Sodium in 1J86 corrected to a chloride, 
97.7%  confidence. j, Magnesium in 3S70 corrected to chloride, 96.5% confidence. k, Chloride in 
2RL1 corrected to water, 93.7% confidence. l, Sodium in 6JIZ corrected to water, 96.0% 
confidence. Red dashed lines depict unfavorable interactions in the originally modeled structure.  
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Figure 2.3. MIC predictions on Cryo-EM structures of MC4R and apoferritin. 
a-h, MC4R Ca2+-coordination site in complex with various ligands: setmelanotide (SET, a,b), 
afamelanotide (AFA, c), bremelanotide (BRE, d), THIQ (e), NDP-α-MSH (f), and α-MSH (g). i-
k, Superimposed ion coordination sites in four apoferritin structures: 7A4M (green), 7RRP 
(purple), 7A6A (teal), 8J5A (yellow). j, For three structures, the ion is predicted to be zinc with 
confidence exceeding 70%. The 7RRP outwardly turned histidine imidazole shifts the prediction 
from zinc to a high confidence magnesium. k, Superimposed ion coordination site in four 
apoferritin structures: 7A4M (green), 7RRP (purple), 7A6A (teal), 8J5A (yellow). An additional 
site is shown in the top left, assigned sodium in 7RRP and water in all other structures. 
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Figure 2.4. Predictions on RNA/Ribosomal structures. 
a, Structure of viral RNA pseudoknot (PDB: 1L2X). b-d, Sodium sites with either low-confidence 
water (b,c) or low-confidence sodium (d) MIC predictions. e,f, Potentially mismodeled 
magnesium ions in PDB 8CGV, predicted to be water with high confidence. e, MG:V:102. f, 
MG:A:3263. 
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Figure 2.5. MIC Extended ion set performance and manual review. 
a-b, UMAP visualization of training (a) and test (b) set embeddings from trained extended-set 
MIC model. c, Confusion matrix of MIC predictions vs revised label following manual review. d, 
Violin plots of the confidence of correct vs incorrect MIC test set predictions by class. e, Probable 
mismodeling of a potassium site in PDB2XEX, predicted as water by MIC with 87.7% confidence. 
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Figure 2.6. MIC, CheckMyMetal, and Undowser performance examples. 
a, Example of CMM and MIC both correcting sodium (3FOB:A:Na:405) to magnesium (MIC 
confidence: 88.9%, CMM Mg Score: 6). b, Example of a site  (6RJ4:A:Na:305) MIC likely 
predicts correctly as a water (95.8% confidence) over CMM, which assigns a score of 6 for 
potassium and 4 for five other metals.  c, Zinc coordination site (2C1I:A:Zn:1465) identified by 
both MIC and Undowser with high confidence (MIC zinc confidence: 98.6%, Undowser clash 
score: 2.797). d, Example of Undowser and MIC results at a questionably modeled site 
(6E27:C:HOH:201). This site likely does not contain either an ion or water, but is predicted to be 
an ion by both Undowser (Clash score: 1.854) and MIC (zinc confidence: 88.7%). 
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Table 2.1. Summary of RNA/Ribosome structure performance. 
* indicates structures for which all non-water sites were manually examined 
  + averages shown, mean ± standard deviation 
 

          Ions       Waters   
PDB Class Res 

(Å) 
  Correct 

(%) 
Correct 

Confidence+ 
Incorrect 

Confidence+ 
  Correct 

(%) 
Correct 

Confidence+ 
Incorrect 

Confidence+ 
5HNJ* RNA 1.24   2/2 

(100%) 
0.997±0.02 -   143/248 

(57.7%) 
0.688±0.16 0.612±0.16 

8D2B* RNA 1.44   8/9 
(88.9%) 

0.703±0.19 0.400±0   235/319 
(73.7%) 

0.738±0.15 0.576±0.12 

1L2X* RNA 2.25   5/5 
(100%) 

0.920±0.10 -   112/148 
(75.7%) 

0.756±0.16 0.560±0.13 

8CGV Ribosome 1.66   213/220 
(96.8%) 

0.946±0.08 0.593±0.22   4227/6570 
(64.3%) 

0.707±0.16 0.607±0.18 

7ZHG Ribosome 2.25   85/96 
(88.5%) 

0.809±0.18 0.511±0.12   1533/2083 
(73.6%) 

0.737±0.16 0.578±0.15 

1YHQ Ribosome 2.40   114/190 
(60%) 

0.743±0.20 0.629±0.16   5573/7763 
(71.8%) 

0.724±0.16 0.557±0.14 

3CC2 Ribosome 2.40   133/224 
(53.4%) 

0.765±0.21 0.634±0.17   5783/7823 
(73.9%) 

0.729±0.16 0.559±0.15 
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Supplemental Figures 

 

Supplemental Figure 2.1. MIC dataset preparation and exploration. 
a, Class distribution used for training and testing MIC models. Extended-set only ions are marked 
with *. b, Distribution of the resolutions of the structures each site was extracted from, colored by 
the deposited label. Potassium, chloride, and bromide (and matching waters) were restricted to 
<3Å, all other classes were restricted to <2Å. c-f, Heatmaps of the accuracy of an SVC trained 
directly on fingerprints generated with a given radius and shell number for the evaluated 
fingerprint types. c, Prune/ EIFP. d, Non-prune/EIFP. e Prune/FIFP. f, Non-prune/FIFP.  
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Supplemental Figure 2.2. MIC prevalent-ion set additional results. 
a, Training and validation loss. b, F1-score and micro-AUROC of SVC trained on intermediate 
training set embeddings and labels, evaluated on validation set. c, Average distance in 32-dim 
latent embedding spaces between classes as confirmation of the trends observed in the Fig. 2 Low-
dimensional visualizations. d-f, PCA plots for of the first 6 dimensions by variance explained, 
shown alongside the axis labels. g, Confidence of agreeing vs disagreeing predictions and 
deposited labels of prevalent-ion test set, split by class. h, ROC curves of individual classes and 
micro-average of MIC predictions on the prevalent-ion test set. i, PRCs of individual classes and 
micro-average of MIC predictions on the prevalent-ion test set. j-l, Sites used to perform feature 
attribution analysis. j, 4L9P:B:ZN:601. k, 4OKE:A:MG:202. l, 3BMV:CA:A:684.  
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Supplemental Figure 2.3. Manual review of test set discrepant sites. 
a, Confidence of each discrepant example vs the manual review value. Manual review values 
ranged from -3, indicating an incorrect MIC prediction to 3, indicating a correct MIC prediction. 
0 marks examples for which it was unclear which of the two labels was correct, and 30 marks sites 
with other issues preventing proper prediction. b, Heatmap of corrected sites; deposited label is 
shown on the x-axis and the revised MIC-predicted label is shown on the y-axis. Each cell is 
labeled with the count of sites. c, Example of common MIC pathology of predicting coordinating 
waters as cations. d-e, Examples of structures that received a 0 and a 30 during manual review. (d) 
4DWD. e, 4JO5. f-g, Re-refinement of difference maps contoured at +/-3σ with deposited (top) 
and MIC-predicted label (bottom). F, 1J68. (g) 3S70.  
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Supplemental Figure 2.4. MIC extended set additional results. 
a, Training and validation loss. b, AUROC and F1-score during training. c, Confusion matrix of 
test set deposited and predicted label. d, Agreeing vs discrepant prediction confidence, pre-
revision. e, Agreeing vs discrepant prediction confidence by class, pre-revision. f-h, PCA plots of 
learned latent embeddings, extended set. i, Distance between classes in embedding space. j,  ROC 
curves of individual classes and micro-average of MIC predictions, extended set. k, PRCs of 
individual classes and micro-average of MIC predictions, extended set.  
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Supplemental Figure 2.5. Manual review of discrepant sites from extended test set. 
a, Confidence of each discrepant example vs the manual review value. Manual review values 
ranged from -3, indicating an incorrect MIC prediction to 3, indicating a correct MIC prediction. 
0 marks examples for which it was unclear which of the two labels was correct, and 30 marks sites 
with other issues preventing proper prediction. b, Heatmap of corrected sites; deposited label is 
shown on the x-axis and the revised MIC-predicted label is shown on the y-axis. Each cell is 
labeled with the count of sites.  
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Supplemental Table 2.1. Initial features for each atom by type and fingerprint type.  
 

Type Descriptors Length 

Ions and waters [0, 0, 0, 0, 0, 0, 0] 7 

Extended Interaction 
Fingerprint (EIFP) 

[# Heavy Atom Neighbors, 
Valence - # Hydrogen Neighbors, Atomic number, 
Isotope number, Formal Charge, # Hydrogen 
Neighbors, Is_In_Ring] 

7 

Functional Interaction 
Fingerprint (FIFP) 

Aromatic, Acceptor, Donor, Hydrophobe, 
Hydrophobic, Negative, Positive, Negatively 
ionizable, Positively ionizable, Halogen donor, Metal, 
Lumped hydrophobe, Weak donor, Weak acceptor, 
Electrophile, Nucleophile, Chalcogen donor, Amide, 
Atom 

≤ 19 
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Supplemental Table 2.2. Hyperparameters explored and final values. 
 

Hyperparameter Options Final 

hidden_layers [1,4] 1 

n_neurons 1000,2000,3000,4000 4000 

embedding_dim 2, 8, 16, 32 32 

learning_rate [1e-8, 1e-4] 1e-7 

dropout [0.05, 0.4] 0.35 

weight_decay [0, 0.1] 0.005 

loss_margin [0.01, 0.1] 0.06 

miner_margin [0.1, 0.3] 0.2 
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Supplemental Table 2.3. P-values and number of sites for all statistical analyses.  
Statistically significant comparisons are indicated. 
 

Comparison Number 
of 

examples 

p-value t-statistic Degrees of 
Freedom 

Effect Size 
(Cohen’s d) 

Confidence of agreeing 
vs disagreeing 
predictions, initial* 

2037 4.802e-83 20.227 2035 1.00 

Confidence of agreeing 
vs disagreeing 
predictions, revised* 

1893 8.596e-74 18.997 1891 2.46 

Confidence of agreeing 
vs disagreeing water 
predictions, revised* 

975 8.166e-49  15.540 973 1.42 

Confidence of agreeing 
vs disagreeing 
magnesium predictions, 
revised* 

245 3.450e-10 6.547 243 1.17 

Confidence of agreeing 
vs disagreeing sodium 
predictions, revised 

151 0.178 -1.353 149 -0.22 

Confidence of agreeing 
vs disagreeing zinc 
predictions, revised* 

193 5.952e-17 9.208 191 2.23 

Confidence of agreeing 
vs disagreeing calcium 
predictions, revised* 

165 1.536e-06 4.990 163 1.35 

Confidence of agreeing 
vs disagreeing chlorine 
predictions, revised* 

164 3.197e-07 5.333 162 1.01 
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CHAPTER 3: MACHINE LEARNING-GUIDED VISUAL INSPECTION OF 

MOLECULAR DOCKING RESULTS WITH AUTOPARTY 

Abstract 

Human inspection of potential drug compounds is a crucial step in the virtual drug screening 

pipeline. However, there is a pressing need to accelerate this process as the number of molecules 

humans can realistically be expected to examine is extremely limited relative to the scale of virtual 

screens. Furthermore, medicinal chemists are often inconsistent in evaluating different poses, and 

there remains no standard way of recording annotations. We propose Autoparty, a tool to address 

both of these potential problems. Autoparty builds on recent work in active learning applications 

for drug discovery to facilitate human-in-the-loop training of models that recapitulate human 

intuition. We use a variety of uncertainty quantification techniques to present the user with the 

most informative example for model training, limiting the amount of necessary labels. 

Additionally, these annotations are saved into a database for persistence that can be later exported 

for further quantification of these medicinal chemical rules. 

Introduction 

Computer-aided drug design (CADD) techniques are often utilized in the early stages of drug 

discovery to identify lead molecules with high predicted binding affinity against a specific 

target.347,348 Virtual screening (VS) programs such as DOCK127,128 and Glide129 computationally 

dock and score libraries of compounds, producing ranked lists of molecules and associated 

predicted complex structures. The top-scoring molecules are typically clustered by chemical 

structure and often filtered against known binders to discover novel chemotypes. Additional 

filtering steps based on interaction fingerprints or alternative scoring methods may be applied 
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during this step as well. The remaining best-scoring cluster heads are visually inspected (“hit-

picked”) by expert medicinal chemists to evaluate the quality of the generated poses before 

selecting final compounds for experimental testing (Figure 3.1).349,350  

 This current VS pipeline suffers from several bottlenecks where potential binders may be 

filtered out, leading to false negatives. The first is docking itself, wherein good candidate 

molecules either score poorly by the running function or are not included in the screen at all. The 

latter problem is only growing more relevant as the size of available molecular libraries increases 

into the order of billions and beyond.52,53,351 Several ultra-large screens have evaluated multiple 

hundreds of millions to billions of molecules,316,352–355 but docking the total available chemical 

space remains intractable.356 Efforts to accelerate docking programs for brute force screening rely 

on parallelizable operations performed with large supercomputing clusters and are thus 

inaccessible to the wider research community.357–359  

One alternative approach to address this issue is active learning (AL).360,361 Active learning 

is a semi-supervised machine learning technique for training models from a minimal amount of 

labeled data, particularly when labels are expensive. In AL, the model is first trained on a random 

subset of the data. The model then predicts labels for and selects examples from the remaining 

unlabeled data for submission to the “oracle” to obtain true labels. These examples and labels are 

then added to the training set for the next iteration (Figure 3.1). Intuitively, this approach can 

identify the most informative examples at each iteration, allowing for an accurate model with 

minimal data. Often, the “oracle” is a human, hence why this is sometimes referred to as human-

in-the-loop training. In virtual screening, AL has been used to determine which regions of chemical 

space to dock from large libraries. The oracle is the docking program itself, and the model is trained 

to select compounds to build and dock. Yang et al.175 demonstrated the success of this approach 
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across multiple receptors both retrospectively and prospectively for UCSF DOCK. Graff et al.176 

applied AL to screens from small libraries (Enamine 10K) up to ultra-large libraries (>100M). 

They showed improved recovery of top hits over random acquisition for both Glide and DOCK 

scores. Thompson et al.177 explored various AL parameters, including acquisition function, number 

of molecules sampled at each iteration, ML architecture, and initial sampling strategy, for 

predicting the output of free energy perturbation (FEP) calculations. Their best-performing models 

recovered 75% of the top 100 molecules from running FEP on 6% of the dataset, representing a 

substantial decrease in the required number of calculations. These studies suggest that AL is a 

useful paradigm for learning complex scoring functions.  

 Another less studied rate-limiting step is the final human inspection stage, wherein 

medicinal chemists manually evaluate predicted structures. A review of drug discovery 

protocols362 found that visual inspection of docked poses was used in 50% of the 250 publications 

surveyed, often as the final step in compound prioritization before experimental testing. It has been 

suggested that any sufficiently experienced human could outperform existing scoring functions for 

compound selection.363 Indeed, previous studies have found molecules chosen by expert medicinal 

chemists achieve greater potencies than those selected by scoring functions alone.316 However, 

there are limits to the number of poses that a given scientist can realistically examine. This is 

especially troubling given recent reports of a hit-rate plateau indicating a significant amount of 

false negatives further down in the screening results.316,352 Moreover, despite efforts to codify rules 

for visual inspection364,365 there remains no high-quality database of expert annotations for learners 

to use as a reference. This problem is further complicated by the fact that even expert medicinal 

chemists often disagree with one another.366  
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In this application note, we introduce Autoparty, a tool for AI-assisted accelerated hit-

picking on molecular docking results. Autoparty is a browser-based tool for visualizing the 

protein-ligand interface and intermolecular interactions. The user assigns grades to each given 

molecule, which are stored in a database and available for export. Autoparty allows for active 

learning with the user as the human for human-in-the-loop training, displaying the poses that are 

most useful to the user for review. This trained model can then be applied further down in the 

docking screen to potentially rescue false negatives that would not be found by standard inspection 

procedure. We hope this tool will bring together recent ML advancements and medicinal chemical 

expertise, facilitating pose evaluation and potentially allowing for the recovery of false negatives 

further down in the screening hit list. 

Results 

Autoparty: A tool for automated human-in-the-loop molecule inspection 

Autoparty is a Python-based containerized application developed to assist scientists in analyzing 

the results of virtual docking screens using active deep learning. The user uploads the protein target 

and docked ligands to visualize their structure and relevant intermolecular interactions. These 

molecules can then be graded by the user. These assigned grades are saved to an SQL database to 

maintain a robust record of structures and human annotations. During this human-in-the-loop 

training, a machine learning (ML) model is trained to both predict these annotations for new 

molecules and to determine which molecules are the most informative for the user to see. This 

process can continue until the user finishes grading molecules, after which the full list of grades 

and model predictions can be exported for further review (Figure 3.2). In addition, the trained 

models can be extracted and applied to new molecules not present in the initially uploaded screen. 

In the next few paragraphs, we describe each of these steps and their associated configuration 
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options in greater detail. A full list of Autoparty settings with their defaults is provided in 

Supplemental Table 3.1. 

 

Interaction Calculation and Representation Generation 

When a screen is uploaded to Autoparty, the LUNA toolkit66 calculates intermolecular interactions 

between all input molecules and the protein structure. This process consists of two steps: First, the 

biochemical properties of both the ligand and protein atoms at the interface are determined using 

openbabel367 or RDKit.57 This includes the determination of atomic groups, such as aromatic rings, 

that are considered to participate as a single interacting group. Groups are visualized in Autoparty 

as white spheres at the group's center of mass. Second, interactions are then defined as pairs of 

atoms or atomic groups in proximity that meet certain geometric and chemical criteria. Common 

interaction types include Van der Waals interactions, hydrogen bonds, hydrophobic interactions, 

halogen bonds, and others. These interactions are shown on the complex as dashed cylinders. All 

available interaction types and associated display colors are provided in Supplemental Table 3.3. 

For the input to the backend ML model, we chose to use interface fingerprints (IFPs). In 

contrast to molecular fingerprints that encode the chemical topology of molecules, IFPs capture 

the geometric and biophysical properties of the full protein-ligand interface. They have previously 

been used to predict docking scores and binding affinities66,67 and offer a way to address the known 

problem of activity cliffs in ligand-based machine learning scoring functions.368 IFPs have been 

shown to perform comparably to more complex message-passing neural networks at small dataset 

sizes.176  

To convert the calculated interaction graph into a fixed-size vector representation of the 

protein-ligand interface, the ligand and interactions are divided into multiple three-dimensional 
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spherical shells centered on each ligand atom. The first shell at radius 0 contains the initial atomic 

identifiers for each ligand atom. These invariants can either be explicit, including the number of 

non-hydrogen neighbors, total bond order, atomic number, atomic mass, atomic charges, and 

number of attached hydrogens) or functional/pharmacophoric (aromatic, acceptor, donor, 

hydrophobic, etc), referred to as EIFP and FIFP, respectively. The subsequent shells contain 

interactions within their boundaries. Each shell is passed through a hash function to result in a 

series of "on" indices, which are collected into the final fingerprint following the standard 

extended-connectivity fingerprint protocol introduced by Rogers and Hahn.61 This calculation 

occurs before the molecule is saved to the database, and the user can export the calculated IFPs. 

By default, Autoparty uses EIFP count fingerprints calculated with 2 shells of radius 

approximately 6Å and folded to a length of 4096, as these were found to be the optimal settings 

for DOCK score prediction in previous studies.66 A full summary of this fingerprint generation 

protocol and initial chemical features is available from Fassio et al.66  

 

Model Architecture and Training 

In standard AL workflows, it is common to employ model architectures that provide both a 

predicted label and a measure of uncertainty quantification (UQ) in this prediction. These outputs 

are used in various acquisition strategies, such as greedy and least-confidence sampling, to 

determine the examples to include in the next AL iteration. Uncertainty quantification methods in 

molecular property prediction have been previously explored, but the performance of these 

approaches remains strongly dependent on the dataset itself.369,370 By default, Autoparty uses 

ensemble-based approaches that train a committee of individual models. Uncertainty is then 

measured as the variance across predictions from individual committee members.371 The default 
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model trained during a hitpicking party consists of three separate and unique models that together 

make up the ensemble. Each member is a deep neural network that consists of an input layer 

followed by two hidden layers of 1024 neurons each. The size of the output layer is equal to the 

number of unique possible grades as determined by the user. Each ensemble member generates 

initial unique training data by sampling with replacement from the full set of available graded 

molecules. This approach provides data augmentation through this sampling while adding limited 

overhead as the training time for each individual model remains short, given the dataset size. 

Additionally, we found that ensemble UQ provided high accuracy and good calibration in initial 

studies (Supplemental Figure 3.1).  

Due to the known variability of different UQ methods across datasets, Autoparty includes 

other uncertainty estimation architectures as options for the user. Specifically, Autoparty allows 

for dropout-based uncertainty372 in which a single model repeatedly predicts a label for a single 

example with random dropout. Similar to ensemble methods, this results in multiple predictions 

for the same example that are averaged for the final prediction. Uncertainty is the variance in these 

predictions. Autoparty also includes the option of distance-based uncertainty, where the distance 

between a new example and its closest neighbors in the model training set is used as a proxy for 

uncertainty.373,374  

Grades differ from typical classification labels in that they are ordinal, meaning that the 

potential output classes have an ordered relationship; an A is closer to a B than an F. For ideal 

training, it is necessary to include this property in the formulation of output classes and the loss 

function of the model. Some approaches simply treat ordinal labels as a regression task and bin 

the predictions into different classes, though this does require additional tuning of these cutoff 

values. We used a cumulative one-encoding strategy wherein each label was adjusted to a vector 
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of 1s followed by 0s. The number of 1s indicated the value of the grade (Additional detail provided 

in Supplemental Methods). Models are trained with binary cross-entropy loss. Evaluating this on 

a small dataset of MM/GBSA scores of complexes from a virtual screen against the Dopamine D4 

receptor showed successful generalization between training and testing along with a higher 

proportion of “close” mispredictions, or those that were a single grade away from the true value 

(Supplemental Figure 3.2). Autoparty also allows for nominal class labels in which case the 

output classes are simply one-hot encoded. 

One of the most critical design choices in AL is the selection of the acquisition function. 

These are the criteria by which examples are selected at each iteration for the oracle. Historically, 

AL has focused on including molecules with the greatest predicted uncertainty under the 

assumption that these would be maximally informative for the model.375–377 Previous studies using 

AL for virtual screening have instead used greedy acquisition strategies that select the examples 

with the best-predicted score by the model regardless of confidence. This approach successfully 

found the true top-scoring molecules from large libraries of compounds, a more useful metric for 

their purposes than model accuracy alone.175,176 Gusev et al. combined similarity clustering with 

greedy cluster-head selection to train a relative binding free energy prediction model.378 By 

contrast, Thompson et al. found that the number of top compounds recovered was surprisingly 

indifferent to acquisition strategy, though all strategies did outperform random acquisition.177 We 

provide greedy, maximum uncertainty, and random orderings as options to the user with maximum 

uncertainty as the default value.  
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Throwing a Hit-picking Party 

Uploading a screen 

The first step to using Autoparty is uploading the result of a virtual docking screen (Figure 3.2, 

Figure 3.3). To begin, the user must provide both the protein and docked molecule files. 

Additionally, the user is able to indicate a property within the initial molecules file by which the 

compounds are ordered for annotation before any active learning component. Upon uploading, 

molecules and their three-dimensional coordinates are read from the provided file and sent in 

batches to calculate intermolecular interactions and IFPs. Hitpicking can begin as soon as the 

interactions for the first molecule are calculated.  

 

Getting the party started  

Once the screen has started uploading and calculating interactions, the hit-picking session can 

begin. The user can either start a new party by selecting the uploaded screen or resume an existing 

party to recover existing grades, models, and predictions from a prior session. The available 

settings and options are discussed in Supplemental Table 3.1 and Supplemental Table 3.2. 

 

Annotating Molecules 

Upon beginning annotation, molecules are sorted by the field provided by the user during screen 

upload (Figure 3.3). The full list of molecules is displayed on the right. The available grades 

appear at the bottom of the screen. In 'Annotation' mode, molecules that have previously been 

assigned grades are hidden to allowing the user to view only new molecules and sort them by either 

provided score or, if a model has been trained, predicted grade or uncertainty. In 'Review' mode, 

the user can view molecules that they have already seen, offering the potential for regrading if 
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their mind has changed. In this mode, there is an additional sorting method known as 

'Disagreement' which shows the molecules with high certainty for which the predicted grade 

differs from the user’s previously assigned grade for that molecule.  

 

Uploading existing annotations (optional) 

Autoparty allows for uploading previous annotations for screened molecules. Users can upload a 

CSV file containing molecule names and grade columns. The molecule names are then used to 

match uploaded molecules with new grades and update the database. These new grades count 

towards the trigger for required total grades to begin model training. 

 

Training a Model 

After a set number of annotations have been submitted (default 100), the user can train a model 

and begin the human-in-the-loop active learning process. On the backend, all of the fingerprints 

and corresponding annotations from the current party are recovered from the database to use as a 

training set, and a model is trained to predict these labels (Figure 3.2). The trained model is then 

applied to all remaining molecules, predicting 1) the annotation (grade) for that molecule and 2) 

the model’s confidence in that predicted grade. Upon completion, the molecules are reordered 

based on the selected acquisition function. This process continues until stopped by the user. The 

loss curves and model history are updated in real-time and visible in the Training dashboard.  

Autoparty Implementation 

Autoparty is written primarily in Python for the backend service, which handles processing the 

provided input files, calculating protein-ligand intermolecular interactions, reading and writing to 

the SQL database, training models, generating model predictions, and selecting examples to 
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service to the frontend. The full SQL database schema is shown in Supplemental Figure 3.3. All 

ML models were implemented in the Pytorch deep learning library.344 The frontend interface that 

the user interacts with is implemented in JavaScript, HTML, and CSS. The molecular visualization 

panel uses 3Dmol.js for on-page structure viewing and displaying calculated interactions.379 The 

Celery queue380 and Redis381 broker handle asynchronous tasks such as updating the database, 

training models, and creating output prediction summaries. The application was containerized for 

ease of portability across machines with Singularity (now Apptainer).382,383 The container and all 

application code are available for download at https://github.com/keiserlab/autoparty.  
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Figures 

 

Figure 3.1. Conceptual Overview of the Virtual Screening Pipeline and Active Learning 
a, The drug-discovery “funnel” shows standard steps in the process along with the number of 
molecules remaining at each step (approximate). This highlights the need for tools to address these 
bottlenecks and ensure promising molecules make it through to experimental testing. b, Human-
in-the-loop active learning training paradigm. The starting dataset consists of a large pool of data 
with limited or no true available labels. A random subset of that data is presented to the oracle 
(human) for labeling, after which a model is trained on this initial data. The model is used to predict 
labels and confidence for the remaining data. Selected examples are fed to the oracle. This process 
repeats until we reach a quota of labels or achieve the desired accuracy. 
  

a b
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Figure 3.2. Schematic showing Autoparty workflow and user interaction. 
a, Autoparty functions that are performed by the user. These include uploading the initial screening 
results and any potential preexisting annotations and grading new molecules. The user can also 
recover all existing grades and predictions from the database. b, Autoparty functions performed 
automatically on the back end to assist with hit picking. For each complex, the interactions and 
LUNA IFPs are calculated upon upload. The back end also handles saving the grades provided by 
the user, training models to try to predict human labels, and ordering the compounds to show the 
user the most informative examples.  

a b
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Figure 3.3. Autoparty Web Interface 
a, The screen upload interface. The user must provide a protein file and a separate molecules file. 
They also have the option of providing an attribute to sort molecules for initial annotation. This 
screen is where the user may also provide specific LUNA configurations, otherwise the default 
options are used. b, Hit picking interface for human-in-the-loop training. This screen shows the 
current molecule being reviewed along with the calculated interactions. Potential grades are shown 
along the bottom of the screen. The top right shows current mode (Annotate vs Review) and current 
sorting method (Score, Uncertainty, Disagreement, Random) along with the options to upload a 
screen or view the model training panel. c. Model Training Panel. The left half shows the 
individual loss curve of each committee member along with the overall validation loss during 
training. The epoch with the best loss value is indicated. The right half shows the training and loss 
over time throughout multiple iterations of model training.  

a b

c
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Supplemental Methods 

Uncertainty Quantification Analysis with AA2AR 

Dataset and Model Training 

To explore uncertainty quantification methods for DOCK score prediction from interface 

fingerprints, we used a dataset of 311,705 complexes from a screen of molecules against the 

adenosine A2A receptor (AA2AR) structure384 using the DUD-EZ docking benchmark385 set 

starting files. Each complex was represented by the LUNA66 extended interaction fingerprint with 

default settings. Data was split randomly into training/validation/testing with an 80:10:10 split and 

kept consistent across all trials. All models trained consisted of four hidden layers of 5000, 4500, 

4050, and 3645 neurons respectively, 10-4 weight decay, and 20% dropout. Training was 

performed with MSE loss with an additional KL divergence term for the Bayesian networks. 

 

Uncertainty Quantification Methods 

Ensemble: Ensemble uncertainty was estimated by training a committee of models, each 

with the same architecture. Starting data were sampled from the total available training data to 

introduce additional variability between the ensemble members and as a form of data 

augmentation. The prediction and uncertainty for a single example were the mean and variance of 

all committee member predictions, respectively. We evaluated the effect of committee size and 

initial sampling strategy. 

Dropout: Dropout uncertainty was calculated by predicting the score for a single example 

multiple times with non-zero random dropout, resulting in multiple outputs for an individual 

example. The prediction and uncertainty for a single example were the mean and variance of all 

predictions. We evaluated the number of replicates and the proportion of dropped neurons.  
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Bayesian:386 In contrast to standard point-wise neural networks with deterministic outputs, 

Bayesian networks learn probability distributions over their weights that are sampled when 

predicting the label for a new example. Similar to dropout uncertainty, predicting multiple times 

for a single examples results in differing outputs, with the final prediction and uncertainty 

calculated as the mean and variance of all predictions. 

Feature Similarity: Feature similarity was calculated as the average Tanimoto 

coefficient387 between a given fingerprint and the closest k neighbors in the training set. This was 

used as a proxy for model confidence in the corresponding prediction. 

 

Metrics 

For architecture evaluation, we focused on two metrics: the regression accuracy of the model (R2 

correlation coefficient between true DOCK scores and model predictions) and a novel metric, the 

calibration coefficient (CC). A well-calibrated model shows a correlation between the residuals 

and the predicted uncertainty, commonly visualized using a calibration curve that plots the 

expected and observed accuracy against the response rate.388 We extend this concept further by 

measuring calibration success as a function of the difference in area between these two curves. 

The calibration curve of an ideal model (1:1 residual/uncertainty ranking) provides an upper bound 

for this area, while random ordering provides a lower bound (Supplemental Figure 3.1). The plot 

for trained models falls between these two curves. The relative area of the model against the ideal 

calibration then provides a quantitative measure of true calibration. Formally, the area under the 

curve for a given ordering is defined as: 
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For a given ranking of examples, where RR is the response rate for a given ordering of the test set, 

sorted either by residual (ideal), uncertainty (observed), or random. The calibration coefficient 

formula is then: 

 

𝐶𝐶 =
𝐴𝑈𝐶!*+$",$# − 𝐴𝑈𝐶*-+$./0$
𝐴𝑈𝐶/#$-. − 𝐴𝑈𝐶*-+$./0$

 

 

where the baseline is the average over 5 random orderings. CC provides additional information 

compared to rank-order correlation between residuals and uncertainty alone, primarily regarding 

the range of data for which the model is well or poorly calibrated (Supplemental Figure 3.2). 

 

Results 

For each architecture, we calculated both regression accuracy and calibration coefficients for 

various sets of hyperparameters. The full table of conditions and metrics evaluated is available in 

Supplemental Table 3.4. All architectures showed improved calibration over random ordering. 

Repeated sampling increased calibration and accuracy for both Bayesian neural networks and 

dropout-based uncertainty. Distance-based uncertainty showed the best calibration at higher 

confidence but was outperformed by ensemble-based sampling for lower confidence examples. 

Overall, ensemble uncertainty with five members and bootstrap sampling resulted in the highest 

observed calibration coefficient and accuracy, particularly among the least confident examples. 

This is the Autoparty default uncertainty quantification method. 
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Ordinal Classification Testing with Dopamine D4 

Dataset and Model Training  

We used a dataset of poses and MM/GBSA scores from a screen against the dopamine D4 

receptor316 for initial ordinal classification experiments. To convert these regression labels to 

ordinal, examples were binned by score into grades A through F with an approximately equal 

number of complexes in each bin. The ordinal labels were encoded through cumulative one-hot 

encoding to preserve the ordered relationship between grades (Supplemental Figure 3.2). Based 

on previous work, we trained an ensemble of three neural networks with bootstrap sampling on a 

subset of randomly selected examples (n = 2000 and n = 50,000) to evaluate the ability of the 

model to predict ordinal labels and model calibration. Testing was performed on a consistent held 

out set of 10,000 molecules. Each ensemble member had two hidden layers of 4,096 neurons each, 

and training was performed with binary cross-entropy loss on the encoded labels. 

 

Results  

The full results for both the 2K and 50K models are shown in (Supplemental Figure 3.2). Overall, 

both models were largely successful at learning to predict the assigned grades but did show some 

overfitting, especially at lower data regimes. The average root mean square error (RMSE) between 

test examples for the 2K model was 0.88, indicating that the predicted grade was rarely more than 

a single class away. This value dropped to 0.714 with the addition of more data. The main 

difference in performance between the two models was at the extremes, with the 2K model 

underpredicting both A and F. However, the majority of the examples belonging to those classes 

were predicted as B (956) or D (905), respectively, indicating that the model is successfully 

identifying better and worse poses by our toy grades. Even at 2,000 grades, the ensemble model 
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was able to recover 61% of the true ’As’ in the test dataset. Crucially, the least confidence 

examples were more likely to be incorrect for both cases, following the expected properties of 

well-calibrated models (Supplemental Figure 3.2). We used this same ordinality prediction 

method for the Autoparty implementation. 

  



 82 

Supplemental Figures 

 

Supplemental Figure 3.1. Investigating Uncertainty Quantification with AA2AR 
a-b,Visual representation of calibration coefficient metric. a. Example regression plot, colored by 
the value of the residual. b, Cumulative R2 plot. R2 is shown on the y-axis. The x-axis shows 
response rate, the proportion of examples included in the R2 calculation. c-f, Calibration curves 
obtained for the four metrics evaluated with various hyperparameters. c, Distance, evaluating n 
nearest neighbors. d, Ensemble, evaluating initial sampling and committee size. e, Dropout, 
evaluating number of replicates. f, Bayesian, evaluating number of replicates. g, R2s and 
calibration coefficients for the best-performing models of all methods evaluated.  

a b c

d e f

g
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Supplemental Figure 3.2. Ordinal Label Training with D4 MM/GBSA-based Grades 

 
a, Comparison of nominal vs ordinal encoding for labels. Ordinal encoding maintains a 
relationship between grades. b, Training curves for the committee members, 2000 examples. c-e. 
Results for 2,000 randomly selected complexes. c, Training set confusion matrix. d, Test set 
confusion matrix. e, Variance of ensemble predictions of correctly predicted and incorrectly 
predicted test examples. f-h, Results for 50,000 random complexes. f, Training set confusion 
matrix. g, Test set confusion matrix. h, Variance of ensemble predictions of correctly predicted 
and incorrectly predicted test examples. 
  

Grade Nominal Ordinal

A [1, 0, 0, 0, 0] [1, 0, 0, 0, 0]

B [0, 1, 0, 0, 0] [1, 1, 0, 0, 0]

C [0, 0, 1, 0, 0] [1, 1, 1, 0, 0]

D [0, 0, 0, 1, 0] [1, 1, 1, 1, 0]

F [0, 0, 0, 0, 1] [1, 1, 1, 1, 1]

a b

c d e

f g h
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Supplemental Figure 3.3. Schema for Autoparty SQL database. 
The color of each table indicates the data stored: blue for users, orange for screens, settings, and 
models, and green for molecules, grades, and predictions. The forked connector denotes a one-to-
many connection.  
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Supplemental Table 3.1. Autoparty hit-picking settings, options, and default values. 
 

 
Setting Description Type Default Options 

General learning_rate Learning rate for the model, 
how quickly weights are 
updated 

float 1e-4 (0, 1) 

 
n_neurons Number of neurons per 

layer 
int 1024 (0, inf) 

 
hidden_layers Number of hidden layers in 

model 
int 2 (0, inf) 

 
weight_decay Penalty for large model 

weights 
float 1e-2 (0, 1) 

 
dropout Probability given neuron 

will be zeroed during 
training 

float 0.2 [0, 1) 

 
output_options List of potential grades to 

assign 
list a,b,c,d,f Comma-

separated 
unique values 

 
output_type Relation of provided grades string ordinal {ordinal, 

classes} 
 

uncertainty Uncertainty calculation 
method 

string ensemble {ensemble, 
dropout, 
distance} 

 
retrain_freq How many new grades are 

required to start model 
training 

string 300 (0, inf) 

 
max_epochs Maximum number of 

epochs to train models 
int 100 (0, inf) 

 
patience Epochs to wait before 

stopping training (requires 
validation set) 

int 20 (0, inf) 
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Supplemental Table 3.2. Uncertainty quantification settings, options, and default values. 
 

 Setting Description Type Default Options 

Ensemble committee_size Number of models in 
committee 

int 3 (0, inf) 

 
data_split Sampling method for 

ensemble training 
datasets 

string bootstrap {bootstrap, 
full-split} 

Dropout passes Number of predictions 
to generate per 
example 

int 50 (0, inf) 

Distance distance_method Distance metric to use 
for uncertainty 

string tanimoto {tanimoto} 

 
kNN Number of nearest 

neighbors to use for 
kNN distance 
calculation 

int 5 (0, inf) 
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Supplemental Table 3.3. LUNA available interactions and associated colors for 
visualization. 
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Supplemental Table 3.4. Calibration test architectures, hyperparameters, and metrics. 
*CC = Calibration Coefficient 

 

Architecture Hyperparameter(s) Value(s) R2 CC* 

Ensemble Sampling, Number of members Unique, 3 0.77 0.22 

  
Unique, 5 0.76 0.26 

  
Bootstrap, 3 0.79 0.32 

  
Bootstrap, 5 0.79 0.38 

Dropout Number of predictions 5 0.78 0.17 

  
50 0.78 0.33 

  
500 0.78 0.37 

  
1000 0.78 0.37 

Bayesian Number of predictions 5 0.68 0.26 

  
50 0.68 0.30 

Distance Number of nearest neighbors 1 0.79 0.32 

  
2 0.79 0.33 
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CHAPTER 4: FINAL AND FUTURE THOUGHTS 

This dissertation provides an overview of various AI methods for addressing outstanding problems 

in chemical biology. Chapter 1 provides a non-comprehensive literature review of existing 

technologies, highlighting potential improvements from machine learning for two major areas: 1) 

small molecules focusing on property prediction and drug discovery, and 2) proteins, describing 

structure prediction and de novo protein design. Chapter 2 provides a concrete example of how 

standard chemical informatics techniques like interface fingerprints can be modified and combined 

with machine learning architectures to develop additional validation techniques for assisting 

experimentalists. Chapter 3 continues this discussion with the introduction of Autoparty, a tool to 

improve the process of manual inspection following molecular docking and extract additional 

information from human annotations. Both tools assist existing workflows for biologists and 

chemists, a design philosophy that should be prioritized when developing new ML methods. 

Finally, I want to highlight a few additional areas for drug design specifically that I believe 

will have a large impact in the coming years. The first of these is target-specific de novo molecular 

generation. While I touched on the recent advancements briefly in chapter 1, existing technologies 

based on diffusion, though promising, do not achieve the level of success that image generation 

achieves, likely due to a relative lack of training data. Better feature engineering and additional 

datasets, including the incorporation of structures from virtual screening, have the potential to 

significantly improve performance and revolutionize how we approach new drug targets. Second, 

the concept of a federated learning training paradigm that is able to use existing pharmaceutical 

data across companies while maintaining private proprietary information is intriguing, and could 

provide an avenue to use the vast amounts of collected chemical data in a way that is accessible to 

all. This could assist particularly in the models in predicting downstream ADMET properties and 
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off-target effects, allowing chemists to filter out unsuccessful compounds before buying and 

testing. Finally, the idea of transfer learning, or taking weights trained from one dataset and fine-

tuning them on another, remains an underexplored opportunity to leverage large virtual screening 

data for binding affinity prediction. I firmly believe that each of these approaches could result in 

large leaps forward for the field of drug discovery, and I’m excited to see what the next AlphaFold-

level advancement will be. 
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