UC Irvine
ICS Technical Reports

Title

A classification and comparison framework for software architecture description
languages

Permalink
https://escholarship.org/uc/item/2789d0cd
Author

Medvidovic, Neno

Publication Date
1996

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California

https://escholarship.org/uc/item/2789d0cd
https://escholarship.org
http://www.cdlib.org/

SL BAR

A4

(o

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

no.97-02

A Classification and Comparison Framework for |
Software Architecture Description Languages

Neno Medvidovic

Technical Report UCI-ICS-97-02
Department of Information and Computer Science
University of California, Irvine
Irvine, California 92697-3425

neno@ics.uci.edu

February 1996

Abstract

Software architectures shift the focus of developers from lines-of-code to coarser-
grained architectural elements and their overall interconnection structure.
Architecture description languages (ADLs) have been proposed as modeling
notations to support architecture-based development. There is, however, little
consensus in the research community on what is an ADL, what aspects of an
architecture should be modeled in an ADL, and which of several possible ADLs is
best suited for a particular problem. Furthermore, the distinction is rarely made
between ADLs on one hand and formal specification, module interconnection,
simulation, and programming languages on the other. This paper attempts to
provide an answer to these questions. It motivates and presents a definition and a
classification framework for ADLs. The utility of the definition is demonstrated by
using it to differentiate ADLs from other modeling notations. The framework is
also used to classify and compare several existing ADLs. One conclusion is that,
although much research has been done in this area, no single ADL fulfills all of the
identified needs.

I. Introduction

Software architecture research is directed at reducing costs of developing applications and
increasing the potential for commonality between different members of a closely related product
family [GS93, PW92]. Software development based on common architectural idioms has its focus
shifted from lines-of-code to coarser-grained architectural elements (software components and
connectors) and their overall interconnection structure. To support architecture-based
development, formal modeling notations and analysis and development tools that operate on
architectural specifications are needed. Architecture description languages (ADLs) and their
accompanying toolsets have been proposed as the answer. Loosely defined, “an ADL for software
applications focuses on the high-level structure of the overall application rather than the
implementation details of any specific source module” [Ves93]. ADLs have recently become an
area of intense research in the software architecture community [GPT95, Gar95a, Wolf96].

A number of ADLs have been proposed for modeling architectures both within a particular
domain and as general-purpose architecture modeling languages. In this paper, we specifically
consider those languages most commonly referred to as ADLs: Aesop [GAQO94, Gar95b,
GKMMO96], ArTek [TLPD95], C2 [MTW96, MORT96, Med96], Darwin [MDK93, MDEKY95,
MK95, MK96], LILEANNA [Tra93a, Tra93b], MetaH [BEJV94, Ves96], Rapide [LKA+95,
LV95, Rap96], SADL [MQR95], UniCon [SDK+95, SDZ96], and Wright [AG94a, AG94b].!
Recently, initial work has been done on an architecture interchange language, ACME [GMW95,
GMW96], which is intended to support mapping of architectural specifications from one ADL to
another, and hence enable integration of support tools across ADLs. Although, strictly speaking,
ACME is not an ADL, it contains a number of ADL-like features. Furthermore, it is useful to
compare and differentiate it from other ADLSs to highlight the difference between an ADL and an
interchange language. It is, therefore, included in this paper.

There is, however, still little consensus in the research community on what an ADL is, what
aspects of an architecture should be modeled by an ADL, and what should be interchanged in an
interchange language [MTW96]. For example, Rapide may be characterized as a general-purpose
system description language that allows modeling of component interfaces and their externally
visible behavior, while Wright formalizes the semantics of architectural connections.
Furthermore, the distinction is rarely made between ADLs on one hand and formal specification,
module interconnection (MIL), simulation, and programming languages on the other. Indeed, for

1. The full name of the ADL for C2-style architectures is “C2 SADL.” In order to distinguish it from SADL, which
resulted from an unrelated project at SRI, it will be referred to simply as “C2” in the remainder of the paper.

example, Rapide can be viewed as both an ADL and a simulation language, while Clements
contends that CODE [NB92], a parallel programming language, is also an ADL [Cle96al].

Another source of discord is the level of support an ADL should provide to developers. At
one end of the spectrum, it can be argued that the primary role of architectural descriptions is to
aid understanding and communication about a software system. As such, an ADL must have
simple, understandable, and possibly graphical syntax, well understood, but not necessarily
formally defined, semantics, and the kinds of tools that aid visualization, understanding, and
simple analyses of architectural descriptions (e.g., Argo [RR96, RHR96]). At the other end of the
spectrum, the tendency has been to provide formal syntax and semantics of ADLs, powerful
analysis tools, model checkers, parsers, compilers, code synthesis tools, runtime support tools,
and so on (e.g., SADL’s architecture refinement patterns [MQR95], Darwin’s use of Tt-calculus to
formalize architectural semantics [MK96], or UniCon’s parser and compiler [SDK+95]). While
both perspectives have merit, ADL researchers have generally adopted one or the other extreme
view. It is our contention that both are important and should be reflected in an ADL to a certain
degree.

Several researchers have attempted to shed light on these issues, either by surveying what
they consider existing ADLs [KC94, KC95, Cle96a, Ves93] or by listing “essential requirements”
for an ADL [LV95, SDK+95, SG94, SG95]. Each of these attempts furthers our understanding of
what an ADL is; however, for various reasons, each ultimately falls short in providing a definitive
answer to the question.

This paper builds upon the results of these efforts. It is further influenced by insights
obtained from studying individual ADLs, relevant elements of languages commonly not
considered ADLs (e.g., programming languages), and experiences and needs of an ongoing
research project, C2. The paper presents a definition and a relatively concise classification
framework for ADLs: an ADL must explicitly model components, connectors, and their
configurations; furthermore, to be truly usable and useful, it must provide tool support for
architecture-based development and evolution. These four elements of an ADL are further broken
down into their constituent parts.

The remainder of the paper is organized as follows. Section II discusses contributions and
shortcomings of other attempts at surveying and classifying ADLs. Section III motivates our
definition and taxonomy of ADLs. Section IV demonstrates the utility of the definition by
determining whether several existing notations are ADLs. Sections V-VIII describe the elements
of components, connectors, configurations, and tool support, respectivel.y, and assess the above
ADL:s based on these criteria. Discussion and conclusions round out the paper.

II. Related Approaches

Any effort such as this one must be based on discoveries and conclusions of other
researchers in the field. For that reason, we closely examined ADL surveys conducted by Kogut
and Clements [KC94, KC95, Cle96a] and Vestal [Ves93]. We also studied several researchers’
attempts at identifying essential ADL characteristics and requirements: Luckham and Vera
[LV95], Shaw and colleagues [SDK+95], Shaw and Garlan [SG94, SG95], and Tracz [Wolf97].
As a basis for architectural interchange, ACME [GMW95, GMW96] gave us key insights into
what needs to remain constant across ADLs. Finally, we built upon our conclusions from an.
earlier attempt to shed light on the nature and needs of architecture modeling [MTW96].

IL.A. Previous Surveys

Kogut and Clements [KC94, KC95, Cle96a] provide an extensive classification of existing
ADLs. The classification is based on an exhaustive questionnaire of ADL characteristics and
features, completed by each language’s design team. The survey was conducted in a top-down
fashion: the authors used domain analysis techniques to decide what features an ADL should

have, and then assessed existing languages with respect to those features.

While their taxonomy is valuable in bettering our understanding of surveyed ADLs, it
comes up short in several respects. Domain analysis is typically used in well-understood domains,
which is not the case with ADLs. Beyond this, the survey does not provide any deeper insight into
what an ADL is, nor does it present its criteria for inclusion of a particular modeling notation in
the list. Quite the contrary, the list of surveyed languages contains several that are commonly not
considered ADLs, yet little justification is given for their inclusion. Perhaps most illustrative is the
example of Modechart, a specification language for hard-real-time computer systems [JM94].
Clements labels Modechart “a language on the edge of ADLs,” whose utility to the architecture
community lies in its sophisticated analysis and model checking toolset [Cle95]. Tool support
alone is not a sufficient reason to consider it an ADL, however. Other similar examples are

* CODE [NB92], a graphical parallel programming language;

* Demeter [HSX91], an approach to object-oriented design and programming;

* Resolve [HLOW94], a mathematically-based approach to reusable component-based software
development, which is related more closely to formal specification languages, such as
Larch [GH93] and Z [Spi89], than to other ADLs; and

* PSDL [KLB93], a rapid prototyping language for real-time systems.

Several of the criteria Kogut and Clements used for ADL evaluation, such as the ability to
model requirements and algorithms, are outside an ADL’s scope. Furthermore, this kind of survey

runs the risk of not asking all of the relevant questions. Finally, the authors often have to

extrapolate very specific information from multiple, potentially subjective, vague, or

misunderstood questions.

Vestal’s approach [Ves93] is more bottom-up. He surveyed four existing ADLs

(LILEANNA, MetaH, Rapide, and QAD [HP93]) and attempted to identify their common
properties. He concluded that they all model or support the following concepts, though not to the

same degree:

components,

connections,

hierarchical composition, where one component contains an entire subarchitecture,
computation paradigms, i.e., semantics, constraints, and non-functional properties,
communication paradigms,

underlying formal models,

tool support for modeling, analysis, evaluation, and verification, and

automatic application code composition.

Although “cursory” and limited in its scope, Vestal’s survey contains useful insights that bring us
closer to answering the question of what an ADL is. In its approach, our survey is much closer to
Vestal’s than to Clements and Kogut'’s.

IL.B. Insights from Individual Systems

In [LV95], Luckham and Vera list requirements for an ADL, based on their work on Rapide:

component abstraction,

communication abstraction,

communication integrity, which mandates that only components that are connected in an
architecture may communicate in the resulting implementation,

ability to model dynamic architectures,

hierarchical composition, and

relativity, or the ability to relate (map) behaviors between architectures.

As a result of their experience with UniCon, Shaw and colleagues list the following

properties an ADL should exhibit [SDK+95]:

ability to model components, with property assertions, interfaces, and implementations,
ability to model connectors, with protocols, property assertions and implementations,
abstraction and encapsulation,

types and type checking, and

ability to accommodate analysis tools.

Clearly, the above features alone cannot be considered definitive indicators of how to
identify an ADL. They have resulted from limited experience of two research groups with their
own languages. However, they represent valuable data points in trying to understand and classify
ADLs.

I1.C. Attempts at Identifying Underlying Concepts

In [Wolf97], Tracz defines an ADL as consisting of four “C”s: components, connectors,
configurations, and constraints. This taxonomy is appealing, especially in its simplicity, but needs
- further elaboration: justification for and definitions of the four “C”s, aspects of each that need to
be modeled, necessary tool support, and so on.

Shaw and Garlan have attempted to identify unifying themes and motivate research in
ADLSs. Both authors have successfully argued the need to treat connectors explicitly, as first-class
entities in an ADL [Sha93, AG94a, AG94b, SG94]. In [SG94], they also elaborate six classes of
properties that an ADL should provide: composition, abstraction, reusability, configuration,
heterogeneity, and analysis. They demonstrate that other existing notations, such as informal
diagrams, modularization facilities provided by programming languages, and MILs, do not satisfy
the above properties and hence cannot fulfill architecture modeling needs.

In [SG95], Shaw and Garlan identify seven levels of architecture specification capability:
* capturing architectural information,
* construction of an instance,
* composition of multiple instances,
* selection among design or implementation alternatives,
* verifying adherence of an implementation to specification,

analysis, and

* automation.
They conclude that, while ADLs invariably provide notations for capturing system descriptions
(level 1), few support other levels. It is unclear, however, what set of criteria they applied to the
different ADLs and how stringent those criteria were, particularly since this paper will show that a
number of ADLs do provide a considerable amount of support for most of the above capabilities.

Finally, in [MTW96], Medvidovic and colleagues argue that, in order to adequately support
architecture-based development and analysis, one must model them at four levels of abstraction:
internal component semantics, component interfaces, component interconnections in an

architecture, and architectural style rules. This taxonomy presents an accurate high-level view of

architecture modeling needs, but is too general to serve as an adequate ADL comparison
framework. Furthermore, it lacks any focus on connectors.

I1.D. Architecture Interchange

Perhaps the closest the research community has come to a consensus on ADLs has been its
endorsement of ACME as an architecture interchange language [GMW95, GMW96]. In order to
meaningfully interchange architectural specifications across ADLs, a common basis for all ADLs

must be established. Garlan and colleagues believe that common basis to be their core'ontology)

for architectural representation:
* components,
* connectors,
* systems, or configurations of components and connectors,
* ports, or points of interaction with a component,
* roles, or points of interaction with a connector,
* representations, used to model hierarchical compositions, and
* rep-maps, which map a composite component or connector’s internal architecture to elements
of its external interface.

In ACME, any other aspect of architectural description is represented with property lists (i.e., it is
not core).

ACME has resulted from a careful consideration of issues in and notations for modeling
architectures. As such, it can be viewed as the starting point for studying existing ADLs and
developing new ones. However, ACME represents the least common denominator of existing
ADLSs rather than a definition of an ADL. It also does not provide any means for understanding or
classifying those features of an architectural description that are placed in property lists. Finally,
certain structural constraints imposed by ACME, such as its requirement that a connector may not
be directly attached to another connector, satisfy the needs of some approaches (e.g., Aesop,
UniCon, Wright), but not of others (e.g., C2).

II1. ADL Classification and Comparison Framework

Individually, none of the above attempts adequately answer the question of what an ADL is.
Instead, they reflect their authors’ views on what an ADL should have or should be able to do.
However, a closer study of their various collections of features and requirements shows that there
is a common theme among them, which is used as a guide in formulating this framework for ADL
classification and comparison. To complete the framework, the characteristics of individual ADLs

e]

and summaries of discussions on ADLs _that occurred at the two International Software
Architecture Wdrkshops [Gar95a, Wolf96] were studied. To a large degree, this taxonomy reflects
features supported by all, or most, existing ADLs. In certain cases, also included are those

characteristics typically not supported by ADLs, but which have been identified as important for
architecture-based development.

To properly enable further discussion, several definitions are needed. There is no standard,
universally-accepted definition of architecture, but we will use as our working definition the one
provided by Garlan and Shaw [GS93]:

[Software architecture is a level of design that] goes beyond the algorithms and
data structures of the computation: designing and specifying the overall system
structure emerges as a new kind of problem. Structural issues include gross
organization and global control structure; protocols for communication,
synchronization, and data access; assignment of functionality to design elements;
physical distribution; composition of design elements; scaling and performance;
and selection among design alternatives.

An ADL is a language that provides features for modeling a software system’s conceptual
architecture. ADLs provide both a concrete syntax and a conceptual framework for characterizing
architectures [GMW96]. The conceptual framework reflects characteristics of the domain for
which the ADL is intended and/or the architectural style. The framework typically subsumes the
ADL’s underlying semantic theory (e.g, CSP, Petri nets, finite state machines).

The building blocks of an architectural description are (1) components, (2) connectors, and
(3) architectural configurations.”> An ADL must provide the means for their explicit specification;
this enables us to determine whether or not a particular notation is an ADL. In order to infer any
kind of information about an architecture, at a minimum, interfaces of constituent components
must also be modeled. Without this information, an architectural description becomes but a
collection of (interconnected) identifiers.

Several aspects of both components and connectors are desirable, but not essential: their
benefits have been acknowledged and possibly demonstrated by some ADL, but their absence
does not mean that a given language is not an ADL. These features are interfaces (for connectors),
and types, semantics, constraints, evolution, and non-functional properties (for both). Desirable
features of configurations are understandability, heterogeneity, compositionality, constraints,

refinement and traceability, scalability, evolution, dynamism and non-functional properties.

2. “Architectural configurations” will, at various times in this paper, be referred to simply as “configurations” or
“topologies.”

Finally, even though the suitability of a given language for modeling software architectures
is independent of whether and what kinds of tool support it provides, an accompanying toolset
will render an ADL both more usable and useful. The kinds of tools that are desirable in an ADL

are those for active specification, multiple views, analysis, refinement, code generation, and
dynamism.

This taxonomy is depicted in Fig. 1. The taxonomy is intended to be extensible and
modifiable, which is crucial in a field that is still largely in its infancy. The features of a number of
surveyed languages are still changing (e.g., SADL, ACME, C2, ArTek). Moreover, work is being
continuously done on extending tool support for all ADLs. Sections V-VIII elaborate further on
components, connectors, configurations, and tool support in ADLs. They motivate the taxonomy
and compare existing ADLs based on their level of support of the different categories.

ADL
Architecture Modeling Features
Components
Interface
Tvypes
Semantics
Constraints
Evolution
Non-functional properties
Connectors
Interface
Types
Semantics
Constraints
Evolution
Non-functional properties
Architectural Configurations
Understandability
Compositionality
Heterogeneity
Constraints
Refinement and traceability
Scalability
Evolution
Dynamism
Non-functional properties
Tool Support
Active Specification
Multiple Views
Analysis
Refinement
Code Generation
Dynamism

Fig.1. ADL classification and comparison framework. Essential modeling features are bolded.

9

4

IV. Differentiating ADLs from Other Languages

In order to clarify what is an ADL, it may be useful to point out several notations that,
though similar, are nor ADLs according to our definition: high-level design notations, MILs,
programming languages, object-oriented (OO) modeling notations, and formal specification
languages.

The requirement to model configurations explicitly distinguishes ADLs from some high-
level design languages. Existing languages that are commonly referred to as ADLs can be
grouped into three categories based on how they model configurations:

* implicit configuration languages model configurations implicitly through interconnection
information that is distributed across definitions of individual components and connectors;

* in-line configuration languages model configurations explicitly, but specify component
interconnections, along with any interaction protocols, “in-line;”

* explicit configuration languages model both components and connectors separately from
configurations.

The first category, implicit configuration languages, are, by the definition given in this paper,
not ADLs, although they may serve as useful tools in modeling certain aspects of architectures.
Two examples of such languages are LILEANNA and ArTek. In LILEANNA, interconnection
information is distributed among the with clauses of individual packages, package bindings (view
construct), and compositions (make). In ArTek, there is no configuration specification; instead,
each connector specifies component ports to which it is attached.

The focus on conceptual architecture and explicit treatment of connectors as first-class
entities differentiate ADLs from MILs [DK76, PN86], programming languages, and OO notations
and languages (e.g., Unified Method [BR95]). MILs typically describe the uses relationships
among modules in an implehented system and support only one type of connection [AG94a,
AG94b, SG94]. Programming languages describe a system’s implementation, whose architecture
is typically implicit in subprogram definitions and calls. Explicit treatment of connectors also
distinguishes ADLs from OO languages, as demonstrated in [LVM95].

It is important to note, however, that there is less than a firm boundary between ADLs and
MILs. Certain ADLs, e.g., Wright and Rapide, model components and connectors at a high level
of abstraction and do not assume or prescribe a particular relationship between an architectural
description and an implementation. We refer to these languages as implementation independent.
On the other hand, several ADLs, e.g., UniCon and MetaH, require a much higher degree of
fidelity of an architecture to its implementation. Components modeled in these languages are
directly related to their implementations, so that a module interconnection specification may be

10

indistinguishable from an architectural desci'iption in such a language. These are implementation

constraining languages.

Darwin has elements of both implementation constraining and independent languages: it ties
each primitive component to its implementation, but also enables modeling of high-level,
composite components. Given this composition feature and the fact that a valid Darwin
architecture need not contain primitive components, we are inclined to consider Darwin an
implementation independent language.

An ADL typically subsumes a formal semantic theory. That theory is part of an ADL’s
underlying framework for characterizing architectures; it influences the ADL’s suitability for
modeling particular kinds of systems (e.g., highly concurrent systems) or particular aspects of a
given system (e.g., its static properties). Examples of formal specification theories are Petri nets
[Pet62], Statecharts [Har87], partially-ordered event sets [LVB+93], communicating sequential
processes (CSP) [Hoa85], model-based formalisms (e.g., chemical abstract machine [TW95],
Z [Spi89]), algebraic formalisms (e.g., Obj [GWS88]), and axiomatic formalisms (e.g.,
Anna [Luc87)).

Of the above-mentioned formal notations, Z has been demonstrated appropriate for
modeling only certain aspects of architectures, such as architectural style rules [AAG93,
MTW96]. Partially-ordered event sets, CSP, Obj, and Anna have already been successfully used
by existing modeling languages (Rapide, Wright, and LILEANNA, respectively). Modeling
capabilities of the remaining three, Petri nets, Statecharts, and chemical abstract machines, are
somewhat similar to those of ADLs. Although they do not express systems in terms of
components, connectors, and configurations per se, their features may be cast in that mold and
they may be considered ADLs in their existing forms. In the remainder of this section we will

discuss why it would be inappropriate to do so.

IV.A. Petri Nets

Petri net places can be viewed as components maintaining state, transitions as components
performing operations, arrows between places and transitions as simple connectors, and their
overall interconnection structure as a configuration. Petri nets mandate that processing
components may only be connected to state components and vice-versa. This may be an
unreasonable restriction. Overcoming it may require some creative and potentially
counterintuitive architecting. A bigger problem is that Petri nets do not model component
interfaces, i.e., they do not distinguish between different types of tokens. If we think of tokens as
messages exchanged among components, this is a crucial shortcoming. Colored Petri

11

nets [Jen92, Jen94] attempt to remedy this problem by allowing different types of tokens.
However, even they explicitly model only the interfaces of state components (places), but not of
processing components (transitions). Therefore, Petri nets violate the definition of ADLs.

IV.B. Statecharts

Statecharts is a modeling formalism based on finite state machines (FSM) that provides a
state encapsulation construct, support for concurrency, and broadcast communication. To compare
Statecharts to an ADL, the states would be viewed as components, transitions among them as
simple connectors, and their interconnections as configurations. However, Statecharts does not
model architectural configurations explicitly: interconnections and interactions among a set of
concurrently executing components are implicit in infra-component transition labels. In other
words, as was the case with LILEANNA and ArTek, the topology of an “architecture” described
as a StateChart can only be ascertained by studying its constituent components. Therefore,
Statecharts is not an ADL.

There is, however, an even deeper issue in attempting to model architectures as FSMs.
Namely, even though it may be useful to represent component or connector semantics with
Statecharts, it is doubtful that an adequate architectural breakdown of a system can be achieved
from a state-machine perspective. Harel [Har87] agrees with this, arguing that

one has to assume some physical and functional description of the system,
providing, say, a hierarchical decomposition into subsystems and the functions and
activities they support. This description should also identify the external input and
output ports and their associated signals. Statecharts can then be used to control
these internal activities. Although we are aware of the fact that achieving such a
functional decomposition is by no means a trivial matter, we assume that this kind
of description is given or can be produced using an existing method.

IV.C. Chemical Abstract Machine

In the chemical abstract machine (CHAM) approach, an architecture is modeled as an
abstract machine fashioned after chemicals and chemical reactions. A CHAM is specified by
defining molecules, their solutions, and transformation rules that specify how solutions evolve.
An architecture is then specified with processing, data, and connecting elements. The interfaces of
processing and connecting elements are implied by (1) their topology and (2) the data elements
their current configuration allows them to exchange. The topology is, in turn, implicit in a solution
and the transformation rules. Therefore, even though CHAM can be used effectively to prove

12

certain properties of architectures, without additional syntactic constructs it does not fulfill the
requirements to be an ADL.

V. Components

A component is a unit of computation or a data store. Therefore, components are loci of
computation and state [SDK+95]. A component in an architecture may be as small as a single
procedure (e.g., MetaH procedures) or as large as an entire application (e.g., hierarchical

components in C2 and Rapide or macros in MetaH). It may require its own data and/or execution -

space, or it may share them with other components.

Each surveyed ADL models components in one form or another and under various names.
ACME, Aesop, C2, Darwin, SADL, UniCon, and Wright share much of their vocabulary and
refer to them simply as components; in Rapide they are interfaces; and in MetaH processes. In
this section, we present the aspects of components that need to be modeled in an ADL and assess
existing ADLs with respect to them.

V.A. Interface

A component’s interface is a set of interaction points between it and the external world. As
in OO classes or Ada package specifications, a component interface in an ADL specifies those
services (messages, operations, and variables) the component provides. In order to be able to
adequately reason about a component and the architecture that includes it, ADLs should also
provide facilities for specifying component needs, i.e., services required of other components in
the architecture. An interface thus defines computational commitments a component can make
and constraints on its usage. Interfaces also enable a certain, though rather limited, degree of

reasoning about component semantics.

All surveyed ADLs support specification of component interfaces. They differ in the
terminology and the kinds of information they specify. For example, each interface point in
ACME, Aesop, SADL, and Wright is a port. On the other hand, in C2, the entire interface is
provided through a single port; individual interface elements are messages. In Darwin, an
interface point is a service, in Rapide a constituent, and in UniCon a player. MetaH distinguishes
between ports, events, and shared data.

3. Interface.is a language construct; the authors commonly refer to components as “components.”

13

The ports in ACME, Aesop, SADL, and Wright are named and typed. Aesop and SADL
distinguish between input and output ports (inputs and outputs in Aesop; iport and oport in

SADL). Wright goes a step further by specifying the expected behavior of the component at that
point of interaction. The particular semantics of a port are specified in CSP [Hoa85] as interaction
protocols. In the example given in Fig. 2 below, DataRead is a simple input (read only) port:

component DataUser =
port DataRead = get —» DataRead |—] \/
other ports

Fig. 2. Interaction protocol for a component port in Wright.

A C2 component interface consists of single top and bottom ports. Both incoming and
outgoing message traffic is routed through each port. An important distinction among C2
messages is between requests and notifications. Due to C2’s principle of substrate independence,
a component has no knowledge of components below it in an architecture. For that reason, any
messages sent down an architecture must be notifications of that component’s internal state;

requests may only be sent up.

Component interface specifications in Darwin specify services provided and required by a
component, as well as types of those services. Each service type is further elaborated with an
interaction mechanism that implements the service. For example, trace services are implemented

with events, outputs are accomplished via ports, and commands accept entry calls.

MetaH specifies input and output ports on components (processes). Ports are strongly typed
and connections among them type checked. They are the means for periodic communication: each
port has an associated buffer variable and port-to-port communication results in assignment.
Aperiodic communication is modeled by output events. Finally, sharable monitors or packages are
the means of indicating shared data among components.

Rapide subdivides component interfaces into constituents: provides, requires, action, and
service. Provides and requires refer to functions. Connections between them specify synchronous
communication. /n and out actions denote the events a component can observe and generate,
respectively. Connections between actions define asynchronous communication. A service is an
aggregation facility for a number of actions and functions. It is a mechanism for abstracting and
reusing component interface elements.

14

Finally, UniCon specifies interfaces as sets of players. Players are visible semantic units
through which a component interacts by requesting or providing services and receiving external
state and events. Each player consists of a name, a type, and optional attributes such as signature,
functional specification, or constraints. UniCon supports a predefined set of player types:
RoutineDef, RoutineCall, GlobalDataDef, GlobalDataUse, ReadFile, WriteFile, ReadNext,
WriteNext, Streamln, StreamOut, RPCDef, RPCCall, and RTLoad. PLBundle denotes a set of
players.

V.B. Types

Software reuse is one of the primary goals of architecture-based development [BS92,
GAO95, MOT97]. Since architectural decomposition is performed at a level of abstraction above
source code, ADLs can support reuse by modeling abstract components as types. Component
types can then be instantiated multiple times in an architectural specification and each instance
may correspond to a different implementation of the component. Abstract component types can

also be parameterized, further facilitating reuse.*

All of the surveyed ADLs distinguish component types from instances. Rapide does so with
the help of a separate types language [LKA+95]. With the exception of MetaH and UniCon, all
ADLSs provide extensible component type systems. MetaH and UniCon support only a predefined,
built-in set of types. MetaH component types are process, macro, mode, system, and agr;,t;vlicaticm.5
Component types supported by UniCon are Module, Computation, SharedData, SeqFile, Filter,
Process, SchedProcess, and General.

Three ADLs make explicit use of parameterization: ACME, Darwin, and Rapide. ACME
provides component templates, which are typed and parameterized macro facilities for
specifications of recurring component patterns. Parameterized types in Rapide are type
constructors; applying them to appropriate arguments results in a type. ACME and Darwin only
allow parameterization of component type declarations, while Rapide also allows the behavior
associated with a particular type to be parameterized by specifying event patterns, discussed

below.

4. A detailed discussion of the role of parameterization in reuse is given in [Kru92).
5. As MetaH is used to specify both the software and the hardware architecture of an application, system is a hard-
ware construct, while application pertains to both.

15

V.C. Semantics

In order to be able to perform useful analyses, enforcement of constraints, and consistent
mappings of architectures from one level of abstraction to another, component semantics should
be modeled. However, several languages do not model component semantics beyond interfaces.
SADL and Wright focus on other aspects of architectural description (connectors and refinement).
Wright does enable specification of interaction protocols for each component interface point, and
while it does not focus on it, it also allows specification of component functionality in CSP.

Underlying semantic models and their expressive power vary across those ADLs that do

support specification of component behavior. ACME and UniCon allow semantic information to
be specified in components’ property lists. ACME places no restrictions on the specification
language; however, from its point of view, properties are uninterpreted, so that, strictly speaking,
component semantics are outside the scope of the language. Although UniCon’s main focus is on
non-functional properties of components (see Section V.F), it allows specification of event traces

in property lists to describe component behavior.

Aesop does not provide any language mechanisms for specifying component semantics.
However, for each architectural style defined in Aesop, it allows the use of style-specific
languages for modeling semantics.

MetaH allows specification of component implementation semantics with path declarations.
A path declaration consists of an optional identifier, followed by the names of (more primitive)
components in that path. MetaH also uses an accompanying language, ControlH, for modeling
algorithms in the guidance, navigation, and control (GN&C) domain [BEJV94].

In Rapide, each component specification has an associated behavior, which is defined via
partially ordered sets of events (posets). Rapide uses event patterns to recognize posets. During
poset recognition, free variables in a pattern are bound to specific matching values in a
component’s poset. Event patterns are used both as triggers and outputs of component state
transitions.

C2 currently employs a more primitive semantic model. Component semantics are
expressed in terms of causal relationships between input and output messages in its interface. At
the level of a configuration, this information can be used to generate linear traces of events,
similar to VHDL's [VHDL87] and Verilog’s [TM91]. Rapide’s posets are a related but more
powerful modeling mechanism [LV95].

Finally, Darwin uses m-calculus [MPW92] as its underlying semantic model. A system in
the m-calculus is a collection of independent processes which communicate via named channels.

16

m-calculus is used to model basic component interaction and composition properties, so that each
syntactic Darwin construct concerned with requiring, providing, and binding services is modeled
in it. It is important to note that using m-calculus in this manner only supports modeling the
semantics of composite Darwin components (further discussed in Section VIL.B), while primitive
components are treated as black boxes.

V.D. Constraints

A constraint is a property of or assertion about a system or one of its parts, the violation of
which will render the system unacceptable to one or more stakeholders [Cle96b]. In order to
ensure adherence to intended component uses, enforce usage boundaries, and establish
dependencies among internal elements of a component, constraints on them must be specified.
Constraints may be defined in a separate constraint language, or they may be specified using the
notation of the given ADL and its underlying semantic model.

All surveyed languages constrain usage of components by specifying their interfaces as the
only legal means of interaction. Formal specification of component semantics further specifies
relationships and dependencies among internal elements of a component. Several ADLs provide
additional means for specifying constraints on components:

* Aesop, C2, and SADL provide stylistic invariants. Unlike Aesop and SADL, which support
multiple architectural styles, C2’s invariants, such as the number of communication ports and
distinction between requests and notifications, are specific to a single style and are therefore
fixed.

* MetaH constrains implementation and usage of a component by specifying its non-functional
properties or attributes, such as Period, ExecutionTime, Deadline, Criticality,
TimeSliceOption, and AllowedBinding.

* UniCon also constrains component usage with attributes, such as EntryPoint into a component
and Priority. Attributes are either required or optional. For each attribute, a rule must be
specified on how to handle its multiple specifications within a single component. For example,
parameters used for component instantiation (InstFormals) are merged, while any new
occurrence of Priority replaces the previous one. UniCon also restricts the types of players
that can be provided by certain types of components. For each player, its maximum and
minimum numbers of connections are specified (MaxAssocs and MinAssocs, respectively).

* Rapide uses an Anna-like algebraic constraint language to specify constraints on the abstract
state of a component. It also enables specification of pattern constraints on event posets that
are generated and observed from a component’s interface. Pattern constraints specify how to
use a particular component and what the component promises to do. In the example shown in

17

Fig. 3 below, the constraint implies that all, and only, messages taken in by the Resource
component are delivered
* Wright specifies protocols of interaction with a component for each port in CSP.

type Resource is interface
public action Receive(Msg : String);
extern action Results(Msg : String);
constraint
match
((?S in String) (Receive(?S)->Results(?8)))"(*~);
end Resource;

Fig.3. A pattern constraint in Rapide.

V.E. Evolution

As design elements, components evolve. ADLs must support the evolution process by
allowing subtyping of components and refinement of their features. Only a subset of existing
ADLs provide support for evolution. Even within those ADLSs, evolution support is limited and
often relies on the chosen implementation (programming) language. The remainder of the ADLs

view and model components as inherently static.

MetaH and UniCon define component types by enumeration, allowing no subtyping, and
hence no evolution support. ACME has only recently introduced types, but currently provides no
subtyping features.

Aesop supports behavior-preserving subtyping to create substyles of a given architectural
style. Aesop mandates that a subclass must provide strict subtyping behavior for operations that
succeed, but may also introduce additional sources of failure with respect to its superclass.

Rapide allows its interface types to inherit from other types by using OO methods, resulting
in structural subtyping. Both Rapide and SADL also provide features for refinement of
components across levels of abstraction. This mechanism may be used to evolve components by
explicating any deferred design decisions, which is somewhat similar to extending inherited
behavior in OO languages. It is interesting to note that, in a general case, subtyping is simply a
form of refinement. This is, however, not true in the case of Rapide and SADL, both of which
place additional constraints on refinement maps in order to prove or demonstrate certain
properties of architectures (see Section VILE).

18

One ADL that stands out in its support for component evolution is C2. C2 attempts to avoid

dependence on subtyping mechanisms provided by any underlying programming language. Its
approach is based on the realization that architectural design is a complex activity in which
architectures may incorporate components implemented in heterogeneous programming
languages; therefore, an ADL cannot rely on a single subtyping method provided by any one
language. C2 models conceptual component placeholders as formal parameters, while the
implemented components that instantiate them are actual parameters. Multiple- subtyping and
type-checking relationships among components are allowed: name, interface, bchavmr ‘and
implementation subtyping, as well as their combinations [MORT96].

V.F. Non-Functional Properties

Specification of non-functional properties of components is needed to enable simulation of
their runtime behavior, perform useful analyses on components, enforce constraints, map
component implementations to processors, and aid in project management (e.g., by specifying
stringent performance requirements, development of a component may need to be assigned to the
best engineer). Despite the need for and potential benefits of specifying non-functional properties,
there is a striking lack of support for them in existing ADLs.

ACME allows specification of a superset of all ADLs’ non-functional properties in its
property lists. However, as discussed above, it neither interprets nor does it make any use of them.
Aesop allows association of arbitrary text with component specifications. Such arbitrary text may
include non functional properties, although such a possibility has not been explicitly considered
by Aesop’s developers.

The two ADLs that stand out in their ability to express non-functional properties of
components are MetaH and UniCon. Both of these languages need such information to analyze
architecture for real-time schedulability (both ADLs) and reliability and security (MetaH). Both
also use source code location attributes for code generation. Several representative non-functional
properties in MetaH are SourceName, SourceFile, ClockPeriod, Deadline, and Criticality. UniCon
allows specification of Priority, Library, ImplType (source, object, executable, data, or whatever),
and Processor.

V.G. Summary of ADL Components

Overall, surveyed ADLs provide comprehensive support for modeling components. All of
them regard components as first-class entities. Furthermore, all model interfaces and distinguish

19

between component types and instances. On the other hand, a majority of the ADLs do not
support evolution or non-functional properties. It is illustrative that Aesop is the only ADL that
provides at least some support for each of the six classification categories and that, of the four
ADLs that support five of the categories, C2 and Rapide do not model non-functional properties,
and MetaH and UniCon do not support evolution. Every ADL supports or allows at least four of
the six categories.

A more complete summary of this section is given in Table 1 below.

Table 1: ADL Support for Modeling Components

_ |interface points |extensible type |no support; can |via interfaces allows any

| are ports system; parame- |use other ADLs" |only attribute in prop-

: terization semantic models erty lists, but does
enabled with in property lists not operate on them
templates

~|interface points |extensible type |(optional) style- |viainterfacesand |behavior-pre- allows association
n | are input and out- |system specific lan- semantics; stylis- serving subtyp- |of arbitrary text
| put ports guages for speci- |tic invariants ing with components
- fying semantics
entire interface |extensible type |causal relation- |viainterfaces and |name, interface, |none
n |one port; inter- | system ships between semantics; stylis- | behavior and
| face elements input and output |tic invariants implementation
- |are messages messages subtyping (and
~ |(notifications their combina-
and requests) tions)
interface points |extensible type |n-calculus viainterfaces and |none none
- |are services (pro- | system; supports semantics
vided and parameterization
required)
Process; imple- |interface points |Predefined, enu- |ControlH for viainterfaces and [none attributes needed
mentation con- | are ports merated set of |modeling algo- |semantics; for real-time sched-
ini = types rithms in the modes; non- ulability, reliabil-
GN&C domain; |functional ity, and security
implementation |attributes analysis
semantics via
e paths
nterface; imple- |interface points |extensible type |partially ordered |viainterfacesand |inheritance none
mentation inde- |are constituents |system; contains |event sets semantics; alge- |(structural sub-
 |(provides, atypes sublan- |(posets) braic constraints |typing)
| requires, action, |guage; supports on component
and service) parameterization state; pattern
: constraints on
event posets
 |interface points |extensible type [none via interfaces; |component none
n |are input and out- | system; compo- stylistic invari- | refinement via
| put perts (iports |nent types ants pattern maps
_|and oports) tightly coupled to
. styles
interface points |predefined, enu- |event traces in | viainterfaces and |none attributes for
are players merated set of | property lists semantics; schedulability anal-
types attributes; restric- ysis
tions on players
that can be pro-
vided by compo-
nent types
interface points |extensible type |not the focus; protocols of none none
 |are ports; port |system allowed in CSP |interaction for
i each port in CSP
. |fied in CSP

20

VI. Connectors

Connectors are architectural building blocks used to model interactions among components
and rules that govern those interactions. Unlike components, connectors may not correspond to
compilation units in an implemented system. They may be implemented as separately compilable
message routing devices (e.g., C2), but may also manifest themselves as shared variables, table
entries, buffers, instructions to a linker, dynamic data structures, sequences of procedure calls
embedded in code, initialization parameters, client-server protobols, pipes, SQL links between a
database and an application, and so on [GMW?95, SDK+95]. As such, connector specifications in
an ADL may also need to contain hints for implementing a particular kind of connector.

As in the case of components, surveyed ADLs model connectors in various forms and under
various names. For example, languages such as ACME, Aesop, C2, SADL, UniCon, and Wright
model connectors explicitly and refer to them as connectors. In Rapide and MetaH they are
connections, modeled in-line, and cannot be named, subtyped, or reused (i.e., connectors are not
first-class entities).® Connectors in Darwin are bindings and are also specified in-line, i.e., in the
context of a configuration only. In this section, we present the aspects of connectors that we
believe need to be modeled in an ADL and compare existing ADLs with respect to them.

VIA. Interface

In order to enable proper connectivity of components and their communication in an
architecture, a connector should export as its interface those services it expects. Therefore, a
connector’s interface is a set of interaction points between it and the components attached to it. It
enables reasoning about the well-formedness of an architectural configuration.

Only those ADLs that support modeling of connectors explicitly, independently of
configurations in which they are used, support specification of connector interfaces. ACME,
Aesop, UniCon, and Wright refer to connector interface points as roles. Explicit connection of

component ports and connector roles is required in an architectural configuration.

Roles are named and typed, and are in many ways similar to component ports (players in
UniCon), discussed in Section V.A. Aesop distinguishes between input and output roles (sources
and sinks). Semantics of each role’s interaction protocol in Wright are specified in CSP, similar to
port protocols shown in Fig. 2. This allows for analysis of compatibility between connected

6. MetaH does allow a connection to be named optionally, but that feature has not been demonstrated in any exam-
ples in published literature about MetaH. Based on that, and given the primitive nature of a MetaH connection, it
is unclear what purpose connection names may serve in an architecture.

21

w

‘component ports and connector roles. In UniCon, each role may include optional attributes, such

as the type of players that can serve in the role and minimum and maximum number of
connections. UniCon also supports only a predefined set of role types: Source, Sink, Reader,
Readee, Writer, Writee, Definer, Caller, User, Participant, and Load.

In C2, connector interfaces, like component interfaces, are modeled with ports. Each port
can export multiple messages and sets of messages at two different ports need not be disjoint. In
general, the interface of a C2 connector (the messages it understands) is determined by
(potentially dynamic) interfaces of components that communicate through it. This added .
flexibility and dynamism may prove a liability when analyzing for interface mismatches between

communicating components.

Although Darwin and Rapide define their connectors in-line, both languages allow
abstracting away complex connection behaviors into “connector components,” which are then
accompanied by a set of simple connections (bindings in Darwin).

Finally, a SADL connector only exports the type of data it supports in its interface. Other
information about the connector, such as the number of components it connects, is implicit in the
connector type (see Section VL.B) and/or specified as part of the architectural configuration
(Section VII).

VIL.B. Types

Architecture-level communication may need to be expressed with complex protocols. To
abstract away these protocols and make them reusable, ADLs should model connectors as types.
This is typically done in two ways: as extensible type systems which are defined in terms of
communication protocols and are independent of implementation, or as built-in, enumerated types
which are based on their implementation mechanisms.

Only those ADLs that model connectors as first-class entities distinguish connector types
from instances. This excludes languages like Darwin, MetaH, and Rapide. ACME, Aesop, C2,
and Wright base connector types on protocols. ACME also provides a parameterization facility
through connector templates.

SADL and UniCon, on the other hand, only allow connectors of prespecified enumerated
types. UniCon currently supports Pipe, FilelO, ProcedureCall, DataAccess, PLBundler,
RemoteProcCall, and RTScheduler connector types, while SADL allows a single connector type
for each of its supported architectural styles: BatchSequential, ControlTransfer, Dataflow,
Functional, ProcessPipeline, and SharedMemory.

22

MetaH does not support connector iypcs, but it does define three broad categories of

connections. In port connections, an out port of one component may be connected to an in port of
another. Event connections allow outgoing events to be connected to incoming events (event-to-
event), as well as to their recipient components (event-to-process and event-to-mode). Finally,
equivalence connections specify objects that are shared among components.

VI.C. Semantics

To perform useful analyses of component interactions, consistent refinement mappings
across levels of architectural abstraction, and enforcement of interconnection and communication
constraints, architectural descriptions should provide connector protocol and transaction
semantics. It is interesting to note that languages that do not model connectors as first-class
objects, e.g., Rapide, may model connector semantics, while ADLs that do model connectors
explicitly, such as C2, do not always provide means for defining their semantics.

ADLs generally use a single mechanism for specifying the semantics of both components
and connectors. For example, ACME allows connector semantics to be specified in its property
lists using any specification language, but considers them uninterpreted; Rapide uses posets to
describe communication patterns among its components; Wright models connector glue and event
trace specifications with CSP; and UniCon allows specification of semantic information for
connectors in property lists (e.g., a real-time scheduling algorithm or path traces through real-time
code). Additionally, connector semantics in UniCon, as well as SADL, are implicit in their
connector types. For example, declaring a component to be a pipe implies certain functional
properties.

One exception to this rule is Aesop, which uses a different semantic model for its connectors
than it does for components. Namely, Aesop does not use style-specific formal languages, but
(optionally) employs Wright to specify connector semantics. Finally, while C2 does not model the
behavior of connectors, it does provide an insight into how a connector will behave by specifying
its message filtering policies: no_filtering, notification_filtering, prioritized, and message_sink.

VI.D. Constraints

In order to ensure adherence to intended interaction protocols, establish intra-connector
dependencies, and enforce usage boundaries, connector constraints must be specified. With the
exception of C2, whose connector interfaces are a function of their attached components (see
Section VI.A), ADLs that model connectors as first-class objects constrain their usage via
interfaces. None of the ADLs that specify connections in-line (Darwin, MetaH, and Rapide) place
any such constraints on them.

23

-

Implementation and usage of connectors is further constrained in those ADLs that model
connector semantics (see Section VI.C). Aesop, C2, and SADL may also impose stylistic
invariants, such as C2’s restriction that each connector port may only be attached to a single other
port. UniCon can also restrict the number of component players attached to a connector role by
using the MinConns and MaxConns attributes. Finally, the types of players that can serve in a
given role are constrained in UniCon via the Accept attribute and in Wright (and, transitively, in
Aesop) by specifying interaction protocols for each role. '

VILE. Evolution

Component interactions are governed by complex and ever changing and expanding
protocols. Maximizing connector reuse is achieved by modifying or refining existing connectors
whenever possible. As with components, ADLs can support connector evolution with subtyping
and refinement.

Even fewer ADLs support evolution of connectors than do evolution of components. ADLs
that do not model connectors as first-class objects (Darwin, MetaH, and Rapide) also provide no
facilities for their evolution. Others either currently only focus on component evolution (C2) or
provide a predefined set of connector types with no evolution support (UniCon). Wright does not
facilitate connector subtyping, but supports type conformance, where a role and its attached port
may have behaviorally related, but not necessarily identical, protocols.

Aesop and SADL provide more extensive support for connector evolution, similar to their
support for component evolution discussed in Section V.E. Aesop supports behavior preserving
subtyping, while SADL supports refinements of connectors across styles and levels of abstraction.

VI.F. Non-Functional Properties

Modeling non-functional properties of connectors enables simulation of runtime behavior,
useful analyses of connectors, constraint enforcement, and selection of appropriate OTS
connectors (e.g., message busses) and their mappings to processors. Of the surveyed ADLs, only
UniCon supports explicit specification of non-functional connector properties. UniCon uses such
information to analyze an architecture for real-time schedulability. Its SchedProcess connector
has an Algorithm attribute. If the value of Algorithm is set to RateMonotonic, UniCon uses trace,
period, execution time, and priority information for schedulability analysis. As already
mentioned, ACME allows specification of a superset of all ADLs’ non-functional properties in its
property lists, but does not directly utilize them, while Aesop allows association of arbitrary text
with its connectors.

24

VI.G. Summary of ADL Connectors

The support provided by the ADLs for modeling connectors is considerably less extensive

than for components. Three ADLs (Darwin, MetaH, and Rapide) do not regard connectors as first-

class entities, but rather model them in-line. Their connectors are always specified as instances

and cannot be manipulated during design or reused in the future. Overall, their support for

connectors is negligible, as can be observed in Table 2 below.

All ADLs that model connectors explicitly also model their interfaces and distinguish

connector types from instances. It is interesting to note that, as in the case of components, support

for evolution and non-functional properties is rare, and that Aesop is again the only ADL that

provides at least some support for each classification category.

A more complete summary of this section is given in Table 2.

Table 2: ADL Support for Modeling Connectors

allows any attribute

interface points are extensible type sys- [no support; can |via interfaces only
roles tem, based on proto- |use other ADLs’ in property lists,
cols semantic models but does not oper-
; in property lists ate on them
Connector; explicit interface points are extensible type sys- |(optional) seman- |via interfaces and behavior-pre- allows association
roles tem, based on proto- |tics specified in |semantics; stylis- |serving subtyp- |of arbitrary text
cols Wright (CSP) tic invariants ing with connectors
Connector; explicit interface between con- |extensible type sys- |partial semantics |via semantics; none; current none
: nector and each compo- |tem, based on proto- |specified via mes- | stylistic invari- focus is on com-
nent given througha |cols sage filters ants (each port ponent evolution
separate port; interface participates in one
elements are messages link only)
WMBinding; in-line; no none; allows “connec- [none none none none none
explicit modeling of |tion components™
none none; supports three [none none none none
general classes of
connections: port,
event, and equiva-
lence
Comecﬁan;-in»i-iue‘. none; allows “connec- |[none posets; condi- none none none
complex reusable con- |tion components” tional connections
nectors only via “con-
nection components”
Connector; cxpl-icit | connector signature predefined, enumer- |implicit in con- | via interfaces; sty-| connector refine- |none
- |specify the supported | ated set of types, one |nector’s type listic invariants | ment via pattern
~|data type per style (e.g., dataflow) maps
Connector; explicit | interface points are predefined, enumer- |implicit in con- | via interfaces; none attributes for
 |roles ated set of types nector’s type; restricts the type schedulability
: semantic informa- | of players that can analysis
tion can be given |be used in a given
: in property lists |role
Connector; explicit |interface points are extensible type sys- |connector glue via interfaces and |supports type none
" roles; role interaction |tem, based on proto- |semantics in CSP |semantics; proto- |conformance for
semantics specified in | cols cols of interac- | behaviorally

~ |csp

tion for each role
in CSP

related protocols

25

VII. Configurations

Architectural configurations, or topologies, are connected graphs of components and
connectors that describe architectural structure. This information is needed to determine whether:
appropriate components are connected, their interfaces match, connectors enable proper
communication, and their combined semantics result in desired behavior. In concert with models
of components and connectors, descriptions of configurations enable assessment of concurrent
and distributed aspects of an architecture, e.g., potential for deadlocks and starvation,
performance, reliability, security, and so on. Descriptions of configurations also enable analyses
of architectures for adherence to design heuristics, e.g., to determine whether an architecture is
“too deep,” which may affect performance due to message traffic across many levels and/or
process splits, or “too broad,” which may result in too many dependencies among components (a
“component soup” architecture). Finally, architectural description is necessary to establish
adherence to architectural style constraints, such as C2’s rule that there are no direct

communication links between components.

Architectures are likely to describe large, long-lived software systems that may evolve over
time. The changes to an architecture may be planned or unplanned; they may also occur before or
during system execution. ADLs must support such changes through features for modeling
evolution (before execution) and dynamism (during execution). Another key role for modeling
architectural configurations is to facilitate communication for the many stakeholders in the
development of a system. The goal of configurations is to abstract away the details of individual
components and connectors. They depict the system at a high level that can potentially be
understood by people with various levels of technical expertise and familiarity with the problem at
hand. This section will investigate whether and to what degree various ADLs fulfill these roles.

VIL.A. Understandable Specifications

One of the major roles of software architectures is that they facilitate understanding of
(families of) systems at a high level of abstraction. To truly enable easy communication about a
system among developers and other stakeholders, ADLs must model structural (topological)
information with simple and understandable syntax. The structure of a system should ideally be
clear from a configuration specification alone, i.e., without having to study component and
connector specifications.

Configuration descriptions in in-line configuration ADLs, such as Darwin, MetaH, and
Rapide tend to be encumbered with connector details, while explicit configuration ADLs, such as

26

'ACME, Aesop, C2, SADL, UniCon, and Wright have the best potential to facilitate

understandability of architectural structure. Clearly, whether this potential is realized or not will
also depend on the particular ADL'’s syntax. For example, UniCon falls in the latter category, but
it allows the connections between players and roles to appear in any order, possibly distributed
among individual component and connector specifications; establishing what the topology of such
an architecture is may (unnecessarily) require studying a significant portion of the architectural
description. .

Several languages provide a graphical, in addition to the textual, notation. Graphical
specification of architectural configurations is another means of achieving understandability.
However, this is only the case if there is a precise relationship between a graphical description and
the underlying model, such that the textual and graphical descriptions are interchangeable.
Languages like Aesop, C2, Darwin, MetaH, Rapide, and UniCon support such “semantically
sound” graphical notations, while ACME, SADL, and Wright do not. It is important to note that a
graphical specification of an architecture may not contain all the information in its textual
counterpart (e.g., formal component and connector specifications), and vice versa (e.g., graphical
layout information). Additional tool support is needed to make the two truly interchangeable (see
Section VIIL.B).

VII.B. Compositionality

Architectures may be required to describe software systems at different levels of detail,
where complex behaviors are either explicitly represented or abstracted away into individual
components and connectors. An ADL may also need to support situations in which an entire
architecture becomes a single component in another, larger architecture. Therefore, support for
compositionality, or hierarchical composition, is crucial.

Several ADLs provide explicit features to support hierarchical composition: ACME
templates, representations, and rep-maps; Aesop representations; composite components in
Darwin and UniCon; internal component architecture in C2 (shown in Fig. 4 and discussed
below); MetaH macros; and Rapide maps. Other ADLs, such as SADL and Wright, allow
hierarchical composition in principle, but provide no specific constructs to support it. It is
interesting to note that Darwin and UniCon do not have an explicit constructs for modeling
architectures, but model them simply as composite components.

27

VII.C. Heterogeneity

A goal of software architectures is to facilitate development of large-scale systems,
preferably with pre-existing components and connectors of varying granularity, specified by
different designers, potentially in different formal modeling languages, implemented by different
developers, possibly in different programming languages, with varying operating system
requirements, and supporting different communication protocols. It is therefore important that
ADLs provide facilities for architectural specification and development with heterogeneous
components and connectors. '

Although no ADL provides explicit support for multiple specification languages, ACME,
Aesop, and Darwin do allow it in principle. ACME’s property lists are open, and will accept any
modeling notation. To actually achieve architectural interchange, however, explicit mappings are
required from architectural models described in one notation to another. Aesop allows style-
specific modeling languages for component semantics, in addition to using Wright for modeling
connectors. The possibility of using multiple notations for components within a single style is not
precluded either. Finally, Darwin uses m-calculus to model external (visible) component
characteristics and the semantics of composite components. At the same time, it leaves open the
choice of specification languages for the semantics of primitive components.

Of the ADLs that support implementation of architectures, several are tightly tied to a
particular programming language. For example, Aesop and Darwin only support development
with components implemented in C++, while MetaH is exclusively tied to Ada’ and UniCon to C.
On the other hand, C2 currently supports development in C++, Ada, and Java, while Rapide
supports construction of executable systems specified in VHDL, C, C++, Ada, and Rapide itself.

MetaH places additional restrictions on components, requiring that each component contain
a loop with a call to the predeclared procedure KERNEL .AWAIT_DISPATCH to periodically
dispatch a process. Any existing components have to be modified to include this construct before
they can be used in a MetaH architecture.

C2 places a somewhat similar constraint on OTS components in that it assumes some form
of message-based communication. C2 remedies this by assuming a particular internal component
structure, shown in Fig. 4, in which an OTS component is effectively wrapped as a C2
component’s internal object, and all message traffic is handled by the component’s dialog.

7. Some preliminary work has recently been done in MetaH to also support components developed in C.

28

ADLs may also preclude reuse of many existing components and connectors by allowing
only certain typés of each. For example, UniCon can use existing filters and sequential files, but
not spreadsheets, constraint solvers, or relational databases. Similarly, component and connector
types in SADL are directly dependent upon the set of architectural styles it currently supports.

Finally, most surveyed ADLs support modeling of both fine and coarse-grain components.
At one extreme are components that describe a single operation, such as computations in UniCon
or procedures in MetaH, while the other can be achieved by hierarchical composition, discussed
in Section VILB above and, in the case of C2, also depicted in Fig. 4.

Internal

Object

Fig.4. Internal architecture of a C2 component: an OTS component is placed inside a C2
component’s internal object. Hierarchical composition is achieved by placing a C2
architecture inside the internal object.

VII.D. Constraints

Constraints that depict desired dependencies among components and connectors in a
configuration are as important as those specific to individual components and connectors. In
general, however, existing ADLs have focused more on local than configuration-level constraints.
Many global constraints are derived from or directly dependent upon local constraints. For
example, constraints on the validity of a configuration may be expressed as a set of interaction
constraints among components and connectors, which in turn are expressed through their
interfaces and protocols; performance of a system described by a configuration will depend upon
the performance of each individual architectural element; and safety of an architecture is always a
function of the safety of its constituents.

A handful of ADLs do provide facilities for global constraint specification. ACME, Aesop,
UniCon, and Wright require that a connector role always be attached to a component port/player.

29

- Similarly, Darwin only allows bindings between provided and required services. Rapide’s timed
poset language [LVB+93] can be used to constrain configurations, as well as individual
components. Furthermore, refinement maps in SADL and Rapide provide constraints on valid
refinements of a configuration. Finally, MetaH allows explicit constraint of applications in the
manner similar to that of individual components, i.e., with non-functional attributes.

Aesop, C2, énd SADL specify stylistic invariants. For example, the C2 style mandates that
only a single architectural element may be attached to each component and connector port and
that no direct component-to-component links may exist [MTW96]. Aesop and SADL allow
specification of structural invariants corresponding to different styles, while in C2 they refer to a
single (C2) style.

VILE. Refinement and Traceability

The most common argument for creating and using ADLs is that they are necessary to
bridge the gap between informal, high-level “boxes and lines” diagrams and programming
languages, which are deemed too low-level. We have thus far seen that ADLs provide architects
with expressive and semantically elaborate facilities for specification of architectures. However,
an ADL must also enable correct and consistent refinement of architectures to executable systems
and traceability of changes across levels of architectural refinement. This may very well be the
area in which existing ADLs are most lacking.

Several languages enable system generation directly from architectural specifications; these
are typically the implementation constraining languages (see Section IIT). MetaH and UniCon, as
well as Darwin, allow the specification of a source file that corresponds to the given architectural
element. There are several problems with this approach. Primarily, there is an assumption that the
relationship between elements of an architectural description and those of the resulting executable
system will be 1-to-1. This is not always necessary, and may also be unreasonable, as
architectures are intended to describe systems at a higher level of abstraction than source code
modules.? Secondly, there is no guarantee that the specified source modules will correctly
implement the desired behavior. This brings us to the third problem: even if the specified modules
currently implement the needed behavior correctly, this approach provides no means of ensuring

that any future changes to those modules are traced back to the architecture and vice versa.

SADL and Rapide are the only two ADLs we studied that provide extensive support for
refinement and traceability of architectural configurations. Both languages provide maps for

8. This is one of the differences between an ADL and an MIL, discussed in Section IV.

30

refining architectures across different levels of abstraction. SADL uses the maps to enable correct
architecture refinements across sty]es,9 while Rapide generates comparative simulations of
architectures at different abstraction levels. Both languages thus provide the means for traceability
of design decisions and changes from one level of architectural specification (or implementation)
to another.

Each approach has certain drawbacks that the other alleviates, giving hope that a hybrid
approach may be both possible and useful. SADL formally defines the mapping patterns and

proves their validity according to a very strict correctness-preserving criterion (“interpretation -

mapping”) [MQR95]. The proof of each map is performed only once, after which it may be used
repeatedly. The strictness of the correctness criterion may render it impractical in certain cases,
however. For example, some design decisions may be deliberately delayed and left out of a high-
level architecture. SADL would then simply disallow those decisions to be made at a lower level
of abstraction, regarding them as inconsistent with respect to its interpretation mapping.

Rapide maps need not adhere to such stringent rules. Instead, Rapide requires behavioral
conformance and communication integrity in architectures at two different levels of abstraction.
This approach may not be restrictive enough, as it is possible for a higher-level architecture to
produce behaviors that are eliminated as more design decisions are made at the lower levels. This
is precisely the reason Moriconi and colleagues opted for interpretation mappings in SADL.
Rapide also fully places the responsibility of ensuring the correctness of a map on the architect.

Garlan has recently argued that refinement should not be consistent with respect to a single
(immutable) law, but rather with respect to particular properties of interest, be they conservative
extension (SADL), computational behavior (Rapide), or something entirely different, such as
performance [Gar96]. This may be a good starting point towards a successful marriage of the two
approaches.

VILF. Scalability

Architectures are intended to support large-scale systems. For that reason, ADLs must
support specification and development of systems that may grow in size. For the purpose of this
discussion, we can generalize the issues inherent in scaling software systems, so that an
architectural configuration, such as that depicted in Fig. 5, can be scaled up in two ways: by

9. Moriconi and colleagues [MQR95] make the claim that different styles are at different levels of abstraction.
While this is sometimes true, e.g., the “shared variable” style is at a lower level of abstraction than the “dataflow”
style, it is arguable whether this is always the case.

31

adding components and connectors along its boundaries (Fig. 5a), and by adding elements to
architecture’s interior (Fig. 5b). To support the former, ADLs can employ compositionality
features, discussed in Section VIL.B by treating the original architecture as a single, composite
component, which is then attached to new components and connectors. Objectively evaluating an
ADLs ability to support the latter, i.e., adding internal elements, is more difficult, but certain
heuristics can be of help.

£ Original Architecture

(b) [Comps

ppppppppppppppppppp

>

—

;
; Conn3l
[

(a)

Comp6

Fig. 5. An existing architecture is being scaled up: (a) by expanding the architecture “outward”
and (b) by adding new components/connectors to its interior.

It is generally easier to expand architectures described in explicit configuration ADLs
(ACME, Aesop, C2, SADL, UniCon, and Wright) than in-line configuration ADLs (Darwin,
MetaH, and Rapide): connectors in the latter are described solely in terms of the components they
connect; adding new components or connectors may require direct modification of existing

connector instances.

ADLs, such as C2 and UniCon, that allow a variable number of components to be attached
to a single connector are better suited to scaling up than those, such as ACME, Aesop, or Wright,
which specify the exact number of components a connector can handle. For example, ACME,
Aesop, and Wright could not handle the extension to the architecture shown in Fig. 5b without
redefining Connl and Conn2, while C2 and UniCon can.!?

10. In UniCon, the MaxConns role attribute is unbounded by default.

32

g b o e camiaadet i . i nbadaiiie iR s s

It is important to remember that these are heuristics and should not be used as the only
criteria in excluding a candidate ADL from consideration. The ultimate determinant of an ADL’s
support for modeling scalable configurations is not its supposed elegance in specifying large
architectures and extending existing ones. As already discussed, most ADLs provide features for
compositionality, so that a configuration of any size may be represented relatively succinctly at a

high-enough level of abstraction. What scalability ultimately comes down to is the ability of -

developers to implement and/or analyze large-scale systems based on those descriptions. To date,
only a subset of the existing ADLs have been applied to large-scale, “real-world” examples:

* Wright was used to model and analyze the Runtime Infrastructure (RTI) of the Department of :

Defense (DoD) High-Level Architecture for Simulations (HLA) [All96]. The original
specification for RTI was over 100 pages long. Wright was able to condense the specification
and detect several inconsistencies and weaknesses in it.

* SADL was applied to an operational power-control system, used by the Tokyo Electric Power
Company. The system was implemented in 200,000 lines of Fortran 77 code. SADL was used
to formalize the system’s reference architecture and ensure its consistency with the
implementation architecture.

* Rapide has been used in several large-scale projects thus far. A representative example is the
X/Open Distributed Transaction Processing (DTP) Industry Standard. The documentation for
the standard is over 400 pages long. Its reference architecture and subsequent extensions have
been successfully specified and simulated in Rapide [LKA+95].

It is telling that both Wright and Rapide have been highlighted as examples of ADLs lacking
scalability features, yet they have both been used to specify architectures of large, real world
systems.

VII.G. Evolution

Support for software evolution is a key aspect of architecture-based development.
Architectures evolve to reflect and enable evolution of a single software system,; they also evolve
into families of related systems. ADLs need to augment evolution support at the level of
components (Section V.E) and connectors (Section VLE) with features for incremental

development and support for system families.

Incrementality of an architectural configuration can be viewed from two different
perspectives. One is its ability to accommodate addition of new components in the manner
depicted in Fig. 5. The issues inherent in doing so were discussed in the preceding subsection.
The arguments that were applied to scalability also largely apply to incrementality: in general,

explicit configuration ADLs can support incremental development more easily and effectively

33

than in-line configuration ADLs; ADLs that allow variable numbers of components to

communicate through a connector are well suited for incremental development, particularly when
faced with unplanned architectural changes.

Another view of incrementality is an ADL’s tolerance and/or support for incomplete
architectural descriptions. Incomplete architectures are common during design, as some decisions
are deferred and others have not yet become relevant. It would therefore be advantageous for an
ADL to allow incomplete descriptions. However, most existing ADLs and their supporting
toolsets have been built around the notion that precisely these kinds of situations must be
prevented. For example, Darwin, MetaH, Rapide, and UniCon compilers, constraint checkers, and
runtime systems have been constructed to raise exceptions if such situation arise. In this case, an
ADL, such as Wright, which focuses its analyses on information local to a single connector is
better suited to accommodate expansion of the architecture than, e.g., SADL, which is very
rigorous in its refinement of entire architectures.

Another aspect of evolution is support for application families. In [MT96], we showed that
the number of possible architectures in a component-based style grows exponentially as a result of
a linear expansion of a collection of components. All such architectures may not belong to the
same logical family. Therefore, relying on component and connector inheritance, subtyping, or
other evolution mechanisms is insufficient. However, no existing ADLs provide direct support for
families of systems; no counterpart to subtyping or inheritance exists at the level of
configurations. One approach may be to exploit compositionality features and apply subtyping or
inheritance to composite components. Another possible solution would take advantage of an
ADL’s support for non-functional attributes: in addition to components and connectors used in a
configuration, such an ADL could also specify the application family to which the architecture
belongs.

VII.H. Dynamism

Explicit modeling of software architectures is intended to support development and
evolution of large and potentially long-running systems. Such systems may need to be modified to
remove operational bottlenecks, improve performance, or upgrade their functionality. Being able
to evolve such systems during execution may thus be necessary. Architectural configurations
exhibit dynamism by allowing replication, insertion, removal, and reconnection of architectural
elements or subarchitectures.

The majority of existing ADLs view configurations statically. The exceptions are C2,
Darwin, and Rapide. Darwin and Rapide support only constrained dynamic manipulation of

34

architectures, where all runtime changes must be known a priori [Ore96]. Darwin allows runtime
replication of 'components via dynamic instantiation (the dyn operator) and conditional
configuration. Darwin only provides support for unidirectional communication with a
dynamically created component: it allows the component to request services of other components,
but not to declare bindings to services it provides. Establishing this binding is the responsibility of
component designers who must ensure that the component passes service references in messages
to form bindings dynamically.

Rapide supports conditional configuration and dynamic generation of events. Its where
clause enables a form of architectural rewiring at runtime, using the link and unlink operators.
Rapide connection rules use poset patterns to generate new sets of poset matching events
dynamically [Rap96].

On the other hand, C2 supports pure dynamic manipulation, where no restrictions are made
on the types of allowed dynamic changes at architecture specification time. C2’s architecture
construction notation (ACN) specifies a set of operations for insertion, removal, and rewiring of
elements in an architecture at runtime: AddComponent, RemoveComponent, Weld, and Unweld
[Med96, Ore96]. C2’s message-based communication and support for partial communication and
partial service utilization [MTW96, TMA+96, MT96] alleviates the problem, encountered in
Darwin, of using services provided by a dynamically inserted component.

VILI. Non-Functional Properties

As discussed previously, non-functional properties are needed to perform useful analyses
enforce the desired constraints, map architectural building blocks to processors, and aid in project
management. All the ADLs that support specification of non-functional properties in components
and connectors (ACME, Aesop, MetaH, and UniCon) also support hierarchical composition;
hence, they can always specify such properties on composite components which encompass entire
architectures. However, MetaH is the only language that supports direct modeling of non-
functional properties of architectures (MetaH applications), such as processor on which the
system will execute and clock period. Finally, Rapide allows modeling of timing information in
its constraint language with its timed poset model [LVB+93].

35

VII.J. Summary of ADL Configurations

It is at the level of configurations that the foci of some ADLs can be more easily noticed. For
example, SADL’s particular contribution is in architectural refinement, while Darwin mostly
focuses on system compositionality and dynamism. No single ADL satisfies all of the
classification criteria, although Rapide comes close. Coverage of several criteria is sparse across
ADLs: refinement and traceability, evolution, dynamism, and non-functional properties. These are
good indicators of where future research should be directed. On the other hand, most ADLs allow
or also provide explicit support for understandability, compositionality, and heterogeneity.

A more complete summary of this section is given in Table 3 below.

36

explicit, con-

open property

ments; provided via ports may only |none aided by al y none none
; cise textual templates, rep- | lists; required |be attached to explicit con- [explicit config-
specification |resentations, |explicit map- |roles and vice figurations; |urations; no
and rep-maps | pings across | versa hampered by |support for
s Al fixed number |application
= e of roles families;
Configura- |explicit, con- |provided via |allows multi- |ports may only |none aided by no support for |none none
rion; explicit |cise graphical |representations |ple languages |be attached to explicit con- |partial archi-
e | specification; for modeling | roles and vice figurations; |tectures or
- parallel type semantics; versa; pro- hampered by |application
; hierarchy for supports le fixed number |families; aided
e visualization development |stylistic invari- of roles by explicit con-
M in C++only |ants figurations
Architectural |explicit, con- |allowed; sup- [enabled by fixed stylistic |none aided by allows partial |pure dyna- [none

Topology; |cise textual ported via internal com- |invariants explicit con- |architectures; |mism: ele-

plici and graphical |internal com- |ponent archi- figurations aided by ment
specification |ponent archi- |tecture; and variable |explicit config- |insertion,

tecture supports number of urations; no removal,
development connector support for and rewiring
in C++, Java, ports application
and Ada families;
Binding; in- |implicit tex- [supported by [allows multi- |provided ser- |supports sys- hampered by |no support for |constrained |none
i tual specifica- (language’s ple languages |vices may tem genera- |in-line config- | partial archi- |dynamism:
tion which composite for modeling |only be bound |tion when urations tectures or runtime rep-
contains many |component semantics of |to required implementa- application lication of
connector feature primitive com- |services and |tion con- families; ham- |components
details; pro- ponents; sup- | vice versa straining pered by in- and condi-
vides graphi- ports line configura- |tional config-
cal notation development tions; uration
in C++ only
Connections; |implicit tex- [supported via |supports applications |supports sys- |hampered by |no support for |none supports
i tual specifica- | macros development |are con- tem genera- |in-line config- | partial archi- attributes
tion which in Ada only; [strained with |tion; urations tectures or such as exe-
contains many requires all non-func- implementa- application cution pro-
connector components to |tional tion con- families; ham- cessor and
details; pro- contain a pro- |attributes straining pered by in- clock period
vides graphi- cess dispatch line configura-
cal notation loop tions;

Connect; in- |implicit tex- | mappings supports refinement refinement hampered by |no support for |constrained [timed poset
tual specifica- |relate an archi- |development |maps con- maps enable |in-line config- | partial archi- |dynamism: |model allows
tion which tecture toan |in VHDL, C/ |[strain valid comparative |urations; used |tectures or conditional |modeling of
contains many |interface C++, Ada, refinements; |simulations |in large-scale |application configura- |timing infor-
connector and Rapide timed poset |of architec- |projects families; ham- |tion and mation in the
details; pro- constraint lan- |tures at differ- pered by in- dynamic constraint
vides graphi- guage ent levels line configura- |event genera- |language
cal notation tions; tion

Configura- |explicit, con- |allowed in component programma- |refinement aided by no support for |none none

tion; explicit |cise textual principle; no |and connector |ble stylistic maps enable |explicit con- |partial archi-
specification |support types are invariants; correct refine- |figurations; tectures or

tightly tied to | refinement ments across |used in large- |application
its supported | maps con- styles scale project |families; aided
styles strain valid by explicit con-
refinements figurations;
explicit tex- |supported supports only |players may |[supports sys- |aided by no support for |none none
tual and through com- | predefined only be tem genera- |explicit con- |partial archi-
graphical posite compo- |component attached to tion; figurations tectures or
specification; |nents and and connector |roles and vice |implementa- |and variable |application
configuration |connectors types versa tion con- number of families; aided
description straining connector by explicit con-
may be dis- roles figurations;
tributed
hments; |explicit, con- |allowed in supports both |ports can only |none aided by suited for par- |[none none
explicit cise textual principle; no | fine- and be attached to explicit con- [tial specifica-
; specification |support coarse-grain | roles and vice figurations; |tion; aided by
clements versa hampered by |explicit config-
fixed number |urations; no
of roles; used |support for
in large-scale |application
project families;

37

VIII. Tool Support for ADLs

A major impetus behind developing formal languages for architectural description is that
their formality renders them suitable to manipulation by software tools. A supporting toolset that
accompanies an ADL is, strictly speaking, not a part of the language. However, the usefulness of
an ADL is directly related to the kinds of tools it provides to support architectural design,
evolution (both static and dynamic), refinement, constraints, analysis, and executable system

generation.

The need for tool support in architectures is well recognized. However, there is a definite
gap between what is identified as desirable by the research community and the state of the
practice. While every surveyed ADL provides some tool support, with the exception of Rapide,
they tend to focus on a single area of interest, such as analysis (e.g., Wright) or refinement (e.g.,
SADL). Furthermore, within these areas, ADLs tend to direct their attention to a particular
technique (e.g., Wright’s analysis for deadlocks), leaving other facets unexplored. This is the very
reason ACME has been proposed as an architecture interchange language: to enable interaction
and cooperation among different ADLs’ toolsets and thus fill in these gaps. This section surveys
the tools provided by the different languages, attempting to highlight the biggest shortcomings.

VIIL.A. Active Specification

Active specification support can significantly reduce the cognitive load on software
architects. Only a handful of existing ADLs provide tools that actively support specification of
architectures. In general, such tools can be proactive or reactive. Proactive specification tools act
in a proscriptive manner, similar to syntax-directed editors for programming languages: they limit
the available design decisions based on the current state of architectural design. For example, such
tools may prevent selection of components whose interfaces do not match those currently in the

architecture or disallow invocation of analysis tools on incomplete architectures.

UniCon’s graphical editor operates in this manner. It invokes UniCon’s language processing
facilities to prevent errors during design, rather than correct them after the fact. Furthermore, the
editor limits the kinds of players and roles that can be assigned to different types of components
and connectors, respectively.

Aesop provides a syntax-directed editor for specifying computational behavior of filters.
Although no other types of components are currently supported, integration with external editors
for such components is allowed. Aesop also provides a type hierarchy for visualizations of its
architectural elements, where each component and connector class has an associated visualization

38

class. For example, the pipe subclass of connector refers to the arrow visualization class, which is
a subclass of the more general connector_line class. These classes can refer to external editors, so
that, e.g., a visualization class in the pipe-and-filter style invokes an editor on filter code.

Darwin’s Software Architect’s Assistant [NKM96] is another example of a proactive
specification tool. The Assistant automatically adds services of appropriate types to components
that are bound together. It also maintains the consistency of data types of connected ports:
changing one port’s type is automatically propagated to all ports which are bound to it. Finally,
the choice of component properties during specification is constrained via dialogs.

Reactive specification tools detect existing errors. They may either only inform the architect
of the error (non-intrusive) or also force him to correct it before moving on (intrusive). In the
former case, once an inconsistency is detected, the tool informs the architect, but allows him to
remedy the problem as he sees fit or ignore it altogether. The C2 design environment, Argo,
provides non-intrusive active specification support with its design critics and to-do lists. In the
latter case, the architect is forced to remedy the current problem before moving on. Certain
features of MetaH’s graphical editor can be characterized as intrusive. These are described below.

An ADL may provide both proactive and reactive specification support. For example, the

choice of properties for the different types of MetaH components is limited during their design
with menus (proactive). On the other hand, the MetaH graphical editor gives the architect full
freedom to manipulate the architecture until the Apply button is depressed, after which any errors
must be rectified before the architect may continue with the design (reactive).

VIII.B. Multiple Views

When defining an architecture, different stakeholders (e.g., architects, developers, managers,

customers) may require different views of the architecture. The customers may be satisfied with a
high-level, “boxes-and-lines” description, the developers may want detailed (textual) component
and connector models, while the managers may require a view of the corresponding system

development process.

Several ADLs support at least two views of an architecture: textual and graphical. Some of
them, e.g., Aesop, Darwin, MetaH, Rapide, and UniCon, provide automated support for
alternating between the views. Others, such as C2, currently do not. Aesop, MetaH, and UniCon
also distinguish different types of components and connectors iconically, while C2, Darwin, and
Rapide do not. Each of these ADLs allows both top-level and detailed views of composite
elements.

39

A T T S T e oy,

Support for other views is sparse. Aesop allows style-specific visualizations, but currently
only supports the pipe-and-filter style. C2’s Argo design environment provides a view of the
development process that corresponds to the architecture [RR96]. Darwin’s Assistant provides a
hierarchical view of the architecture which shows all the component types and the “include”
relationships among them in a tree structure. Rapide allows visualization of an architecture’s
execution behavior by first building an executable simulation of the architecture (using the Rapide
Simulator) and then animating its execution (using Rapide Animation Tools). Rapide also
provides Poset Browser, a tool that allows viewing events generated by the simulation. Event
filtering facilities can be used to view only the events of interest. ' '

VIII.C. Analysis

Architectural descriptions are often intended to model large, distributed, concurrent
systems. The ability to evaluate the properties of such systems upstream, at architectural level, can
substantially lessen the cost of any errors. Given that many unnecessary details are abstracted
away in architectures, this task may also be easier than at source code level. Analysis of
architectures is thus the primary focus of ADL toolset developers.

The types of analyses for which an ADL is well suited depend on its underlying semantic
model and, to a lesser extent, its specification features. For example, Wright, which is based on
CSP, analyzes individual connectors and components attached to them for deadlocks. Aesop
currently provides facilities for checking for type consistency, cycles, resource conflicts, and
scheduling feasibility in its architectures. It also uses Wright’s tools to analyze connectors. C2
uses critics to establish adherence to style rules and design guidelines. Darwin enables analysis of
architectures by instantiating parameters and dynamic components to enact “what if” scenarios.
Similarly, Rapide Poset Browser’s event filtering features and Animation Tools facilitate analysis
of architectures through simulation. MetaH and UniCon both currently support schedulability
analysis by specifying non-functional properties, such as criticality and priority.!! Finally, given
two architectures, SADL can establish their relative correctness with respect to a refinement map.

Language parsers and compilers are another kind of analysis tools. Parsers analyze
architectures for syntactic correctness, while compilers establish semantic correctness. All of the
surveyed languages have parsers.12 Darwin, MetaH, Rapide, and UniCon also have compilers,
which enable these languages to generate executable systems from architectural descriptions.

11. In the future, MetaH is also intended to support reliability and security analyses, while UniCon is open with
respect to analysis tools.
12. Currently, only a subset of the textual C2 notation is parsed [MOT97].

40

Aesop must provide style-specific compilers that can process the style-specific formal notations
used in modcling components. For example, Aesop currently provides a compiler for the pipe-
and-filter style and its substyles, such as pipeline. Wright does not have a compiler, but it uses
FDR [For92], a model checker, to establish type conformance.

Another aspect of analysis is enforcement of constraints. Parsers and compilers enforce
constraints implicit in type information, non-functional attributes, component and connector
interfaces, and semantic models. In addition to this, Rapide, which supports explicit specification
of other types of constraints, also provides means for their checking and enforcement. Its
Constraint Checker analyzes the conformance of a Rapide simulation to the formal constraints
defined in the architecture.

VIII.D. Refinement

The importance of supporting refinement of architectures across styles and levels of detail
was argued in this paper (see Section VILE) and, more extensively, in [MQR95] and [Gar96].
Refining architectural descriptions is a complex task whose correctness and consistency cannot
always be guaranteed by formal proof, but adequate tool support can at least give us increased
confidence in this respect.

By supporting compilation of architectural descriptions, Aesop, Darwin, MetaH, Rapide,
and UniCon thus support refinement of architectural models to executable code. Darwin, MetaH,
and UniCon achieve this in a manner similar to MILs: architectural components are implemented
in a programming language and the architectural description serves only to ensure proper
interconnection and communication among them. The drawbacks of this approach were discussed
in Section VILE. Rapide, on the other hand, provides an executable sublanguage, which contains
many common programming language control structures and provides support for concurrency
[Rap96]. Aesop allows both approaches: it supports compilation of components modeled in a
style-specific language as well as implementation in a traditional programming language.

Only SADL and Rapide provide tool support for refinement of architectures across multiple
levels of abstraction and specificity. SADL’s support is partial. It requires manual proofs of
mappings of constructs between an abstract and a concrete architectural style. However, such a
proof need be performed only once, after which SADL provides a tool that checks automatically
whether two architectural descriptions adhere to the Inapping.13

41

8

Rapide’s event pattern mappings ensure behavioral consistency between two architectures.

Rapide maps specify the relationship between events in a concrete and an abstract architecture.
Maps are compiled using Simulator’s compiler and then the Constraint Checker is used to verify
that the events generated during simulation of the concrete architecture satisfy the constraints in

the abstract architecture.

VIII.E. Code Generation

The ultimate goal of any software design and modeling endeavor is to produce the
executable system. An elegant and effective architectural model is of limited value, unless it can
be converted into a running application. Doing so manually may result in many, already
discussed, problems of consistency and traceability between an architecture and its
implementation. It is, therefore, desirable, if not imperative, for an ADL to provide source code

generation tools.

A large number of ADLs, but not all, do so. Aesop provides a C++ class hierarchy for its
concepts and operations, such as components, connectors, ports, roles, connecting a port to a role,
and so on. This hierarchy provides a basis from which an implementation of an architecture may
be produced. For example, Aesop generates C++ code for architectures in the pipe-and-filter style.

A similar approach is used in C2: we developed a framework of abstract classes for C2
concepts [MOT97]. The framework implements interconnection and message passing protocols
and enables generation of top-level (“main™) application routines. Components and connectors
used in C2 applications are subclassed from the appropriate framework classes, allowing
developers to focus on application-level issues. The framework has been implemented in C++ and
Java; its subset is also available in Ada. We have been able to successfully reuse the Q
interprocess communication library [MHO96] to enable message exchange between C2

components implemented in C++ and Ada.

As already discussed, Darwin, MetaH, and UniCon require preexisting component
implementations in C++, Ada, and C, respectively, in order to generate applications. Rapide can
construct executable systems in the same manner in C, C++, Ada, and VHDL, or it can use its
executable sublanguage.

13. Originally, SADL'’s authors had planned to provide a tool that would take as its inputs an abstract architecture and
a refinement map and generate a more concrete architecture, which would be correct by construction with respect
to the abstract architecture.

42

On the other hand, SADL, ACME, and Wright are currently used strictly as modeling

notations and provide no code generation support. It is interesting to note that, while SADL
focuses on refining architectures, it does not take the final step from architectural descriptions to

source code.

VIIL.F. Dynamism

Given that the support for modeling dynamism in existing ADLs is limited, it is of no
surprise that tool support for dynamism is not very prevalent. Darwin and Rapide can model only
planned modifications at runtime: both support conditional configuration; Darwin also allows
component replication. Their compilation tools ensure that all possible configuration alternatives
are enabled.

C2’s ArchShell tool [Ore96, MOT97], on the other hand, currently enables arbitrary
interactive construction, execution, and runtime-modification of C2-style architectures
implemented in Java. ArchShell supports modification of an architecture at runtime by
dynamically loading and linking new architectural elements into the architecture. Furthermore,
while the application is running, users can interactively send C2 requests and notifications to
architectural elements. Some of ArchShell’s features were enabled or made easier to implement
because of Java’s interpreted and multi-threaded nature. However, we believe that feasibility of
majority of the concepts behind the tool is independent of the underlying programming language.

VIII.G. Summary of ADL Tool Support

Existing ADLs span a broad spectrum in terms of the design and development tools they
provide. On the one hand, ACME currently only facilitates visualization of its architectures, while
SADL’s toolset consists primarily of a refinement consistency checker. On the other hand,
Darwin, Rapide, and UniCon provide powerful architecture modeling environments; Darwin is
the only ADL that provides tool support in all classification categories. C2 supplies a number of
tools that span all but one of the categories. However, those tools are currently not fully
interoperable and have not yet been integrated into a cohesive environment. Overall, existing
ADLs have put the greatest emphasis on visualization and analysis of architectures and the least
on refinement and dynamism.

A more complete summary of this section is given in Table 4 below.

43

s W
ACME-Web; anima-
tion of pipe-and-fil-
ter architectures;
architecture views
in terms of high-
level (template), as
well as basic con-
structs

parser

none

none

none

syntax-directed edi- |textual and graphi- |parser; style-spe- none build tool con- none
{§tor for components; |cal; style-specific | cific compiler; type structs system glue
i visualizations; par- |checker; cycle code in C++ for
allel visualization |checker; checker pipe-and-filter style
cialized extemnal type hierarchy; for resource con-
component and con- | flicts and scheduling
nector types distin- | feasibility
guished iconically
design critics and [textual and graphi- | parser; critics to none class framework ArchShell allows
o-do lists in Arge | cal; view of devel- |establish adherence enables generation |pure dynamic
opment process to style rules and of C/C++, Ada, and |manipulation of
design heuristics Java code architectures

cal; visualization of

analysis via event

able sublanguage;

textual, graphical, |parser; compiler; compiler; primitive |compiler generates |compilation and
of ports to commu- |and hierarchical “what if” scenarios |components are C++ code runtime support for
system view by instantiating implemented in a constrained
nents; propagation parameters and traditional program- dynamic change of
of changes across dynamic compo- ming language architectures (repli-
bound ports; dia- nents cation and condi-
ogs to specify com- tional configuration)
f@ponent properties;
feraphical editor textual and graphi- |parser; compiler; compiler; primitive |compiler generates |none
requires error cor- | cal; component schedulability, reli- |components are Ada code (C code
rection once archi- |types distinguished |ability, and security |implemented in a generation planned)
tecture changes are |iconically analysis traditional program-
applied and con- ming language
trains the choice of
omponent proper-
ties via menus
none textual and graphi- |parser; compiler; compiler for execut- [executable system | compilation and

construction in C/

runtime support for

execution behavior |filtering and anima- |tools to compile C++, Ada, VHDL, |constrained
by animating simu- |tion; constraint and verify event pat-|and Rapide dynamic change of
lations checker to ensure |tern maps during architectures (con-
valid mappings simulation ditional configura-
tion)
textual only parser; analysis of |checker for adher- |none none
relative correctness |ence of architec-
of architectures with | tures to a manually-
respect to a refine- | proved mapping
ment map
graphical editor pre- |textual and graphi- | parser; compiler; compiler; primitive |compiler generates |none
vents errors during | cal; component and |schedulability anal- |components are C code
design by invoking |connector types dis- | ysis implemented in a
tinguished iconi- traditional program-
cally ming language
textual only; model |parser; model none none none
checker provides a |checker for type

textual equivalent
of CSP symbols

conformance of
ports to roles; analy-
sis of individual
connectors for dead-
lock

IX. Conclusions

Classifying and comparing any two languages objectively is a difficult task. For example, a
programming language, such as Ada, contains MIL-like features and debates rage over whether
Java is “better” than C++ and why. On the other hand, there exist both an exact litmus test (Turing
completeness) and a way to distinguish different kinds of programming languages (imperative vs.
declarative vs. functional, procedural vs. OO). Similarly, formal specification languages have
been grouped into model-based, state-based, algebraic, axiomatic, etc. Until now, however, no
such definition or classification existed for ADLs.

The main contribution of this paper is just such a definition and classification framework.
The definition provides a simple litmus test for ADLs that largely reflects community consensus
on what is essential in modeling an architecture: an architectural description differs from other
notations by its explicit focus on connectors and architectural configurations. We have
demonstrated how the definition and the accompanying framework can be used to determine
whether a given notation is an ADL and, in the process, discarded several notations as potential
ADLs. Some (LILEANNA and ArTek) may be more surprising than others (Petri nets and
Statecharts), but the same criteria were applied to all.

Of those languages that passed the litmus test, several straddled the boundary by either
modeling their connectors in-line (in-line configuration ADLs) or assuming a bijective
relationship between architecture and implementation (implementation constraining ADLs). We
have discussed the drawbacks of both categories. Nevertheless, it should be noted that, by
simplifying the relationship between architecture and implementation, implementation
constraining ADLs have been more successful in generating code than “mainstream”
(implementation independent) ADLs. Thus, for example, although C2 is implementation
independent, we assumed this 1-to-1 relationship in building the initial prototype of our code
generation tools [MOT97].

The comparison of existing ADLs highlighted several areas where they provide extensive
support, both in terms of architecture modeling capabilities and tool support. For example, a
number of languages use powerful formal notations for modeling component and connector
semantics. They also provide a plethora of architecture visualization and analysis tools. On the
other hand, the survey also pointed out areas in which existing ADLs are severely lacking. Only a
handful support the specification of non-functional properties, even though such properties may
be essential for system implementation and management of the corresponding development
process. Architectural refinement and constraint specification have also remained largely

45

1

‘unexplored. Finally, both tools and notations for supporting architectural dynamism are still in

their infancy. Only one ADL has even attempted to achieve pure dynamism thus far.

Perhaps most surprising is the inconsistency with which ADLs support connectors,
especially given their argued primary role in architectural descriptions. Several ADLs provide
only minimal connector modeling capabilities. Others either only allow modeling of complex
connectors (e.g., Wright) or implementation of simple ones (e.g., UniCon). No existing ADL has
explored the issues inherent in implementing complex connectors, possibly by employing existing

research and commercial connector technologies, such as Field [Rei90], SoftBench [Cag90], .

Polylith [Pur94], Tooltalk [JH93], and CORBA [OHE96]. This remains a wide open research
issue.

Finally, neither the definition nor the accompanying framework have been proposed as
immutable laws on ADLs. Quite the contrary, we expect both to be modified and extended in the
future. We had to resort to heuristics and subjective criteria in comparing ADLs at times,
indicating areas where future work should be concentrated. But what this taxonomy provides is an
important first attempt at answering the question of what an ADL is and why, and how it
compares to other ADLs. Such information is needed both for evaluating new and improving
existing ADLs, and for targeting future research and architecture interchange efforts more

precisely.

X. References

[AAG93] G. Abowd, R. Allen, and D. Garlan. Using Style to Understand Descriptions of
Software Architecture. In Proceedings of the First ACM SIGSOFT Symposium on the
Foundations of Software Engineering, pages 9-20, Los Angeles, CA, December
1993 :

[AG94a] R. Allen and G. Garlan. Formal Connectors. Technical Report, CMU-CS-94-115,
Carnegie Mellon University, March 1994,

[AG94b] R. Allen and G. Garlan. Formalizing Architectural Connection. In Proceedings of the
Sixteenth International Conference on Software Engineering, pages 71-80, Sorrento,
Italy, May 1994.

[AlI96] R. Allen. HLA: A Standards Effort as Architectural Style. In A. L. Wolf, ed.,
Proceedings of the Second International Software Architecture Workshop (ISAW-2),
pages 130-133, San Francisco, CA, October 1996.

[BEJV94] P. Binns, M. Engelhart, M. Jackson, and S. Vestal. Domain-Specific Software
Architectures for Guidance, Navigation, and Control. To appear in International
Journal of Software Engineering and Knowledge Engineering, January 1994, revised
February 1995.

[BROS5] G. Booch and J. Rumbaugh. Unified Method for Object-Oriented Development.
Rational Software Corporation, 1995.

[BS92] B. W. Boechm and W. L. Scherlis. Megaprogramming. In Proceedings of the Software
Technology Conference 1992, pages 63-82, Los Angeles, April 1992. DARPA.

46

[Cag90]
[Cle95]
[Cle96a]

[Cle96b]
[DK76]
[For92]
[GAO9%4]

[GAO95]

[Gar95a]
[Gar95b]
[Gar96]

[GH93]

M. R. Cagan. The HP SoftBench Environment: An Architecture for a New
Generation of Software Tools. Hewlett-Packard Journal, pages 3647, June 1990.
P. C. Clements. Formal Methods in Describing Architectures. In Proceedings of the
Workshop on Formal Methods and Architecture, Monterey, CA, 1995.

P. C. Clements. A Survey of Architecture Description Languages. In Proceedings of
the Eighth International Workshop on Software Specification and Design, Paderborn,
Germany, March 1996.

P. C. Clements. Succeedings of the Constraints Subgroup of the EDCS Architecture
and Generation Cluster, October 1996.

F. DeRemer and H. H. Kron. Programming-in-the-large versus Programming-in-the-
small. IEEE Transactions on Software Engineering, pages 80-86, June 1976.
Failures Divergence Refinement: User Manual and Tutorial. Formal Systems
(Europe) Ltd., Oxford, England, October 1992.

D. Garlan, R. Allen, and J. Ockerbloom. Exploiting Style in Architectural Design
Environments. In Proceedings of SIGSOFT'94: Foundations of Software
Engineering, pages 175-188, New Orleans, Louisiana, USA, December 1994,

D. Garlan, R. Allen, and J. Ockerbloom. Architectural Mismatch, or, Why It's Hard
to Build Systems out of Existing Parts. In Proceedings of the 17th International
Conference on Software Engineering, Seattle, WA, April 1995.

D. Garlan, editor. Proceedings of the First International Workshop on Architectures
for Software Systems, Seattle, WA, April 1995.

D. Garlan. An Introduction to the Aesop System. July 1995.
http://www.cs.cmu.edu/afs/cs/project/able/www/aesop/html/aesop—overvicw.ps

D. Garlan. Style-Based Refinement for Software Architecture. In A. L. Wolf, ed.,
Proceedings of the Second International Software Architecture Workshop (ISAW-2),
pages 72-75, San Francisco, CA, October 1996.

J. V. Guttag and J. J. Horning. Larch: Languages and Tools for Formal Specification.
Springer-Verlag, 1993.

[GKMMO96] D. Garlan, A. Kompanek, R. Melton, and R. Monroe. Architectural Style: An Object-

[GMWO5]

[GMWO96]

[GPT95]

[GS93]

[GW88]
[Har87]
[HLOW94]

[Hoa85]
[HP93]

Oriented Approach. Submitted for publication, February 1996.

D. Garlan, R. Monroe, and D. Wile. ACME: An Architectural Interconnection
Language. Technical Report, CMU-CS-95-219, Carnegie Mellon University,
November 1995.

D. Garlan, R. Monroe, and D. Wile. ACME: An Architecture Interchange Language.
Submitted for publication, 1996.

D. Garlan, F. N. Paulisch, and W. F. Tichy, editors. Summary of the Dagstuhl
Workshop on Software Architecture, February 1995. Reprinted in ACM Software
Engineering Notes, pages 63-83, July 1995.

D. Garlan and M. Shaw. An Introduction to Software Architecture: Advances in
Software Engineering and Knowledge Engineering, volume 1. World Scientific
Publishing, 1993.

J. A. Goguen and T. Winkler. Introducing OBJ3. Technical Report SRI-CSL-88-99.
SRI International, 1988

D. Harel. Statecharts: A Visual Formalism for Complex Systems. Science of
Computer Programming, 1987.

W.D. Heym, T.J. Long, W. F. Ogden, and B. W. Weide. Mathematical Foundations
and Notation of RESOLVE. Technical Report OSU-CISRC-8/93-TR45, Ohio State
University, August 1994,

C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

P. Haggar and J. Purtilo. Overview of QAD, an Interface Description Language.
Draft, University of Maryland, January 1993.

47

[HSX91]
[TW95]

[Jan92]

[Jen94]

[JH93]

[IM94]

[KC94]
[KC95]

[KLB93]

[Kru92]
[LKA+95]

[Luc87]
[LVI5]

[LVB+93]

[LVM95]
[MDKO93]

[MDEK95]

[Med96]

[MHO96]

[MK95]

W. L. Hursch, L. M. Seiter, and C. Xiao. In any CASE: Demeter. American
Programmer, pages 46-56, October 1991.

P. Inverardi and A. L. Wolf. Formal Specification and Analysis of Software
Architectures Using the Chemical Abstract Machine Model. /IEEE Transactions on
Software Engineering, pages 373-386, April 1995.

K. Jensen. Coloured Petri Nets: Basic Concepts, Analysis Methods, and Practical
Use. Volume 1: Basic Concepts. EATCS Monographs on Theoretical Computer
Science, Springer-Verlag, 1992. '

K. Jensen. An Introduction to the Theoretical Aspects of Coloured Petri Nets.InJ. W.
de Bakker, W. P. De Roever, and G. Rozenberg, eds., volume 803 of A Decade of
Concurrency, Lecture Notes in Computer Science, pages 230-272, Springer-Verlag,
1994. '
A. Julienne and B. Holtz. Tooltalk and Open Protocols: Inter-Application
Communication. SunSoft Press/Prentice Hall, April 1993.

F. Jahanian and A. K. Mok. Modechart: A Specification Language for Real-Time
Systems. IEEE Transactions on Software Engineering, pages 933-947, December
1994,

P. Kogut and P. Clements. Features of Architecture Description Languages. Draft of
a CMU/SEI Technical Report, December 1994.

P. Kogut and P. Clements. Feature Analysis of Architecture Description Languages.
In Proceedings of the Software Technology Conference (STC’95), Salt Lake City,
April 1995.

B. Kramer, Luqi, and V. Berzins. Compositional Semantics of a Real-Time
Prototyping Language. IEEE Transactions on Software Engineering, pages 453-477,
May 1993.

C. W. Krueger. Software reuse. Computing Surveys, pages 131-184, June 1992.

D. C. Luckham, J. J. Kenney, L. M. Augustin, J. Vera, D. Bryan, and W. Mann.
Specification and Analysis of System Architecture Using Rapide. IEEE Transactions
on Software Engineering, pages 336-355, April 1995.

D. Luckham. ANNA, a language for annotating Ada programs: reference manual,
volume 260 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1987.
D. C. Luckham and J. Vera. An Event-Based Architecture Definition Language.
IEEE Transactions on Software Engineering, pages 717-734, September 1995.

D. C. Luckham, J. Vera, D. Bryan, L. Augustin, and F. Belz. Partial Orderings of
Event Sets and Their Application to Prototyping Concurrent, Timed Systems.
Journal of Systems and Software, pages 253-265, June 1993.

D. C. Luckham, J. Vera, and S. Meldal. Three Concepts of System Architecture.
Unpublished Manuscript, July 1995.

J. Magee, N. Dulay, and J. Kramer. Structuring Parallel and Distributed Programs.
IEE Software Engineering Journal, pages 73-82, March 1993.

J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying Distributed Software
Architectures. In Proceedings of the Fifth European Software Engineering
Conference (ESEC’95), Barcelona, September 1995.

N. Medvidovic. ADLs and Dynamic Architecture Changes. In A. L. Wolf, ed.,
Proceedings of the Second International Software Architecture Workshop (ISAW-2),
pages 24-27, San Francisco, CA, October 1996.

M. J. Maybee, D. H. Heimbigner, and L. J. Osterweil. Multilanguage Interoperability
in Distributed Systems: Experience Report. In Proceedings of the Eighteenth
International Conference on Software Engineering, Berlin, Germany, March 1996.
Also issued as CU Technical Report CU-CS-782-95.

J. Magee and J. Kramer. Modelling Distributed Software Architectures. In

48

[MK96]

[MOT97]

[MORT96]

[MPW92]

[MQR95]
[MT96]

[MTW96]

[NB92]

[NKM96]

[OHE96]
[Ore96]
[PC94]
[Pet62]

[PN86]
[Pur94]
[PW92]
[Rap96]
[Rei90]
[RHR96]

Proceedings of the First International Workshop on Architectures for Software
Systems, pages 206-222, Seattle, WA, April 1995.

J. Magee and J. Kramer. Dynamic Structure in Software Architectures. In
Proceedings of ACM SIGSOFT’96: Fourth Symposium on the Foundations of
Software Engineering (FSE4), pages 3-14, San Francisco, CA, October 1996.

N. Medvidovic, P. Oreizy, and R. N. Taylor. Reuse of Off-the-Shelf Components in
C2-Style Architectures. To appear in Proceedings of the 1997 Symposium on
Software Reusability (SSR’97), Boston, MA, May 1997.

N. Medvidovic, P. Oreizy, J. E. Robbins, and R. N. Taylor. Using object-oriented
typing to support architectural design in the C2 style. In Proceedings of ACM
SIGSOFT’96: Fourth Symposium on the Foundations of Software Engineering
(FSE4), pages 24-32, San Francisco, CA, October 1996. ;
R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes, Parts I and II.
Volume 100 of Journal of Information and Computation, pages 1-40 and 41-77,
1992.

M. Moriconi, X. Qian, and R. A. Riemenschneider. Correct Architecture Refinement.
IEEE Transactions on Software Engineering, pages 356-372, April 1995.

N. Medvidovic and R. N. Taylor. Reusing Off-the-Shelf Components to Develop a
Family of Applications in the C2 Architectural Style. To appear in Proceedings of the
International Workshop on Development and Evolution of Software Architectures for
Product Families, Las Navas del Marqués, Avila, Spain, November 1996.

N. Medvidovic, R. N. Taylor, and E. J. Whitehead, Jr. Formal Modeling of Software
Architectures at Multiple Levels of Abstraction. In Proceedings of the California
Software Symposium 1996, pages 28-40, Los Angeles, CA, April 1996.

P. Newton and J. C. Browne. The CODE 2.0 Graphical Parallel Programming
Language. In Proceedings of the ACM International Conference on Supercomputing,
July 1992.

K. Ng, J. Kramer, and J. Magee. A CASE Tool for Software Architecture Design.
Journal of Automated Software Engineering (JASE), Special Issue on CASE-95,
1996.

R. Orfali, D. Harkey, and J. Edwards. The Essential Distributed Objects Survival
Guide. John Wiley & Sons, Inc., 1996.

Peyman Oreizy. Issues in the Runtime Modification of Software Architectures.
Technical Report, UCI-ICS-96-35, University of California, Irvine, August 1996.

P. Kogut and P. Clements. Features of Architecture Description Languages. Draft of
a CMUY/SEI Technical Report, December 1994.

C. A. Petri. Kommunikationen Mit Automaten. PhD Thesis, University of Bonn,
1962. English translation: Technical Report RADC-TR-65-377, Vol.1, Suppl 1,
Applied Data Research, Princeton, N.J.

R. Prieto-Diaz and J. M. Neighbors. Module Interconnection Languages. Journal of
Systems and Software, pages 307-334, October 1989.

J. Purtilo. The Polylith Software Bus. ACM Transactions on Programming
Languages and Systems, pages 151-174, January 1994.

D. E. Perry and A. L. Wolf. Foundations for the Study of Software Architectures.
ACM SIGSOFT Software Engineering Notes, pages 40-52, October 1992.

Rapide Design Team. Rapide 1.0 Language Reference Manual. Program Analysis
and Verification Group, Computer Systems Lab, Stanford University, January 1996.
S. P. Reiss. Connecting Tools Using Message Passing in the Field Environment.
IEEE Software, pages 57-66, July 1990.

J. E. Robbins, D. M. Hilbert, and D. F. Redmiles. Extending Design Environments to
Software Architecture Design. In Proceedings of the 1996 Knowledge-Based

49

Software Engineering Conference (KBSE), pages 63-72, Syracuse, NY,
September 1996.

[RR96] J. E. Robbins and D. Redmiles. Software architecture design from the perspective of
human cognitive needs. In Proceedings of the California Software Symposium
(CSS5°96), Los Angeles, CA, USA, April 1996.

[SDK+95] M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M. Young, and G. Zelesnik.
Abstractions for Software Architecture and Tools to Support Them. IEEE
Transactions on Software Engineering, pages 314-335, April 1995.

[SDZ96] M. Shaw, R. DeLine, and G. Zelesnik. Abstractions and Implementations for
Architectural Connections. In Proceedings of the Third International Conference on
Configurable Distributed Systems, May 1996, k

[SG94] M. Shaw and D. Garlan. Characteristics of Higher-Level Languages for Software
Architecture. Technical Report, CMU-CS-94-210, Carnegie Mellon University,
December 1994,

[SGI95] M. Shaw and D. Garlan. Formulations and Formalisms in Software Architecture.
Springer-Verlag Lecture Notes in Computer Science, Volume 1000, 1995.

[Sha93] M. Shaw. Procedure Calls are the Assembly Language of System Interconnection:
Connectors Deserve First Class Status. In Proceedings of the Workshop on Studies of
Software Design, May 1993.

[Spi89] J. M. Spivey. The Z notation: a reference manual. Prentice Hall, New York, 1989.

[TLPD95] A. Terry, R. London, G. Papanagopoulos, and M. Devito. The ARDEC/T eknowledge
Architecture Description Language (ArTek), Version 4.0. Technical Report,
Teknowledge Federal Systems, Inc. and U.S. Army Armament Research,
Development, and Engineering Center, July 1995.

[TM91] D. E. Thomas and P. R. Moorby. The Verilog Hardware Description Language.
Kluwer Academic Publishers, 1991.

[TMA+95] R. N. Taylor, N. Medvidovic, K. M. Anderson, E. J. Whitehead, Jr., and J. E.
Robbins. A Component- and Message-Based Architectural Style for GUI Software.
In Proceedings of the 17th International Conference on Software Engineering (ICSE
17), Seattle, WA, April 1995, pages 295-304.

[TMA+96] R.N. Taylor, N. Medvidovic, K. M. Anderson, E. J. Whitehead, Jr., J. E. Robbins, K.
A. Nies, P. Oreizy, and D. L. Dubrow. A Component- and Message-Based
Architectural Style for GUI Software. IEEE Transactions on Software Engineering,
pages 390-406, June 1996.

[Tra93a] W. Tracz. Parameterized Programming in LILEANNA. In Proceedings of ACM
Symposium on Applied Computing (SAC’93), February 1993.

[Tra93b] W. Tracz. LILEANNA: A Parameterized Programming Language. In Proceedings of
the Second International Workshop on Software Reuse, pages 66-78, Lucca, Italy,
March 1993.

[Ves93] S. Vestal. A Cursory Overview and Comparison of Four Architecture Description
Languages. Technical Report, Honeywell Technology Center, February 1993.

[Ves96] S. Vestal. MetaH Programmer’s Manual, Version 1.09. Technical Report, Honeywell
Technology Center, April 1996.

[VHDL87] IEEE, Inc. IEEE Standard VHDL Language Reference Manual. TEEE Standard 1076-
1987. Los Alamitos, CA, IEEE CS Press, 1987.

[Wolf96] A. L. Wolf, editor. Proceedings of the Second International Software Architecture
Workshop (ISAW-2), San Francisco, CA, October 1996. '

[Wolf97] A. L. Wolf. Succeedings of the Second International Software Architecture
Workshop (ISAW-2). ACM SIGSOFT Software Engineering Notes, pages 42-56,
January 1997.

50

