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Abstract of the Dissertation

Spatially embedded social networks: dynamic models

and data reconstruction

by

Rachel Anne Hegemann

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2012

Professor Andrea L. Bertozzi, Chair

“Bottom-up” and “top-down” identify two fundamental approaches to modeling complex

systems. As the name suggests, a bottom-up approach analyzes how elements on a micro

scale affect observations on the macro scale. On the other hand, top-down approaches use

macro scale data to identify patterns evolved from the micro scale. This thesis details two

models, agent-based and data driven, designed for complex systems. These models are

applied to the complex system of street gang violence.

The first method employed is agent-based and is used to explain potential geographic

influences in the formation of street gang rivalries. In this framework each agent possesses

certain properties and movement rules. The agents then move and interact with the simu-

lated environment and other agents. From these simple rules the emergent behavior of the

location of interactions and the rivalry network are observed.

The second method addresses the need to infer process parameters and identify gangs

involved in violent crimes in the presence of incomplete data. The violent events among

gangs can be viewed as realizations of a self-exciting point process on the rivalry network.

For many of the events in the data, the time of the event is known, but the rivalry association

is not. Using the structure of the point process a method is proposed that simultaneously

estimates the process and infers the rivalry affiliation for the unknown events. We call this

ii



method the Estimate & Score algorithm.

There are two major findings in this dissertation. The first is that the proposed agent-

based model used to simulate the gang rivalry network observed in Hollenbeck provided

better results than a simplified model and a Geographic Threshold graph. The second major

finding is that the Estimate & Score algorithm is a computationally efficient method that

produces comparable results to previous work and is better than chance. It also successfully

approximates the process parameters in the presence of incomplete data.
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CHAPTER 1

Introduction and Preliminaries

Complex systems arise in many natural and human systems including biology, ecology, crim-

inology and finance to name a few [Chu11]. Depending on access to data and research ques-

tions, one might take on one of two modeling approaches. The first, bottom-up modeling,

determines how elements on the small scale of a complex system can affect behavior on the

macro level. In cases where partial data is available on the macro and micro scales, but the

relationships between these scales are not well understood, such a bottom-up approach may

be useful. For example in the arena of collective behavior, the interactions on the individual

level have a large impact on the observed pattern [BUK12]. The second common approach

is loosely named top-down modeling. Here the underlying mechanisms of the system are

approximated by using a model on the macro scale. In this modeling paradigm the focus is

on factors and mechanisms affecting the system at the macro scale. Many density estimation

and PDE models often fall under this category. One example of this is the estimation of

gang territories via a PDE model [SBB12].

In this dissertation we narrow our focus to modeling complex networks by utilizing two

broad methodologies: agent-based and data-driven models. Agent-based models provide

a flexible framework to test theories on the potential genesis of emergent behavior. This

bottom-up approach constructs entities, called agents, that are instilled with basic, pre-

described movement and interaction behaviors. These agents are placed in a simulated

environment, and then allowed to interact with one another and the environment. From these

basic elements, the emergent behavior of interest is observed. This provides a simulation

which can explore theories on how the actions and behaviors on microscopic level among
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actors affect the emergent, often complicated, phenomena of interest.

The flexibility of agent-based modeling is a great strength of this methodology, however,

a few issues arise with such a framework. Due to the ease of incorporating new elements

into the model, it is tempting to include more elements than needed, thus making the model

overly complex and in some sense over fitting the data. To avoid this Occam’s razor should

be observed.

Data-driven models describe a large class of models where the modeler incorporates data

at a given level to describe the complex system. The use of data can lead to novel extensions

to classical models, and can steer the model closer to observed behavior. This modeling

approach is used widely by statisticians and can often lead to a deeper understanding of the

system. As with agent-based models, one must find a balance between sufficiently capturing

the phenomenon of interest and maintaining a simple model.

With either modeling framework, it is standard procedure to describe a system with the

simplest model possible and analyze the results. Then, with each addition to the model,

determine a measure to assess the improvement of the complex model. When employing

a statistical model, one can consider the Akaike information criterion (AIC) to find an

appropriate balance between a goodness of fit and the complexity of the model [Aka73]. The

AIC is defined as

AIC = 2k − 2 ln(L). (1.1)

The number of parameters is defined by k and L is the maximized value of the likelihood

function.

For analysis we use the system of street gang violence as a test case, but the techniques

and models described in this thesis could be applied to a larger class of problems. Street

gangs are a natural choice to showcase our methods for numerous reasons. These types of

social systems, though extraordinarily complex, have a number of well understood underlying

mechanisms and concrete data with which to model. Mathematically modeling street gangs

and their violence is a relatively new field with many opportunities to develop new methods.
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Further, in areas where there are multiple gangs, it is common that rivalries will form among

them, thus introducing a coupling between the activity of the gang entities with the rivalry

network. Finally one cannot ignore the social impact of this topic. Street gang violence is a

persistent problem in urban areas that drains police resources. Finding ways to allocate these

resources intelligently can be of great help mitigating the impact of street gang violence.

This dissertation uses mathematical methodology to understand two aspects of street

gangs: the formation of gang rivalries and inferring gang rivalry affiliation given an incom-

plete data set. Each aspect requires different mathematical techniques. When considering

the formation of street gang rivalries, an agent-based model is employed. This allows for a

flexible framework in which environmental factors are included in the model. The details are

described in Chapter 2. This work was done in collaboration with Laura M. Smith, Alethea

B.T. Barbaro, Andrea L. Bertozzi, Shannon E. Reid, and George E. Tita and was published

in Physica A in [HSB11].

Once the network is established, we investigate events occurring on the network. We

assume that these are realizations of a self-exciting point process and use data to estimate

parameters of the process. Using Hollenbeck as case study, we relate the events with violent

occurrences between rival gangs. Due to the retaliatory behavior observed, we justify the

assumption that the data as coming from a self-exciting point process (for mathematical

background see Section 1.3.2). As with many other sociological data sets, the data is often

incomplete in that the gangs involved in these events are not always known. In this case, it is

beneficial for law enforcement officials and sociological researchers to have a method to infer

the appropriate parties involved in such events. This work was conducted in collaboration

with Erik Lewis and Andrea Bertozzi in [HLB12].

1.1 Sociological Aspects of Modeling

A large factor in the success of modeling a social system is in finding a way to translate

sociological theories into a mathematical framework. Much like in physical modeling, models

3



will do poorly if the fundamental sociological mechanics of the system are not incorporated.

Criminal activity lends itself to using both bottom-up and data-driven modeling ap-

proaches due to the general, well established Routine Activity Theory coined by Clarke and

Felson [CF79]. Routine Activity Theory hypothesizes that crimes occur when there is 1) a

motivated offender, 2) a suitable target, and 3) an absence of capable guardian against a

violation [CF79, Gro07, BB93b, BB93c, Fel02]. In this framework, most crimes are thought

to be the result of individuals living their daily life and committing crimes as opportunities

present themselves. This is in contrast to previous theories that emphasized the motives of

an individual when committing a crime [CF04]. This theory further emphasizes the role of

environment in criminal activity [BB93b, BB93c].

From a modeling perspective, Routine Activity Theory enables the researcher to consider

tangible data such and locations and times of criminal activity, and not focus on intangible,

unquantifiable information such as motivation or “mind set” of an individual criminal. The

complex system of criminal activity is contextualized in a way that lends itself to mathemat-

ical modeling. One key aspect of this theory with regards to modeling criminal phenomenon

is the understanding of routine activity. By most definitions this relates the activities and

locations that the potential criminal engages in on a regular basis, such as their place of

residence, place of work, or even a coffee shop that they frequent. To formulate this into a

mathematical model, one must be able to model normal human activity and movements at

the necessary scale. Further this theory underlines the critical influence of both time and

space in the production of criminal activity. These theories outline the way that circum-

stances on individual scale can interact to create crime on a macro scale [SW87]. For this

thesis, the models created are approached from a Routine Activity Theory perspective.

Further elements of street gang activities are known and well documented. The identity

of gang members is not a secret. Through tattoos, clothing, colors, and gang signs people

inside and outside of a gang can identify membership. Street gangs tend to partition space

into different territories. Gang members know where these territories are and tend to avoid

the territories of rival gangs [And00]. Also, it has been documented that violence among
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gangs tends to cluster in time. In other words if an act, or perceived act, of violence occurs

between two gangs, the likelihood of other retaliatory events increases. This is thought to

occur due to the nature of the violence. Gangs often use violence to gain respect and street

reputation [Thr27, DW96].

1.2 Agent-Based Models

This is a broad methodology utilized by a diverse spattering of fields. Due to the variations

of agent-based models, presenting them to other researchers has been a stumbling block for

the agent-based modeling community. To mitigate this issue, the ODD (Overview, Design

concepts, and Details) protocol has been established [GBD10]. The purpose of this protocol is

to communicate agent-based models in such a way that they can be replicated and compared.

It also provides a checklist for modelers to ensure all of the important elements and details

are discussed. The agent-based model described in Chapter 2 utilizes the ODD protocol. In

this section we review three agent-based models.

1.2.1 Modeling Capelin Fish

Particle models have been successfully applied in ecological settings. The authors of [BEB09]

utilize an agent-based model to predict the spawning migration of Capelin fish in the Iceland

Sea. Each fish, k, is seen as a particle with a speed vk(t) and position, qk(t) = (xk(t), yk(t))
T

that depends on the location of the other migrating fish and the temperature of the water.

So that fish are not swimming too close to one another, each fish has a region of repulsion,

Rk. Each fish has a zone of attraction, Ak(t), to maintain the coherence of the migration.

Finally, each fish has a zone of orientation, Ok(t).

One element of the environment that influences the migration is the temperature of the

water. Capelin fish have a preferential temperature range, [T1, T2], and display a stronger

aversion to lower temperatures than higher temperatures. This range in encoded in the
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model by

r(T ) =


−(T − T1)4 if T ≤ T1

0 if T1 ≤ T ≤ T2

−(T − T2)2 if T2 ≤ T

. (1.2)

To reach the preferred temperature, each fish moves up gradients of r(T ).

Taking these forces into consideration, the position and velocities of the particles are

updated via

qk(t+ ∆t) = qk(t) + ∆tvk(t+ ∆t)
Dk(t+ ∆t)

||Dk(t+ ∆t)||
+ C(qk(t)) (1.3)

and

vk(t+ ∆t) =
1

|Ok|
∑
j∈Ok

vj(t), (1.4)

respectively. Here Dk(t+ ∆t) is defined by

Dk(t+ ∆t) := (1− β)
dk(t+ ∆t)

||dk(t+ ∆t)||
+ β

∇r(T (qk(t)))

||∇r(T (qk(t)))||
, (1.5)

where

dk(t+ ∆t) :=
1

|Rk|+ |Ok|+ |Ak|

[∑
f∈Rk

qk(t)− qf (t)
||qk(t)− qf (t)||

(1.6)

+
∑
f∈Ok

 cos(φ0(t))

sin(φ0(t))

+
∑
a∈Ak

qa(t)− qk(t)
||qa(t)− qk(t)||

 . (1.7)

In this equation β ∈ [0, 1], C(x, y) is the current.

With the model, the researchers were able to match the migration of Capelin fish for three

years. Further, modeling this way allowed for the inclusion of a large number of particles

and an understanding of the long-term behavior of the system. Finally, a sensitivity analysis

of the system gained insight into the system. As the value of the temperature dependence,

β, changed so did the shape and location of the migration. Also, as the ratio between the

radii of influence changes so does size of the school. These models and their corresponding

analysis have a large impact on the Icelandic fishing industry. Capelin are a feeder fish for the

larger, more economically important fish. Knowing the size and location of the migrations

can help maintain the health of these schools.
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1.2.2 Modeling Self Emerging Networks in Ants

Due to their flexibility, agent-based models provide an ideal framework to explore the local

interaction between individuals to form networks in a complex system. For example, foraging

ants leave chemical trails to communicate to one another about the location of food. As more

ants follow the trail, a network is formed, reinforcing the ants behavior. In their work [ST02],

the authors develop such a self assembling network using positional information by chemical

gradients and a non-trivial local interactions with existing chemical trails.

The mechanics of the model are fairly straight forward. Each agent maintains a position,

ri, velocity, vi, and internal state θi. The position of each agent is updated via

dri
dt

= ai
∂hε(r, t)

∂r
|ri,θi +

√
2εiξi(t). (1.8)

The gradient of chemical trail is incorporated in the hε(r, t) term. The attraction to the

chemical gradient is determined by the coefficient ai. A positive coefficient corresponds to

an attraction to the field, whereas a negative coefficient implies repulsion. The random

component, ξi(t), is white noise mitigated by the strength εi.

In this scheme the agents follow a biased random walk in an environment scattered with

nodes with positive and negative potentials. The agents’ “goal” is to link the nodes with

opposite potentials. Once an agent discovers a node, θi is updated via

∆θi(t) =

∫ z

Aj=1

(Vj − θi)
1

A
δ(rzj − ri(t))dr. (1.9)

The agents produce their chemical trail, si(θi, t), dependent on the internal state, θi, of the

agent, see Equation 1.10.

si(θi, t) =
θi
2

[
(1 + θi)s

0
+1 exp{−β+1(t− tin+)}

−
(
1− θi)s0

−1 exp{−β−1(t− tin−)}
]
. (1.10)

The concentration of chemicals persist in the environment by the equation

∂hθ(r, t)

∂t
= −kθhθ(r, t) +

N∑
i=1

si(θi, t)δθ;θiδ(r − ri(t)). (1.11)
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An agent interacts with the chemicals according to their current state through the effective

chemical trail,

∂hε(r, t)

∂r
=
θi
2

[
(1 + θi)

∂h−1(r, t)

∂r
− (1− θi)

∂h+1(r, t)

∂r

]
. (1.12)

Simulations of this model show an initialization phase where the agents are moving

according to the random walk. Once nodes of the opposite label have been discovered

networks begin to form. These network connections gradually become stable and persist

for the remainder of the simulation. In this way the authors were able to investigate the

formation of ant networks, but the applications of such an exploration is not limited to

networks. Similar methods could be used in engineering self-repairing networks in the field

of electronics and understanding the formation of neural networks in a developing brain.

1.2.3 Modeling Burglaries

In their work [SDP08], Short et al. produced similar macro behavior observed by criminol-

ogists by using a simplified model on the individual scale. Their model hinged on following

principals:

1. Along the lines of routine activity theory, potential burglars are primarily going about

their normal life. Due to their criminal tendencies, however, these criminals will also

position themselves where there are attractive opportunities to burgle a house.

2. If a house is burgled, then the attractiveness of the house and its neighbors also in-

creases. This is known as repeat-near repeat victimization.

The model reformulates these two sociological principals observed in the burglary data into

a mathematical framework, using them to dictate the movement rules of the criminal agents.

The simulation is run on a 2 dimensional lattice representing a geographic location. For each

lattice point there is an attractiveness score, Ai,j(t), and is determined by

Ai,j(t) = A0
i,j +Bi,j(t), (1.13)
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where A0
i,j is the background attractiveness of that location and Bi,j(t) denotes the influence

of the history of the activity at that, and nearby locations. The response to previous activity

is updates via

Bi,j(t+ δt) =

(1− η)Bi,j(t) +
η

z

∑
(k,l)∈N/(i,j)

Bk,l

 (1− ωδt) + θEs(t). (1.14)

The first term encapsulates the effect of burglaries in the neighborhood, N , of (i, j). The

weighting factor, η ∈ [0, 1] defines the strength of the effect of neighboring lattice locations.

The factor z is a normalization equal to the number of neighboring lattice locations included

in the summation. The number of burglary events is represented by the Es(t) term.

The burglars move on this lattice and are allowed to either burgle a house or move to a

neighboring lattice location. The criminal will burgle a house with probability

ps(t) = 1− e−Ai,j(t)δt. (1.15)

If a criminal does burgle a house, that criminal is removed from the system. To maintain a

criminal presence in the model, criminals are creates at each lattice location with probability

Γ. If an agent does not burgle a house, then they move according to a biased random walk.

Specifically, the agent moves to a neighboring location, (̂i, ĵ), with probability

qî,ĵ =
Aî,ĵ(t)∑

(k,l)∈N/(i,j) Aî,ĵ(t)
, (1.16)

where
∑

(k,l)∈N/(i,j) is the sum of all the neighboring locations of (̂i, ĵ), excluding (i, j).

From this simple model three distinct emergent behaviors were observed.

1. Spatial Homogeneity: Here the value of Ai,j(t) is essentially the same at all lattice

locations.

2. Dynamic Hotspots: In this regime there are local peaks in the attractiveness at certain

locations. These peaks may persist, move, or decay after a long period of time.

3. Stationary Hotspots: These peaks in the attractiveness field are stable and are sur-

rounded by a areas of characteristically low attractiveness.

9



Each of these emergent behaviors have been observed in the real world, adding validation

to the model. Further gains were made when the authors took the continuum limit of the

particle model, yielding a PDE. With this new model the authors were able to utilize the

machinery of PDE theory to understand the role of the parameters in the model. As an

extension to the model, the authors in [MS12] were able to use a Bayesian framework to

infer the anchor location of a repeat offender.

1.3 Data-Driven Models

One example of a data-driven method is that of density estimation. Many systems can be

viewed as stochastic processes where the data collected is just one realization. In many cases,

one would like to estimate the underlying process given the data. Classically this has been

accomplished via parametric estimation. Here, the underlying functional form, f(·|~θ), with

parameters ~θ is assumed. If the data collected are independently and identically distributed

(iid), then the joint distribution of observing the data ~x is

f(x1, x2, · · ·xn|θ̂) =
∏

f(xi|θ̂). (1.17)

The maximum likelihood estimation of the parameters θ̂ are determined by

sup
θ̂

{∏
f(xi|θ̂)

}
, (1.18)

or equivalently

sup
θ̂

{∑
ln
(
f(xi|θ̂)

)}
(1.19)

[Cam90]. For an interesting history of this method see [Ald97].

1.3.1 Non-parametric Density Estimation

For many applications assuming a functional form of the underlying density is not plausible.

For example, consider a density on a two dimensional random variable where it is known
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that

P{X = x, Y = y} = 0 (1.20)

for (x, y) in some, possibly irregular, region A. In these cases alternative methods that do

not rely on a closed form of the density function are needed. Such methods typically fall

under the classification of non-parametric methods.

Such a situation is consider in [SKW10]. Here, Smith et al. develop the Weighted

H1 Maximum Penalized Maximum Likelihood Method, as an alternative to TV Maximum

Penalized Maximum Likelihood or Gaussian kernel density estimation. The Weighted H1

Maximum Penalized Maximum Likelihood Method seeks to minimize

ûH(x) = inf
u

{
1

2

∫
Ω

z2
ε |∇u|2dx− µ

n∑
i=1

log(u(xi)) +
γ

2

(∫
Ω

u(x)dx− 1

)2
}
, (1.21)

subject to u(~x) ≥ 0 and
∫

Ω
u(~x)d~x = 1. Here zε is a continuous function such that,

zε =

 1 : if d(x, ∂Ω) > ε

0 : if x ∈ ∂Ω
.

In the presence of sparse data, the authors were able to improve the reconstruction of the

density by incorporating information of valid and invalid regions.

1.3.2 Self-exciting Point Processes

Point process models are a versatile tool widely used to analyze earthquakes [VS08, Oga98,

Oga88, ZOV02], model financial contagion in credit markets [EGG10, ACL10], viral videos

on the web [CS08], terrorist activity in Indonesia [PW11], and the spread of infectious disease

[MEH11]. The authors in [MSB11] and [EFL10] have successfully modeled the pairwise gang

violence as a Hawkes process [HO74, Haw71b, Haw71a].

A point process in time is a random process defined by a history of events, Ht =

{t1, t2, · · · tN , s.t t ≥ tN & tN+1 > t}. Each ti denotes the ordered times of when an event

occurred. This process can be naturally extended to include additional information, for ex-

ample location and magnitude of an earthquake event are often incorporated in earthquake
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modeling. Each point process can be alternatively formulated as a counting process, N(t),

defined as the number of events that have occurred at time t.

One example of a simple point process is a Poisson process with rate λ. Formally, a

Poisson process must satisfy

1. N(0) = 0

2. N(s+ t)−N(t) = Poisson(λs)

3. N(t) has independent increments [Dur99].

For reference, X = Poisson(µ), is

P (X = n) = e−µ
µn

n!
, for n = 0, 1, 2, 3, · · · (1.22)

In the case of gang data, it has been shown that certain rivalries in Hollenbeck can be

modeled with a Poisson process [EFL10], however, for other rivalries the third constraint

it too strong. For these rivalries an event can spark a series of retaliations between the

two gangs, producing events more clustered in time than would be expected from a Poisson

process [Dec96, MSB11, EFL10]. For these rivalries a more sophisticated model must be

employed to capture the features observed in the system.

To generalize our model of point processes we allow the rate λ(t|Ht) to depend on time

and the history of the process. In this dissertation we consider the self-exciting point process

proposed by Hawkes such that

P{Nt+∆t −Nt = 1|Ht} = λ(t|Ht)∆t+ o(∆t) (1.23)

and

P{Nt+∆t −Nt ≥ 2|Ht} = o(∆t). (1.24)

Intuitively this means that the probability of having exactly one event in a small window

of time can be approximated by the function λ(t|Ht). In this dissertation we assume that
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λ(t|Hk) is of the form

λ(t|Ht) = µ+

∫ t

0

g(t− u)dN(u), where

∫ ∞
0

g(t)dt < 1 (1.25)

[Haw71a, Oga88, OA82, Haw71b]. Let ∆tN = Nt+∆t −Nt, and note that

E{∆tN |Ht} = 1 · P{∆tN = 1|Ht}+
∑
i=2

i · P{∆tN = i|Ht} (1.26)

E{∆tN} = λ(t|Ht)∆t+ o(∆t). (1.27)

A direct calculation leads to

λ(t|Ht) =
E{∆tN |Ht}

∆t
(1.28)

= lim
h→0

P{∆tN = 1|Ht}
h

(1.29)

= λ(t|Ht) (1.30)

= µ+
∑
t>tj

g(t− tj) (1.31)

[Haw71b, Oga88]. λ(t|Ht) can be thought of as the instantaneous rate of the process, much

like the constant rate of the Poisson process. In this way the process is defined by its intensity

λ(t|Ht).

Intensity functions of the form described by Equation 1.31 lead themselves to an intuitive

interpretation. The rate of background activity is controlled by the parameter µ. In the case

where there is no response to previous events, i.e. g(t) = 0, the process is Poisson with rate

µ. The response to the history of events is defined by the function g(t). It is common to write

this function in the form g(t) = α · h(t), where α ∈ [0, 1) and
∫∞

0
h(t)dt ≤ 1. The constant

α determines the expected number of offspring for each event in the process. The constraint

on this parameter ensures that there are a finite number of events in the process. For this

dissertation we restrict our attention to response functions of the form h(t) = ωe−ωt. An

example of a simulated process with the intensity λ(t|Ht), is plotted in Figure 1.1. When

given a realization of a process determined by the intensity λ(t|Ht), one can determine the

parameters of the underlying process via the log likelihood function

ˆ̀
k(Hτ,k|µk, αk, ωk) =

Mk∑
i=1

λk(ti|Hτ,k)−
∫ T

0

λk(t|Hτ,k)dt. (1.32)
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Figure 1.1: Plot of the intensity, λ(t|Ht) for one realization of a self-exciting point process

with µ = .01, α = .1, ω = .5 .

[DV03].

Alternative methods to determine the process parameters are discussed in Section 3.2.2

in Chapter 3 of this dissertation.
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CHAPTER 2

Long-term Rivalry Genesis

In this chapter we propose an agent-based model that incorporates geographical features and

is coupled to a dynamically evolving network to infer geographical influences in the formation

of street gang rivalry networks. This model simulates the mobility of gang members and

the resulting interactions. We compare the simulated network to the gang rivalry network

observed in the eastern Los Angeles division of Hollenbeck [TRR03, RFT10]. In Section 2.2,

we outline the proposed model.

In Section 2.3, we describe two baseline models, one instance of a Geographical Threshold

Graph and a network derived from Brownian Motion, to which we compare our model. In

Section 2.4, we describe a series of metrics from network theory, examine long term behavior

of the model, and compare the networks against the metrics. Section 2.5 provides a sensitivity

analysis of our model. We conclude and give future directions in Section 2.6. This work was

done in collaboration with Laura M. Smith, Alethea B.T. Barbaro, Andrea L. Bertozzi,

Shannon E. Reid, and George E. Tita and was published in Physica A in [HSB11].

2.1 Introduction

Street gangs are a growing problem around the world [Cov10, KWT06, KKM01]. In fact,

recent statistics from The National Gang Intelligence Center estimate there are 1 million

active gang members in the United States alone [Pro09]. Violence is intrinsic to street

gangs, and rival gangs battle to gain respect and street reputation [Thr27, DW96]. Criminal

activities perpetrated by gang members, including armed robbery, homicide, drug dealing,
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and auto theft, drain cities and governments of tight resources and also pose safety threats

to community members. Much of the research on street gangs has been conducted within

the United States, though there have been some efforts to understand the phenomenon in

Europe and other parts of the world [Cov10, KWT06, KKM01].

Violence perpetrated by gang members is frequently against members of a different gang.

In areas with numerous gangs, it is common for gangs to have multiple violent interactions

with many of the other gangs. Further, street gang members typically have locations, known

as set spaces, where they spend large quantities of time [TCE05, Pap09]. It is therefore

reasonable to think of each gang as a node embedded in Euclidean space [RFT10, TRR03].

Within this framework, the existence of persistent violence between two gangs becomes an

edge connecting two nodes. From this construction, one can view a collection of gangs as a

spatially embedded network [TR10]. The Hollenbeck policing division of eastern Los Angeles

is marked by a particularly high degree of violent crimes involving gang members, including

homicides and aggravated assaults [RFT10, Inf08]. It is for this reason and others listed in

Section 2.1.4 we consider Hollenbeck as a test case for our model.

2.1.1 Rivalry Models

General network models and the corresponding analysis are useful for describing the behavior

of complex systems and have played an increasingly active role [New01a, New01b, New03].

One way networks are treated in the literature is by analyzing the statistical properties of

a given network. Another approach is to consider the construction of a network. There are

many instances where the network of interest is not known, but there is some knowledge of

the processes by which the network is formed. One popular method to construct a network

is to view it as a random graph. Each edge is added with a predetermined probability, often

dependent on the weight of the nodes [AB02, NSJ01, NJS02].

In some applications, including gang rivalry networks, the geographic location of the

nodes influences the structure of the network. In such cases, geographic features should be
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considered as part of the random network model. For example, interstate highways have been

shown to be structurally different from scale-free networks such as Internet and airline flight

networks [GN06]. The importance of geography is also seen in friendship networks [Wel96].

In their paper, Liben-Nowell et al. use the publicly accessible location of 495,836 bloggers

in the Live Journal to investigate effects of spatial proximity on friendships [LNK05]. The

study found that an estimated 69% of a person’s friends can be described by geography.

One method for incorporating geographical information into the random graph construc-

tion is by using a Geographical Threshold Graph [MMK05, BHP07, BHP09]. This is a

random graph on a set of randomly weighted nodes, where the nodes are located in a metric

space and the connections are determined by thresholding a function of the distance and the

weights. This provides a computationally efficient way to construct a rivalry network while

incorporating some geographic information. We use an instance of a Geographical Threshold

Graph as a baseline against which we compare our model.

2.1.2 Agent-Based Models

Though using a randomly constructed network may produce a reasonable simulation of an

observed network, other phenomena of interest beyond the structure of the network are

not obtained from this type of model. An alternative is to use an agent-based approach.

For a detailed explaination of this modeling framework see Section 1.2. This has become

a widely used tool in the area of complex systems [TLL10, Tes06, Wil06, FF09, EGK04,

MW02, SSH09]. For example, agent-based models have been used for modeling many types

of cooperative behavior [LST10, SDP08, DCB06, CCR10, HH04]. In a network context,

this approach enables exploration of how changing dynamics of individual agents can affect

the evolution of the network, providing control parameters which would be inaccessible

in a graph-based model. This method can easily incorporate environmental and spatial

information inherent to the system, e.g. in [BEB09], which uses environmental cues to

reproduce and predict fish migration.

17



In particular, we are interested in the coupling between the network and the underlying

system. There has been some exploration of this in the literature. For example, Schweitzer

and Tilch provide one example of model that uses an agent-based approach to form an

emerging network [Sch03, ST02]. They model the chemical trail formed by ants searching

for food at an unknown location. As the ants search their environment, networks of chemical

trails form with which the ants interact. Another example is that of the EpiSims model

[TG07, MDS08]. Here, the contact networks of the populations are evolving over time and

depend on the internal attributes of the people in the population. In turn, as a disease is

spread through the contact network, the movements of the people change in response to the

disease, producing a non-trivial interaction between the system and the network.

2.1.3 Previous Work on Crime Modeling

Various models have been created to address criminal activity [Gor10, Pit10, OL09, BT08,

SDP08]. One such work uses an agent-based model to understand the formation of crime

hot spots [SDP08]. In the model proposed by Egesdal et al., an agent-based approach was

used to simulate the location of violent interactions and gang retaliations in Hollenbeck

[EFL10]. Embedded in the model was a rivalry network. Though the model recreated

similar features to the violence data, the model did not incorporate geographic features. In

addition, agents targeted specific gangs based on probabilities corresponding to the current

rivalry network. However, according to the criminology literature, this retaliatory behavior

is only seen on short time scales [MSB11]. Gang members tend to avoid the territory of rival

gangs [And00, LC74].

Although not an agent-based model, Mohler examines the short term retaliatory behavior

of the rivalries based on between gang violence data from the LAPD [MSB11]. Each violent

event between two gangs is considered an instance of a point process associated with that pair

of gangs. The intensity of the rivalry depends directly on the network of unidirectional violent

interactions. This provides a top-down approach to understanding immediate consequences

of violence among gangs within a system. In our work, we wish to understand factors
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associated with the long term gang rivalry structure.

2.1.4 Hollenbeck

Hollenbeck is a policing division located in eastern Los Angeles, surrounded by downtown

Los Angeles to the west, Pasadena to the northeast, Vernon to the south, and to the east

the unincorporated area of East Los Angeles, see Figure 2.1. Hollenbeck provides a di-

verse geography with many highways cutting through the region and is bounded by the Los

Angeles River. It encompasses an area of roughly 39.4 km2. Hollenbeck is home to approx-

imately twenty-nine active gangs with sixty-nine rivalries among them [RFT10, TRR03].

The set spaces for the gangs and the corresponding observed rivalry network are displayed

in Figure 2.1, as given in [RFT10].

Certain properties of Hollenbeck make it accessible to modeling the gang rivalry networks

outlined in [TRR03, RFT10]. First, it is a closed system in that the gang activity within

Hollenbeck is generally isolated from gang activity outside of Hollenbeck. Further, the moti-

vation for violence between gangs is largely characterized by disputes over geographical gang

territories, as opposed to drug and racially motivated violence. Data on the geography of

Hollenbeck is easily accessible, and there has been explicit documentation of the observed

rivalry network.

We propose an agent-based model that incorporates geographical features and is coupled

to a dynamically evolving network. This model simulates the mobility of gang members and

the resulting interactions. We compare the resulting simulated network to the gang rivalry

network observed in the eastern Los Angeles division of Hollenbeck [TRR03, RFT10]. In

Section 2.2, we outline the proposed model. In Section 2.3, we describe two baseline models,

one instance of a Geographical Threshold Graph and a network derived from Brownian

Motion, to which we compare our model. In Section 2.4, we describe a series of metrics from

network theory, examine long term behavior of the model, and compare the networks against

the metrics. Section 2.5 provides a sensitivity analysis of our model. We conclude and give
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Figure 2.1: Google EarthTM Image of the Hollenbeck area (left). Map of the Hollenbeck area

with the location of the gang set spaces and the corresponding rivalry network approximated

by [RFT10] (right). Major roads, highways, the Los Angeles river, and division lines are also

seen in both images.

future directions in Section 2.6.

2.2 The Simulated Biased Lévy Walk Model (SBLN)

The purpose of this model is to understand the extent to which simple behavioral rules and

geographical factors, such as road density, highways, and locations of gangs’ set spaces, could

influence the structure of gang rivalry networks.

2.2.1 Motivation for Model Construction

The intent of this model is to capture the broad statistical features of human mobility with

an emphasis on gang members’ movements. Empirical data on the location and individual

movements of each gang member is inaccessible, so we characterize the movements of the

individual gang members in a statistical sense based on the literature on human mobility.
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Several studies give compelling evidence that when people move in an unconstrained environ-

ment, the jump lengths between movements is distributed like a power law [BHG06, RSH08].

Further, in the presence of obstacles such as roads and buildings, the jump lengths more ac-

curately follow a bounded power law distribution [GHB08].

However, determining the statistical properties of the jump length is only one aspect of

movement dynamics. In their paper, Rhee et al. discuss the need to incorporate geographical

features and the tendency for people to go home [RSH08]. Gonzalez et al. confirmed in their

data that humans do tend to frequent a small number of locations often [GHB08]. For these

reasons, the agents in our model pick their jump length from a Bounded Pareto distribution

and have a directional choice in movement.

In the case of gangs in Hollenbeck, it is reasonable to assume that the gang members have

a clear sense of the location of their home territory, or set space, as well as the location of their

rival gangs’ set spaces [TCE05]. Literature on gang activity suggests that, in general, gang

members tend to stay away from their rival gangs’ set spaces [LC74]. Unlike other criminal

groups, such as organized crime syndicates and insurgency groups that strive for secrecy,

street gangs are social organizations that proudly demarcate their territory and announce

their enemies through the use of graffiti. Gangs create social boundaries and therefore areas

of avoidance [And00]. Our model incorporates this social geography into agents’ movement

dynamics.

One aspect of modeling human mobility that was touched on, but not fully explored,

by the previous literature is the role of physical features specific to urban areas that may

constrain agents’ movement. The first consideration is the ease with which an agent can move

through a city. We posit that in areas where there is a dense street network, the likelihood of

an agent to move long distances is small due to such obstacles as the high density of people

and cars, as well as traffic lights. On the other hand, areas where the road density is lower,

agents should be able to move longer distances. A second physical consideration that affects

human mobility in a city are the highway systems and rivers that can cut across the region.

These features are not impassible, in that there are underpasses and bridges. However, they
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do provide an obstacle that may make it difficult to cross. Therefore, in our model, these

are seen as semi-permeable boundaries that effect the agents’ movements.

2.2.2 Model Summary

Agents in the model move based on their location with respect to their and other gangs’

set spaces and interact with agents of different gang affiliations. We count the number

of interactions between gangs, and when agents of different gangs move within a certain

distance of each other, the number of interactions between those gangs increases by one. As

the simulation progresses, a network structure emerges. The weighted network of interactions

in turn influences the directional decisions of the agents.

2.2.3 Entities, State Variables, and Scales

2.2.3.1 Agents

The agents of this model are gang members in a city. Each agent is associated with exactly

one gang. For simplicity we assume agents’ directional choice is dictated only by the location

of the gang set spaces. All agents know the location of their home and rivals’ set spaces. We

divide the city into regions based on geographical boundaries, such as rivers and highways.

An agent knows which region it is currently in as well as the region of any prospective new

locations. When two agents are within interaction range, we consider them to have interacted

and the corresponding element of the rivalry matrix, R, is updated. There are no immediate

changes to the location of the gang members. Refer to Section 2.2.3.3 for details on R.

2.2.3.2 Environment

The environment of interest is on the scale of a small city. Agents and gang set spaces

in the environment have a coordinate location in Euclidean space. Further, the set spaces

provide the spatially embedded nodes of the gang rivalry network. The physical geographical
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features of the city are approximated by an NxM grid. Agents move in Euclidean space, and

each point in the region is identified with the nearest grid element. The size and number

of grid elements are constant throughout the simulation and will be limited by the available

data and the memory of the computer.

Two features encoded in this NxM grid are the road density and semi-permeable bound-

aries represented by a region map. The road density is estimated for this project using the

Weighted H1 Maximum Penalized Likelihood Estimation method with a road map as the

initial data, as in [SKW10]. Other methods for density estimation, such as kernel density

estimation or other Maximum Penalized Likelihood Estimation (MPLE) methods, could also

be used to construct the road density [Sil86, EL01, MBG09, GG71]. Each element of the

NxM density map contains a number between 0 and 1. A value of 0 implies a low road

density whereas a value of 1 implies high road density. The semi-permeable boundaries,

corresponding to such objects as highways and rivers, are assumed to split the environment

into distinct regions. Therefore, each element of the region grid corresponds to a specific

region. Paired with this region grid is a matrix storing the associated probability of an agent

to cross from one region to another. This is implemented to discourage agents from crossing

freeway boundaries.

2.2.3.3 Rivalries

The network structure of the rivalries is encoded in a weighted adjacency matrix, R. Each

element Rij contains the current history of interactions between gang i and gang j. At the

end of a simulation, we construct a thresholded rivalry graph where an edge between gang i

and j exists if either ρi(j) or ρj(i) is larger than a given threshold T , where

ρi(j) =
Rij∑N
k=1Rik

and ρj(i) =
Rji∑N
k=1 Rjk

. (2.1)

The quantity, ρi(j), represents the proportion of gang i’s interactions which have occurred

with gang j. Note that ρi(j) is not necessarily equal to ρj(i); however, this thresholding

yields a bidirectional network or, equivalently, a symmetric adjacency matrix.
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2.2.4 Process Overview and Scheduling

At each iteration an agent is chosen from the set of all agents with equal probability. The

agent then preforms one step of a biased truncated Lévy walk. In particular, the jump length

is chosen from the Bounded Pareto probability distribution,

P (x; k, xm, xM) =
kxkmx

−k−1

1−
(
xm
xM

)k k > 0 , xM ≥ x ≥ xm > 0. (2.2)

For all agents the minimum jump length, xm, and scale, k, are fixed. To determine the

maximum jump length, xM , the agent uses the approximated road density of the agent’s

corresponding location from the environment grid. The road density at this location, δ, is

between 0 and 1. The maximum jump length is then calculated via

xM = (1− δ) · A+ a, (2.3)

where A is the largest maximum jump length and a is the smallest maximum jump length.

Given an agent in gang i, the bias direction, µi, incorporates the agent’s location with

respect to its home set space and the location of its rival gangs’ set spaces via

〈x, y〉 = Hi(||
−→
Gi||2)

−→
Gi

||
−→
Gi||2

+
∑
j 6=i

Dij(||
−→
Gj||2)

−→
Gj

||
−→
Gj||2

(2.4)

µi = tan−1
(y
x

)
.

Here,
−→
Gl is the vector that points to the set space of gang l from the location of the agent.

When l = i, this vector points towards the agent’s home set space, and when l 6= i, it

points towards a different gang’s set space. This concept is shown in the cartoon example

in Figure 2.2.

In Equation 2.4, Hi gives the rules for weighting towards a gang member’s own home set

space. The weightings toward or away from different gangs’ set spaces are determined by

Dij. Our Hi and Dij take the following form:

Hi(||
−→
Gi||2) = hi ||

−→
Gi||2, (2.5)
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Dij(||
−→
Gj||2) = wij(R)

1

||
−→
Gj||2

. (2.6)

One notable feature about these equations is that Hi(·) is large when an agent in gang i

is far from his or her gang’s set space, but the Dij(·) function is large when the agent is

close to a rival gang j’s set space. The factors hi and wij(R) of the weighting functions are

chosen according to the rules for agent movement. In our implementation, the factor wij(R)

depends on the current state of the rivalry network. Negative values of these functions result

in repulsion and positive values result in attraction.

Figure 2.2: Cartoon example of the direction vectors incorporated in the direction of bias

formula, Equation 2.4. The agent in this example is located at the dot. Here G1, G2, G3,

and G4 show the vectors pointing toward the set spaces of gangs 1 through 4, respectively.

Depending on the choices of Hi and Dij, different movement dynamics are possible.

After determining the direction of bias from Equation 2.4, we must choose in which

direction the agent will move. The direction, θ, is drawn from a von Mises distribution (also

known as the Circular Normal distribution) [MJ00, JS01, BF79]. For θ ∈ [−π, π], the von

Mises distribution is given by

f(θ|µ, κ) =
exp (κ cos(θ − µ))

2πI0(κ)
.

Here I0 is a modified Bessel function of order zero. The von Mises distribution requires two

parameters, one for the angle of bias, µ, and one for the strength of the bias, κ. We can think

of µ as being the mean of the distribution, and 1
κ

as being comparable to the variance. The

25



larger κ is, the stronger the bias is for the direction µ. If κ = 0, this is a uniform distribution

on a circle.

From the direction and jump length, a prospective location is calculated. The new

location is then checked to see if the result would move the agent into a different region. If it

does not, the agent moves, meaning movement within a region is not restricted. However, if

its next move would result in a region change, i.e. it is crossing a semi-permeable boundary,

it has a given probability of crossing into that region. If the agent moves, it searches the

other agents to see if it is close enough to interact with agents of other gangs. When an

interaction does occur, the rivalry matrix, R, is updated.

The final network is observed after 20,000,000 iterations and then thresholded to ignore

infrequent interactions. The location of interactions is also recorded and could be of interest

to other applications, see discussion in Section 2.6 and Figure 2.14.

2.2.5 Initialization and Input Data

Before the simulation begins, the region map and an estimated density of the road networks

must be provided in matrix form on the same grid. The probability of crossing each boundary

must also be provided. Additionally, parameter values must be specified. Table 2.1 describes

the full list of parameters needed for implementation. At the start of the simulation all of

the agents are located at their gang’s set space. The size of each gang must also be specified.

2.2.6 Hollenbeck Parameters

The grid of environment features of Hollenbeck was approximated from the Google EarthTM

image in Figure 2.1. Hollenbeck is about 39.4 km2 [RFT10, TRR03]. In our implementation,

one Hollenbeck city block corresponds to approximately six grid elements. The interaction

radius between agents is 3 units, or roughly half a city block. The approximated road

density and region grids are show in Figure 2.3. The boundaries of the Hollenbeck region

were approximated using points from the geographic features visible from Google EarthTM .
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Params Acceptable Hollenbeck Tested Description

Values Values Range

xm 0 < xm < a 0.1 Minimum jump length

k 0 < k 1.1 [1, 1.9] Bounded Pareto scaling

κ 0 ≤ κ 3.5 [1.5, 5] Von Mises scaling

hi hi ∈ R 1 Home weighting

wij(R) wij(R) ∈ R −ρi(j) Rival gang weighting

Ni Ni ∈ Z+ 14≤ Ni ≤ 598 Size of gang i

Si Si ∈ R2 see Figure 2.1 Location of gang i set space

A a < A 200 [100, 400] Largest max jump length

a xm < a 100 [100, 200] Smallest max jump length

B 0 ≤ B ≤ 1 0.2 [0, .5] Permeability of boundaries

T 0 ≤ T 0.04 [0, 0.6] Threshold for existence

of an edge

Table 2.1: Parameters needed for model implementation are listed in the first column. The

second column lists theoretically acceptable parameter values. The values corresponding to

the SBLN are displayed in the Hollenbeck Values Column. The Tested Range column pro-

vides the range for each variable for simulations run. The last column provides a description

of each of the parameter values.

These boundaries were used to construct the region grid. To approximate the road density

of Hollenbeck we used a Weighted H1 Maximum Penalized Likelihood Estimation method

with a road map as the initial data [SKW10]. To extend the approximated road density to

the same sized grid as the region grid, the average value of the density over Hollenbeck was

computed and used for the extended regions. The number of agents in each gang reflects

historical information obtained from the LAPD.

The boundary crossing probability between the regions was calculated by the minimum
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Figure 2.3: The image on the left shows the location of Hollenbeck in the N ×M environment

grid. The semi-permeable boundaries encoded in the model are displayed in the center image.

The shades of gray of this image are used to distinguish among regions. On the right, we

used a Weighted H1 Maximum Penalized Likelihood Estimation method with a road map as

the initial data to approximate the road density of Hollenbeck [SKW10]. The scale, seen on

the far right, gives the approximated road density intensity. Light shades of gray correspond

to high density values near one and dark shades correspond to low densities near zero.

number of boundaries one must cross to get from one region to the next. For instance, if

region 1 and region 2 were separated by one boundary, the agent would have a probability,

B, of accepting a move from region 1 to region 2. If region 1 and 2 were separated by α

boundaries, then the agent would have a Bα probability accepting the move.

2.3 Baseline Comparison Models

2.3.1 Geographical Threshold Graphs (GTG)

For comparison to the networks produced by our simulations, we constructed an instance of a

Geographical Threshold Graph (GTG). Geographical Threshold Graphs are random graphs

that use spatial proximity to assist in determining whether or not two nodes are connected

with an edge [MMK05, BHP07, BHP09]. Geographical Threshold Graphs randomly assign

weights ηi to the N nodes. Then, using an interaction function F (ηi, ηj), an edge between
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nodes ni and nj exists only if
F (ηi, ηj)

d(ni, nj)β
≥ Threshold,

where d(ni, nj) is the distance between nodes ni and nj. Constructing an instance of this

graph is fast and computationally inexpensive. In our case, we take the multiplicative weight

function F (ηi, ηj) = ηi · ηj, since this is the number of possible pairings between members of

gang i and gang j. We use Euclidean distance for the d(ni, nj) function. The weights ηi are

taken to be the size of each gang, and we choose β = 2. The threshold was chosen to give

the same number of rivalries as the observed rivalry network.

2.3.2 Brownian Motion Network (BMN)

Another model we use to compare with the simulated network is a simplified version of the

proposed model using Brownian Motion and unbiased movement rules. The semi-permeable

boundaries of the model are incorporated also in this model. Specifically, each agent chooses

the next prospective location from a standard normal distribution, ignoring any directional

decisions. These simplifications reduce the number of variables to the threshold, T , and the

permeability, B, while still incorporating the geographic boundaries. The parameter space

around the Hollenbeck values was explored and run for 2 · 107 iterations. A priori, it was

unclear how many iterations to run the simulation. We observed that the accuracy of the

Brownian Motion networks peaked around 1.2 · 107 iterations and then decreased as the

simulations progressed. The parameters and number of iterations that produced the highest

accuracy were used for analysis. We will refer to the resulting network as the Brownian

Motion Network (BMN).

Inherent in the BMN is a level of stochasticity. To understand how this stochasticity

influences the final rivalry network and the resulting metrics, the BMN simulation was run

for 100 different seed values. The resulting collection of final networks will be called the

Ensemble BMN.
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2.3.3 Baseline Network Graphs

Figure 2.4 displays the resulting GTG and BMN as compared to the observed rivalry network.

The lower portion of the GTG graph has similar shape to the observed network, but contains

more connections. The GTG does not make long connections. This is particularly evident

in the upper half of Hollenbeck. The BMN picks up many of the longer connections, but

includes far too many connections.

Figure 2.4: A visual comparison of the observed rivalry network (left), GTG (center), and

BMN (right).

2.4 Results

The results of our network were obtained by searching the parameter space within the ranges

specified in the fourth column of Table 2.1, allowing for dependencies between parameters.

The 34,128 simulated networks were then sorted according to accuracy, defined in Equa-

tion 2.7. Because each of the gangs in Hollenbeck are active, the graph with the highest

accuracy with all non-zero degree nodes was chosen as a showcase of the model. The param-
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eter values for the optimal run are found in the third column of Table 2.1. We will to refer

to this as Simulated Biased Lévy walk Network (SBLN). Figure 2.5 displays the network

with our optimal parameters. The SBLN has a shape and structure similar to the observed

network, but does not capture all of the longer edges. We also verified that all of the metrics

we use to evaluate our model have reached a statistical equilibrium for the SBLN.

Figure 2.5: Comparison of the observed rivalry network (left) and the SBLN (right). The

SBLN has a shape and structure similar to the observed network, but does not capture many

of the longer edges.

2.4.1 Stochastic Effects Observed in the Simulated Biased Lévy Walk Network

(SBLN)

Implicit in the model is a degree of stochasticity intended to capture the gross features

of human movement. In particular, the jump length and direction choice are sampled from

probability distributions, and the directional bias is determined by the (inherently stochastic)

current rivalry structure. These elements affect the inclusion and exclusion of rivalry network

edges. To understand the effect of stochasticity on the network produced by the model,
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each simulation was run 100 times with different random seed values with the same SBLN

parameter values. We refer to the collection of runs as the Ensemble SBLN. Each simulation

was run independently and evaluated with several metrics. The resulting metrics were then

averaged for analysis.

We also recorded the persistence of each edge in the ensemble of networks, and this is

denoted as the percent edge agreement. For example, an ensemble network with 10% edge

agreement refers to a network consisting of all edges that appear in at least 10% of the

runs. Figure 2.6 displays the Ensemble SBLN with 100%, 50%, and 1% edge agreement

next to the observed rivalry network. As expected, increasing the percent edge agreement

decreases the number of edges present in the network. The network constructed with 100%

edge agreement does not give a close representation of the observed network, because there

are too few edges. However, allowing for 50% edge agreement produces a similar shape to the

observed network. The Ensemble SBLN 1% edge agreement network shows all possible edges

observed in the ensemble of simulation runs. Taken together, these images demonstrate the

stochastic effects inherent in the model.

Figure 2.6: Percent edge agreement for the ensemble of runs for the SBLN parameter values.

These four images give a comparison of, from left to right, the observed rivalry network,

the Ensemble SBLN 1% edge agreement, the Ensemble SBLN 50% edge agreement, and the

Ensemble SBLN 100% edge agreement.
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For comparison, we simulated a random model that incorporates only the distance be-

tween nodes. In particular, we constructed a collection of randomly weighted Geographical

Threshold Graphs by fixing the locations of the nodes and sampling the weights, ηi, indepen-

dently from a uniform distribution. We selected a threshold to yield a median of 69 edges.

Figure 2.7 displays the percent agreement of each possible edge for the Ensemble SBLN, a

collection of randomly weighted Geographical Threshold Graphs, and the Ensemble BMN.

For visualization, the edges for each ensemble were sorted separately in descending order

based on percent edge agreement. In the Ensemble SBLN, there is 100% edge agreement for

the existence of 39 of the edges (corresponding to the first 39 edges of the Ensemble SBLN

along the horizontal axis in Figure 2.7). The 100% edge agreement network in Figure 2.6

shows these edges. All runs in the Ensemble SBLN consistently agree on the nonexistence of

309 edges (corresponding to the last 309 edges of the Ensemble SBLN in Figure 2.7). These

are the edges not appearing in the 1% edge agreement network in Figure 2.6.

The transition between edge existence and nonexistence in the Ensemble SBLN is marked

by a steep drop over 58 edges. The collection of randomly weighted Geographical Threshold

Graphs displays a large degree of stochasticity indicated by fewer edges with 100% edge

agreement and the more gradual decline of edge agreement. The Ensemble BMN appears

to have a smaller degree of stochasticity with more edges with 100% edge agreement and

a steeper decline than the Ensemble SBLN and the collection of randomly weighted Geo-

graphical Threshold Graphs. Despite the stochasticity observed in these models, there is

agreement among the edges of the Ensemble BMN and Ensemble SBLN, maintaining some

structure within the simulated networks.

2.4.2 Long Term Behavior of the SBLN

The simulated network, through the movements of each of the agents, evolves as the simu-

lation progresses. Because of this evolution, it is natural to ask if any sort of steady state is

achieved. Keeping in mind the stochasticity of the model and the interaction between the

network and the agents’ movements, an equilibrium in the strictest sense cannot be obtained.
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Figure 2.7: Plot of the edge persistence for the Ensemble SBLN (solid), Ensemble BMN

(thin-dash), and an ensemble of random Geographical Threshold Graphs (thick-dash). The

randomly weighted Geographical Threshold Graphs were constructed with random weights

and have a median of 69 edges present. The edges were sorted in descending order according

to the proportion of simulation runs where the edge is present in the network. Each ensemble

of runs were sorted separately, yielding different edge numbers among ensembles.

Despite this, the results indicate there is limiting behavior of the observed metrics as the

simulation progresses. Figure 2.8 displays the density and accuracy over the progression of

the simulations for the Ensemble SBLN; for the definition of these metrics, refer to Sec-

tion 2.4.3. Each run is observed every 1,000 iterations and the results of each simulation are

shown as a thin line. The average metric value at each iteration is calculated and plotted

as the thick line. For visual investigation the vertical axis on the accuracy plot has been

refined to include only the area of interest. Accuracy values can range from 0 to 1. Both of

these plots suggest that after a short phase of initialization, the metrics of each run appear

to stabilize. For the average values of the density and accuracy of the last iteration, refer to

Table 2.2 and 2.3.
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Figure 2.8: Plots of the accuracy (top) and the density (bottom) of the SBLN over the 2

·107 iterations. Each of the 100 Ensemble SBLN runs are plotted by thin lines. The average

over all the runs at each sampled iteration is shown with the solid, thick line. The density of

the observed network is shown in the thick, dashed line. For visual investigation the vertical

axis on the accuracy plot has been refined to include the area of interest. Accuracy values

can range from 0 to 1.

The Ensemble SBLN is shown to exhibit stable long term behavior the simulated ri-

valry network, with some variation due to stochasticity. Despite this variation, the network

emerging from the model results in metrics with a small deviation from the average. Further,

the stochasticity observed may provide a more realistic model of the true rivalry structure.
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Research has demonstrated that the rivalry networks that link gangs tend to be stable over

time [TR10, RFT10, Pap09], and that the activity spaces of gangs are anchored to specific

places [TCE05, MP93]. However, over longer periods of times, the membership ranks of

gangs may ebb and flow due to incarceration, individuals “aging out” of active status, or

other forms of incapacitation [TRR03]. Thus, gangs may lay dormant and, though identified

in the rivalry network, not actually participate in violence. In extreme cases, either through

high levels of victimization at the hands of rival gangs or through the focused enforcement

of law enforcement agencies, a gang may simply disappear altogether. As more data become

available, inherent stochasticity in the model may allow for further understanding of the

rivalry structure.

2.4.3 Metrics Used for Analysis

We analyze our model according to several common metrics of accuracy, shape, and commu-

nity structure. These statistics are compared to the observed rivalry network in [RFT10], in

which there are 69 rivalries among 29 active gangs in the Hollenbeck policing precinct.

2.4.3.1 Accuracy Metrics

The first measures of interest are the raw values for the number of correct and incorrect edges.

These values provide a means for evaluating the performance of the model. However, when

comparing the observed network with the constructed network, each edge can be correct in

two ways and incorrect in two ways. First, the constructed network can correctly identify an

edge, true positive (TP), and correctly identify the lack of an edge, true negative (TN). The

constructed network can also be wrong in two different ways. It can place an edge where

there is none, false positive (FP), and also fail to place an edge where there is one, false

negative (FN).

There are three quantities that are of particular interest that summarize the TP, TN,

FP, and FN values. First is the accuracy of the model. The accuracy in the context of edges
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on a graph is defined by

ACC =
TP + TN

TP + TN + FP + FN
. (2.7)

The ACC ranges between 0 and 1, with 1 being a perfect reproduction of the observed

network. This measure is proportional to theQα measure discussed in [BBC00]. The F1 score

provides another measure to analyze the accuracy of the predicted network, [Seb02, YL99],

and is defined as

F1 =
2TP

2TP + FP + FN
. (2.8)

An exact replication of the network would have an F1 score of 1. The other summary

statistic for the raw closeness to the network is the Matthews Correlation Coefficient (MCC)

[Mat75, BBC00]. This measurement varies between −1 and 1, where a value of 1 is a perfect

prediction. The MCC is defined as follows:

MCC =
TP · TN − FP · FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
. (2.9)

The measurements of the TP, TN, FP, and FN provide one means by which to determine

the success of the model. However, they do not describe how these correct or incorrect

measurements affect the overall network structure. A strong model would create a network

that is not only accurate but also, maintains the same network structure, even in the event

that the individual connections are the not same.

2.4.3.2 Shape Metrics

We would like to verify that the simulated network has a similar shape to that of the true

network. To do this, we calculate the graph density, standard variance of nodal degree and

Freeman’s centrality measure of the graph. For definition of these metrics, see [WF09, Fre79].

The density of a network provides a normalized average of the degrees of the network.

Networks with the same number of edges and nodes have the same density measure. The
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centrality measure of the graph is defined to be

N∑
i=1

maxDegree − degree(i)

(N − 1)(N − 2)
. (2.10)

The centrality measure and the variance of the nodal degree provide measures for the spread

of the degrees.

2.4.3.3 Metrics of Community Structure

Another class of measurements which are of interest to observers of social networks are

those that describe a network’s community structure. Here, we use the idea of community

structure strictly as a network property. The degree distribution has been widely used to

understand the overall network structure [New01c, NSJ01, New03, AB02]. We compare the

nodal degree cumulative distribution function (CDF) of our simulations with the observed

network. The nodal clustering coefficient is another popular metric to analyze the community

structure [AB02, New01c, WF09]. Intuitively, this is the proportion of a node’s neighbors

that are also neighbors with one another to the total possible connections of this type. This

measure is calculated for each node yielding a distribution of clustering coefficients. From

this distribution, the mean clustering coefficient over all nodes is computed.

2.4.4 Evaluating Models Using Graph Metrics

2.4.4.1 Accuracy Metric Results

Table 2.2 provides the accuracy measures for the GTG, BMN, Ensemble BMN, SBLN, and

Ensemble SBLN. The SBLN outperforms all of the other networks on all of the accuracy

metrics. Observe that the GTG also performs well on these metrics. The Ensemble SBLN

metrics are comparable to the GTG and BMN metrics. In particular the average number

of true negatives (TN) and false positives (FP) perform slightly better for the Ensemble

SBLN than for the GTG, BMN, and Ensemble BMN. The Ensemble SBLN average of the

true positives (TP) and false negatives (FN) performs slightly worse than the GTG and
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BMN. Only the GTG and SBLN have higher accuracy, F1 Score, and MCC values than the

Ensemble SBLN average.

SBLN Ensemble SBLN GTG BMN Ensemble BMN

Average ± σ Average ± σ

TP 50 45.50 ± 1.269 48 47 43.61 ± 1.380

TN 320 316.1 ± 2.424 316 313 309.2 ± 1.390

FP 17 20.90 ±2.424 21 24 27.76 ± 1.39

FN 19 23.50 ± 1.269 21 22 25.39 ± 1.380

ACC 0.9113 0.906 ± 0.007 0.8966 0.8867 0.8691 ± 0.0051

F1 Score 0.7353 0.6722± 0.020 0.6957 0.6714 0.6213 ± 0.016

MCC 0.6822 0.6069 ± 0.025 0.6333 0.6031 0.5424 ± 0.019

Table 2.2: Accuracy measures for the SBLN, Ensemble SBLN, GTG, BMN, and Ensemble

BMN. The σ denotes the standard deviation of the ensemble metric values.

2.4.4.2 Shape Metric Results

Table 2.3 provides the shape measures for the observed network, GTG, BMN, Ensemble

BMN, SBLN, and Ensemble SBLN. Note that the density of the GTG is exactly the same

as the observed rivalry network by construction, but it does not perform well for the nodal

degree variance. The density for the BMN, Ensemble BMN, SBLN, and Ensemble SBLN

are all close to the observed network. The BMN and the Ensemble BMN average have the

closest nodal degree variance to the observed network’s nodal degree variance. The centrality

measure for the SBLN is the closest to that of the observed network.
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Density Variance of Centrality Mean Clustering

Nodal Degree Coefficient

Observed 0.16995 4.32105 0.20106 0.4921

SBLN 0.16503 3.54578 0.16799 0.6325

Ensemble Average 0.16355 3.66423 0.15040 0.6364

SBLN ± σ ± 0.005593 ± 0.48395 ± 0.01883 ± 0.02718

GTG 0.16995 9.97622 0.27778 0.6719

BMN 0.17488 3.88585 0.15741 0.7540

Ensemble Average 0.17579 3.93926 0.16065 0.7009

BMN ± σ ± 0.004546 ± 0.41351 ± 0.02635 ± 0.02681

Table 2.3: This table provides the shape measures for the observed network, SBLN, En-

semble SBLN, GTG, BMN, and Ensemble BMN. The σ denotes the standard deviation of

the ensemble metric values. Note that the density of the GTG is exactly the same as the

observed rivalry network by construction.

2.4.4.3 Community Structure Results

The cumulative distribution function (CDF) of nodal degree for the observed network, GTG,

BMN, normalized Ensemble BMN, SBLN, and the normalized Ensemble SBLN are shown

in Figure 2.9. A normalized ensemble CDF shows the CDF of the degree distribution of all

runs divided by the number of runs. The SBLN and the normalized Ensemble BMN have

the most similar distributions as the observed network. The normalized Ensemble SBLN

performs better than the GTG and the BMN. In the same figure, the normalized Ensemble

BMN and SBLN are plotted with two standard deviations above and below together with

the observed network distribution. Here we see that there is a smaller standard deviation

for the normalized BMN than the normalized SBLN. Even with the standard deviations,

the degree distributions of both classes of networks are close to that of the observed degree
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distribution.

The mean clustering coefficient for each of the networks is seen in the last column of

Table 2.3. On this measure of community structure, the SBLN and Ensemble SBLN average

outperform all other networks. The Ensemble BMN average has the farthest mean clustering

coefficient from the observed network.
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Figure 2.9: The top figure plots together the cumulative distribution functions of the degree

distribution for the observed network (thick-solid), GTG (thick-dashed), BMN (dot-dash),

normalized Ensemble BMN (thin-dash), SBLN (thin-solid), and normalized Ensemble SBLN

(dot-solid). A normalized ensemble CDF shows the CDF of the degree distribution of all

runs divided by the number of runs. The normalized Ensemble BMN (bottom left) and

SBLN (bottom right) are plotted with two standard deviation above and below (thin-dash)

with the observed network distribution (thick-dash).
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2.4.5 Summary of Results

In all metrics except the density, the SBLN performs better than the GTG (note that the

density measure of the GTG is exactly the same as the observed network by construction).

Although the GTG is unable to closely replicate the standard shape measures, it has fairly

high accuracy values. The Ensemble SBLN average performs similarly to the GTG in the

accuracy, but performs better with shape measures, even with the stochastic considerations.

On average, the Ensemble SBLN produces a slightly more accurate degree distribution than

the GTG. The BMN is able to reproduce the degree distribution fairly well, however, the

BMN and Ensemble BMN average have lower values for the accuracy (ACC), Matthews

Correlation Coefficient (MCC), and F1 Score when compared to the other models. Our

analysis demonstrates that the SBLN is the strongest model in reproducing the observed

rivalry network.

2.5 Sensitivity Analysis

Our objective in this section is to understand the effects of the input parameters on the

system by comparing the different metrics of the resulting networks as the parameters change.

Due to computational constraints, we perform a local analysis of the parameter space around

the SBLN parameters specified in column 3 of Table 2.1.

In particular, we perturb one parameter at a time by 30% from the SBLN parameter

values in 10% increments. To account for the stochasticity inherent in the model, each

perturbation was run using the same 25 seed values for the random number generator. The

range of each parameter examined is listed in Table 2.4.

For each simulation run, we compute the accuracy, Matthews Correlation Coefficient, F1

score, centrality measure, variance of nodal degree, density, and mean clustering coefficient

for the resulting network. Plots of each combination of metric versus parameter values were

created for the general analysis. Three examples of parameter and metric combinations with
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Bounded Pareto Scaling Parameter k ∈ [0.77 , 1.43]

Von Mises Scaling Parameter κ ∈ [2.45 , 4.55]

Largest Maximum Jump Length A ∈ [140 , 260]

Smallest Maximum Jump Length a ∈ [70 , 130]

Boundary Permeability B ∈ [0.14 , 0.26]

Network Threshold T ∈ [0.028 , 0.052]

Table 2.4: Ranges of the parameters used in the sensitivity analysis. Each parameter was

changed 30% from the SBLN parameters in 10% increments. For SBLN parameter values

refer to the Hollenbeck column of Table 2.1

more dramatic results are plotted in Figure 2.10. In this figure, we display the variance

of nodal degree versus the smallest maximum jump length, a, and the network threshold,

T . We also display the density versus the Bounded Pareto scaling parameter, k, where the

vertical axis has been rescaled for visualization. The dots represent the metric values of the

simulation run at the specified parameter. The solid curve indicates the average metric value

over all runs at each parameter value.

As seen in Figure 2.10, the plots varying the network threshold and Bounded Pareto

scaling parameters have a negative trend on average. The smallest maximum jump length,

however, shows a positive trend. The stochastic effects can also be observed by the range of

metric values associated with each parameter input, as illustrated by the dots in Figure 2.10.

These plots suggests that stochasticity may influence the metric values for a particular run,

and on average the resulting metric output is sensitive with respect to these parameters.

These plots give a view of how the particular metric and parameter value interact. We

changed all of the parameter values by the same 30% from the SBLN parameters, and so

we can compare plots with the same metric. For example in Figure 2.10, we can see that

in general nodal degree variance for the smallest maximum jump length has a steeper trend

than the nodal degree variance for the threshold, but we can not compare the trend of the
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Figure 2.10: Plots of the nodal degree variance versus the smallest maximum jump length

(top left), and the network threshold (top right). We also display the density versus the

Bounded Pareto scaling parameter (bottom), where the vertical axis has been rescaled for

visualization. The solid curve indicates the average metric value over all runs at each pa-

rameter value. The dots represent the metric values of the simulation run at the specified

parameter.

nodal degree variance plots directly to that of the density plot.

To compare the effects of all the parameters on all metrics, we rescale the data points

to percent deviation from the SBLN parameter values. For example, when considering the

affects of the Bounded Pareto scaling parameter, k, on the density metric, we rescaled the

observed data points

(ki, densityi) 7→
(
ki − k SBLN

k SBLN

,
densityi − density SBLN

density SBLN

)
,

where k SBLN is the SBLN Bounded Pareto scaling parameter. Here, density SBLN is the
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average density at the k SBLN value for all 25 runs. A line was fitted to the rescaled data

points, and the slope of this line was recorded. This process was repeated for each parameter

and metric value combination.

The results are recorded in Table 2.5 and visualized in Figure 2.11. In Table 2.5, negative

values indicate a negative slope of the best fit line to the scaled data, and positive values

indicate a positive slope. Slopes with a greater magnitude indicate a stronger correlation

between the metric and parameter. To get a clearer impression of overall sensitivity of the

system, this information is displayed in Figure 2.11. The dark, and light, intensities of the

color map represent large positive, and negative, values of the best fit line slope.

k κ A a B T

Accuracy -0.0120 -0.0031 0.0011 0.0001 0.0031 0.0000

MCC -0.2066 -0.0161 0.0023 0.1458 0.0293 -0.0000

F1 Score -0.2149 -0.0146 0.0018 0.1562 0.0278 -0.0000

Centrality -0.1705 -0.0100 -0.0131 0.7119 0.0195 -0.1751

Nodal Degree Variance -0.4385 -0.0489 -0.0146 0.9456 0.0154 -0.5412

Density -0.7410 -0.0080 -0.0114 0.6131 0.0640 -0.2460

Mean Clustering -0.3812 -0.0011 0.0005 0.1484 0.0084 -0.0614

Coefficient

Table 2.5: Slope of the best fit to the rescaled data for each metric and parameter combina-

tion. For reference, coefficients that correspond to the images in Figure 2.10 are highlighted

in bold font. Figure 2.11 displays this information in a color map.

In general, the metrics are not very sensitive to the von Mises parameter, κ, the largest

maximum jump length, A, and the boundary permeability, B, within the parameter space

investigated. On the other hand, the Bounded Pareto scaling parameter, k, the smallest

maximum jump length, a, and the network threshold, T , have the most influence on the

metrics. As seen in the table and figure, the accuracy measures are fairly robust to changes
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Figure 2.11: Slopes of the best fit line to the rescaled data for each parameter and metric

combinations depicted in a color map. The parameters varied include the Bounded Pareto

scaling parameter, k, the von Mises scaling parameter, Kappa, the largest maximum jump

length, A, the smallest maximum jump length, a, the boundary permeability, B, and the

network threshold, T . The scale to the right of the image gives the slope values. Tones close

to the center of the scale represent combinations where the metrics are not very sensitive

to the respective parameter. Combinations with tones at the ends of the spectrum (black

and white) represent metrics that are sensitive to the respective parameter. The numerical

values are also stored in Table 2.5.

in all parameter values. Further, note that nodal degree variance and density measures

appear to be the most affected by the changes in these parameters.

The Bounded Pareto scaling parameter values result in negative slopes for all metrics.

This is to be expected because an increase in the Bounded Pareto scaling parameter will

decrease the likelihood of larger jumps and result in fewer edges. This phenomena is partic-

ularly evident in the density metric. Also this parameter appears to have the most effect on

the accuracy measures, in particular the MCC and F1 score.
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Increasing the network threshold parameter also has a negative effect on the shape and

community metrics. By increasing the network threshold, the number of connections de-

creases. This in turn decreases the density, nodal degree variance, centrality, and mean

clustering coefficient. On the other hand, increasing the smallest maximum jump length

increases the connectivity of the network by allowing for larger jumps in areas of high road

density. The effect of changing this parameter is more significant than changing the largest

maximum jump length. Interestingly, as the largest maximum jump length increases, the

connectivity decreases. This could be where attempts to cross boundaries are more likely

to occur. The lower portion of Hollenbeck is approximately 300 units wide and has many

boundaries. When varying the largest maximum jump length between 140 to 260, it be-

comes very probable that at least one boundary cross would be attempted. At this point,

the boundary permeability is expected to play a stronger role in the simulation.

Depending on the network, changes in the number of connections could be more or

less beneficial in terms of accuracy. Further, small changes in the connectivity, i.e. the

existence or non-existence of an edge, could have small effects on the accuracy measures and

large effects on the shape measures, as seen for our simulations in the case of the network

threshold parameter.

2.6 Discussion

Using biased truncated Lévy walks with semi-permeable boundaries, we have designed an

agent-based model for gang members in Hollenbeck that incorporates quasi-realistic move-

ment rules as well as physical geographic features existing in Hollenbeck. We have shown that

it is able to simulate a gang rivalry network similar to the one observed in [TRR03, RFT10].

The Simulated Biased Lévy walk Network (SBLN), the Brownian Motion Network (BMN),

and an instance of a Geographical Threshold Graph (GTG) were compared to the observed

rivalry network using measures of accuracy, shape, and community structure.

The GTG method performs well on the accuracy metrics and provides an alternative,
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computationally inexpensive method to construct the rivalry network. One could extend this

model to incorporate boundary information by increasing the distance function d(ni, nj) if ni

and nj are in distinct regions, see Section 2.3.1. However, the GTG is limited to reproducing

only the rivalry network and does not lend itself to understanding other phenomena, such as

the gang member mobility and the locations of interactions between gang members. On the

other hand, agent-based models such as the BMN and SBLN provide a reasonable approx-

imation to the observed network and can be easily extended to include policing strategies,

the location of violence, retaliatory behavior, and effects of injunctions.

Although the BMN accuracy results were not as strong as the GTG and SBLN results,

this method was able to reproduce a similar shape and community structure as the observed

rivalry network. This model was able to incorporate geographical features, but ignored

directional decisions of the agents. One major problem with this model is that the stopping

iteration for the model was artificial, in that we chose to stop it at the observed peak in

accuracy. In general, there may not be an observed network, and so it would be difficult

to determine stopping criteria. However, our proposed SBLN model exhibits long term

stabilization of the accuracy and density metrics.

The SBLN is the best model in replicating the observed network. Further, it allows for

easy incorporation of geographic features and alternate movement dynamics, while maintain-

ing a high level of accuracy and allowing for evolution in the observed system. The success

of this model and the flexibility of the method leads us to believe that the SBLN could also

facilitate in understanding other social phenomena of interest related to gang violence. In

fact, this model is able track the location of the agents’ interactions during the simulation.

This can be compared to violence data for the Hollenbeck area, and preliminary work has

been done in this direction. Figure 2.14 shows the locations of the interactions among agents

for one of the Ensemble SBLN simulation runs and the density of gang-related violent crimes

in Hollenbeck from 1998 through 2000. The juxtaposition of these two plots emphasizes the

similarities between the two and illustrates the potential predictive capabilities of this kind

of approach. Though movement and interaction rules may need to be slightly altered to
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provide a closer match to the data, the current model provides a baseline model for further

analysis and investigation of the gang rivalry violence in Hollenbeck. Another potential av-

enue for future work is to use this model to investigate territoriality and respect as a key

elements in the motivation for violence [TRR03].

The current model does not account for the difference between positive, negative, and

neutral interactions. Instead the SBLN records interactions between agents with the implicit

assumption that these are negative interactions. It is possible that there exists an alliance or

truce between two gangs, and such phenomena has been observed in street gangs in Chicago

[BB93a]. The proposed SBLN model could be extended to include this.

Now that some of the influences of the geography and the interactions between the agents

and the network are better understood, it could be beneficial to reformulate the agent-based

model as a PDE. This alternative approach may allow for a deeper understanding of the

model and may provide a rigorous analysis of the network dynamics.

Pursuing a model that accurately describes the violent behavior in Hollenbeck is of great

value, since Hollenbeck is one of the most violent areas in Los Angeles [TRR03, Inf08]. The

advantage of approaching this serious problem using a computer simulation is twofold. First,

these simulations may help us understand the underlying mechanisms that are involved

in producing violent behavior among the gangs in Hollenbeck. Second, if the simulation

can accurately model the social phenomena of interest, then we might gain some insight

into how intervention strategies could alter the existing gang rivalry system. The costs of

implementing these changes in the simulation are relatively small compared to those costs

of public funds needed to implement experimental interventions. If the Hollenbeck area can

be well understood by this approach, there may be hope in understanding, and potentially

mitigating, other areas of intense violent behavior.
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Figure 2.12: Locations of all the interactions between agents for one of the Ensemble SBLN

runs (left). Density map of gang-related violent crimes in Hollenbeck between 1998 and 2000

(right).

2.7 Comparing Simulated Violence Locations Observed Violence

Locations

We wish to compare the observed data of Hollenbeck with the locations of interactions

produced by the simulation. The observed and simulated data are point process data. This

means that each point is located in (x,y) space and the existence and non-existence of a

point is of interest.

The first test conducted is that of complete spatial randomness, or CSR, to determine if

the data could have been obtained from an unstructured homogeneous Poisson process. To

test for CSR a quadrant count was conducted. This amounts to breaking the valid region A

into equal area parts. A Poisson process will have on average the same number of points in

each region, regardless of the shape of the region. Deviations from the null hypothesis of a

Poisson process are determined using a χ2 test.
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Before initiating a descriptive statistic, one must make some assumption on the form of

data. The first of which is isotropy, i.e. that one unit of distance in the Y direction has

the same effect as one unit of distance in the X direction. If the degree of anisotropy is

known, the definition of the distance h can be adjusted. The data is also assumed to be an

observation of a stationary point process. This means that the underlying stochastic process

is unchanged if the origin of the index set is translated [Rip81].

Determining the degree of clustering observed in either data set can be approximated by

the K-function, K(h), defined by

K(h) =
E[number of events within distance h of an arbitrary event]

λ
. (2.11)

Here λ is the number of points per unit area in the domain A. In practice, λ is often

approximated by N/|A| where N is the number of points in the observed domain and |A| is

the area of the domain [Dig83, DMC00].

When edge effects are ignored, K(h) is approximated by

ˆK(h) = N−1
∑
i

∑
i 6=j

I(dij < t), (2.12)

where dij is the distance between points i and j. Here I(·) is the indicator function. Edge

effects bias the estimator for large values of h. As a rule of thumb, h should be smaller than

half the distance of the most narrow portion of the domain.

To determine the existence of clustering or inhibition, the approximate K̂(h) function can

be compared to the theoretical value of K(h) for a Poisson process. In this case, K(h) = πh2.

Finally, another method of comparing point processes is through density estimation. For

this analysis a Gaussian is placed on each of the data points. The underlying density is

estimated by summing over the Gaussian functions and then normalizing so that the density

integrates to one.
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2.7.1 Hollenbeck and Simulated Data

The observed data contains the time and location of each violent event, as well as the type

of event, suspect gang and victim gang from 1999-2002. In all there are 1207 events with

two outliers outside of the region of Hollenbeck. For analysis these two events are ignored.

The simulated data was obtained from the Hollenbeck parameters in Table 2.1. So that

the initialization phase of the simulation would not influence the results, the simulation

was run for 107 iterations, and the next 30,000 interaction locations were considered. For

comparison, one representative run of the SBLN model was used. Note that in the simulation

each of the locations represents an interaction between two gangs, and not necessarily a

violent event. Both datasets rejected the null hypothesis of the data coming from a Poisson

process. The Gaussian density estimation for the observed data and the simulated data

are shown in Figure 2.13. From these plots, one can see that the general location of the

simulated events lines up fairly well with those of the observed events.

The density of the simulated location data appears to be more clustered than that of the

observed. This observation is further corroborated when one considers the clustering of these

two data-sets seen in Figure 2.14. Both of the data sets show more clustering than what

would be expected if the process were Poisson. However, the observed data (left) is not as

clustered for small distances than that of the simulated data. This may imply that there are

some additional movement rules that need to be incorporated. Further, it could be that a

more sophisticated interpretation of “interaction” needs to be employed. For instance, once

an agent has interacted with an agent of a rival gang, they could be placed back at their

respective set-space after the interactions. It is more plausible that after a series of violent

interactions with other gangs, the gang member would go back to their home set-space, and

not remain located “at the scene of the crime”.
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Figure 2.13: Comparison of Gaussian density estimates between the observed (left) and

simulated (right) data, with σ = 25.
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Figure 2.14: Comparison between observed (left) and simulated (right) K(h) functions. The

K(h) function associated with a Poisson process is displayed in the dotted line in both

images.
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CHAPTER 3

Inferring gang rivalry association

3.1 Introduction

Gang violence data sets are a valuable source of information on gang systems. Unfortunately,

field data sets are often incomplete. For instance, in the field the physical details such as

the time and location of a violent event can be recorded with reasonable accuracy, however,

the parties involved are not always identified. Not surprisingly, methods that can extract

information from these data sets, in the presence of partial data, is of great interest to law

enforcement and sociologists.

To make gains in extracting crucial information from the data and infer gang involvement

for these data sets the nature of the gang activity is exploited. These violent events tend to

be dyadic between gangs, therefore it is natural to formulate these events as a realization of

a stochastic process occurring on the edges of the rivalry network. In theory for each edge

in the network there exists a different stochastic process. In our analysis we use identical

parameters to generate synthetic data, but the method does not assume that the underlying

parameters generating each process are identical. All events in the data occurs at a specified

time and involves a pair of rival gangs, however, a subset of these events are unsolved crimes

in which one or both of the rival gangs is not known.

It is important to note that the method developed in this chapter could be broadly applied

to any social network involving activities in time between pairs of nodes on the network. The

interest in the problem was inspired by examining data from the Hollenbeck Division of the

Los Angeles Police Department, home to 29 street gangs with a well-known rivalry network
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[RFT10, TR11, TRR03]. Possible geographic influences in the emergence of gang rivalry

networks are discussed in Chapter 2 in [HSB11]. This work in Chapter 3 was conducted in

collaboration with Erik A. Lewis and Andrea L. Bertozzi in [HLB12].

3.1.1 Formulation

Unlike other methods used to address missing data relating to social networks [Hof09,

KRP10], the question at hand is not if a rivalry exists, but rather to which rivalry a vi-

olent event belongs. To do this, one must first understand the underlying stochastic process.

This requires us to capture the behavior of criminal activity through computational means,

much like in [BGJ09, BGK05, BB04]. Recently methods have been proposed in the litera-

ture to mathematically model gang violence. The authors in [HSB11] employ an agent-based

model to investigate the geographic influences in the formation of the gang rivalry structure

observed in Hollenbeck. These authors consider the long-term structure of the rivalry net-

work embedded in space. In terms of the rivalry violence, a shorter time scale must be

considered.

Violence among gangs exhibits retaliatory behavior [Dec96]. In other words, given an

event has happened between two gangs, the likelihood that another event will happen shortly

after is increased. A problem such as this is modeled naturally by a self-exciting point

process. It is interesting to note that these models were first used to analyze earthquakes

[VS08, Oga98, Oga88, ZOV02]. Since then, they have been used to model financial contagion

in credit markets [EGG10, ACL10], viral videos on the web [CS08], terrorist activity in

Indonesia [PW11], and the spread of infectious disease [MEH11].

The authors in [MSB11] and [EFL10] have successfully modeled the pairwise gang violence

as a Hawkes process [Haw71b]. All of the events are associated with exactly one rivalry, or

edge of a social network. The violence on each edge, k, is assumed to have the conditional

intensity

λk(t|Hτ,k) = µk + αk
∑
t>tj

ωke
−ω(t−tj). (3.1)
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In this Hawkes process, the intensity λk(t|Hτ,k) depends on the history of the process Hτ,k =

{t1, t2, · · · tMk
}, where Mk is the number of events for process, k. In this framework, the

window of time, [0, T ], observed for each process in the network is the same. However, the

number of events in each process, Mk, is stochastic, and therefore varies from process to

process. The background rate of the process is defined by the constant µk. The expected

number of offspring for any event is determined by the constant αk, and the decay of the

intensity back to the background rate is ωk. Larger values for µk and αk produce more

background and offspring events respectively. Larger values of ωk do not influence the total

number of events, but rather the amount of clustering in time.

The authors of [SSB11] produce a mathematical framework to solve the incomplete data

problem observed in gang violence data sets. In their work they use an optimization strategy

that computes the weights to infer the rivalry affiliation of the incomplete data. In this

formulation the authors prove that their optimization has a unique solution under mild

constraints. This is a substantial contribution in inferring the affiliation of the unknown

violent events. However, the authors of [SSB11] assume that the process parameters are

known, an assumption that is often not feasible in practice. Further, finding the weights

requires solving a computationally expensive optimization problem.

We propose an iterative method that (A) estimates the process parameters assuming the

data is generated by the process defined by Equation 3.1 and (B) infers the process affiliation

of simulated data via a direct method of computation. We iterate between (A) and (B) until

the estimates for the unknown events converge. We call this the Estimate & Score Algorithm

(ESA). The details of the ESA are described in Section 3.2. The ESA is tested on simulated

data in Section 3.3, with analysis of the estimation of the parameters in the presence of miss-

ing data (see Subsection 3.3.1) and comparison of the proposed score functions with that of

the Stomakhin-Short-Bertozzi (SSB) method in [SSB11] (see Subsection 3.3.2). In Subsec-

tion 3.3.3 there is an analysis of the runtime between the Stomakhin-Short-Bertozzi and the

Forward Backward score functions used to update the weights (see Subsection 3.3.3). Subsec-

tion 3.3.4 contains an analysis of the convergence of the Estimation & Score Algorithm. This
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method solves the more realistic problem of estimating the process and the weights. Further,

the computation for the weight updates is more direct and therefore avoids performing the

costly optimization scheme used in [SSB11]. This is a novel piece of work with many exciting

extensions. A final discussion of the results and future work is presented in Section 3.4. As

in [SSB11] we do not use field data in this dissertation, rather we generated point process

data using similar parameters as observed in the field data for Hollenbeck [EFL10]. By using

simulated data to test the algorithms we have actual ground truth evaluate the performance

of the method.

3.1.2 Problem Formulation

The data is assumed to lie on a known social network containing K processes, where each

of the K processes is a pairwise rivalry between two gangs. From this set of events, there

are a total of N events where the time is known, but the processes affiliation is not known.

Each of the N unknown events are placed into each of the K processes. Since the process

affiliation is not known for all of the events in the network, each event is given an associated

weight, Si,k. Here Si,k is the ith element of the kth process. If the event is known Si,k = 1. If

Si,k is unknown, then it is assigned a number between 0 and 1 by our algorithm. We enforce

the constraint that
∑K

k=1 Si,k = 1.

A simplified representation of our problem formulation can be found in Figure 3.1. The

known events are represented by circles and the unknown event is represented by a triangle.

Here we can see that since we do not known the affiliation of the triangle event, it is placed in

all of the other processes. We emphasize that this represents our lack of information about

which rivalry it belongs to.

As indicated in Figure 3.1, for each process in the network events ei,k are indexed by in-

creasing time, t1 ≤ t2 ≤ t3 · · · ≤ tMk
. Ordering the events in such a way has the consequence

that the first missing element in time, for example, may have different indexes for different

processes. In Figure 3.1 the triangle index in first process is the third event, e1,3. However
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the triangle in the Kth process is the second event, eK,2. One can easily keep track of the

local index of a unknown event for each process.
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Figure 3.1: Simplified representation of the rivalry network with known (circle) and unknown

(triangle) events. Note that since we do not know the affiliated process of this event, we

place it in all processes. Associated with this event is a weights Si,k ∈ [0, 1] such that∑K
k=1 Si,k = 1.

3.2 The Estimation & Score Algorithm (ESA)

The proposed Estimation & Score Algorithm can be broken into three basic stages: initializa-

tion, parameter estimation, and updating the weights. This method is succinctly described

in Figure 3.2.

3.2.1 Initialization

For this dissertation, there were two ways of initializing the Estimate & Score Algorithm.

The first is used to infer rivalry affiliation given field data. After importing the data, the

unknown events are identified and placed into each of the of the K processes. The weights,
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Simulating Data

Field Data

Place the N unknown into  the other processes. 

Simulate K independent processes from a Hawkes 
process. 

Mark N events unknown from the network randomly 
with equal probability. 

Import data and identify unknown events.

Initialize Weights
Set all unknown weights to 

Estimate Parameters

Update Weights
Use one of the 5 score functions to compute the q

ik
s 

for the unknown events. 

Did the Weights 
Converge?

Yes

End

Normalize Weights

Compute P
ij
s

Update Parameters using  P
ij
s

Have the parameter 
estimates converged?

Yes

No

No

Initialization

Estimation

Scoring

Figure 3.2: Flow chart of the Estimation & Score Algorithm.There are two ways to implement

this method. The first, (left of initialization), is the algorithm used when given an incomplete

data set. The second, (right of initialization), is the algorithm used in this dissertation

to simulate the data and test the components of the ESA. The two main phases of the

algorithm are the Estimation phase (see Section 3.3.1) and the Update Weights phase (see

Section 3.2.3).
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Si,k, must also be initialized. If the event is known, then Si,k=1. If the event is unknown

then Si,k = 1
K

.

An alternate initialization is used simulate data in order to test the components of the

Estimate & Score Algorithm. In this case, data is generated from K independent Hawkes

processes with given µk, αk, and ωk. From these data, choose N events at random from

the network to mark as unknown. Place these N unknown events into each of the other

processes. Initialize the weights such that for known events Si,k = 1 and for unknown events

Si,k = 1/K. This initialization process is used in this dissertation to test the method and

produce the results in Section 3.3.

3.2.2 Parameter Estimation

In the presence of no unknown events, there are both parametric [VS08] and nonparametric

[ML08, ML10, SU09, LM11] ways to model the underlying stochastic process on each edge

of the social network. For this work, we chose a parametric form for the triggering density

to validate the model but the results could easily be extended to the nonparametric case.

We note that, as is usual with nonparametric estimates, speed would be compromised for

the sake of flexibility.

For this thesis, the data is assumed to be a realization of Equation 3.1, where the pa-

rameters are estimated using a method similar to the Expectation Maximization (EM) al-

gorithm [DLR77]. An EM-like approach is taken because of the branching structure present

in a Hawkes process. In such a process each event can be associated with a background or

response event. However, given a realization from this process it is not immediately obvious

whether an event is a background or response event. We can view this information as a

hidden variable that we must estimate. In this way, every event in each of the K processes

is assigned a probability P k
i,j. The probability that event i is a background event is denoted

P k
i,i, and probability that event i caused event j is denoted P k

i,j. This assumes that ti < tj.

From this EM estimation, the approximation for each of the variables is altered to include
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the weights for the unknown events. In fact, in the case where all the events are known,

the estimation formulas are the same. This section derives the EM estimates when in the

presence of missing data.

The classical log-likelihood function ˆ̀
k(Hτ,k|µk, αk, ωk) for a general point process is

ˆ̀
k(Hτ,k|µk, αk, ωk) =

Mk∑
i=1

λk(ti|Hτ,k)−
∫ T

0

λk(t|Hτ,k)dt. (3.2)

Incorporating the branching structure into the log-likelihood function, the event association

is added as a random variable, χi,j such that

χi,j =


1 if event i caused event j and i 6= j

1 if event i is a background event and i = j

0 else

. (3.3)

This branching allows us to separate those events associated with the background µk and

the response g(t) = αkωke
−ωkt. This leads to the altered log-likelihood function

`k(Hτ,k|µk, αk, ωk) =

Mk∑
i=1

χi,i log(µk)−
∫ T

0

µkdt (3.4)

+

Mk∑
i=1

{
Mk∑

j=i+1

χi,j log
(
αkωke

−ωk(tj−ti)
)}

(3.5)

−
Mk∑
i=1

{
Mk∑

j=i+1

∫ T−ti

0

αkωke
−ωk(s)ds

}
.

Taking the expectation of `k(Hτ,k|µk, αk, ωk) with respect to χi,j results in

Eχ[`k(Hτ,k|µk, αk, ωk)] =

Mk∑
i=1

P k
i,i log(µk)−

∫ T

0

µkdt (3.6)

+

Mk∑
i=1

{
Mk∑

j=i+1

P k
i,j log

(
αkωke

−ωk(tj−ti)
)}

−
Mk∑
i=1

{
Mk∑

j=i+1

P k
i,j

∫ T−ti

0

αkωke
−ωk(s)ds

}
.

In the EM algorithm, the quantity Eχ[`k(Hτ,k|µk, αk, ωk)] is maximized with respect to each
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of the variables µk, αk, ωk given the data Hτ,k. This leads to the EM estimates

µk =

∑Mk

i=1 P
k
i,i

T
, αk =

∑Mk

i<j P
k
i,j

Mk −
∑Mk

i=1 e
−ωk(T−ti)

(3.7)

ωk =

∑Mk

i<j P
k
i,j∑

i<j(tj − ti)P k
i,j + αk

∑Mk

i=1(T − ti)e−ωk(T−ti)
. (3.8)

Where P k
i,j is defined by

P k
i,j =

αkωke
−ωk(tj−ti)

λk(ti|Hτ,k)
, P k

i,i =
µk

λk(ti|Hτ,k)
, (3.9)

for ti < tj. The EM algorithm then becomes a matter of iterating between estimating the

probabilities and the parameters. It has been proven that this algorithm will converge under

mild assumptions [DLR77].

In the presence of events with unknown process affiliation in the network, we assign

weights to the contribution of each event to the log-likelihood function. Specifically, each of

the unknown events in process k have a weight Si,k, such that
∑

k Si,k = 1. For the known

events Si,k = 1. These weights are incorporated for each process via

Lk(Hτ,k|µk, αk, ωk) =

Mk∑
i=1

P k
i,iSi,k log(µk)−

∫ T

0

µkdt (3.10)

+

Mk−1∑
i=1

Mk∑
j=i+1

Si,kSj,kP
k
i,j log

(
αkωke

−ωk(tj−ti)
)

−
Mk∑
i=1

Si,k

∫ T−ti

0

αkωke
−ωk(s)ds.

Note that Lk(Hτ,k|µk, αk, ωk) is no longer an EM log likelihood in the presence of unknown

data. Maximizing Lk(Hτ,k|µk, αk, ωk) with respect to each of the parameters the estimates

become

µk =

∑Mk

i=1 P
k
i,iSi,k

T
, αk =

∑Mk

i<j P
k
i,jSi,kSj,k∑Mk

i=1 Si,k −
∑Mk

i=1 Si,ke
−ωk(T−ti)

(3.11)

ωk =

∑Mk

i<j P
k
i,jSi,kSj,k∑

i<j(tj − ti)P k
i,jSi,kSj,k + αk

∑Mk

i=1 Si,k(T − ti)e−ωk(T−ti)
. (3.12)

When all of the events are known, i.e. Si,k = 1 when unknown event i, k belongs to process

k and is zero otherwise, these estimates become identical to the EM parameter estimates.
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3.2.3 Updating Weights

At the start of the Estimation & Score algorithm all of the weights for the unknown events are

Si,k = 1/K. Once the parameters are estimated using the altered EM algorithm described in

Equation 3.12, the weights, Si,k, are updated, see Figure 3.2. Here we present four different

score functions and the Stomakhin-Short-Bertozzi method [SSB11], used to define, qi,k, the

intermediate process affiliation. Each of these score functions synthesize information from

different portions of the data set. Given an event early in the data set, a score function

that uses future events would be ideal. On the other hand, for later events a score function

using previous events is desired. Similar considerations should be made if there are portion

of the data with more incomplete data. After all of these intermediate weights, qi,k, have

been calculated, they are re-normalized as a probability via Si,k =
qi,k∑
k qi,k

. For simplicity we

consider a response function of the form, gk(t) = αkωke
−ωk(t).

3.2.3.1 Ratio Score Function

The Ratio score function considers the ratio of the background rate µk and the sum of all

the future events,
∑

i<j gk(tj − ti). Mathematically the score is determined by

qRatioi,k =

∑
i<j gk(tj − ti)
µk(ti)

. (3.13)

3.2.3.2 Lambda Score Function

The Lambda score function uses only previous information by taking the ratio of the inten-

sities evaluated at the unknown event time ti.

qLambdai,k =
λk(ti|Hτ,k)∑K
m=1 λm(ti|Hτ,k)

(3.14)
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3.2.3.3 Stomakhin-Short-Bertozzi (SSB) method

The method defined in [SSB11] is summarized by

max

{∑
k

∑
ij

δi,jµkq
SSB
i,k +

1

2
(1− δij)αkωke−ωk|tki−tkj |qSSBi,k qSSBj,k

}
, (3.15)

subject to

K∑
k=1

(
qSSBi,k

)2
= 1. (3.16)

This method is motivated by the Hawkes process defined in Equation 3.1.

3.2.3.4 Probability Score Function

The Probability score function uses the approximation of the branching structure of the

underlying process. The idea behind this method is events that are background events

with no corresponding response events should not belong in the process. An event that is

a background with many response events or an event that is a response to another event

should be part of that process.

qProbi,k =

∑
tj>ti

P k
i,j

P k
i,i

(3.17)

P k
i,i =

µk(ti)

λk(ti|Hτ,k)
P k
i,j =

gk(tj − ti)
λk(tj|Hτ,k)

(3.18)

3.2.3.5 Forward Backward Response Score Function

This method is the ratio of the summation of the response for the events in the future and

the past,
∑

i 6=j gk(|ti − tj|) over the background rate µk.

qFBi,k =

∑
i 6=j gk(|ti − tj|)

µk
(3.19)
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3.3 Results

The Estimation & Score algorithm is tested for accuracy on simulated data from the Hawkes

process defined in Equation 3.1. An analysis of the parameter estimation method outlined

in Subsection 3.2.2 is conducted in Subsection 3.3.1. A comparison of the score functions

when assuming the true parameters is found in Subsection 3.3.2. Subsection 3.3.3 provides a

comparison of the runtime between the Forward Backward score function and the Stomakhin-

Short-Bertozzi method. A example of convergence of the Estimate & Score Algorithm is

provided in Subsection 3.3.4.

3.3.1 Estimation Analysis

There are many ways we could allow the unknown events to influence our estimates of the

underlying parameters for each process. There are two extremes. On the one hand, we could

exclude all of the unknown events from the parameter estimation. This would be equivalent

to setting the Si,k = 0 for all unknown events. On the other hand, we could include all of

the unknown events in the estimation of the parameters for each process. This would be

equivalent to letting Si,k = 1 for all i and k. Another possible estimation method is some

combination of these two. We propose this as a way of allowing the unaffiliated events to

play some role in the estimation process. The naive choice is allowing each event to play the

same role in each process. This amounts to setting Si,k = 1/K for the unknown events. We

compare these three choices to the estimations obtained by the Estimate & Score Algorithm

(ESA) using the Forward Backward score function. Finally, we want to compare all four

of these possible estimation techniques to the best we could possibly do. In this case, that

would mean we knew all the affiliations for the events (i.e. there are no unknown events).

Figures 3.3-3.5 displays the results for the µk, αk, and ωk estimates for the five cases:

Si,k = 0 for unknown events (dash-triangle), Si,k = 1 for unknown events (dash-square),

Si,k = 1/K for unknown events (dash-x), the results using ESA (dash-circle), and the es-

timates you get when you know all the affiliations for the unknown events (solid). These
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results with standard deviations are displayed in Tables 3.1-3.3. In each of the three figures,

the estimates are plotted vs the number of missing events. Each network has five processes

with the true parameters µk = 0.01, ωk = 0.1, and αk = 0.5. Different networks are created

with 15, 30, 45, 60, and 75 unknown events. Then we estimate the parameters using each

of the five methods explained above. This procedure is repeated 100 times with different

random seed values and then the average estimate is calculated.

Notice in the estimates for µk in Figure 3.3 and Table 3.1, the ESA performs the best

compared to the true value and has only a slight reduction in accuracy as the number of

missing events increases. On average the other three estimates seem to degrade more rapidly

as the number of missing events increases. When Si,k = 1, the estimates for µk are far above

the true value and growing as the number of unknown events increases. This follows from

the fact that letting Si,k = 1 means we are effectively adding events to the network. Take

the case when K = 2. Assume that each process has 1000 events, and there are 100 missing

from each process. When we do our estimation for the first process, we will use the 900

events we know plus the 200 unknown events from the network. We will get the identical

number of events in our estimation for process two. This creates 200 new events and thus

biases the estimates for µk. This motivated the idea of equal weighting for each unknown

event, and that choice is validated by the estimates for µk. A similar argument shows why

Si,k = 0 (i.e. ignoring all the unknown events) has the lowest estimate for µk at each level

of missing data.

In the estimates for the branching ratio αk, the ESA on average yields the best estimates

and maintains its accuracy in the presence of more incomplete information. It is interesting

to note that equal weighting performs worse here than if we let Si,k = 0 for all unknown

events. Using the ESA overcomes this drawback. Again, setting Si,k = 1 for all unknown

events performs the worst. This could stem from the fact that most of the unknown events are

being labeled background and thus this estimation technique underestimates the branching

ratio because fewer events are considered offspring. Notice that the estimate for ESA tracks

the best possible estimate (dash-circle) well while the other three start to trail off as more
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Figure 3.3: Plots of the estimates for µk for the Unknown Not Included (dash-triangle), Un-

known Included (dash-square), Equal Weights (dash-x), ESA (dash-circle), and No Unknown

(solid). In each of the three figures, the estimates are plotted vs the number of missing events.

Each network has five processes with the true parameters µk = 0.01, ωk = 0.1, and αk = 0.5.

Each data point presented is the average of the results from 100 simulated networks.

and more information is labeled as missing.

Finally, in Figure 3.5 and Table 3.1, it is shown that the ESA estimate (dash-circle) for

ωk tracks the behavior of the best estimate (solid) closer than the other methods. Including

all of the unknown events (dash-square) provides the poorest estimate for ωk. For the other

three estimation techniques we see that they are all comparable.
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Figure 3.4: Plots of the estimates for αk for the Unknown Not Included (dash-triangle), Un-

known Included (dash-square), Equal Weights (dash-x), ESA (dash-circle), and No Unknown

(solid). In each of the three figures, the estimates are plotted vs the number of missing events.

Each network has five processes with the true parameters µk = 0.01, ωk = 0.1, and αk = 0.5.

Each data point presented is the average of the results from 100 simulated networks.
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Figure 3.5: Plots of the estimates for ωk for the Unknown Not Included (dash-triangle), Un-

known Included (dash-square), Equal Weights (dash-x), ESA (dash-circle), and No Unknown

(solid). In each of the three figures, the estimates are plotted vs the number of missing events.

Each network has five processes with the true parameters µk = 0.01, ωk = 0.1, and αk = 0.5.

Each data point presented is the average of the results from 100 simulated networks.
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Table 3.1: Average and standard deviations for µk on 100 networks, true value is µk = 0.01.

15 30 45 60 75

Equal (Ave) 0.0102 0.0098 0.0100 0.0099 0.0096

Weights (StDev) ±0.0014 ±0.0014 ±0.0017 ±0.0015 ±0.0015

ESA (Ave) 0.0099 0.0093 0.0093 0.0091 0.0086

(StDev) ±0.0014 ±0.0014 ±0.0017 ±0.0014 ±0.0014

Unknown (Ave) 0.0098 0.0091 0.0089 0.0085 0.0079

Not Included (StDev) ±0.0014 ±0.0014 ±0.0017 ±0.0015 ±0.0015

Unknown (Ave) 0.0117 0.0129 0.0143 0.0157 0.0167

Included (StDev) ±0.0014 ±0.0017 ±0.0019 ±0.0016 ±0.0019

No Unknown (Ave) 0.0100 0.0095 0.0094 0.0093 0.0088

(StDev) ±0.0014 ±0.0014 ±0.0017 ±0.0015 ±0.0015

Table 3.2: Average and standard deviations for αk on 100 networks, true value is αk = 0.5.

15 30 45 60 75

Equal (Ave) 0.4678 0.4573 0.4340 0.4220 0.3989

Weights (StDev) ±0.0636 ±0.0759 ±0.0686 ±0.0726 ±0.0699

ESA (Ave) 0.4853 0.4903 0.4795 0.4786 0.4642

(StDev) ±0.0640 ±0.0767 ±0.0712 ±0.0741 ±0.0719

Unknown (Ave) 0.4712 0.4646 0.4429 0.4348 0.4132

Not Included (StDev) ±0.0638 ±0.0779 ±0.0700 ±0.0737 ±0.0702

Unknown (Ave) 0.4580 0.4364 0.4172 0.4032 0.3855

Included (StDev) ±0.0668 ±0.0822 ±0.0705 ±0.0799 ±0.0818

No Unknown (Ave) 0.4820 0.4838 0.4741 0.4750 0.4595

(StDev) ±0.0647 ±0.0759 ±0.0726 ±0.0748 ±0.0689
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Table 3.3: Average and standard deviations for ωk on 100 networks, True Estimate is

ωk = 0.1.

Number Missing 15 30 45 60 75

Equal (Ave) 0.1070 0.1041 0.1042 0.1051 0.10364

Weights (StDev) ±0.0264 ±0.0274 ±0.0262 ±0.0248 ±0.0255

ESA (Ave) 0.1069 0.1042 0.1039 0.1059 0.1045

(StDev) ±0.0263 ±0.0273 ±0.0264 ±0.0255 ±0.0240

Unknown (Ave) 0.1075 0.1054 0.1063 0.1060 0.1054

Not Included (StDev) ±0.0264 ±0.0286 ±0.0269 ±0.0246 ±0.0269

Unknown (Ave) 0.1048 0.1101 0.0988 0.1022 0.0993

Included (StDev) ±0.0275 ±0.1035 ±0.0273 ±0.0301 ±0.0285

No Unknown (Ave) 0.1078 0.1057 0.1055 0.1070 0.1054

(StDev) ±0.0265 ±0.0277 ±0.0256 ±0.0241 ±0.0230

3.3.2 Updating Weights Analysis

To understand the strengths and weaknesses of each of the five score functions, defined in

Subsection 3.2.3, the score functions were evaluated for 100 missing events using the true

values for µk, αk, and ωk when taking the Top 1, Top 2, and Top 3 best inferences. For

comparison to [SSB11], the true parameters were taken to be µk = 0.01, ωk = 0.1, and

αk = 0.5. Due to the stochastic nature of the processes, for each level of process number 100

random networks were tested. The average results of this analysis are found in Figures 3.6,

3.7, and 3.8. The number correctly identified by the each of the score functions is on the

vertical axis. The horizontal axis displays the number of processes in the network.

From Figures 3.6, 3.7, and 3.8 it is clear that the Stomakhin-Short-Bertozzi score function

in solid dark blue, and the Forward Backward score function (cyan dashed diamond) perform

nearly identically when looking at the Top 1, Top 2, and Top 3 inferences. These functions

look both forward and backward in time from the missing event, and are therefore able to

identify clusters of events in time. The Probability (black dashed asterix) and Ratio (solid
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green square) score functions do not preform nearly as well the Stomakhin-Short-Bertozzi

and Forward Backward score functions, but better than the Lambda (magenta dashed circle)

score function. The Lambda score function appears to perform close to chance (dark green

solid plus) for the Top 1, Top 2, and Top 3 inferred process affiliation. Due to the success

of the Forward Backward score function and the Stomakhin-Short-Bertozzi score functions

only these functions are used for analysis.

Figure 3.6: Display of the number of correctly identified missing events when the Top 1

inference are taken into consideration. For all score functions, the parameters are µk = 0.01,

ωk = 0.1, and αk = 0.5, and assumed to be known. The Stomakhin-Short-Bertozzi score

function (solid dark blue x) and the Forward Backward score (cyan dashed diamond), the

Probability (black dashed asterix) and Ratio (solid green square) score functions, and the

Lambda (magenta dashed circle) score function and chance (solid dark green plus) produce

comparable results with these parameters.

The analysis comparing the score functions assumed that the true parameters were

known. However, when applying this method in practice there will be error in the esti-

mated parameters. This estimation error will propagate through to the score functions. To

understand how deviations of the estimated parameters influence the score functions pair-

wise combinations of the parameters were increased and decreased by 90% from the target

values µk = 0.01, ωk = 0.1, and αk = 0.5 in 10% increments. In particular the Forward
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Figure 3.7: Display of the number of correctly identified missing events when the Top 2

inferences are taken into consideration. For all score functions, the parameters are µk = 0.01,

ωk = 0.1, and αk = 0.5, and assumed to be known. The Stomakhin-Short-Bertozzi score

function (solid dark blue x) and the Forward Backward score (cyan dashed diamond), the

Probability (black dashed asterix) and Ratio (solid green square) score functions, and the

Lambda (magenta dashed circle) score function and chance (solid dark green plus) produce

comparable results with these parameters.

Backward and SSB score functions are computed for pairwise combinations of µ in the range

of [0.001, 0.019], ω in the range of [0.01, 0.19], and α in the range of [0.05, 0.95]. Further, in

these pairwise combinations, the third parameter is kept at the target value. Notice that a

90% change is larger than the errors observed in the parameter estimates in Subsection 3.3.1.

To examine the propagation of errors of the parameters to the score functions one event

from a network with 10 processes is chosen to be missing. The score function S1,true with

the target parameters, µk = 0.01, ωk = 0.1, and αk = 0.5 for the true process is calculated.

Then, on the same network, the parameters are offset by

̂parameter = parameter±%change · parameter, (3.20)

and the offset score function Ŝ1,true is calculated. The difference between S1,true − Ŝ1,true is

taken for each pairwise combination of parameters. Again, due to the stochastic nature of the
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Figure 3.8: Display of the number of correctly identified missing events when the Top 3

inferences are taken into consideration. For all score functions, the parameters are µk = 0.01,

ωk = 0.1, and αk = 0.5, and assumed to be known. The Stomakhin-Short-Bertozzi score

function (solid dark blue x) and the Forward Backward score (cyan dashed diamond), the

Probability (black dashed asterix) and Ratio (solid green square) score functions, and the

Lambda (magenta dashed circle) score function and chance (solid dark green plus) produce

comparable results with these parameters.

processes, each analysis was done for 100 runs and the average difference in score functions

is recorded. The results of this analysis are displayed in Figure 3.9 with those of the Forward

Backward score function (left), and those for the Stomakhin-Short-Bertozzi score function

(right). In general the Stomakhin-Short-Bertozzi score function is more sensitive to the

changes than the Forward Backward score functions for the µk and αk parameters. Changes

in the Forward Backward score functions are minimal for most changes of parameters except

for small values of ωk. As ωk decreases then the approximated Forward Backward score

function decreases, causing a positive difference. As seen in Subsection 3.3.1, Figure 3.5,

when estimating ωk, there is a tendency to over, not under estimate the parameter, and

so this does not appear to occur within these parameters. The changes in the Stomakhin-

Short-Bertozzi score function depend on all of the pairwise changes of the parameters. As

µk increases the computed Stomakhin-Short-Bertozzi decreases. On the other hand, as ωk
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or αk increase the score function increases. This analysis shows that though the Stomakhin-

Short-Bertozzi method and the Forward Backward score functions preform similarly when

the parameters are known exactly, under the influence of estimation error the Stomakhin-

Short-Bertozzi score function varies more than the Forward Backward score function.

3.3.3 Runtime Analysis

Though the Forward Backward score function and the SSB method produce comparable

results in terms of accuracy, there are fundamental differences in the way these two meth-

ods are computed. The Forward Backward score function is designed to be direct, mean-

ing the weights are calculated using available information without need for iteration. The

Stomakhin-Short-Bertozzi method, however, determines the weight by solving a optimization

problem. A closed form solution for the maximized weights is not known to these authors,

so the weights are found by numerically approximating the weights that maximize Equa-

tion 3.15. In the implementation of the Stomakhin-Short-Bertozzi we employ a gradient

ascent method which requires 4-11 iterations to reach convergence with a tolerance of 0.001.

The direct methods, Forward Backward, Probability, Ratio, and Lambda score functions,

are on the same order of operations as one iteration of the gradient ascent used to solve

Equation 3.15. Specifically, one iteration of the gradient ascent method and calculating the

direct score functions are O(N · K · M) where N is the number of missing events, K is

the number of processes and M is the expected number of events in process k. One of the

strengths of computing the weights using a direct method is that it reduces the computational

cost.

For each stage of the algorithm, the computational cost is estimated. The algorithm

requires that we estimated µk, αk, and ωk for each process, k. The EM algorithm, described

in Section 3.3.1, these estimates are iterated until convergence. Using the EM algorithm

one uses the intermediate estimated values of P k
i,j and λk(t|Hτ,k). Each of these estimates

depends on the number of points in the process Mk. The process estimated is stochastic
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Figure 3.9: The average difference of the Forward Backward and Stomakhin-Short-Bertozzi

score functions with the parameters varied by ±90% of the target values, µk = 0.01, ωk = 0.1,

and αk = 0.5.

resulting in a varying number of events in each process, Mk. The number of events in a

process depends on the number of missing events (N), the final time (T ), the background

rate (µk), and excitation parameter (αk). An upper bound for the number of events in any
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process is

M = E[Mk] = µ · T · 1

1− α
+
K − 1

K
N. (3.21)

In Equation 3.21 µ ·T is the estimated number of background events. Each event is expected

to have α offspring, leading to the geometric sum
∑∞

k=0

(
1
α

)k
. The term K−1

K
N is the expected

number of missing events that will be added to the process. For reference, the computations

for each object in the algorithm are summarized in Table 3.4.

3.3.3.1 Computing Lambda and Probability Matrix

The computational cost in computing λk(t|Hτ,k), as defined in Equation 3.1, depends on

the number of points before time, t, notated η. In the naive implementation computing

λk(t|Hτ,k) takes O(η) for one t. This is quite costly, when one considers that lambda must

be computed often for all events in the process k. For this reason the implementation of

this algorithm calculates λk(t|Hτ,k) at each event of process k, and then stores it for further

computations. With this naive implementation, calculating λk(t|Hτ,k) at all of the events of

process k has an expected computational cost on the order of O(M2). In the special case

of an exponential response function, the computations can be greatly reduced by using the

recursive formula

G(tm+1) = eωk(tm+1−tm) [G(tm) + 1] (3.22)

G(t1) = 0.

The intensity λk(tm|Hτ,k) can be written as

λk(tm|Hτ,k) = µk + αkωkG(tm). (3.23)

Using the sophisticated method of computation, λ can be computed for each event with

approximately O(M) computations, a great improvement. Note that, if a general response

function were given to describe the process, then this recursive formula would not apply.

Once λk(tm|Hτ,k) is computed at all events, computing the probability matrix P k takes

O(M2) operations.
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3.3.3.2 Estimation Parameters

To compute the estimated order of operations it is assumed that the weights Si,k and the

intensity λk(tm|Hτ,k) have been computed and stored for all other events. Directly from the

equations the major influencing factor in the runtime of the estimation is the number of

points in the process. Specifically, µk takes O(M), αk takes O(M2), and ωk takes O(M2) for

one iteration of the algorithm. The number of iterations needed depends on the initial guess

of the parameters and the true process parameter values.

3.3.3.3 Score Functions

Estimating the operation count for the score functions is not as straight forward as the other

parameters of the algorithm. The score functions are evaluated only at the missing events

for each process. However, the computational cost of evaluating the scores for some of the

functions depends on the number of events in the process k preceding and following the

event i denoted η. This is random and would be impossible to determine in general. In

this computational analysis the worst case scenario is taken and it is assumed that η = M .

Further, with an intelligent implementation of the Lambda Score function, the order of

operations can be reduced from O(N2 · K) to O(N · K) by calculating lambda using the

relationship

λk(ti|Hτ,k) =
µk(ti)

P k
i,i

. (3.24)

The Stomakhin method described in [SSB11] relies on a gradient ascent algorithm to deter-

mine the weights. To compare with the score functions proposed in this dissertation, the

operation count for one iteration of the gradient ascent method. It it is expected that, in

practice, many iterations would be needed to reach convergence. From this analysis it is

clear that the computational cost of the direct score functions is comparable to that of only

one iteration of the Stomakhin method.

The run time of both the Forward Backward function and the Stomakhin-Short-Bertozzi

method are empirically examined in Figure 3.10. Both score functions were calculated with
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Table 3.4: Order of operations count for estimating parameters and score functions. All

estimates are a function of the number of events in process k, M , the expected number

of missing events (see Equation 3.21), N , and the number of processes, K. The operation

counts for the parameter estimates assume that Pi,j and Si,k are calculated, and λk(t|Hτ,k)

has been evaluated and stored for each event in process k.

One EM Iteration

µk O(M)

αk O(M2)

ωk O(M2)

Calculating and Storing

λk(t|Hτ,k) (exponential time) O(M)

λk(t|Hτ,k) (general) O(M2)

P k O(M2)

Score Functions

Ratio Score Function O(N ·K ·M)

Probability Score Function O(N ·K ·M)

Lambda Score Function (Intellegent) O(N ·K)

Lambda Score Function (Direct) O(N ·K ·M)

Forward Backard Score Function O(N ·K ·M)

Stomakhin Method One Iteration O(N ·K ·M)

20 networks for each level of number missing and number of processes with the known

parameter values of µk = 0.01, ωk = 0.1, and αk = 0.5. All of the run times are calculated

in milliseconds. It can be seen that the average run time needed to compute the Forward

Backward function at every level of N and K is substantially less than that of the Stomakhin-

Short-Bertozzi method. Also, it is clear from this figure that the time needed to calculate

both of these methods increases as N and K increase.
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Figure 3.10: Display of the run time of the Forward Backward function and the Stom-

akhin-Short-Bertozzi method.

3.3.4 Convergence Results

The Estimation & Score Algorithm converges quickly when either the Forward Backward

score function or Stomakhin-Short-Bertozzi method are used. Figure 3.12 displays the pa-

rameter estimates for a typical run of the Estimation & Score Algorithm for both the Forward

Backward (left) and Stomakhin-Short-Bertozzi (right). Both score functions produce quali-

tatively similar results, and it appears that the rate of convergence is comparable for both

cases. The estimated weights for one missing data event for this typical run versus the

iteration for each process are plotted in Figure 3.12. Here the Forward Backward weight
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approximations are seen on the left and the Stomakhin-Short-Bertozzi approximations are

on the right. It is interesting to note that both methods of weighting choose the same pro-

cess affiliation. Further tests were conducted with a variable initial weighting. These runs

showed similar behavior as initializing the Estimate & Score Algorithm with Si,k = 1/K,

implying that the Estimate & Score Algorithm is robust to small perturbations of the initial

weighting.

Figure 3.11: Parameter estimates for the Forward Backward (left) and Stomakhin-Short-

-Bertozzi (right) methods vs the iteration number. Plots of the parameter estimates for a

typical run of the Estimate & Score Algorithm using the Forward Backward (left) and Stom-

akhin-Short-Bertozzi (right) methods. Both methods compute nearly identical estimates of

the parameters for each of the ten processes. The choice for plotting event 99 was random.
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Figure 3.12: Plots of the weights for one missing event computed by a typical run of the Es-

timate & Score Algorithm using the Forward Backward (left) and Stomakhin-Short-Bertozzi

method (right). The choice for plotting event 99 was random.

3.4 Discussion and Future Work

In this dissertation we propose an effective method for simultaneously estimating the param-

eters and assigning process affiliation in case of incomplete field data from self-exciting point

processes on a network. This problem comes from the demand for law enforcement agencies

to identify gang affiliation in the case of unsolved crimes in an area of highly complex gang

rivalry activity. We present a new ‘Estimate & Score’ algorithm for possible application to

field data. By testing the method on simulated datasets we can understand its performance

features and liabilities. The method is an iterative procedure in which process parameters

are estimated alternately with the calculation of network affiliation probabilities. We identify

several useful ‘score functions’ for calculating the network affiliations. We also compare the

use of unknown events in the parameter estimation. One upshot of our analysis is that the

inclusion of unknown events may increase the accuracy of the parameter estimation. Sev-

eral score functions are considered and the Forward Backward score function shows the most

promise with comparable results to that of the Stomakhin-Short-Bertozzi method of [SSB11]

in the parameter regime tested. The score function calculation is a direct method that does

not rely on solving a variational problem, and thus is more computationally efficient than

[SSB11].
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For future work, space often plays a role in understanding criminal activity [BGK05,

BB81, Her82, ECL05, BB95]. Further, criminal behavior has non-random structure and can

often be framed in terms of routine activity theory [BB93b, CF79]. In the case of gang

violence, there is a strong spatial component [Blo00, RFT10, HSB11]. One can easily extend

the Estimate & Score Algorithm to include space. There is a precedence in the earthquake

literature of adding space to self-exciting point processes [Oga98, ZOV02], however, in the

case of gang violence, the spatial response may be different. Instead of retaliatory events

clustering around prior events, it appears that the data is clustered around regions in space.

A spatial model similar to that of [OL11] could be employed, where the triggering density in

space is related to their respective gang set-space, or center of activity [TCE05]. Statistically

when modeling spatial point processes one needs to tease out the difference between a hot

spots due to risk heterogeneity versus event dependence. The data given will be one real-

ization of the underlying process, however using techniques such as prototyping, [NSK11],

one could potentially reformulate the data into multiple realization of the same process and

distinguish between these two phenomena.

There are other factors in the data that can be fused into the model. For example,

in earthquake modeling the magnitude of the earthquake is often included. Such a factor

could be further added to the intensity λk(t|Hτ,k) to better infer the gang affiliation. For

example tagging, or other low level gang crimes, could be a precursor to more extreme violent

interactions between gangs. Including this data could enrich the overall data set allowing

for better analysis.

It is important to note that there are other methods to approximate the underlying form

of the self exciting process. For example the authors in [LM11] consider the general form of

the intensity function λk(t|Hτ,k) to be

λ(t|Hτ ) = µ(t) + α
∑
t>tj

g(t− tj). (3.25)

Using a non-parametric method, they are able to approximated the background function

µ(t) and the response function g(t) for a broader class of functions. In this dissertation,
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the data was assumed to come from a Hawkes process with constant background rate and

an exponential response to previous events. There are cases where the background rate

is not constant [LMB11]. Further it is conceivable that the response function could be of

a form other than an exponential decay. In this circumstances, the model for λ(t|Hτ ) in

Equation 3.1 would not be appropriate.

Finally, this method has a great potential in the field of policing. Once such a model

has been calibrated correctly, the Estimation & Score Algorithm using the quicker Forward

Backward score function can be used to infer the gang association in real time, while the

investigation is on going. Given an accurate model of the underlying process, such a method

could identify rivalries that have heightened activity.
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