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Abstract 

Video recording is a widely used tool for studying animal 
behavior, especially in fields such as primatology. 
Primatologists rely on video data to analyze and research topics 
such as social grooming to uncover subtle mechanisms behind 
complex social behavior and structures. Insights into these 
social behaviors may provide us with a better understanding of 
our closest living relatives, but also new theories and insights 
into our own behavior. However, analyzing this type of data 
using manual annotation is currently a time-consuming task. 
Here we present an end-to-end pipeline to track chimpanzee 
(Pan troglodytes) poses using DeepLabCut (DLC) which then 
serves as input to a support vector machine. This classifier was 
trained to detect role transitions within grooming interactions. 
We replicate a recent study showing that DLC has usability 
value for chimpanzee data collected in natural environments. 
Our combined method of tracking and classification is 
remarkably successful in detecting the presence of grooming, 
indicating the directionality and a change in turn with an 
accuracy above 86% on unseen videos. We can identify 
particular pose features used in the classification of grooming, 
which will contribute to the exploration of turn-taking 
dynamics on a scale that would otherwise be difficult to attain 
with traditional methods. Finally, our pipeline can in principle 
be applied to recognize a variety of other socially interactive 
behaviors that are largely recognizable by (joint) postural 
states.  

Keywords: automatic behavior recognition, pose estimation, 
DeepLabCut, social interaction, grooming, chimpanzee, in the 
wild, naturalistic environment 

Introduction 
One of the main challenges in the analysis of primate 
behavior in the wild is the annotation process. Data is often 
recorded continuously in natural environments, from various 
angles and conditions. These conditions result in large 
datasets consisting of video material with high levels of 
variation in quality. The current manual processing and the 
analysis of this data takes a lot of time and effort, in part 
because the annotation process requires both standardization 
and validation. Additionally, as a researcher needs to search 
for relevant behaviors (e.g. grooming) while often also 
needing to select for specific individuals (e.g. those of a 
certain social rank, sex and/or age). This process of scanning 
across large video data sets is extremely time intensive. 

Grooming behavior in primatesSocial grooming is one of the 
most important social interactions for establishing and 
fortifying social standing (Dunbar, 1988; Mielke et al., 2018; 
Seyfarth & Cheney, 2012). Social grooming, or grooming 
from here forward, is “a tactile and highly visual behavior in 
which one individual closely scrutinizes and meticulously 
picks through the hair of another, removing debris and insects 
with their hands and/or mouth” (Goodall, 1986). While 
researchers recognize grooming's significance extends 
beyond basic hygiene, the specific ways these interactions are 
structured remain a topic of investigation. Additionally, social 
grooming has been proposed as a context to study turn-taking 
dynamics in communication due its high levels of negotiation, 
and as such a fundamental building steppingstone for the 
evolution of language and higher (social) cognitive abilities 
(Fedurek et al., 2015; Grueter et al., 2012; Levison & 
Torreira, 2015; Pika, 2014). Therefore, primatologists are not 
only calling for unified methods, but for more long-term data 
collection and ways to analyze more data (Pika et al., 2018; 
Radhakrishna & Jamieson, 2018; Strier, 2003). Here novel 
technologies offer potential solutions, promising a more 
efficient and replicable approach while maintaining 
transparency.  

Related work  
With recent advances in deep learning, interdisciplinary 
methodologies have opened new ways to process and analyze 
data. The progress in this domain has been focused on two 
tasks that are often combined. Firstly, there have been 
developments in animal pose tracking. Secondly, there has 
been significant development in behavior classification. 

With regards to animal pose tracking, Wiltshire et al. 
(2023) utilized DeepLabCut (DLC) (Lauer et al., 2022; 
Mathis et al., 2018) for pose estimation in wild chimpanzees 
to validate its use for in-the-wild data. DLC was applied in 
the context of multi-animal videos and two models were 
trained on data that represented raw data as much as possible. 
Wiltshire et al. (2023) report the tracking performance of 
their models to be substantially better than inter-human 
coding variation.  While developments in primate pose 
tracking are accelerating (Desai et al., 2023; Hu et al., 2023; 
Wu et al., 2019), Wiltshire et al. (2023) were able to stress-
test for the first time that DLC is a promising tool for pose-
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tracking of chimpanzees in the wild. We used their results 
and reflections as a reference point for aspects of this study. 

Developments have also been made regarding behavioral 
classification in primatology. Sakib and Burghardt (2019) 
utilized convolutional neural network (CNN) architectures to 
demonstrate the viability of automated behavior detection 
and recognition. Their system succeeded in detecting and 
recognizing nine core ape behaviors (camera interaction, 
climbing down, climbing up, hanging, running, sitting, sitting 
on back, standing, and walking) in challenging camera trap 
footage with a top-3 average score of 94.07% after cross-
validation.  

Bain et al. (2021) used multimodal video-audio recordings 
to recognize nut cracking and buttress drumming. The 
efficacy of using deep neural network models for a biological 
application was shown using a CNN approach: multimodal 
classification of nut cracking resulted in an average precision 
of 0.77 and buttress drumming 0.86. A much higher precision 
was obtained in comparison to unimodal classification (audio 
only: nut cracking = 0.30, buttress drumming = 0.81, visual 
only: nut cracking = 0.76, and buttress drumming = 0.64). 

These studies, however, focus on activities primarily 
conducted in solitude. In addition, the performance of these 
classifiers is highly dependent on the behavior itself; showing 
better results in highly distinguishable behaviors such as 
standing vs sitting relative to more similar behaviors such as 
walking vs running. New tools that address interactive 
behaviors are emerging (Hu et al., 2023), but it is unsure how 
robust behavior classification can be in in-the-wild data. 
Furthermore, ideally, computational approaches allow for 
some way to inform the researcher what low-level features 
contained in animal poses contribute to the classification of 
some behavior. Deep learning approaches in classification 
often complexify the explainability of what features 
contribute to classifications. 

Current study 
In this study, we investigate DLC-driven pose tracking 
combined with machine classification on social grooming 
data in wild central chimpanzees (Pan troglodytes as an 
alternative to manual annotation. Building on Wiltshire et al. 
(2023)’s insights, we examine the robustness of DLC pose 
estimation. We then take this analysis one step further, by 
investigating how pose estimates can be used to 
automatically detect the highly social and intricate behavior 
that is grooming, without compromising interpretability and 
explainability. We do so by using support vector machines.1 

 

 

 

 

 

 

 

1. For a more elaborate explanation about the methodology used in 
this paper, please refer 
https://github.com/yanavdsande/chimps_grooming 

Method 

Operationalization 
We operationalized grooming using the following definition: 
we must see one hand of the actor (groomer) touching a body 
part of the receiver (groomee) and the groomer's gaze must 
be directed towards the body of the groomee. 

A grooming session was defined as a period of time during 
which two individuals were involved in a grooming 
interaction, without any change of behavior, and ended when 
both individuals stopped grooming for more than 30 seconds 
(following: Fedurek & Dunbar 2009; Newton-Fisher & Lee, 
2011; Kaburu & Newton-Fisher, 2013). 

A grooming bout was defined as a period of continuous 
grooming in a given direction within a grooming session. 
From observations, one can distinguish one-directional 
grooming, and mutual grooming. One-directional grooming 
is defined as a grooming bout where the groomed individual 
does not reciprocate grooming within the same session. In 
mutual grooming situations, both individuals groom each 
other at the same time.   

Data  
Data Collection The data used in the current study includes 
N=10 chimpanzees from the Rekambo community living in 
the rainforest of Loango National Park, Gabon, Africa. Their 
territory is part of the Loango National Park, which includes 
various habitat types. Over 301 days a total of 2107 hours of 
focal behavioral data were collected for a study by Southern 
et al. (in press). Individuals were followed for as long as 
possible from first encounter until nesting and focal 
individual adult males were under observation for a mean ± 
SD duration of 210.1 ± 74.5 h. All behavioral data were 
entered and recorded through an ethogram created using 
Cybertracker software (Cybertracker version 3.51). 
 
Video Selection The videos were recorded in 4K quality 
using a SONY AX53 in a maximum of 5-minute increments 
resulting in videos with 25.4 fps. At the beginning of our data 
exploration phase, we had access to a total of 164 videos with 
a total length of 5 hours 42 minutes. 

We assessed the quality of the video footage based on the 
following factors: visibility of the chimpanzees 
(operationalized by amount of natural occlusion e.g. 
occlusion through surroundings such as leaves, trees, or 
environmental factors, or occlusion through body parts), the 
contrast of the footage, the stability of the video after 
processing through a stabilizer. If apes were not clearly 
distinguishable in their environment, the videos were 
excluded. Our final dataset consisted of 75 videos (duration: 
3 hours 4 minutes 3 seconds). 
Frame selection We used the K-means algorithm 
implemented in DLC to extract frames from the video for the 
analysis. We extracted 20 frames from each video 
(corresponding to the best members of 20 clusters). The 
number of clusters was independent of the length of a video. 
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13 frames, in which the pose could not be clearly determined 
due to camera movement, were manually excluded, bringing 
our data set to 1487 frames. We found the distributions of the 
scene features for the selected frames to be similar to the 
distributions of the scene features of the videos.  

For each picked frame, we added a quality control measure 
named occlusion to control for the visibility of body parts. 
The occlusion ratio was based on four criteria: occlusion 
through the environment, occlusion due to a body, occlusion 
caused by both environment and body, and no occlusion. 
Each of these categories received a score based on how many 
body parts could be tracked based on annotations.  

 
Landmark selection The dataset after frame selection 
consisted of images with representative 2D poses of the apes 
exhibiting grooming behavior. Kinematic information was 
extracted through 16 body parts (markers; see Figure 1) and 
their relative two-dimensional positions in the frame (in pixel 
coordinates). The marker selection was based on previous 
research (Desai et al., 2023) and further discussed with the 
primatologists of the comparative biology group at 
Osnabrück University. 

 
Figure 1. A schematic depiction of all landmarks annotated 
on the body of a chimpanzee. Each of these landmarks is 
marked, whenever visible, on each individual within the 
frame.  
 
Manual annotation of the frames All frames were hand-
annotated by the researcher using Napari (Chiu and Clack, 
2022). Occluded yet inferable body parts were also 
annotated, given that if humans can infer the location of a 
certain body part in a still image, there is contextual 
information available which can be used by the network to 
infer the body part as well. We used the names of the 
chimpanzees to identify the individuals. Females and infants 
were marked as spectators.  
 
Automatic annotation of frames We trained a DLC model 
with RESNET101 architecture on the manually annotated 
frames using 95% of the data for the train set and 5% for the 
validation set. Training was completed by using Google 
Colab. The GPUs used varied over time, based on their 
availability, but the training was mainly conducted on a T4 
with 15gb RAM. Graphic feedback was provided by 
Tensorboard and plotted from the log information output 
during training. Mathis et al. (2018) and Lauer et al. (2022) 

recommend terminating training when the loss plateaus; we 
found that the loss plateaus at +/- 20.000 iterations for all 
models. This is less than the advised number of iterations that 
Lauer et al. recommend for multi-animal training (between 
50k and 100k). However, due to our limited resources and the 
danger of overfitting, we decided to investigate the model 
performance after training for 20.000 iterations.  

We evaluated our models by comparing our results with 
Wiltshire et al. (2023) and through inter coder reliability 
between two human annotators (see Figure 2). Due to uneven 
rankings caused by the missing head marker in Wiltshire et 
al.’s data, we were only able to calculate the Spearman’s rank 
correlation coefficient between our model and the intercoder 
reliability, which was significant (r = 0.92, p < 0.05). For 
illustrative purposes, we included Wiltshire et al.’s rankings 
in Figure 2. 
 

 
Figure 2. The rank of the body part relative to the other body 
parts based on the mean RMSE is printed in the cell. 
Labelability is printed on a scale from 1(green) to 10 (red), 
where 1 is best labelable and 10 worst labelable. Labelability 
of the current models (Wiltshire et al. vs. RESNET101 
trained by the authors) indicate how well they correspond to 
a human annotator (ground truth), and for human coders how 
well they correspond between each other. The labelability 
shows that we get comparable specificities to body parts in 
our currently trained model relative to Wilshire’s model. 
 
Creating hand-crafted features for grooming detection 
Features were crafted to express properties of the data that we 
hypothesized predict grooming behavior. We first used the 
markers to create 2D vectors that describe the bones of the 
body parts. For example: the left wrist coordinates and left 
elbow coordinates constructed the lower left arm vector. An 
additional eleven vectors were created (see Figure 3, blue 
vectors): both lower arms (wrist to elbow), both upper arms 
(elbow to shoulder), shoulders (shoulder to shoulder), neck 
(head to neck), spine (neck to sacrum), both upper legs 
(sacrum to knee), and both lower legs (knee to ankle). After 
constructing skeleton vectors, we constructed features that 
can be grouped in three categories: within features, between 
features, and flexion/extension features. Within features 
include the skeleton vectors, body markers and their self-
embeddings, e.g. the position of each body part relative to 
every other body part expressed as the normalized Euclidean 
distance between the two (see Equation 1 and Figure 3, red 
vectors), or the distance between wrist and shoulder (a proxy 
for limb extension/flexion, see Figure 3, yellow vector).  
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Figure 3. A Sketch of Different Constructed Features During 
a Grooming Interaction. The different types of features that 
capture the kinematic data in a grooming interaction. 

 
Equation 1: Calculation of normalized Euclidean distance 
between two bodyparts 
 

 
 

 
 

Between features include the distance of the wrist of one 
ape participating in a grooming bout and the body parts of the 
other ape (see Figure 3, green vectors). This distance was 
calculated using the pseudocode in Code Block 1. All 
distances were normalized by the Euclidean distance between 
the sacrum and the neck, such that distances are comparable 
between apes of different sizes. 
 
Code block 1: Pseudo code minimum distance point E to 
line segment AB 
 
Input: point A (x,y), point B (x,y), Point E (x,y) 

 
1. calculate vector AB , BE, and AE 
2. calculate the dot product of AB and BE 
(AB_BE) 
3. calculate the dot product AB and AE 
(AB_AE) 

 4. calculate the minimum distance: 
 
# if AB_BE > 0: 
 # output: euclidean distance between B and E 
# elif AB_AE < 0: 
 # output: euclidean distance between A and E 
# else: 
 # output: |EF| = |(AB X AE)/|AB|| 
(perpendicular distance)  

 
Constructing binary labels for the data All frames in our 
data set are paired with a variety of labels that describe the 
grooming situation. We labeled a total of 464 pictures as 
Right_grooms_Left (40%), 354 pictures as 
Left_grooms_Right (30%), 72 images as Mutual_Grooming 
(6%) and 271 No_Grooming (23%).  

Support Vector Machine (SVM)  
Training Two support vector machines (SVM) were trained 
on the manually annotated frames and their grooming labels. 
One SVM used a linear kernel and one used a non-linear 

third-order polynomial kernel. We used an 80/20 split for 
train and test set. Missing data points in the features were 
approximated using a mean strategy imputer. We weighed 
errors to compensate for class imbalance. Because we 
corrected for class imbalance, chance level performance is 
25%. 
 
Results For all classes we find good classification 
performance (see Table 1a and Table 1b). Interestingly, the 
most difficult class to classify is mutual grooming, which is 
classified as right grooming left in 14.3% of the cases or as 
left grooming right in 21.4% of the cases, but the grooming 
behavior is always recognized. Similar results were found in 
the linear kernel case (see Table 1a and Table 1b). 
 
Table 1a: Confusion Matrix multiclass SVM polynomial 
kernel and linear kernel 

True class  Predicted class 

 L_Grooms_R Mutual No_Grooming R_Grooms_L total 

L_Grooms_R 

Polynomial 63 (86.3%)  2 (2.7%) 6 (8.2%)  2 (2.7%)  
73 

Linear 61 (83.6 %) 2 (2.7%) 4 (5.5 %) 6 (8.2 %) 

Mutual 

Polynomial 3 (21.4%) 9 
(64.2%) 0 (0.0%) 2 (14.3%) 

14 

Linear 4 (28.6 %) 8 
(57.1%) 1 (7.1 %) 1 (7.1 %) 

No_Grooming 
Polynomial 4 (7.8%) 1 (2.0%) 43 (84.3%) 3 (5.9 %) 

51 
Linear 6 (11.8 %) 1 (2.0%) 32 (62.7 %) 12 (23.5 %) 

R_Grooms_L 

Polynomial 2 (2.1 %) 1 (1.1%) 16 (17.0%) 75 (79.8 %) 

94 
Linear 3 (3.2 %) 0 (0.0 

%) 7 (7.5 %) 84 (89.4 %) 

Total 72 13 65 82 232 

Note. Accuracy polynomial kernel: 81.9%, accuracy linear kernel: 79.7% 

 

Table 1b: Statistics Multiclass SVM polynomial kernel and 
linear kernel 
  L_Grooms_R Mutual No_Grooming R_Grooms_L Macro 

Avg. 
Weighted 

avg. 

Precision Polynomial 0.875 0.69 0.662 0.915 0.786 0.833 

 Linear 0.824 0.727 0.727 0.816 0.774  0.79 

Recall Polynomial 0.863 0.64 0.843 0.798 0.787 0.819 

 Linear 0.836 0.571 0.627 0.893 0.732 0.797 

F1-score Polynomial 0.869 0.66 0.741 0.852 0.782 0.822 

 Linear 0.830 0.640 0.674 0.853 0.749 0.793 

 
Behavior classification - Automatic labeling using DLC 
We presented the trained model with a randomly selected 
video that was not included in the train dataset, the test 
dataset of the DLC model, nor the train/test set of the SVM.  
In this video, two males are grooming each other. All 
detections of body parts created by DLC were stored and 
filtered on a likelihood of > 0.8.  

Automated Behavior classification 
Performance evaluation To validate our model, a 
comparison was made to a hand labeled video of the 
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grooming directionality in the video. Manual labeling was 
done by the time duration of the grooming bout expressed in 
seconds. We multiplied the amount of seconds with the frame 
rate to project the directionality label on frame level. The 
accuracy and precision were computed to assess the 
performance on unseen, video data. 
 
Video creation We used PILLOW to draw the predicted 
class on each frame and used FFMPEG to create a video with 
the created labels (Figure 3). Additionally, the moment where 
the class changes is now flagged as a change in grooming 
context. A csv file with timestamps is created including all 
labels, the flag for a change in grooming context (also known 
as a bout), and more specifically where a turn change occurs 
(a change in grooming directionality that involves a switch of 
groomer / groomee identity). Turn was operationalized as a 
change in grooming directionality lasting longer than a 
second (25 frames) and the video to keep the human in the 
loop. 

Results 
After comparing the class labels predicted by our SVM with 
the ground truth class labels, we find an accuracy of 0.863, 
meaning that we were able to correctly predict the grooming 
directionally in 86% of the video (Table 2a/b). All endings of 
the grooming bouts are correctly recognized and no false 
positives or false negatives for turn changes were found. 
Although sometimes a different label was predicted, it never 
lasted a consecutive number of frames to count as a turn 
change (Figure 4). 

 
Table 2a: Confusion Matrix polynomial Multiclass SVM 

True class Predicted class 

 L_Grooms_R Mutual No_Grooming R_Grooms_L total 

L_Grooms_R 0 0 0 0 0 

Mutual 0 148 0 14 162 

No_Grooming 0 0 0 0 0 

R_Grooms_L 0 25 0 98 123 

Total 0 173 0 112 285 

Note. Accuracy: 86.3% 

 
Table 2b: Statistics polynomial Multiclass SVM  

 L_Grooms_R Mutual No_Grooming R_Grooms_L Macro 
Avg. 

Weighted 
avg. 

Precision - 0.855 - 0.875 0.865 0.864 

Recall - 0.914 - 0.797 0.856 0.863 

F1-score - 0.692 - 0.589 0.641 0.648 

 
Our results show that, in 86% of the frames, grooming 
behavior was correctly recognized, and it was able to predict 
the occurrence of a turn. Looking closer at the data, we see 
that the closer to a turn the more wrongly predicted frames 

are present (Figure 4). The saturation of wrongly predicted 
frames shows a shift in turn-relevant kinematic information. 
 

 
Figure 4. A representation of machine labeled frames over 
time. This is a schematic depiction of the labeled video. 
Predicted grooming directionality is depicted in the colored 
bar. Below there is a timeline of the ground truth label, based 
on the labeling by a primatologist. The time series is 
expressed in consecutive frames. 

Discussion 
We investigated the feasibility of using pose estimation 

through DLC to automatically label grooming interactions 
between chimpanzees in a natural setting. Using self- and 
other-pose embeddings as an input for an SVM classifier,  our 
approach was able to recognize behaviors with a high 
granularity (80%), classifying not only grooming presence 
but also directionality (who is grooming who). Consequently, 
our techniques can be extended to various directional social 
behaviors in chimpanzees (and other species) that are 
characterized by distinct pose structures, such as greeting 
interactions, mother-infant interactions, food sharing, and 
displays of aggression. Additionally, given that we used raw 
recordings to extract the kinematic data, our approach is not 
limited to the anatomical features of chimpanzees and can be 
extended to other species. For example, human social touch 
could be automatically detected using our approach, or our 
approach could be leveraged for manual gesture detection 
(e.g., Ripperda et al., 2020). Furthermore, our framework 
requires limited pre-processing of video attributes, making it 
useful across different data collection protocols. In sum, this 
pipeline opens the door for further research on a range of 
different social interactions and across various other species 
living in natural environments.  

The success of our pipeline is potentially of huge 
significance to primatologists. As previously mentioned, it is 
often hard to consistently annotate datasets due to large 
amounts of raw video footage. By automatically flagging the 
presence of a certain behavior in video data, our pipeline 
provides a pre-screening mechanism. Thus, even if 
researchers prefer manual annotation, rather than machine 
classification, our method will still allow for a reduction of 
search time for relevant behaviors. In the future, one idea is 
to build in a confidence measure where classifications falling 
below the confidence threshold trigger a GUI for the 
researcher to label the datapoint manually. This manual 
labeling would present an opportunity to train the model on 
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challenging or underrepresented data points, enhancing 
performance through 'human in the loop' training. 

One of the advantages of a linear kernel SVM is the 
possibility to explore the coefficient space. Informal 
explorations revealed that the features our classifier uses to 
make a distinction between different directionalities seem to 
correspond with some observations and theory on grooming 
signals. For example, when the ape is positioned squarely in 
front the camera, the SVM uses the distance between left 
wrist and right wrist of that ape to determine the groomer 
identity. The relevant hypothesis here being that the greater 
the distance from left wrist to right wrist, the more the body 
is opened and therefore the more body surface is presented to 
the groomer (Fedurek et al., 2015), implicating that said ape 
is the groomee. Unfortunately, due to the lack of 3D 
information in our data it was not possible to test this 
hypothesis. It did however show that analyzing the 
coefficients of the linear classifier is potentially informative, 
which provides some value over and above black box deep 
learning based classifiers. The subtleties in pose captured 
from these extractions may in turn further inform human 
researchers, providing key insights into motion analysis of 
body signaling in social behavior. 

Limitations 
There are several limitations to our study. By limiting 
ourselves to 16 markers, we had the benefit of avoiding 
increased network complexity and a more laborious manual 
annotation process. Additionally, using the landmarks by 
Desai et al. (2023), we created comparable data between 
these two studies. However, including body parts relevant to 
the behavior under investigation, such as the fingers, lips and 
lower back in case of grooming, could have potentially 
conveyed more information about communicative cues, 
making the results more accurate. In the future it would be 
interesting to combine existing datasets including more 
annotated body parts to assess performance differences of our 
pipeline. 

Another limitation was that the pipeline was tested on a 
variety of images, but only tested on one example video. This 
particular video was not present in the training set or 
corresponding test set but was part of the data collection done 
by the same researcher, at the same location, with the same 
chimpanzees. Therefore, it is difficult to comment on the 
ecological validity of our approach at this juncture of the 
project; however, in theory, our method could be used for 
data collected using different data collection protocols. To 
test this statement, the next planned step is to test the 
performance of our pipeline on videos recorded at different 
field sites. 

Notes on using machine learning in primatology 
Increased generalizability of models leads to broader 
applicability across various types of behavioral data. This 
heightened applicability in turn contributes to the 
sustainability of research. A model only needs to be trained 
once and can be subsequently used as a pre-trained model; 

these pre-trained models are easily fine-tuned to answer other 
research questions. Using pre-trained models is 
computationally cheaper, more (environmentally) 
sustainable and requires less data than creating and training a 
model from scratch. It also contributes to the accessibility of 
machine learning techniques, since research facilities with 
fewer resources can also access pre-trained models. A similar 
strategy was employed in the DLC's model zoo (Kane et al., 
2020). Taking the sustainability implications into account is 
of huge importance, especially in a field such as primatology 
where many species are classified as threatened. 

The introduction of DLC has revolutionized the way we 
can conduct behavioral cross-species research. Our results 
show the continuing promise of machine learning techniques 
for the field of primatology. Yet there still lies a task for the 
community to improve the accessibility of these methods. In 
its current state adapting the software to different types of 
data requires programming and hardware knowledge. Our 
recommendations are to centralize documentation and make 
more extensive use of version control; recent advancements 
in the development of DLC show how collaboration and 
communication between fields and researchers increase the 
usability of the software. 

Conclusion 
This study contributed to the research of understanding 

social behavior in chimpanzees and how they coordinate their 
actions, which can be extended to human social interactions. 
Specifically, we make large scale data analysis possible on 
grooming events in the wild, in a non-vocal modality and in 
a social context where no current work has been published on 
the topic. Our findings allow for further exploration of how 
grooming events are coordinated, what social rules govern 
this behavior, and how interactive primitives can help form  
social networks. Additionally, our utilization of machine 
learning techniques underscores the potential of technology 
in studying wild primate behavior and automating the 
recognition of specific behaviors. Beyond the contribution to 
the field of primatology, this study highlights   the growing 
pains of these advancements.  Notably, the tracking and 
classification task applied to the current dataset presented 
significant technical challenges (e.g. footage recorded in 
natural surroundings, with multiple individual tracking) and 
the process therefore shed light on necessary improvements 
needed in software to fully harness computational methods in 
primatological research. We do however conclude this work 
by acknowledging these machine learning techniques hold 
promise for automating labor-intensive processing, opening 
up exciting new research avenues within this field. 
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