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A B S T R A C T   

Feedstock blending as a strategy to mitigate risks in the supply of lignocellulosic biomass to commercial scale 
biorefineries across various geographical areas in the United States. Machine learning predictive models estimate 
sugar yields from feedstock blends expected to be available in Florida and Kansas. Performance of each model 
was assessed based on feature selection along with two-stack ensembles applied in both linear and nonlinear 
algorithms. Linear-weighted ensemble and nonlinear stochastic gradient boosting model ensembled with four 
base learners exhibited similar predictions as previously developed linear regression models when predicting 
glucose yields in the higher range. The ensemble models achieved a 10–50 % improvement in the root mean 
squared error with feature selection compared to models with full features from validation. Machine learning has 
the potential to predict sugar yields at high confidence for a given feedstock blend ratio and pretreatment 
conditions.   

1. Introduction 

The conversion of lignocellulosic feedstocks to long-chained alkanes 
and other energy-dense molecules is a promising path to minimizing 
dependence on crude oil for jet and other transportation fuels [1,2]. 
According to the 2016 Billion-Ton report, the United States (US) can 
generate 702 million dry tons of biomass every year and has the po-
tential of generating more than 1 billion dry tons of biomass by 2030 at 
the farm gate price of $60/dry ton [3]. However, it is important to note 
that the biomass available in the US is varying, ranging from agricultural 
and forest residues to energy crops. To operate a commercial biorefinery 
year round, over 2205 dry US tons of biomass feedstock needs to be 
processed per day, for 330 days [4]. However, most geographical areas 
in the US do not offer a single feedstock at such magnitudes. In order to 
overcome the feedstock variability and to expand bio-based 
manufacturing, it is critical to develop strategies that can be applied 
to variegated biomass types available in the vast geographical expanse 

of the US. 
Most researchers studying lignocellulosic feedstock conversion, 

however, do not study feedstock blends and instead focus on a single 
biomass feedstock, often corn stover [5–8]. The recent collaborative 
efforts between Lawrence Berkeley and Idaho National Laboratories 
(INL) have identified geographical locations where feedstock blending 
can commence bio-based processing at commercial scale. We studied the 
availability of feedstocks in western Florida and developed a predictive 
model that identified optimal blend ratios of corn stover (CS) - a 
high-quality easily convertible feedstock - with local low-quality feed-
stocks: energy cane (EC) and switchgrass (SG) [9]. CS would be trans-
ported from Georgia to Florida, as it can ensure the complete utilization 
of local feedstocks. The optimized blends along with associated pre-
treatment conditions to maximize sugar (glucose) yields and thereby 
fuel titers were presented as a strategy to mitigate supply risks and 
feedstock variability concerns at commercial-scale biorefineries in 
geographical locations that do not have abundant access to a single 
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feedstock [10]. 
Glucose yields from lignocellulosic biomass pretreatments have a 

significant impact on the economic viability in bio-based process chains. 
Glucose yields depend on feedstock compositions and multiple pre-
treatment process parameters, and testing all combinations of these 
parameters with each feedstock blend is both resource and time con-
straining [11–14]. Accurately predicting glucose yields based upon 
changing feedstock blends and process variables thus can be very useful, 
especially in a biorefinery setting, where 2205 dry tons of variable 
feedstock is received on a daily basis. The predictive model can help 
optimize process conditions to convert the varying feedstock in 
real-time. Linear regression models using SAS JMP® (Cary, NC) from 
our previous study [9] could assess the impact of feedstock composition 
and each of the parameters and predict glucose yields. While the impact 
of parameters was thoroughly established, our predictions exhibited a 
root mean squared error (RMSE) of 8.01. 

To improve prediction performance, in this study, we developed 
ensemble machine learning (ML) models and applied them on this first 
dataset obtained from feedstocks available in Florida (dataset 1). 
Although ML has been widely adopted in many fields of research, 
including other bio-related fields [15–17], there have been very few 
applications of ML in deconstruction studies involving either a single or 
multiple feedstocks [18–20]. In this study, we tested the application of 
ML models such as single regression and 2-fold ensemble models inte-
grated with four base learners in linear-weighted regression and 
nonlinear stochastic gradient boosting models (gbm). Fig. 1 illustrates 
the architecture of the layers of the ensemble models, which include 
base models (layer 0) and ensemble model (layer 1). Starting from data 
processing steps, four base models were selected from eighteen model 
candidates. Fine tuning feature selection technique using decision trees 
was applied to the data to improve model performance, which was 
measured by RMSE using glucose yield from experimental studies. To 
ascertain the applicability of the ML methods, we further tested the 
methods on a second dataset from blends of CS and SG with wheat straw 
(WS), feedstock combinations expected in the state of Kansas (dataset 2). 
By developing layers of ensemble models as shown in Fig. 1, the pre-
dictive power of the ML model for glucose yield was confirmed and the 
role played by each feedstock in blends was also revealed by examining 
features using an extreme gradient boosting model. 

2. Materials and methods 

2.1. Biomass feedstocks, pretreatment catalysts, and other experimental 
methods 

INL (Idaho Falls, ID) supplied feedstocks to generate dataset 1 (CS, 
SG, EC) and dataset 2 (CS, SG, WS). INL’s least cost formulation (LCF) 
model was used to determine feedstocks for testing. We chose two US 
states outside of the corn belt, Florida and Kansas, which enjoy an 
abundant supply of locally grown feedstock such as EC in Florida and WS 
in Kansas. These feedstocks were tested for integration into the local 
supply chain by blending with higher quality feedstocks, such as CS and 
SG. More than 500,000 dry tons of EC along with 100,000 –300,000 dry 
tons of SG will be available annually in Lee County, Florida by 2030. CS 
needed to obtain optimal feedstock blends will have to be shipped from 
other parts of the US. The cost of transportation per different modes 
were also listed in Narani et al., 2019. As per LCF, the estimated prices 
for EC, SG, and CS on a dry basis were $70, $50, and$60/ton respec-
tively (Narani et al. 2017). All feedstocks in Sheridan county, KS, listed 
in the dataset 2 (WS, SG, CS) were abundantly available in the local area 
and the expected price of the feedstock blends ranged between $81.38 to 
$84.14/ ton. About 50, 30, and 10 million dry tons of SG, CS, and WS 
will be available annually in Sheridan country, KS. 

Traditional pretreatment catalysts (dilute acid, dilute alkali, and 
ionic liquid (IL)) in the form of 1% (w/w) sulfuric acid in water, 1% (w/ 
w) sodium hydroxide in water and 99 % purity 1-ethyl-3-methyl-imado-
zolium acetate were used. Each of the pretreatment catalysts was 
defined as a categorical variable, such that the experimental design can 
choose either dilute acid dilute alkali or IL but not the combination of 
two or three catalysts. Pretreatment reaction temperature and time were 
applied as scaled variables with unique operating ranges for each pre-
treatment catalyst. The operating ranges were selected after a compre-
hensive review of literature for each of the three pretreatment catalysts 
[9]. These inputs were fed into the SAS JMP® to generate the experi-
mental design listed in Narani et al. [9]. Listed below are the variables 
used in the experiment.  

• Feedstock compositions (scaled): EC (0–100 %), SG (0–100 %), and 
CS (0–100 %)  

• Pretreatment catalyst (categorical): dilute acid, dilute alkali, or IL 

Fig. 1. Model architecture including model selection, feature filtration, and model stacking. 5-fold cross validation (CV) was set for each model during training. The 
final ensemble was constructed by two layers (layer 0 and layer 1). 
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• Pretreatment reaction temperatures (scaled): dilute acid (1–100 %) 
140–180 ◦C, dilute alkali (1–100 %) 55–120 ◦C, and IL (1–100 %) 
120–160 ◦C.  

• Pretreatment reaction times (scaled): dilute acid (1–100 %) 5–60 
min, dilute alkali (1–100 %) 1–24 h, IL (1–100 %) 1–3 h. 

The process variables in datasets 1 and 2 were defined as parameters: 
(i) pretreatment catalysts (acid, alkali, and ionic liquid), (ii) feedstock 
blends (Florida Blend: CS, SG, and EC and Kansas Blend: CS, SG, and 
WS), and (iii) reaction variables (temperature and reaction time). Solid- 
liquid separation and washing on biomass was conducted after IL pre-
treatment, prior to saccharification xylan/xylose wass lost during the 
washing of IL pretreated biomass. While solid-liquid separation after 
acid and alkali pretreatments was not conducted, to be consistent with 
our approach and not use xylose yields, only overall glucose yields after 
saccharification were used for the predictive model development. More 
details of each experiment can be found in Narani et al. [9] and Table S1. 

2.2. Linear regression model and the associated predictions 

Our previous manuscript presented a linear mixed effect model for 
glucose yields by performing data analysis with Restricted Maximum 
Likelihood, or REML, a method that was available through SAS JMP® 
[9]. This Linear Regression Model (LRM) and its predictions from 
dataset 1 were presented in detail in Narani et al. [9]. A total of 74 
experimental data points were available in dataset 1 with an additional 
13 experimental data points generated to validate LRM performance. 
The experimental design of dataset 2 was also generated in SAS JMP®, 
and 74 conditions representing the various combinations of parameters 
described in Section 2.1 were tested. An additional 16 points were 
generated to validate the LRM on dataset 2. 

For both dataset 1 and 2, the ratios of the three feedstocks had a 
significant impact on glucose yields (p-value < 0.0001). A larger con-
centration of recalcitrant feedstock led to lower sugar yields and vice- 
versa. Reaction temperature and times, within the chosen ranges, had 
no significant impact on glucose yield for both datasets (p-values of 0.31 
and 0.25 for dataset 1 and 0.65 and 0.64 for dataset 2). We believe that 

our pre-determined experimental range of treatment conditions, which 
lied within optimal ranges for each of the pretreatment catalysts, was 
too narrow to find a significant impact. IL catalyst led to very high 
conversion yields in most tests, leading to statistically significant impact 
(p-value < 0.0001) on sugar yields in most treatment conditions. The 
alkali and acid pretreatments had lower but significant impact on 
glucose yields in dataset 1 (p-values at 0.0005 and 0.042, respectively). 
Interestingly, while the alkali pretreatment had a significant impact on 
glucose yields from dataset 2 (p-value < 0.0001), the acid treatment had 
no significant impact on the same (p-value at 0.092). 

2.3. Machine learning methods 

2.3.1. Data input 
Same data features from both datasets, including validation tests, 

were used as data input for the machine learning base models. All 
models were constructed with a 5-fold cross validation. Two-thirds of 
the data was used for training and the rest were used for testing to 
examine prediction performance. The first 10 process and output pa-
rameters for both the datasets are reported in Table 1. 

All ML modeling and analyses were performed using R with related 
packages (caret, caretEnsemble, and elasticnet). Eighteen ML models 
were built to screen for the model with the lowest Pearson correlation 
(Fig. S1 and S2). Models with low RMSE were chosen as base models for 
a linear weighted ensemble or a gbm model as the final model in the 
two-fold ensemble method. 

2.3.2. Linear weighted ensemble 
Linear weighted ensembles find a linear combination of base models 

and instead of taking an average of their predictions, they apply 
different weights to each of them, per their relative contribution to the 
model. The weights are calculated by developing a generalized linear 
model, which provides coefficients to each model. When the number of 
models is equal to i, the weight for each individual can be described as 

Wi =
|Ci|

∑

i
|Ci|

(1) 

Table 1 
A glimpse of two experimental datasets for modeling process variables on glucose yield.  

Process Parameters Output 

Dataset 1 

Pretreatment 
Feedstock Ratios Temperature Time Glucose Yield 

Energy Cane Switch Grass Corn Stover C̊ min % Theoretical 

Ionic Liquid 0.00 1.00 0.00 120 106.8 49.20 
Dilute Acid 0.30 0.40 0.30 140 60.0 54.75 
Dilute Alkali 1.00 0.00 0.00 55 1440.0 56.54 
Dilute Alkali 0.50 0.50 0.00 55 589.0 33.96 
Dilute Alkali 0.00 1.00 0.00 55 1440.0 57.82 
Ionic Liquid 1.00 0.00 0.00 120 180.0 52.33 
Dilute Acid 0.40 0.60 0.00 180 5.0 27.21 
Dilute Acid 0.00 0.00 1.00 180 38.0 57.33 
Dilute Alkali 0.00 1.00 0.00 120 60.0 56.78 
Dilute Alkali 0.00 0.00 1.00 120 60 74.60  

Dataset 2 

Pretreatment 
Feedstock Ratios Temperature Time Glucose Yield 
WheatStraw Switch Grass Corn Stover C̊ min % Theoretical 

Dilute Acid 0.00 0.07 0.93 140 26.45 74.63 
Ionic Liquid 0.34 0.33 0.34 120 180 86.93 
Ionic Liquid 0.00 1.00 0.00 120 180 90.00 
Dilute Acid 0.50 0.50 0.00 140 26.45 64.92 
Dilute Acid 0.50 0.00 0.50 140 60 66.92 
Dilute Alkali 0.00 0.00 1.00 55 1440 87.45 
Dilute Acid 1.00 0.00 0.00 140 26.45 63.27 
Dilute Acid 0.00 1.00 0.00 140 60 54.93 
Dilute Alkali 0.00 1.00 0.00 55 598.20 42.14 
Dilute Alkali 1.00 0.00 0.00 55 598.20 24.12  
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where W stands for weight and C represents a coefficient. By applying 
the weights to each model, the blended prediction of a linear weighted 
ensemble is in the form of 

Pensemble(x) =
∑

i
WiPi(x) (2)  

where P is the prediction value from a model and x represents each data 
point in the data used for the model. Although nonlinear algorithms are 
usually good at blending models and incorporating features, linear 
regression is the most widely used algorithm. It requires less tuning and 
the result is easy to understand for most users. For these reasons, a linear 
weighted ensemble method was tested in this study. 

2.3.3. Stochastic gradient boosting 
Stochastic gradient boosting was introduced by Friedman [21,22] 

and became known for being a non-linear algorithm that improves a 
single weak learner to a stronger one by sequential training. The mini-
mum mean squared error (MSE) of each model is improved by intro-
ducing randomness, which includes taking subsets of the full data set 
and randomly applying the subsets as training data. Iterations of the 
model are updated with new data subsets until MSE cannot be reduced 
any further. By incorporating bagging to the function estimation pro-
cess, the randomness could further improve the model performance 
[23]. The concept can be expressed as 

Fm(xi) = Fm− 1(xi) + βmh(xi; am) (3)  

where m is the number of stages to train the models, F is the function in 
the model, x represents each data point in the data in the order of i, β is 
the expansion coefficient, and h stands for a regression tree of x with 
parameters a. 

The model development is initiated at the average of the output 
value (y), which is glucose yield in this study: 

F0(xi) = argmin
∑

i
L(yi, γ) (4)  

where γ is defined as pseudo residuals. For models from 1 to m, 

γim = −

[
∂L(yi,F(xi))

∂F(xi)

]

F(x)=Fm− 1(x)
(5)  

where F(x) is estimated by minimizing L(y, γ), where h(x;a) is used to 
solve L function by fitting to least squared errors. The coefficient β can 
be determined by a given h(x;a) as 

βm = argmin
∑

i
L(yi,Fm− 1(xi) + βh(xi; am)) (6) 

To prevent overfitting, the shrinkage parameter is applied as 0.1 in 
each iteration to control the learning rate. By computing residuals from 
the model in each stage, a regression tree is fit to the residual and added 
to the next iteration, which is accomplished by gbm algorithms in R. The 
advantages of stochastic gradient boosting include low sensitivity to 
outliers, good performance for unbalanced data, and an increase in 
robustness, accuracy, and execution speed by introducing randomness, 
which makes it ideal for this study. 

2.3.4. Model performance 
The final ensemble has a first layer of four base learner models with 

the low inter-model correlations and RMSE, and a second layer model in 
linear weighted or gbm model. Base models were chosen based on linear 
correlation among each other by Pearson correlation coefficient (r) as 
given by Eq. (7) and RMSE. The models were compared based on the 
predictive performance using test and validation data from datasets 1 
and 2. The performance was evaluated by RMSE in glucose yield, and 
coefficient of determination (R2) and mean absolute error (MAE) were 
examined as well. Each value was calculated according to Eqs. (8),(9), 

and (10) respectively. 

r =

∑n
i=1(xi − x)(yi − y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(xi − x)2
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑n
i=1(yi − y)2

√ (7)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i (yexp,i − ypred,i)
2

n

√

(8)  

R2 = 1 −

∑n
i (yexp,i − ypred,i)

2

∑n
i (yexp,i − yexp)

2 (9)  

MAE =

∑n
i

⃒
⃒yexp,i − ypred,i

⃒
⃒

n
(10)  

where n is the number of points, xi and yi are individual value from 
models being compared, x and y are the mean of predictive glucose yield 
from models, yexp,i is the actual glucose yield, ypred,i is the predicted 
glucose yield, and yexp is the mean of actual glucose yield. 

The significance of each process variable was measured by an 
extreme gradient boosting model, and features with significance over 20 
(importance level) were used in feature-selection models. The perfor-
mance in predicting glucose yield was compared with models using all 
features. 

3. Results and discussion 

3.1. Drawbacks of predictions from linear regression 

Our LRM was able to statistically identify the parameters that had the 
most impact on glucose yields. However, during validation, we observed 
that the error in our predictions was high especially in dataset 2 (RMSE 
for dataset 1 was 8.01 with R2 of 0.85, and for dataset 2 was 14.65 with 
R2 of 0.68) as we used only a single base model that led to overfitting of 
the training data and contributed to low prediction accuracy. In the LRM 
model, we only studied the main effects from feedstock blend ratios, 
pretreatment catalysts, reaction temperature and time and not the in-
teractions among these test parameters. Since this was the first known 
attempt of building a predictive model on lignocellulosic feedstock 
blends, simplicity and reliable understanding were our reasons to pursue 
only main effects. But, in order to better explain our data, we realized 
that we need ML models with more control on the training levels / al-
gorithms that will offer more flexibility and improve prediction per-
formance. LRM was inadequate, mostly because of limited data and 
complex process input variables. Two types of data: discrete (e.g. type of 
pretreatment catalyst) and continuous (e.g. feedstock blend ratio and 
pretreatment time) were essentially difficult to discern in the linear 
methods and unable to exlain the relationship between dependents and 
independents. Nonlinear models, such as multiple degree polynomials or 
decision tree algorithms can reflect the most important characteristic. 
For example, a regression tree model accepts the pretreatment time and 
temperature variables as continuous values with in-built feature selec-
tion and returns the predictions that are ascertained after judging 
through multiple leaves as shown in Fig. S3. As a result, it was imper-
ative that we explore non-linear models such as decision trees, which are 
better able to discern among the distinct pretreatment catalysts and 
better predict the glucose yield from the dependent and independent 
features of the dataset. 

3.2. Model selection 

To choose the best model for predicting glucose yield, eighteen 
models including linear and nonlinear types of regression analysis were 
constructed on the same training dataset. RMSE was used as the good-
ness of fit for each model and inter-model correlation was examined. 
Some of the models had Pearson correlation coefficients ranging 
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between 0.3 and 0.6, while others had correlation coefficients more than 
0.9. RMSEs were similar among most of the models, as shown in Fig. 2. 

Models with correlation coefficients below 0.9 were selected from 
Fig. S1 and S2, and the models with low inter-model correlations or 
RMSE were chosen as base learners to maximize accuracy and minimize 
prediction correlation for the next layer of ensemble. For dataset 1, 
Bayesian ridge regression (bridge), an extension of Quinlan’s M5 model 
tree (cubist), projection pursuit regression (ppr), and regression trees 
(rpart) were selected. As for dataset 2, Breiman’s random forest algo-
rithm (rf) and extreme gradient boosting (xgbTree) were chosen along 
with cubist and ppr. 

The Pearson coefficients combined with the scatter plot of the pre-
diction points from selected models are illustrated by the scatterplot 
matrix, which is known as SPLOM, in Fig. 3. First invented by John 
Hartigan [24], SPLOM is composed of multiple scatter plots of computed 
/ predicted data (e.g. glucose yield in this study) between models. The 
symmetric matrix of paired scatter plots allows an easy way to 
conceptualize the potential correlations between models or variables. In 
the bottom part of Fig. 3, scatterplots of predicted glucose yields from 
the selected models of each dataset are shown. As the axes in the plots 
are defined by the predicted values, the higher the linearity of scatter 
points the higher the correlation between two models. The covariance 
can be statistically described by the Pearson coefficients shown in the 
upper part of Fig. 3. For better visualization, higher correlations are 
presented in darker colors. In both datasets, ppr and cubist methods 
have the highest linearities with Pearson coefficient over 0.8 compared 
to other pairs. The ppr method is a nonlinear transformation of inputs 
added in linear combinations similar to neural networks. As cubist is a 
tree-based regression model consisting of linear models at the node of 
the tree, the results showed that the projection from ppr had higher 
covariance compared to cubist after it performed the nonparametric 
regression to our datasets. However, they were selected due to the low 
RMSE so the accuracy of the ensemble model can be ensured. 

3.3. Ensemble model 

Previous studies showed that introducing randomness and diversity 
by using models of different topologies, manipulating features, and 
changing training subsets can improve the generalization in the aggre-
gation of models running independently of each other [25–27]. A 
two-fold ensemble model stacked with base models was developed in 
order to improve the final prediction by integrating models to lower the 
bias from the predictions of the first layer. Instead of the original fea-
tures from the dataset, the predictions from base models were used as 
the inputs in the second layer model, and the parameters were evaluated 

along with the previous predictions in the algorithms adopted in the 
ensemble model. As other studies showed [28,29], ensemble methods 
can be categorized as linear and nonlinear methods. In this study, a 
linear weighted ensemble and a gbm model were used in the second 
layer by combining the learning outputs in a linear-fashioned and a 
nonlinear stacked model by gradient boosting respectively. 

The results shown in Tables 2 and 3exhibit the RMSE, weighted 
values in linear ensemble model, and the relative influence from base 
learners in gbm ensemble for both datasets. Reduction of RMSE in non- 
linear gbm ensemble was -19.88 % and -20.59 % compared to linear 
ensemble model, which shows that the nonlinear ensemble model out-
performs the linear-weighted ensemble model in both datasets, with 
close to 20 % reduction in RMSE. As shown in Table 2, the linear 
weighted value and the relative influence for each base model have 
different significance in the linear and nonlinear ensemble models, 
implying the different ways of evaluation observed from base learners in 
linear and nonlinear models as described in Section 2.3. In dataset 1, 
bridge had the most influence in both ensemble models while ppr and 
rpart had the least influence in linear and nonlinear ensembles respec-
tively. In dataset 2, rf and cubist had the least contribution to linear 
weighted and gbm models respectively, while xgbTree had the highest 
impact to both ensemble models. The level of contribution did not 
correspond to the RMSE from a single model. For example, ppr had the 
lowest RMSE compared with other models in dataset 1, while its 
weighted value was the least in linear-weighted ensemble model. The 
results reflect that the ensemble models considered not only the accu-
racy between predicted and actual value, but also took into account the 
sensitivity from fluctuations in training data. To further improve the 
prediction performance and prevent overfitting, filtering out features 
with little influence to glucose yield was conducted and examined. 

3.4. Feature selection 

By using an extreme gradient boosting (xgbLinear) model to analyze 
the feature importance, the influence from each variable was evaluated 
and presented in Fig. 4. The mean squared error of regression was 
evaluated when the variable is used for splitting at each separation of the 
tree, and the improvement of the mean squared error was calculated. 
The improvement from each variable in the trees was averaged and 
normalized, and used to determine the importance of the variable [30]. 
Features above the level of importance 20 were selected in model 
building, where pretreatment temperature and time, pretreatment 
method (IL), and the ratios of SG and EC were considered in dataset 1, 
and pretreatment method (IL), pretreatment and time, and CS ratio were 
considered in dataset 2. After selecting the desired variables, the data 

Fig. 2. RMSE from eighteen individual models for (A) dataset 1 and (B) dataset 2. The mean of the RMSE was labeled by the dashed line.  
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with only chosen features were used to build two-fold ensemble models 
as described in Section 3.2. The relative influences from base models 
were similar as before, but the changes in RMSE for both linear and 
nonlinear ensembles in two datasets were -24.80 % and -13.25 % 

compared to ensembles using all features in dataset 1, and -7.67 % and 
-20.42 % in dataset 2, see Table 3. Comparing the prediction RMSE of 
non-linear gbm ensemble to linear ensemble model, the RMSE was 
reduced -7.57 % and -26.44 % for two datasets respectively. It should be 
noted that initially, only two features, temperature and pretreatment 
method (IL) with importance over 50 were considered for dataset 1 and 
dataset 2. Due to the small size of data available to us, a large reduction 
of the number of features in the models can potentially lead to an un-
balance in data and thereby bias. Although the results were not shown, 
RMSE increased significantly when a high threshold was applied for 
both datasets. Further, the importance threshold of 50 was preventing us 
from examining the effect from individual feedstocks in the blends. 
Adjusting the importance threshold allowed for feedstocks to be 
included without other features that carry negligible importance. This 
helped the model to prevent overfit from unrelated features, while 
studying the effect from blended feedstock. The positive results in RMSE 
from testing and validation data has proven the effectiveness of our 
design methodology. This helps the model to prevent overfit from un-
related features, while the effect from blended feedstock is still included. 
After lowering the accepted level of importance from 50 to 20, the 
RMSEs from both linear and nonlinear ensemble models showed 
improvement for both datasets. Although the RMSEs after feature se-
lection were lower, the RMSE for the linear weighted ensemble 
improved much more than nonlinear ensemble in dataset 1 while the 
opposite was true in dataset 2. 

Per the error density plot in Fig. 5, the ensemble models after feature 
selection had smoothened the variance and lowered the bias as shown 
from the changes in peak shape. As generally simpler models (e.g. linear 
regression) have higher bias but lower variance while more complex 
ones (e.g. decision trees) have lower bias and are more sensitive to the 
changes in datasets, the results from the ensembles had better tradeoff in 
balancing bias and variance in a fixed size dataset (< 100 data points in 
this study) than a single model especially after feature selection. How-
ever, it was difficult to ascertain whether the model with the least RMSE 
is the best analysis method for future prediction as it may have simply 
overfitted to the training data. Testing the models with validation data is 
essential to ascertain if the models can explain the biological phenomena 
accurately. 

Fig. 3. Correlations (Pearson correlation coefficients) between MAE among first layer models for (A) dataset 1 and (B) dataset 2. The correlation was reflected by the 
color gradient in the upper part of the figure and the linearity of the points in the bottom part. 

Table 2 
Summary and comparison of ensemble model performance in two datasets.  

Dataset 1 

Model bridge cubist ppr rpart 

Linear-weighted* − 1.60 0.99 0.13 1.14 
RMSE (test set) 24.40 
GBM: Relative influence 35.13 31.33 30.05 3.49 
RMSE (test set) 19.55  

Dataset 2 

Model cubist ppr xgbTree rf 

Linear-weighted* − 0.54 0.69 0.74 − 0.014 
RMSE (test set) 14.86 
GBM: Relative influence 2.95 31.27 52.73 13.05 
RMSE (test set) 11.80  

* Intercept equals to 24.54 and 8.29, respectively. 

Table 3 
Summary and comparison of ensemble model performance in two datasets after 
feature selection.  

Dataset 1 

Model bridge cubist ppr rpart 

Linear-weighted* 0.65 0.63 0.22 − 0.30 
RMSE (test set) 18.35 
GBM: Relative influence 18.69 15.83 60.78 4.69 
RMSE (test set) 16.96  

Dataset 2 

Model cubist ppr xgbTree rf 

Linear-weighted* − 0.57 0.69 0.55 0.34 
RMSE (test set) 12.71 
GBM: Relative influence 14.41 21.77 51.38 12.44 
RMSE (test set) 9.35  

* Intercept equals to -12.90 and 0.37 respectively. 
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3.5. Model validation 

3.5.1. Dataset 1 
In our previous studies, to verify our LRM, separate experiments 

were conducted to generate validation data [9]. To verify the goodness 
of fit for models constructed in this study, the same validation data were 
applied to the base learners and ensemble models and the results are 
shown in Fig. 6. The RMSE from the validation dataset was lower by 30 
%–60 % compared to that from training data when applied to same 
ensemble models presented in Table 4, which confirmed no significant 
overfitting in our model training process. When all variables were 
applied as features, the nonlinear gbm ensemble model performed the 
best. Linear stacked ensemble outperformed other models after feature 
selection in dataset 1. As discussed in Section 3.3., the ensemble model 
balances the performance from base learners. Since it is more neutral in 
bias-variance tradeoff, the linear-weighted ensemble model showed 
better fitting from low (40 %) to high glucose yield (90 %) compared to 
individual models. While single models may predict glucose yield better 
when the value of it is lower than 50 %, the performance in other ranges 
may be poorer, leading to bigger errors compared to ensemble models. 

Fig. 6(A) shows the R2 and MAE for data in different models, where 
linear-weighted ensemble and the linear mixed model from JMP (LRM) 
share similar R2 and MAE, but linear weighted ensemble was preferable 
overall. Regardless of their type, both linear or nonlinear ensemble 
models have demonstrated better prediction performance in RMSE than 
single models before and after feature selection. Both the regression 
coefficients and RMSE prove that when an appropriate model or data 
filtration has been applied, reliable prediction on glucose yield from an 
ensemble model can be achieved by applying values of feedstock blend 
ratios and other experimental variables. 

3.5.2. Dataset 2 
Following the same procedure as for dataset 1, 16 data points outside 

of the training and testing dataset were used for validation for dataset 2. 
Both LRM and ML models developed in R were included. The RMSE was 
similar but not lower compared to test data for both ensembles and 
single models as shown in Table 4. For dataset 2, ppr model performed 
the best without feature selection while gbm ensemble outperformed 
other models after features with negligible influence were filtered out. 
The lowest glucose yield in the validation data was at 14 %, which is out 
of the glucose range in the training dataset and may be the main factor 
that interferes with the total RMSE. From Fig. 6(B), all three models 
(ppr, nonlinear ensemble, and LRM) showed better predictions when the 
glucose yield was over 50 %, which was the majority representation in 
the training dataset. Although in Section 3.3 the ensembles showed 
lesser bias and variance both for dataset 1 and dataset 2, the result in 
validation dataset 2 revealed that data outside of the training dataset 
may lead to error in prediction. The R2 and MAE values shown in Fig. 6 
(B) also had poorer performance compared to dataset 1. However, 
ensemble models became the best performers after feature selection, 
which again bolsters the previous observation that feature selection can 
improve the performance in bias and variance for ensemble over single 
models. The RMSEs from previously developed LRM was 8.01 for dataset 
1 and 14.65 for dataset 2 (Table 4). Comparing the results with ML 
models, for both the datasets, only the ratios of feedstocks in the blends 
had a significant impact on glucose yields (p-value < 0.0001) in LRM. 
While in the ensemble models, the influence from the reaction variables 
and pretreatment catalysts was included by implementing a decision 
tree in feature selection to achieve better predictions. 

The goal of the deconstruction (pretreatment and saccharification) is 
to achieve the highest glucose yield from feedstock blends. The experi-
ments were designed such that we had a large range of glucose yields 
and thereby we could successfully build a robust model to obtain 

Fig. 4. Relative influence from process variables of pretreatment catalysts (Pretreatment), feedstock blends (Feedstock), and reaction variables (Reaction var) in (A) 
dataset 1 and (B) dataset 2. The selection threshold of the level of importance is represented by the dashed line. 
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accurate predictions at either end of the range. The linear-weighted 
model and LRM from dataset 1 however, converged more at higher 
glucose yields, typically over 80 %. The same results appeared in the 
nonlinear ensemble model and LRM in dataset 2. As such, we have to 
perform more experimental studies, especially varying our pretreatment 
process conditions, to obtain lower glucose yields and thereby training 
data that can enable the models to predict better in the lower range. 

3.6. Perspective 

We selected strong and diverse models as the base layer and directed 
their predictions inputs to the second layer to generate the final pre-
dictions from the ensemble model to offset the weakness and bias from 
individuals. The feature analysis improved our ability to predict glucose 
yield from many feedstock blends treated with various pretreatment 
chemistries at different temperatures. From Fig. 4, IL pretreatment was 
observed to be most effective in converting feedstock blends to glucose, 
and reaction temperature had a stronger impact than reaction time in 
our studies. Base on the pretreatment data, ML models calculated 

optimal feedstock blends while maximizing low cost, locally available 
feedstock concentration and glucose yields. Maximizing the blending of 
local feedstocks can help ensure that bio-based manufacturing is 
possible in states like Florida and Kansas. Although from dataset 2, we 
see a higher dependency on CS when blended with local WS, local SG 
and EG have higher impact to glucose yield in dataset 1. Blending 
feedstocks, nonetheless, has the potential to relieve some stress on the 
biomass supply chain. 

From dataset 2, we also identified the optimal deconstruction con-
ditions to produce at least 45 % (of theoretical) glucose yields, by 
varying pretreatment catalysts and reaction temperature and time. The 
best feedstock blends along with reaction parameters for both datasets 
are described in Table 5. For ddataset 1, both blends can demonstrate 
glucose yield over 90 %, with reduced ratio in CS by blending feedstocks 
with SG and EC. One combination can even decrease CS to only 0.07 
fraction in the blending portion with less temperature and longer time. 
For dataset 2, it is possible to have glucose yield over 80–90 % with only 
WS as the feedstock. Another blend with 0.33 CS and 0.34 SG provided 
similar glucose yield with similar reaction conditions. The results 

Fig. 5. Density plots of the prediction errors from base learners and ensemble models. Base learners were named by model names, and linear / nonlinear ensembles 
were represented as “ensemble” and “stackensemble” respectively. (A) and (B) are data from dataset 1 with all variables as features and selected features respectively. 
(C) and (D) are data from dataset 2 with all variables as features and selected features respectively. 

C.-S. Chen et al.                                                                                                                                                                                                                                 



Biochemical Engineering Journal 181 (2022) 107896

9

demonstrate that similar glucose yield can be achieved with different 
feedstock blends, and it is predictable by our models. Our models can 
provide such calucations in real-time, offering solutions for feedstock 
supply chain issues in the biorefinery industry. It should be emphasized 
that the LRM model described in Narani et al. [9] was developed to 
predict continuous envelopes of biomass blends that are optimal for a 
given pretreatment condition to achieve a predetermined sugar yield or 

vice versa (Fig. S4). ML models in the study were designed with the same 
concept but to extend beyond the envelope. In this study, we also pre-
dicted continuous envelops of optimal process parameters and examined 
impact from features Fig. 4. The models were designed to be flexible 
depending on the conditions, and, when applied, such predictive models 
will reduce biorefineries’ dependence on singular feedstocks. Such 
predictions can also be very useful to a biorefinery managing process 
conditions as they experience feedstock variability on a day-to-day 
basis. 

The nonlinear ensembles and linear-weighted ensembles led to reli-
able predictions in both dataset 1 and 2. Training errors that occurred 
from finite-size sampling were addressed by feature selection and 
ensemble technique. Feature selection can help improve model perfor-
mance for the ensemble ones while the impact is not obvious for indi-
vidual models. By choosing an appropriate filter area for the features 
that includes the blends but suppressing the variants that have lower 
influence in predictions, we were able to reduce RMSE. There are other 
ML techniques that can be further applied, including filtering out out-
liers, tuning more hyperparameters in each model or building more folds 
of the ensembles. However, the more sophisticated the ensemble is, the 
higher the possibility of losing balance between bias-variance [31–33]. 
Finding the compromise between underfitting and overfitting is a 
common dilemma in designing predictive models by machine learning. 

By the nature of the small datasets in this study (< 100 data points), 
the complexity of the ensemble model was controlled with four base 
models and two layers to prevent overfitting. It should be noted that 
inappropriate filtering can lead to underfitting or overoptimization in 
the final results. To prevent the generation of an error-prone model, 
outliers in the dataset were checked beforehand and models were con-
structed in a relatively conservative manner - the choice of number of 
models and the threshold level in feature selection was kept to a mini-
mum. We also ensured the models passed proper testing and validation 
with similar or better RMSE compared to training data so the models do 
not under / overfit. The training dataset should cover a wide range of 
glucose yield for an ensemble to be able to capture more comprehensive 
information. In both linear and nonlinear models, data size can signifi-
cantly affect the final influence in the linear slope or the split points in 
trees. The bigger the data set, the more un-correlated aspects can be 
collected by different base models. Since our datasets do not fall in the 
range of big data and the inter-correlation between models were not less 
than 0.5, 3-fold ensembles or more blends in different levels and more 
tuning were not added to the final model. The prediction power in this 
study can be guaranteed only in the range of the training dataset. 
Increasing the size of the dataset and covering a more comprehensive 
range in the features should greatly help us in developing a predictive 
model that is applicable to a wide range of feedstock blends and process 
conditions leading to a wide range of glucose yields. The examination of 
process features can direct researchers focus towards studying the most 
impactful variables, such as reaction temperature or the type of feed-
stocks. It may be beneficial to construct a feedstock library for the 
models and expand to the feedstocks available across the nation’s 
geographic expanse. Future work geared towards generating and adding 
more data to this and other such approaches can help in designing a 

Fig. 6. Linear correlation (dashed line) for modeling on glucose yield from (A) 
dataset 1: Linear ensemble (weighted), and linear regression model (LRM) 
developed in JMP. R2 are 0.89 and 0.85 respectively. MAEs are 6.61 and 6.65 
respectively. (B) dataset 2: Linear correlation (dashed line) for modeling on 
glucose yield from ppr, gbm ensemble (stackensemble), and LRM. R2 are 0.78, 
0.78, and 0.68 by order. MAEs are 9.70, 10.06, and 11.11 respectively. Linear 
equations were colored based on models. 

Table 4 
Lineup of RMSE of validation data among various models for two datasets.  

Dataset 1 

Model Weighted GBM stack bridge cubist ppr rpart LRM 

RMSE (full feature) 16.50 9.08 11.39 9.50 10.03 18.90 8.01 
RMSE (feature selection) 7.95 9.87 11.24 9.42 9.56 12.90 8.01  

Dataset 2 

Model Weighted GBM stack cubist ppr xgbTree rf LRM 

RMSE (full feature) 15.29 14.10 13.35 12.46 15.38 14.31 14.65 
RMSE (feature selection) 14.10 12.60 14.47 14.46 14.10 14.77 14.65  
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more robust and accurate predictive model that can unravel the effect 
from each process parameter to overall bio-based production. 

4. Conclusions 

ML models have been sparsely applied to understand and predict 
glucose yields from biomass deconstruction. In this study, an ensemble 
model was stacked by selecting base learners after screening individual 
models from a wide range of regression types. With additional feature 
selection, we improved model performance by 20 %. As both linear and 
nonlinear ensemble models exhibited good prediction capability, we 
concluded that ensemble combined with feature selection will provide 
best predictions. ML ensemble models are agile models that can help 
predict glucose yields from a wide range of feedstocks and process 
conditions, and give rich insights into predicting data unlike those from 
linear mixed models. The models can maximize sugar yields from the 
dynamic blending space and assist later bioprocesses such as fermen-
tation in the biomanufacturing. Expanding the quality and quantity of 
data used to train these models can help apply them in a biorefinery 
setting where real-time decisions are necessary to process variable 
feedstocks. 
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