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RESEARCH ARTICLE Open Access

Prediction of sepsis mortality using
metabolite biomarkers in the blood: a
meta-analysis of death-related pathways
and prospective validation
Jing Wang1,2, Yizhu Sun1, Shengnan Teng1 and Kefeng Li2*

Abstract

Background: Sepsis is a leading cause of death in intensive care units (ICUs), but outcomes of individual patients
are difficult to predict. The recently developed clinical metabolomics has been recognized as a promising tool in
the clinical practice of critical illness. The objective of this study was to identify the unique metabolic biomarkers
and their pathways in the blood of sepsis nonsurvivors and to assess the prognostic value of these pathways.

Methods: We searched PubMed, EMBASE, Cochrane, Web of Science, CNKI, Wangfang Data, and CQVIP from
inception until July 2019. Eligible studies included the metabolomic analysis of blood samples from sepsis patients
with the outcome. The metabolic pathway was assigned to each metabolite biomarker. The meta-analysis was
performed using the pooled fold changes, area under the receiver operating characteristic curve (AUROC), and
vote-counting of metabolic pathways. We also conducted a prospective cohort metabolomic study to validate the
findings of our meta-analysis.

Results: The meta-analysis included 21 cohorts reported in 16 studies with 2509 metabolite comparisons in the
blood of 1287 individuals. We found highly limited overlap of the reported metabolite biomarkers across studies.
However, these metabolites were enriched in several death-related metabolic pathways (DRMPs) including amino
acids, mitochondrial metabolism, eicosanoids, and lysophospholipids. Prediction of sepsis death using DRMPs
yielded a pooled AUROC of 0.81 (95% CI 0.76–0.87), which was similar to the combined metabolite biomarkers with
a merged AUROC of 0.82 (95% CI 0.78–0.86) (P > 0.05). A prospective metabolomic analysis of 188 sepsis patients
(134 survivors and 54 nonsurvivors) using the metabolites from DRMPs produced an AUROC of 0.88 (95% CI 0.78–
0.97). The sensitivity and specificity for the prediction of sepsis death were 80.4% (95% CI 66.9–89.4%) and 78.8%
(95% CI 62.3–89.3%), respectively.

Conclusions: DRMP analysis minimizes the discrepancies of results obtained from different metabolomic methods
and is more practical than blood metabolite biomarkers for sepsis mortality prediction.

Trial registration: The meta-analysis was registered on OSF Registries, and the prospective cohort study was
registered on the Chinese Clinical Trial Registry (ChiCTR1800015321).
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Background
Sepsis is defined as the potentially life-threatening condi-
tion caused by the body’s extreme response to infection.
Sepsis is one of the leading causes of death worldwide,
and nearly 6 million people die of sepsis all over the world
annually [1, 2]. Despite the increasing use of advanced
technology for its treatment, such as bundled early goal-
directed therapy (EGDT) [3], the prognosis of sepsis re-
mains poor. The high mortality rates of sepsis are partially
due to the lack of an effective approach to predict sepsis
outcomes. In addition, only a small number of studies had
investigated the molecular mechanisms of sepsis-induced
organ failure and death [4, 5].
Several traditional sepsis outcome prediction ap-

proaches are currently used in clinical practice, such as
the Sequential Organ Failure Assessment (SOFA) [6],
the Acute Physiology and Chronic Health Evaluation II
(APACHE II) [7], and the Simplified Acute Physiology
Score II (SAPS II) [8]. However, their performance (sen-
sitivity, specificity) has not been shown to be adequate
for all cases [9]. There is a critical need to understand
the mechanisms of sepsis-induced death and to identify
better prognostic models that would facilitate the devel-
opment of adapted strategies for different cases of sepsis.
The recently developed omics techniques facilitate high-

throughput screening of disease-specific biomarkers in bio-
logical fluids, of which metabolomics is one of the most
promising approaches [10]. Metabolomics aims to measure
the small molecules (metabolites) within cells, biofluids,
tissues, or organisms using various analytical techniques.
Unlike genomics, transcriptomics, and proteomics, metabo-
lomics represents the molecular phenotype of an organism
because metabolites and their concentrations are the direct
functional “readout” of cellular activity and the state of cells
and tissues [11]. Therefore, clinical metabolomics offers a
strategic advantage for the elucidation of the new roles of
metabolism in disease, the identification of biomarkers, and
the development of new therapeutics [11–16].
Recent studies have highlighted the potential prognostic

role of metabolomics in sepsis patients [17–19]. Although
promising, the existing literature of metabolomic studies on
sepsis mortality prediction is limited by the use of individual
cohorts with small sample sizes and low statistical power, as
well as the use of varying analytical pipelines that can make
it challenging to synthesize findings. Furthermore, the lack
of validation in independent cohorts limits the clinical utility
of metabolomic profiling in sepsis outcome prediction [20–
22]. Meta-analysis can overcome these limitations by
increasing the sample size and thus statistical power to gen-
erate the best estimation. Unfortunately, no studies have
performed either descriptive or quantitative meta-analysis of
metabolomics for predicting sepsis outcomes.
In this study, we systematically reviewed the literature to

identify all eligible clinical metabolomic studies containing

the prognosis of sepsis published before July 2019. We
retrospectively generated a comprehensive dataset and per-
formed both descriptive and quantitative meta-analysis
using the curated dataset. In addition, we conducted a pro-
spective metabolomic cohort study to validate the findings
in the meta-analysis. The primary goals of this study were
to identify the metabolic biomarkers and their pathways in
the blood of sepsis nonsurvivors and to assess the prognos-
tic significance of metabolomic profiling in sepsis patients.

Methods
Search strategy
We performed a comprehensive literature search of articles
through the following databases without date limitation:
PubMed, EMBASE, the Cochrane Library, Web of Science,
China National Knowledge Infrastructure (CNKI), Wan-
fangdata, and CQVIP. The search was updated to July 1,
2019, and not restricted by language. The main search terms
included the following: “Sepsis” (e.g., “Severe Sepsis” and
“Sepsis, Severe” and “Pyemia” and “Pyemias” and “Pyohe-
mia” and “Pyohemias” and “Pyaemia” and “Pyaemias” and
“Septicemia” and “Septicemias” and “Poisoning, Blood” and
“Blood Poisoning” and “Poisonings, Blood” and “Bacteremia”
and “Endotoxemia” and “Fungemia” and “Candidemia” and
“Parasitemia” and “Viremia”) and “Metabolomics” (e.g.,
“Metabolomic” and “Metabonomics” and “Metabonomic”).
The reference list was also checked for relevant articles. The
detailed search strategy is listed in Additional file 1: Supple-
mental methods.

Inclusion and exclusion criteria
The inclusion criteria for selecting the studies for this
meta-analysis were as follows: (1) metabolomic profiling
performed in patients with sepsis or septic shock accord-
ing to the published diagnosis criteria [23], (2) metabolites
were measured in plasma or serum, (3) sepsis survivors
versus sepsis nonsurvivors, (4) mortality data and the cor-
relation of metabolites with sepsis survivors and/or non-
survivors were reported, and (5) the type of study design
was not restricted. The exclusion criteria were as follows:
(1) patients < 18 years old and studies involving animals,
(2) studies without the sepsis outcome, and (3) meeting
abstracts, letters to the editor, case reports, and reviews.

Data extraction and quality assessment
All potentially eligible articles were independently evalu-
ated, and the information was extracted by two authors
(JW and ST). Disagreements were resolved by discussion
with a third person (YS). For each study, the following
items were extracted: first author, year of publication, coun-
try, type of patients, total number of cases and gender,
follow-up time, mortality, clinical scores (i.e., SOFA and
APACHE II), the analytical platforms, metabolites with sig-
nificant changes, metabolite fold change (FC, nonsurvivors/
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survivor), adjusted P value, area under receiver operating
characteristic (ROC) curve (AUROC), and validation. Be-
cause of the inconsistency of the names for the same re-
ported metabolites between publications, especially for the
nomenclature of lipids, we then used the software OpenRe-
fine (https://openrefine.org/) and the ID conversion tool in
MetaboAnalyst 4.0 (www.metaboanalyst.ca) to match the
names in the publications to the names in HMDB or Pub-
Chem. We removed the ambiguity by adding the identifiers
to each metabolite if available (CAS, HMDB, or KEGG).
We performed cross-data quality checks between reviewers
at each step and reviewed all the included references after
dataset construction.
Newcastle-Ottawa Scale (NOS) was used to assess the

risk of bias for each of the included studies by two au-
thors independently. The NOS has three parts: selection
(0–4 points), comparability (0–2 points), and outcome
assessment (0–3 points). We made slight modifications
in the parts of selection and outcome assessment in ori-
ginal NOS based on the guidelines for a reliable metabo-
lomic study [24, 25]. Both original and modified NOS
scores are reported (Additional file 1: Table S1 and
Table S2). Details for NOS and modified NOS are avail-
able in Additional file 1: Supplemental methods.

Data synthesis and meta-analysis
For pathway analysis, we assigned both the chemical class
and the biochemical pathway to each metabolite according
to HMDB and our in-house database. Cochran’s Q test and
Higgins I-squared statistic were used to assess the hetero-
geneity across the included studies. The pooled AUROC
and FC were calculated using a random model when the
heterogeneity was statistically significant across the studies
(P < 0.10 or I2 > 50%). Otherwise, a fixed-effect model was
used. Sensitivity analyses were conducted by serially exclud-
ing each study to determine the influence of individual
studies on the pooled AUROC. Publication bias was evalu-
ated using funnel plots. The meta-analysis was performed
using MedCalc 19.0.7. The frequency of a particular path-
way (chemical class) reported to be significant across the
studies was analyzed by the vote-counting method.

Validation of meta-analysis results using a prospective
cohort metabolomic study
This prospective cohort study was approved by the Institu-
tional Review Board (IRB) of Yantai Yuhuangding Hospital
([2018]11) and registered on the Chinese Clinical Trial
Registry (Registry ID: ChiCTR1800015321). All the proto-
cols conformed to the World Medical Association Declar-
ation of Helsinki-Ethical Principles for Medical Research
Involving Human Subjects. Briefly, the diagnostic evalu-
ation was performed upon admission to the intensive care
unit (ICU) of Yantai Yuhuangding Hospital, and patients
who met the Third International Consensus Definitions for

Sepsis and Septic Shock were eligible for selection [26]. The
exclusion criteria included the following: (1) younger than
18 years or older than 85 years of age, (2) diabetes and other
metabolic-related diseases, (3) AIDS, (4) pregnant women,
and (5) incomplete clinical data.
A total of 188 patients were enrolled between June 2017

and May 2018, and written permission was obtained from
all the patients or their guardians. SOFA and APACHE II
scores were assessed during the first 24 h of ICU admis-
sion. Heparinized plasma samples were collected at the
time of ICU admission and stored at − 80 °C until analysis.
The patients were followed up for the survival status
weekly for 28 days. On day 28, out of 188 patients en-
rolled, 134 survived and 54 died. We then divided the
plasma samples collected during admission into two
groups: survivors (N = 134) and nonsurvivors (N = 54).
Metabolomic analysis was performed on extracted me-

tabolites as described previously [27–29]. The chromato-
graphic peaks were identified using MultiQuant (v3.0, AB
SCIEX), confirmed by manual inspection, and the peak
areas were integrated. The data were log2 transformed be-
fore statistical analysis. Partial least squares discriminant
analysis (PLS-DA) was conducted in MetaboAnalyst 4.0.
Seven metabolites including isoleucine (amino acids), ala-
nine (amino acids), acetylcarnitine (mitochondrial metab-
olism), lactic acid (mitochondrial metabolism), pyruvic
acid (mitochondrial metabolism), LysoPG (22:0) (lysopho-
spholipid metabolism), and LysoPC (24:0) (lysophospholi-
pid metabolism) were selected based on the results of the
meta-analysis. Multivariate ROC analysis was conducted
using MetaboAnalyst 4.0 (https://www.metaboanalyst.ca).
The ROC curve was generated based on Monte Carlo
cross-validation of random forest models [30]. Repeated
random cross-validation (rdCV) and permutation test
were used for internal validation of the established classifi-
cation model.
Other statistical analyses were conducted in GraphPad

Prism 8.0. All statistical tests were 2-tailed, and the sig-
nificance threshold (P) was set at 0.05.

Results
Study inclusion and characteristics
The initial search strategies retrieved a total of 1814 arti-
cles. After meticulous inspection of the articles, 16 clinical
metabolomic studies published between 2003 and 2019
were finally enrolled in our meta-analysis, in which sepsis
survivors were compared to the sepsis nonsurvival group
(Additional File 1: Table S3) [31–46]. The processes of
study selection are summarized in a flow diagram (Fig. 1).
Studies related to sepsis mortality prediction using meta-

bolomic approaches were mostly published after 2013,
underscoring the emerging nature of this field of research.
Among them, 7 studies were from the USA; 3 studies were
performed in China; 2 studies were conducted in France
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and Canada, respectively; and 1 in Germany and Italy, re-
spectively (Additional File 1: Table S3). APACHE and
SOFA scores for mortality prediction were both reported in
7 studies. One study had both SOFA and SAPS scores, 2
studies reported SOFA scores, and 4 studies reported APA-
CHE scores. Traditional prognostic scores were missing in
2 studies.
Sepsis is a severe critical illness syndrome with multi-

organ dysfunction, and tissue biopsy is generally not per-
formed for patients with sepsis. In addition, the urine
metabolome shows more interindividual and technical
variability than that of the blood [47]. Therefore, in our
meta-analysis, we chose only blood-based (plasma and
serum) metabolomic studies (10 studies with plasma and
6 studies with serum) (Table 1). Overall, the resulting
collection contains curated quality-checked data of 21

cohorts reported in 16 studies and over 2509 metabolite
comparisons in blood from 1287 individuals (Add-
itional file 1: Table S4).

Quality assessment of clinical metabolomic studies
Good quality control and proper validation are the pre-
requisites for the success of a clinical metabolomic study
[48]. The pooled QC samples were used in all MS-
driven metabolomic studies of the prognosis of sepsis.
Only 6 out of 16 studies reported validations either by
animal studies, independent cohorts, or other omics
techniques (Additional file 1: Table S5). Therefore, this
meta-analysis is useful for validating the findings of indi-
vidual studies. The details of quality assessment are de-
scribed in Additional file 1: Supplemental results.

Fig. 1 Flow chart of the included studies
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Meta-analysis of chemical classes and biochemical
pathways using the vote-counting method
We first checked the overlap in metabolite biomarkers used
for prediction of sepsis mortality across the studies but
found few in common (Additional file 1: Figure S1). We
then explored the unique metabolic features in sepsis

nonsurvivors compared to the survivors by analyzing the
chemical classes and metabolic pathways of the biomarkers.

Chemical classes
We assigned the chemical class to each of the biomarkers
based on the classification in HMDB (Additional file 1:

Table 1 The characteristics of the included studies

PubMed ID Patient no. (M/F) Comparison
groups (S vs NS)

Age (years, median
range, or SD)
(S vs NS)

Follow-up SOFA
(S vs NS)

APACHE II
(S vs NS)

SAPS II
(S vs NS)

Matrix

PMID12562829 102 (71/31) S (n = 63) vs
NS (n = 39)

53.8 (20–91) vs
54.9 (17–80)

30 days N/A N/A N/A Plasma

PMID23673400 30 (16/14) S (n = 15) vs
NS (n = 15)

78 (73–83) vs
79 (76–82)

90 days N/A 59 (53–75) vs
76 (74–95)#

N/A Plasma

PMID23884467 121 70/51) S (n = 90) vs
NS (n = 31)

56.4 ± 19.2 vs
68.8 ± 16.7

28 days 4.3 ± 2.7 vs
7.0 ± 3.6

15.0 ± 7.1 vs
22.8 ± 7.8

N/A Plasma

PMID23884467 52* (34/18) S (n = 34) vs
NS (n = 18)

58.9 ± 18.1 vs
58.0 ± 18.8

28 days 4.3 ± 2.7 vs
5.0 ± 3.0

5.7 ± 5.8 vs
18.5 ± 7.9

N/A Plasma

PMID23884467 61* (33/28) S (n = 36) vs
NS (n = 25)

54.8 ± 13.1 vs
58.7 ± 16.5

28 days N/A 25.9 ± 6.7 vs
33.0 ± 9.8

N/A Plasma

PMID24368342 8 S (n = 4) vs
NS (n = 4)

61 (56–70) N/A 11 (5–14) 22 (16–27) N/A Serum

PMID24498130 90 (39/51) S (n = 60) vs
NS (n = 30)

53 ± 14 vs
58 ± 15

28 days N/A 23 ± 9 vs
30 ± 11

N/A Plasma

PMID24498130 149* 68/81) S (n = 115) vs
NS (n = 34)

58 ± 17 vs
69 ± 16

28 days N/A 15 ± 7 vs
23 ± 8

N/A Plasma

PMID25553245 35 (30/5) S (n = 26) vs
NS (n = 9)

63 ± 18 vs
67 ± 15

48 h 10 ± 4 vs
13 ± 5

20 ± 8 vs
26 ± 6

N/A Serum

PMID25849571 35 (25/10) S (n = 20) vs
NS (n = 15)

54 ± 23 vs
61 ± 21

28 days 7 ± 4 vs
10 ± 5

14 ± 7 vs
22 ± 8

N/A Serum

PMID25887472 121 (70/51) S (n = 90) vs
NS (n = 31)

56.4 ± 19.2 vs
68.8 ± 16.7

28 days 4.3 ± 2.7 vs
7.0 ± 3.6

15.0 ± 7.1 vs
22.8 ± 7.8

N/A Plasma

PMID25928796 16 S (n = 8) vs
NS (n = 8)

63 (59.8–77) N/A 10.5 (7–12.5) 25.5 (17.5–31.3) N/A Serum

PMID26847922 20 (13/7) S (n = 9) vs
NS (n = 11)

61.3 ± 15.2 vs
69.9 ± 12

90 days 10.5 ± 1.5 vs
12.1 ± 2

N/A 54.8 ± 17.9 vs
61.1 ± 9.4

Plasma

PMID27406941 58 S (n = 28) vs
NS (n = 30)

N/A 28 days N/A N/A N/A Plasma

PMID27614981 50 (27/23) S (n = 21) vs
NS (n = 29)

63.8 ± 0.7 vs
65.6 ± 0.5

7 days 10.0 ± 0.8 vs
11.3 ± 0.9

N/A 54 ± 0.4 vs
68 ± 0.5

Serum

PMID27632672 22 (13/9) S (n = 13) vs
NS (n = 9)

60 (27–84) vs
60 (36–80)

7 days N/A 22 (14–38) vs
31 (16–46)

N/A Plasma

PMID28345042 36 (27/9) S (n = 20) vs
NS (n = 16)

52 ± 21.5 vs
58 ± 16.7

28 days N/A 17 ± 4.9 vs
22 ± 10.2

N/A Plasma

PMID28345042 121* (70/51) S (n = 90) vs
NS (n = 31)

56.4 ± 19.2 vs
68.8 ± 16.7

28 days 4.3 ± 2.7 vs
7.0 ± 3.6

15.0 ± 7.1 vs
22.8 ± 7.8

N/A Plasma

PMID30379669 90 (54/36) S (n = 69) vs
NS (n = 21)

71.5 ± 15.4 vs
69.6 ± 12.9

28 days 8.3 ± 3.5 vs
10.9 ± 4.0

23.1 ± 7.7 vs
26.1 ± 8.6

N/A Plasma

PMID31088568 70 (40/30) S (n = 40) vs
NS (n = 30)

68.5 ± 0.3 vs
72.1 ± 0.4

24 h 10.9 ± 0.1 vs
12.4 ± 0.1

N/A N/A Serum

PMID31088568 70* (40/30) S (n = 40) vs
NS (n = 30)

68.5 ± 0.3 vs
72.1 ± 0.4

24 h 10.9 ± 0.1 vs
12.4 ± 0.1

N/A 55.2 ± 0.4 vs
64.3 ± 0.6

Serum

Abbreviations: S survivors, NS nonsurvivors, SOFA The Sequential Organ Failure Assessment, APACHE II Acute Physiology and Chronic Health Evaluation II, SAPS II
Simplified Acute Physiology Score, N/A not available
*Validation cohort in the same publication
#APACHE III
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Table S6). The main chemical classes for metabolites with
prognostic values for sepsis are amino acid and deriva-
tives, lipids and lipid-like molecules, and organic acids and
derivatives (Fig. 2a).

Metabolic pathways
We next analyzed the metabolic pathways for the differen-
tial metabolites between sepsis survivors and nonsurvivors
(Fig. 2b). Interestingly, we found that these metabolite bio-
markers are enriched in several death-related metabolic
pathways (DRMPs). In detail, in sepsis nonsurvivors, lyso-
phospholipid metabolism and phospholipid metabolism
were significantly downregulated in nonsurvivors compared
to the survivors (Fig. 2b and Additional file 1: Table S7).

Acylcarnitines were observed to be increased dramatically
in the plasma and serum of the sepsis nonsurvivors, indicat-
ing the downregulation of fatty acid oxidation. In addition,
metabolites in the TCA cycle were increased in sepsis non-
survivors. Together, these findings indicated the mitochon-
drial dysfunction in sepsis nonsurvivors. Furthermore,
branched-chain amino acid metabolism, amino-sugar me-
tabolism, and eicosanoids were dramatically upregulated in
sepsis nonsurvivors (Fig. 2b).

Meta-analysis of AUROCs
ROC curve analysis is an effective method for evaluating
the accuracy of diagnostic tests in modern medicine. Out
of 16 studies enrolled, 12 conducted ROC curve analysis

Fig. 2 The vote count of the chemical classes for the differential metabolites between survivors and nonsurvivors (a) and the pooled fold
changes (nonsurvivors/survivors), and P values for the dramatically altered metabolic pathways in sepsis nonsurvivors compared to the survivors
(b). For the pie chart (a), the vote count indicated the frequency of a chemical class being identified as statistically different between sepsis
nonsurvivors and survivors. For the volcano plot (b), a metabolic pathway was assigned to each differential metabolite. The pooled fold change
and P value were calculated using random effects in the meta-analysis. We also added the vote-counting analysis to the volcano plot, which
showed the frequency of a metabolic pathway being identified as statistically different between sepsis nonsurvivors and survivors. P < 0.05 was
considered statistically significant
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using the biomarker metabolites and six performed the
direct comparisons between metabolite biomarkers and
traditional scores (Additional file 1: Table S8). We next
pooled the AUROCs from each study and performed a
meta-analysis to analyze the prediction accuracy for sepsis
prognosis by metabolomics. The sensitivity analysis re-
vealed that the overall AUROC estimation and conclu-
sions were not affected by each study.

Prediction performance of combined metabolite biomarkers
without summarizing pathways
We first performed the meta-analysis of combined bio-
marker metabolites without summarizing pathways. Visual
inspection of the funnel plot of the included studies revealed
significant asymmetry (Additional file 1: Figure S2). The
random-effect model was selected for this meta-analysis due
to the heterogeneity (Q = 620.5, I2 = 95.2%, and P < 0.0001).
The combined metabolite biomarkers yielded a pooled
AUROC of 0.82 (95% CI 0.78–0.86, P < 0.001) (Fig. 3).

Prediction performance of each DRMP
We then investigated the prediction accuracy of each
DRMP on sepsis outcome, including lysophospholipid
metabolism, amino acid, and mitochondrial metabolism.
Lysophospholipid metabolism. There was no significant

publication bias for the studies reporting lysophospholi-
pids based on the visualization of the funnel plot (Add-
itional file 1: Figure S3). Cochran’s Q was 3.45, and

Higgins’ I2 was 13.5% (P = 0.33). The fixed-effect model
was then used for this analysis. Meta-analysis showed a
pooled AUROC of 0.77 (95% CI 0.72–0.82) for lysopho-
spholipid metabolism (Fig. 4a).
Amino acid metabolism. Visual inspection of the fun-

nel plot revealed significant asymmetry, suggesting the
presence of potential publication bias in the studies
using amino acids as biomarkers for sepsis mortality pre-
diction (Additional file 1: Figure S4). Strong evidence of
heterogeneity between the included studies was observed
(Q = 177.04, I2 = 95.5%, and P < 0.01). The random-effect
model was then chosen for the meta-analysis. Metabo-
lites from amino acid metabolism produced a combined
AUROC of 0.84 (95% CI 0.75–0.93) (Fig. 4b).
Mitochondrial metabolism. The funnel plot analysis in-

dicated that there was no significant publication bias for
the studies using metabolite biomarkers from mitochon-
drial metabolism (Additional file 1: Figure S5). Cochran’s
Q was 27.75, and Higgins’ I2 was 82.0% (P < 0.001). We
then used the random-effect model for the analysis.
Meta-analysis showed a pooled AUROC of 0.78 (95% CI
0.71–0.86) for the prediction of sepsis death (Fig. 4c).

Prediction performance of the combined DRMPs
We next investigated the performance of metabolite bio-
markers from combined death-related metabolic path-
ways. Funnel plot analysis revealed no obvious publication
bias (Additional file 1: Figure S6). We observed significant

Fig. 3 The pooled AUROC for the prediction accuracy of sepsis death using metabolite biomarkers without summarizing the pathways. LysoPG,
lysophosphatidylglycerol; S-3dE, S-(3-methylbutanoyl)-dihydrolipoamide-E; Cer, ceramides; LysoPC, lysophosphatidylcholine; PC, phospholipids
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Fig. 4 The AUROC for the prediction accuracy of sepsis death using metabolites from a lysophospholipid metabolism, b amino acid, and
c mitochondrial metabolism. Results were presented as individual and pooled AUROC and 95% CI
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evidence of heterogeneity between the included studies
(Q = 212.2, I2 = 91.5%, and P < 0.0001), and the random-
effect model was then chosen for the meta-analysis. A
merged AUROC of 0.81 (95% CI 0.76–0.87) was obtained
using the combined DRMPs (Fig. 5).
We compared the prediction accuracy for sepsis out-

comes using different biomarkers. As shown in Fig. 6, the
combined DRMPs have the similar prediction accuracy as
merged metabolite biomarkers, and there was no significant
difference in AUROCs between two approaches (P > 0.05).

Validation of the meta-analysis using a prospective
metabolomic study
Finally, we conducted a prospective clinical study to confirm
our findings in the meta-analysis. Metabolomic analysis was

performed using the plasma samples collected from 188
sepsis patients, including 134 survivors and 54 nonsurvivors.
The patients’ characteristics are listed in Table 2. The 3D
PLS-DA plot revealed a distinct separation of the plasma
metabolomic profiles between sepsis survivors and nonsur-
vivors (Additional file 1: Figure S7). We selected seven me-
tabolites from the identified DRMPs including isoleucine
(amino acid), alanine (amino acid), acetylcarnitine (mito-
chondrial metabolism), lactic acid (mitochondrial metabol-
ism), pyruvic acid (mitochondrial metabolism), LysoPG (22:
0) (lysophospholipid metabolism), and LysoPC (24:0) (lyso-
phospholipid metabolism) as the potential biomarkers for
sepsis outcome prediction. Interestingly, these metabolites
were all statistically different between sepsis survivors and
nonsurvivors, according to the Mann-Whitney U test (P <

Fig. 5 The pooled AUROCs for the prediction accuracy of sepsis death using DRMPs. The DRMPs were lysophospholipid, amino acid, and
mitochondrial metabolism. Results were presented as individual and pooled AUROCs and 95% CI

Fig. 6 The comparison of the pooled AUROCs for the prediction accuracy of sepsis death using different biomarkers. One-way ANOVA was
performed, and columns indexed by the same letter indicated that the differences are not significant (P > 0.05)
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0.05, 0.01, or 0.001, Additional file 1: Figure S8). ROC ana-
lysis of selected metabolites based on Monte Carlo cross-
validation of random forest models yielded an AUROC of
0.88 (95% CI 0.78–0.97), which was significantly higher than
the SOFA score (AUROC of 0.56, 95% CI 0.45–0.66) and
APACHE II score (AUROC of 0.66, 95% CI 0.58–0.83)

(Fig. 7). The accuracy, sensitivity, and specificity for the pre-
diction of sepsis death were 80.1% (95% CI 69.2–88.0%),
80.4% (95% CI 66.9–89.4%), and 78.8% (95% CI 62.3–
89.3%), respectively (Additional file 1: Table S9). The nega-
tive likelihood ratio (NLR), positive likelihood ratio (PLR),
and diagnostic odds ratio (DOR) were 0.25 (95% CI 0.13–
0.46), 3.79 (95% CI 1.93–7.43), and 15.2 (95% CI 5.04–46.2),
respectively (Additional file 1: Table S9). Cross-validation re-
vealed the rdCV accuracy of 77.3% (Additional file 1: Table
S9) and permutation P value (500 times) of 0.0002 (Add-
itional file 1: Figure S9).

Discussion
Sepsis is one of the major causes of death in US hospi-
tals. The identification of biomarkers that distinguish pa-
tients at high risk for poor outcomes will likely help the
development of new treatment strategies. This meta-
analysis of 21 cohorts with 1287 septic patients revealed
that despite the heterogeneity of patients, there are
unique metabolic signatures in sepsis nonsurvivors. Our
study also showed that the analysis of DRMPs minimizes
the discrepancies between metabolomic methods and is
more practical than metabolite biomarkers themselves
for prognostic prediction in patients with sepsis. To our
knowledge, this is the first meta-analysis of the clinical
utility of metabolomics for sepsis mortality prediction.
In this study, we made slight modifications for NOS

based on the widely accepted guidelines for a reliable meta-
bolomic study [24, 25]. For example, the sample size is a
critical factor for metabolomic studies, and a good clinical
metabolomic study generally requires at least 20 subjects
per group to receive enough statistical power [49]. We thus
replaced question 4 in the section of “selection” in original
NOS with sample size check in the modified NOS (Add-
itional file 1: Supplemental methods and Table S1 and S2).
Our study identified death-related metabolic patterns in

sepsis (Fig. 8). Briefly, infection-induced sepsis causes acute
kidney injury (AKI) in the host [50], followed by ischemia
and hypoxia in other organs such as the liver and lung.
Acute respiratory distress syndrome (ARDS) in the lung
contributes to the systemic metabolic responses [51, 52].
The aberrant metabolic responses of greatest importance to
death in sepsis are mitochondrial dysfunction, breakdown
of proteins and DNA, and uncontrolled inflammatory and
immune responses, which produce DRMPs. The aggrega-
tion of metabolites in DRMPs leads to organ failure and
eventually death.
The dramatic changes of metabolites in the serum and

plasma of sepsis nonsurvivors include the increase of eicos-
anoids (eicosanoid metabolism), TCA cycle metabolites
(lactate, pyruvate, and citric acid) (mitochondrial metabol-
ism), acylcarnitines (mitochondrial metabolism), and amino
acids (amino acid metabolism) and a sharp decrease of lyso-
phospholipids (lysophospholipid metabolism).

Table 2 The characteristics and clinical variables of patients in
the prospective validation cohort

Clinical variable Validation sepsis P value

Sepsis
survivors

Sepsis
nonsurvivors

No. 134 54

Age (years) 61.8 ± 18.5 67 ± 14.4 0.07

Gender (male %) 64.20% 61.10% 0.69

SOFA (median and IQR) 7 (5–12) 8 (6–13) 0.22

APACHE II (median
and IQR)

18 (13–24) 22 (18–30) 0.001

MAP (mmHg) 75.2 ± 14.9 65.8 ± 15.2 0.001

PCT (median and IQR) 2.13 (0.26–15.9) 2.53 (0.74–36.5) 0.086

Pathogen

S. aureus [N (%)] 13 (9.7%) 4 (7.4%) 0.62

K. pneumoniae [N (%)] 23 (17.2%) 4 (7.4%) 0.084

E. coli [N (%)] 9 (6.7%) 4 (7.4%) 0.86

Source of infection

Respiratory [N (%)] 46 (34.3%) 23 (42.6%) 0.29

Abdominal [N (%)] 18 (13.4%) 7 (13.0%) 0.94

Urinary tract [N (%)] 6 (4.5%) 3 (5.6%) 0.75

Blood [N (%)] 33 (24.6%) 8 (14.8%) 0.14

Others [N (%)] 31 (23.1%) 13 (24.1%) 0.88

Comorbidities

Diabetes mellitus
[N (%)]

32 (23.9%) 16 (29.6%) 0.42

Cardiovascular disease
[N (%)]

43 (32.1%) 23 (42.6%) 0.17

Malignancy [N (%)] 16 (11.9%) 11 (20.4%) 0.13

COPD [N (%)] 5 (3.7%) 2 (3.7%) 1

Chronic kidney disease
[N (%)]

8 (6.0%) 2 (3.7%) 0.53

Chronic liver disease
[N (%)]

8 (6.0%) 1 (1.9%) 0.24

Nervous system disease
[N (%)]

20 (14.9%) 14 (25.9%) 0.077

Immunosuppression
[N (%)]

14 (10.4%) 8 (14.8%) 0.4

Data were shown as mean ± standard deviation (SD) or median with
interquartile range (IQR) or number with percentages depending on the
distribution. P values were calculated by Student’s t test or Mann-Whitney U
test or proportional Z test
Abbreviations: SOFA The Sequential Organ Failure Assessment, APACHE II Acute
Physiology and Chronic Health Evaluation II, MAP mean arterial pressure, PCT
procalcitonin, S. aureus Staphylococcus aureus, K. pneumoniae Klebsiella
pneumoniae, E. coli Escherichia coli, COPD chronic obstructive
pulmonary disease
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Eicosanoid “storms” and uncontrolled inflammation
Eicosanoids are essential lipid mediators involved in the
onset of inflammation and the innate immune responses
[53]. Our analysis revealed higher levels of circulating
eicosanoids in sepsis nonsurvivors compared to the survi-
vors. This observation was in line with the gene
expression-based prognostic model developed by Sweeney
and coauthors, in which genes from inflammation-related
pathways were largely activated in sepsis nonsurvivors
[54]. Both hyperinflammation and immune hypoactivation
lead to patient morbidity and death [55, 56]. The combin-
ation of multi-omic results might provide a comprehen-
sive view of death-related changes at the molecular level
in sepsis nonsurvivors.

Mitochondrial dysfunction in energy production
The accumulation of lactic acid, pyruvate, citric acid, and
acylcarnitines in the serum and plasma of sepsis nonsurvi-
vors indicates that death in sepsis might be associated with
profound mitochondrial dysfunction in energy production.
In contrast, sepsis survivors have better preservation of
ATP, mitochondrial function, and biogenesis markers. Cit-
ric acid, lactic acid, and pyruvic acid are critical energetic
substrates used by mitochondria for aerobic catabolism.
Sepsis patients who ultimately die have poor aerobic catab-
olism due to mitochondrial dysfunction, displaying elevated
concentrations of TCA cycle metabolites in plasma and
serum. Acylcarnitines are essential for beta-oxidation of
fatty acids and play essential roles in maintaining energy
homeostasis in the human body. Acylcarnitines that are not
utilized for energy production in fatty acid beta-oxidation
due to the mitochondrial dysfunction will be reversely

transported from mitochondria to the cytoplasm and then
into the plasma and serum [57].

Systemic uncontrolled proteolysis
In our analysis, we found that sepsis nonsurvivors usually
have significantly higher levels of circulating branched-
chain amino acids in their plasma and serum. This differ-
ence is likely caused by systemic uncontrolled proteolysis
in sepsis. Recent studies had suggested uncontrolled pro-
teolysis as the fundamental pathological mechanism in
septic shock that contributes to cell injury and organ dys-
function [58, 59]. Additionally, the transcriptomic analysis
showed the upregulation of genes associated with prote-
asome degradation in sepsis nonsurvivors [54].

Profound defects of organ healing capability
In the nonsurvivors of sepsis patients, the levels of lyso-
phospholipids were significantly lower than those in the
survivors. Lysophosphatidic acid (LPA) had been re-
ported to be overproduced in response to tissue injury,
and it can promote healing in multiple organs such as
the lung, skin, gastrointestinal tract, and cornea [60–62].
This suggested that the organ healing capability in non-
survivors is lower than survivors.

Prognostic model for mortality prediction based on
DRMPs
Our analysis revealed limited overlap in the reported
metabolite biomarkers for sepsis mortality prediction
across studies. This is likely caused by the discrepancies
between analytical methods used for metabolomic
analysis in these studies, such as different analytical
instruments, instrument sensitivity, and metabolome

Fig. 7 ROC analysis showed the prediction accuracy of sepsis death using a SOFA scores. b APACHE II scores. c DRMPs in the validation cohort.
The multi-biomarkers used for ROC analysis were isoleucine (amino acid), alanine (amino acid), acetylcarnitine (mitochondrial metabolism), lactic
acid (mitochondrial metabolism), pyruvic acid (mitochondrial metabolism), LysoPG (22:0) (lysophospholipids metabolism), and LysoPC (24:0). The
ROC curve was generated by Monte Carlo cross-validation of random forest models. Repeated random cross-validation (rdCV) and permutation
test were used for internal validation of the classification model
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coverage, and different sample preparation approaches.
Certain metabolite biomarkers might not be well mea-
sured in one metabolomic method compared to an-
other. However, these biomarkers were enriched in
several DRMPs, and the changes in DRMPs are highly
consistent no matter what metabolites are measured in
these pathways. The DRMPs and metabolite biomarkers
had a similar accuracy for predicting sepsis outcomes.
Therefore, the analysis of the combined changes in
DRMPs might be more practical than specific metabolite

biomarkers themselves for prognosis prediction in patients
with sepsis.

Limitations
Our study has some limitations. First, currently, there are
no established guidelines for the experimental design,
analytical procedures, and data analysis of clinical metabo-
lomic studies. The data were obtained from studies that
had different experimental designs, analytical platforms,
and patients’ characteristics. The substantial heterogeneity

Fig. 8 The death-related metabolic pathways (DRMPs) in the blood of sepsis nonsurvivors. Briefly, sepsis induces acute kidney injury (AKI),
followed by ischemia and hypoxia in other organs such as the liver and lung. Acute respiratory distress syndrome (ARDS) in the lung contributes
to the subsequent systemic metabolic responses, including inflammatory responses, defects of organ healing capability, mitochondrial
dysfunction in energy production, and systemic uncontrolled proteolysis. These produce unique metabolic signatures in the blood of sepsis
nonsurvivors, which can be measured by metabolomics. For example, the sharp increase of pro-inflammatory eicosanoids, the accumulation of
TCA cycle metabolites (lactate, pyruvate, and citric acid), the increase of acylcarnitines and amino acids, and the significant reduction of
lysophospholipids in the plasma and serum of sepsis nonsurvivors. The aggregate of these metabolites in DRMPs leads to multi-organ failure and
death. This figure was created by ourselves
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among the studies may affect the interpretation of the re-
sults. Second, due to the lack of full datasets for metabolo-
mic analysis of sepsis [63], we performed the meta-analysis
using the reported metabolites. This approach is then sus-
ceptible to publication bias.

Conclusions
Our meta-analysis of clinical metabolomic studies of
sepsis prognosis reveals new roles of metabolism in
sepsis-induced death and highlights the potential value
of death-related metabolic pathways as the biomarkers
in the prediction of sepsis mortality. These results will
serve as a benchmark for future prognostic model devel-
opment using metabolomics.
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