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Abstract 

In string-inspired semi-realistic heterotic orbifolds models with an anoma
lous U(l)x, a nonzero Kobayashi-Masakawa (KM) phase is shown to arise 
generically from the expectation values of complex scalar fields, which appear 
in nonrenormalizable quark mass couplings. Modular covariant nonrenormal
izable superpotential couplings are constructed. A toy Z3 orbifold model is 
analyzed in some detail. Modular symmetries and orbifold selection rules 
are taken into account and do not lead to a cancellation of the KM phase. 
We also discuss attempts to obtain the KM phase solely from renormalizable 
interactions. 

* E-Mail: JTGiedt@lbl. gov 

1This work was supported in part by the Director, Office of Science, Office of High 
Energy and Nuclear Physics, Division of High Energy Physics of the U.S. Department of 
Energy under Contract DE-AC03-76SF00098 and in part by the National Science Foun
dation under grant PHY-95-14797. 



' < 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain conect information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any wananty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



1 Introduction 

Numerous attempts hiwe been made to explain the origin of CP violation 
in the context of string-derived effective supergravity models. Early on, Stro
minger and Witten suggested compactification might lead to explicit violation 
of CP from the four-dimensional point of view, since the operation of CP is 
orientation-changing in the six-dimensional compact space [1]. Inspired by 
this prospect, detailed analyses were carried out for various compactifications 
of the heterotic string; for example, a Calabi-Yau manifold was examined in 
[2] and ZN orbifolds were investigated in [3]. In each case where explicit CP 
violation was investigated, it was found not to occur. Subsequently, Dine et 
al. argued that CP is a gauge symmetry in string theory and that explicit 
breaking is therefore forbidden both perturbatively and nonperturbatively 
[4]. In the same work it was shown that this is certainly true for heterotic 
orbifolds. Based on these results, it is clear that if a heterotic orbifold is 
to provide a reasonable approximation to the correct underlying theory of 
known interactions, CP violation must occur spontaneously from string mod
uli or matter fields (or perhaps both) acquiring vacuum expectation values 
( vevs). 

In a series of papers, Bailin, Kraniotis and Love (BKL) considered the pos
sibility of supersymmetric CP violation (SCPV) 1 in heterotic orbifold models 
[6]. They related SCPV to the complex phases of string moduli vevs. While 
SCPV is an interesting possibility, it is important to understand how the 
Kobayashi-Masakawa (KM) phase [7] might occur in semi-realistic orbifold 
models and how generic it is. Furthermore, SCPV in the context of super
gravity is phenomenologically problematic unless soft terms meet a variety of 
stringent criteria [5, 8]; the current status of SCPV and various solutions to 
related phenomenological problems are reviewed in ref. [9]. By contrast, the 
KM phase does not have dangerous side-effects; the smallness of CP violation 
is for the most part explained by the small mixing angles between heavy and 
light generation quarks while large electric dipole moments do not arise from 
this source [10]. 

1 By this, we mean CP-violating complex phases in the soft supersymmetry breaking 
operators of minimal extensions to the Standard Model (SM) [5]. 
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BKL have considered complex vevs for the string moduli of heterotic 
orbifolds as a source of the KM phase [11]. T- and U-moduli, which parame
terize deformations of the six-dimensional compact space consistent with the 
orbifold construction, enter into the effective Yukawa couplings for twisted 
fields, as described below. In this article we will restrict ourselves to Z3 and 
z3 X z3 orbifolds, which have no U-moduli because the complex structure is 
fixed. It has been demonstrated by BKL and others that is possible for non
perturbative effects to stabilize these string moduli at complex values [6, 12]. 
BKL have shown that, as a result of complex string moduli vevs, 0(1) phases 
can arise in twisted Yukawa coupling coefficients. However, they do not con
struct any models and it is unclear whether or not the phases they find are 
physical: phases in the quark Yukawa matrices do not necessarily imply the 
existence of a nonzero KM phase.2 As an example, let us write the quark 
mass superpotential as 

(1.1) 

and suppose Yukawa matrices of the form 

).~. = I.A~-Iei(a;+f3j) 
%) %) ' 

(1.2) 

The phases ai', f3j'd are not physical since they can be removed by rephasing 
the quark fields according to 

Q -ia·Q iL -+ e ' iL, (1.3) 

Naive orbifold models of quark Yukawa couplings assign the nine SM multi
plets QiL, ujL, djL to different sectors of the Hilbert space and rely on trilinear 
couplings to give all of the quarks mass; the assignments to different sectors 
determine the moduli-dependence of the effective Yukawa matrices, hence 
the complex phases. If these assignments can be brought into correspon
dence with phases that enter the Yukawa matrices in a way similar to (1.2), 
then they will not give rise to CP violation. An example of this is described 
in Section 2 below. Furthermore, when one reviews the tables of phases dis
played in the appendix of ref. [11], one finds that many of them are identical 

2 Complex phases which give rise to a nontrivial KM phase will be termed physical while 
those which can be eliminated by rephasing quark fields will be termed spurious. 
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or zero for a given orbifold model and T-modtilus vev. It then becomes a 
concern whether or not this high degree of degeneracy causes the phases to 
"wash out" in the final analysis. An example of this is also given in Section 2. 

Beyond these more obvious ways that complex phases in the Yukawa ma
trices may not give rise to a nontrivial KM phase, we must also be concerned 
that symmetry constraints imposed on the Yukawa matrices by the under
lying string theory might relate the phases to each other in such a way that 
the CKM matrix can be made entirely real. The embedding of the orbifold 
action into the internal left-moving gauge degrees of freedom typically leaves 
a surviving gauge group significantly larger than the SM. For example, in 
the three generation constructions which we will discuss below the surviving 
gauge group G has rank sixteen [13, 14]. Low-energy effective Yukawa cou
plings must be constructed from high-energy operators invariant under G. 
The high-energy operators are also subject to orbifold selection rules, which 
result from symmetries of the six-dimensional compact space. (A brief review 
of orbifold selection rules may be found in ref. [14].) Finally, the underlying 
conformal fiel~ theory has target space modular symmetries associated with · 
the identification of equivalent string moduli backgrounds. It is conceivable 
(albeit highly unlikely) that orbifold selection rules, gauge invariance under 
G and target-space modular invariance may conspire to make phases derived 
from the scalar background spurious. In the present paper we construct a toy 
Z3 orbifold model which is subject to these symmetry constraints; we con
struct explicit quark mass matrices in order to make conclusive statements 
about the existence of a nonzero KM phase. 

The case of complex vevs for the T-moduli is treated below; however, 
we place more emphasis on another origin of complex phases, which in our . 
opinion is a much more generic and natural source of CP violation in semi
realistic heterotic orbifold models. Nonrenormalizable couplings are often 
important in semi-realistic heterotic orbifold models for the following reason. 
Wilson lines are typically included in the embedding to get a reasonable 
gauge group.3 In many cases their inclusion leads to an anomalous U(1)x 

3Standard GUT scenarios require large higgs representations, whereas they are absent 
in affine levell orbifold constructions [15]. This makes it phenomenologically advantageous 
to obtain G = GsM x Gather from the start. 
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factor: tr Qx =/=- 0. The apparent anomaly is cancelled by the Green-Schwarz 
mechanism, which induces a Fayet-Illiopoulos (FI) term (16]. Several scalar 
fields get vevs Vi f"V O(l0-2±1) (in units where mp = 1/v'SiG = 1) to 
restabilize the vacuum in the presence of the FI term; thus, the suppression 
of nonrenormalizable couplings due to vevs Vi may be as little as 0(10-1). 

The scalar fields which cancel the FI term break the U(1)x gauge symmetry 
at the scale Ax f"V 1017 GeV by the Higgs mechanism; in order to distinguish 
them from the higgses associated with electroweak symmetry breaking, we 
will for convenience and with all due apologies refer to them as Xiggses. The 
Xiggses are usually charged under other U(1) factors of G besides U(1)x; a 
basis of generators can always be chosen such that these other U(1)'s are not 
anomalous.4 Vacuum stabilization near the scale Ax requires the D-terms of 
these other U(1)'s to vanish. To satisfy the numerous D-flatness conditions, 
it is generally necessary for several Xiggses to· get vevs. Typically there are 
0(10) or more such Xiggses. 

In this paper we demonstrate how the KM phase in semi-realistic heterotic 
orbifold models arises generically from the "Planck slop" created by the Xig
gses. Nonrenormalizable couplings make significant and in some cases leading 
order contributions to the effective quark mass matrices. For instance, in the 
semi-realistic model developed by Font, Ibaiiez, Quevedo and Sierra in Sec
tion 4.2 of ref. [14] (FIQS mode0, the down-type quarks get their leading 
order mass from dimension 10 holomorphic couplings. (We count dimen
sions as 1 for each elementary superfield entering a coupling.) For up-type 
quarks, only the top and charm get masses from renormal.izable couplings. 5 

The up quark must receive its mass from nonrenormalizable couplings or 
radiative mass terms. Although high order nonrenormalizable couplings are 
su.ppressed by large powers of the 0(10-2±1) Xiggs vevs, the suppression is 
not as large as one might think, for two reasons. Many high order opera
tors involving the Xiggses generically exist, with their number increasing at 
each higher order. Most of the operators are closely related by variations in 

4 We will not consider the case where Xiggses are in nontrivial representations of the 
nonabelian factors of G. 

5 We identify top, charm, etc., by ranking the mass at a given level of analysis; of course, 
the identification will be imperfect once higher-order corrections are included. 
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fixed point locations and oscillator "directions" , as will be shown in detail 
below; however, this does not change the fact that the number of distinct 
operators tends to be large. The second reason why high order couplings 
are important is that the coupling strength tends to be much larger than 
0(1) and to grow as the dimension of the coupling increases, as was pointed 
out by Cvetic et al. [17]. The combination of these two effects forces one to 
proceed to rather high order before couplings make negligible contributions 
to the quark mass matrices. Here, "negligible" is taken to mean less than, 
say, 10% contributions to the lightest quark masses. As a consequence, each 
effective Yukawa coupling A.r/ depends on the vev of a linear combination of 
a large number of monomials of Xiggses. The principal point of this article is 
that since 0(10) Xiggses get complex vevs, which appear in a large number 
of monomials contributing to effective quark Yukawa couplings, the Yukawa 
matrices are generically complex and a nonvanishing KM phase is almost 
inevitable. Indeed, in any orbifold model with an anomalous U(1)x present, 
it seems improbable that one would not have CP violation in this way, since 
it is difficult to see how nonrenormalizable couplings involving the Xiggses 
would not contribute to the effective quark Yukawa couplings. 

Previous authors have noted the possible role of nonrenormalizable cou
plings in heterotic orbifold models for giving large mass hierachies and CP 
violation from a KM phase [18, 19]. In this respect the mechanism analyzed 
here is not new. However, we present much more detailed results by con
structing an explicit toy model and we impose modular invariance on the 
nonrenormalizable couplings. The model is inspired by three generation het
erotic Z3 orbifold models previously investigated in the literature [13, 14]. 
Our model is, by construction, quite similar to the FIQS model, which is 
string-derived: in the FIQS model, the gauge group, the spectrum of states 
and the allowed superpotential couplings are completely determined from the 
underlying string theory. The FIQS model suffers from phenomenolgical dif
ficulties related to the quark mass matrices; these difficulties were previously 
pointed out in [20]. At leading order in the FIQS model, the top and charm 
come from different SU(2) doublets than the bottom. As a result, the lead
ing order CKM matrix has some of its diagonal entries zero and some 0(1) 
heavy-light generation mixing angles, which is clearly unacceptable. The as-
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signments into SU(2) doublets are determined by the H-momenta6 of the 
untwisted states, so the identification of which doublet a given UiL or diL sits 
in and how it couples at leading order is fixed. A second problem with the 
FIQS model is that it is difficult to give the three lightest quarks mass. We 
have searched for dimension d ~ 30 allowed holomorphic couplings which 
might do the job (under the assumptions made in the FIQS model about 
Xiggs and T-moduli vevs) and found that none exist. We further found that 
radiative masses only occur at high loop levels and would be minuscule in 
comparison to the experimental values. However, we assumed the leading 
order Kahler potential in this analysis. It is possible that higher order terms 
in the Kahler potential could provide a mechanism for giving the light quarks 
masses in agreement with experimental values. 

We have attempted in many ways to evade these problems. However, we 
were not able to do so without creating other difficulties. We are actively 
searching for a superior three generation heterotic Z3 orbifold model to study. 
In the meantime, we have developed a toy model which replicates the FIQS 
model wherever possible while avoiding its problems, in order that we might 
illustrate that a nontrivial KM phase generically arises from the complex 
vevs of Xiggses, even after orbifold selection rules and target space modular 
invariance have been accounted for. 

Although the coupling coefficients for nonrenormalizable superpotential 
couplings (which are in principle obtainable from the underlying conformal 
field theory) are not apparently known, we propose couplings which . trans
form in the requisite manner under the (SL(2, Z)]3 diagonal subgroup of the 
full SU(3, 3, Z) modular duality group of the Z3 orbifold (21]. We take into 
account the non-trivial transformations of twisted sector fields in our con
struction of modular invariant couplings. In the three generation Z3 orbifold 
models upon which the toy model of Section 4 is based, different species are 
distiguished by quantum numbers (other than the fixed point location in the 
third complex plane) of massless states in the underlying theory (14, 13]. 
For twisted fields <P~, where n labels the species and i = 1, 2, 3 labels the 
fixed point locations in the third complex plane, <P~, <P~ and <P! mix amongst 

6H-momenta are the 80(10) weights of bosonized NSR fermions, which appear in the 
vertex operators creating asymptotic states. 
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themselves under the T 3 -+ 1/T3 duality transformation in the third complex 
plane [22, 23]. Constraining holomorphic polynomials of dimension d > 3 to 
transform with 7 modular weight -1 in light of these nontrivial mixings places 
strong constraints on the form of the superpotential terms and gives some 
confidence that our proposed nonrenormalizable coupling coefficients may 
reproduce key features of the actual couplings which would be derived using 
conformal field theory techniques. In the course of discussing our assump-

. tions for the coupling coefficients of nonrenormalizable superpotential terms, 
we will explain why the calculation of these coefficients from the underlying 
string theory represents an extremely difficult problem. For now, we remark 
that the most intimidating aspect of such a calculation is the integration of 
the string correlator over the d - 3 vertex locations which cannot be fixed 
by S£(2, C) invariance, where dis the dimension of the coupling. The string 
correlator is generally a very complicated function of the unfixed vertex lo
cations. 

The reliability of the effective supergravity approach is hampered by the
oretical uncertainties in-the Kahler potential of Z3 orbifold models. Nonlead
ing operators in the Kahler potential are neglected in most analyses; however, 
with O(l0-2±1) Xiggs vevs, higher order terms in the Kahler potential give 
non-negligible corrections to the mass matrices of quarks: corrections from 
higher order terms give the quarks noncanonical, nondiagonal kinetic terms 
which must be rendered canonical by nonunitary field redefinitions when one 
goes to compute mass eigenstates and mixings. These complications cannot 
be ignored if one hopes to develop an accurate picture of the low-energy phe
nomenology predicted by a given model. Higher order terms in the Kahler 
potential ought to be included in order to be consistent with the high order 
expansion of the superpotential, both of which are necessary in order to pick 
up all significant contributions to the quark mass matrices. The calculation 
of higher order corrections to the Kahler potential is notoriously difficult be
cause of the lack ofholomorphicity. It is hoped that future work on the Kahler 
potential of heterotic Z3 orbifold models will amend these deficiencies and 
allow for an improved analysis of the low energy phenomenology of semi
realistic models. Present ignorance regarding these aspects of the Kahler 

7Modular weight will be explained below. 
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potential has forced us to make a number of oversimplifications. However, 
we do not expect these oversimplifications to affect our main result that a 
nontrivial KM phase is generic. Introducing higher order terms in the Kahler 
potential is not expected to eliminate the complex phases which enter into 
the effective quark Yukawa couplings from the vevs of Xiggses. 

In Section 2 we present examples where the complex phases found by 
BKL are spurious. In Section 3 we introduce modular invariant coupling 
coefficients for nonrenormalizable superpotential couplings. In Section 4 we 
discuss our string-inspired toy heterotic Z3 orbifold model. In Section 5 we 
make concluding remarks and suggest further investigations motivated by 
our results. In the Appendix we address normalization conventions for U(1) 
charges in string-derived models. We explain how to account for different 
conventions when determining the FI term and describe the Green-Schwarz 
cancellation of the U(1)x anomaly in the linear multiplet formulation. 

2 Counterexamples 

Here; we consider some assignments of quarks and higgses in Z3 x Z3 

orbifold models and show that the complex phases found by BKL do not 
lead to a nontrivial KM phase for these particular examples. We certainly 
do not wish to imply that the phases found by these authors cannot lead to a 
nonzero KM phase; we only wish to point out that due to the degeneracy in 
phases (in this case always 0 or -7r/3), they can in many cases be eliminated 
by rephasing quark fields. In our opinion, a more careful analysis is required 
in order to conclude whether or not the phases found by BKL can account 
for CP violation. 

We will use the notation and conventions of ref. [24] in our discussion of 
the twisted sectors and fixed tori of the z3 X z3 orbifold. This orbifold is 
constructed using twists 

1 
() = 3(1, 0, -1), 

1 
w = 3(0, 1, -1). (2.1) 

We make use of the 0, Ow and Ow2 twisted sectors. The fixed tori for each of 

8 



these sectors are given by 

fe 

few 

~1 
(2e1 + e1) + ~3 

(e3- e3) + v2, m1,3 = 0, ±1, v2 E K2, (2.2) 

1 3 32: ri(2ei + ei) + £, Ti = 0, ±1, £ E A, (2.3) 
i=1 

~1 (2e1 + ei) + p; (e2- e2) + V3, P1,2 = 0, ±1, V3 E K3, (2.4) 

where A is the [SU(3)]3 root lattice and Ki is the ith complex plane. Physical 
states must be simultaneous eigenstates of (} and w; they are therefore linear 
combinations of states whose zero modes are given by different fixed tori. 
Since the first complex plane is neutral under w, physical states in the (} 
sector can be chosen with a definite quantum number m1. Because the form 
of the fixed torus (2.4) in the first complex plane is the same as in the (} 
sector (2.2), and since w does not rotate in the first plane, a physical state 
in the 8w2 sector can be chosen to have a definite quantum number p1 as 
well. The coefficients of the trilinear Yukawa couplings are determined by 
the evaluation of correlation functions in the underlying string theory. The 
contribution from a complex T 1 in the classical partition function is the only 
source of complex phases in the trilinear couplings. The phases of T2

•
3 do not 

matter because the twist operator contributions to the correlation function 
in the second and third complex planes reduce to the identity, as discussed 
in ref. [24]. The phases found in ref. [11] for the case (T1) = exp(i1rj6) are 
determined by the difference m1 - PI: 

m1- PI= 0; 
(2.5) 

m1 - P1 = ±1, ±2. 

We next suppose assignments as follows: Hu, Hd are in the(} sector with 
fixed tori quantum numbers m!, mf resp.; QiL are in the 8w2 sector with fixed 
tori quantum numbers Pi resp.; ujL, djL are in the 8w sector. The phases (2.5) 
enter into the Yukawa couplings (1.1) according to: 

\U 1 \U I ia? A··= A .. e ' 
~J ~J ' 

(2.6) 
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If mf = mt then we recover the CP conserving forms of (1.2) with ai = 
af = af and f3j'd = 0. Now suppose m~ =f. mt and that Pi = i- 1, so that 
each generation of QiL has a different value of p1 . For definiteness, let us 
take mi = -1 and mt = 0. It is easy to check that (2.5) gives 

u_o al- , 
u 7r 

0!2,3 = -3, 

Next rephase Q(2,3)L -+ ei1r/3Q(2,3)L· This changes the phases to 

d_o a3- . 

(2.7) 

(2.8) 

To determine the CKM matrix we find unitary matrices Vu,d such that 
VJAuAutvu and V}AdAdtvd are diagonal with positive entries. However, (2.8) 
implies that Vu = Ru and Vd = Z*·Rd where where Z = diag (ei7r/3, e-i7r/3 , 1), 
Ru, Rd E 0(3) and * denotes complex conjugation. The charged current in 
two-component notation is given by 

Jr_: = ~ UiLa-mdiL = ~ U~La-m(VcKM)ijdJL' (2.9) 
i ij 

where u~L and d~L are mass eigenstates. Then 

VcKM = V!' · ~* = R~ ·Z ·Rd. (2.10) 

Note that VcKM = VuT · 'Vd* differs slightly from more conventional nota
tion because in our two-component notation we diagonalize Yukawa matri
ces which would be defined by u R (Au )T uL and JR (A d)T dL in four component 
notation. The matrix Z lies in the center of U(3) and therefore commutes 
with both R~ and ~. As a consequence, we may also write 

VcKM = Z · R~ ·Rd. (2.11) 

The phases in Z can be completely removed from the lagrangian by a rephas
ing of the mass eigenstate quark fields 

I z I Ui(L,R) -+ iiUi(L,R) · (2.12) 

Thus, CP is conserved in spite of complex phases in the Yukawa matrices 
which are not of the trivial type given in (1.2). Notice that the absence of 
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CP violation can be traced to the degeneracy of the nonzero values of the 
phases and the fact that it is -1r /3 which appears. If we did not have a 
multiple of 1r /3, the matrix Z would not be a center element of U(3) and the 
argument would break down. 

We have not performed a thorough analysis of all the possible assignments 
of quarks and higgses in the z3 X z3 orbifold. However, the few choices 
that we have investigated all allow for the complex phases from the trilinear 
couplings to be eliminated. It is an interesting question whether or not CP 
violation really can occur, and the examples just presented demonstrate that 
a careful case-by-case analysis is probably required in order to draw any firm 
conclusions. It should be noted that in the case where nonrenormalizable 
couplings give significant corrections to the trilinear (0, Ow, Ow2

) coupling 
discussed above, then the arguments fail since the non-zero phases in the 
effective Yukawa couplings will in general be different from -1r /3. 

Lastly, we would like to comment on another suggested source of c?m
plex phases. As noted above, physical states are constructed from linear 
combinations of states whose zero modes are given by different fixed tori. It 
was noted by Kobayashi and Ohtsubo that complex phases enter from the 
coefficients in the linear combinations and that these might be a souce of 
CP violation [25]. However, this amounts to explicit CP violation since it 
does not require a particular scalar background. As explained in Section 1, 
explicit CP violation does not occur in heterotic orbifolds since CP is a gauge 
symmetry of the underlying theory. Therefore, the phases which enter into 
couplings from this source cannot contribute to the KM phase. 

3 Modular invariance 
I 

In the toy model to be considered below, nonrenormalizable superpo-
tential couplings will play a crucial role. In this section we present a set of 
assumptions for coupling coefficients of holomorphic couplings of arbitrary 
order; the result will be couplings which transform in the requisite manner 
under the [SL(2, Z)p subgroup of the full SU(3, 3, Z) modular duality group 
of the z3 orbifold. 

We begin by considering the simpler case of a two dimensional Z3 orbifold, 
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IT IITJ(T) I Xo(T) I X1(T) 

1 0.76823 1.7134 0.97280 

eitr/6 0.80058 e-itr/24 1.5197 eitr/12 0.91251 e-itr/12 

Table 1: Values of modular functions at self-dual points. 

where there is a single modulus T and there are only three fixed points. 
Consequently, twisted matter fields carry a single fixed point label. The 
twisted trilinear couplings are known in this simple case [26]. These couplings 
can be expressed in terms of the Dedekind 'TJ function 

(3.1) 
n==1 

and the level-one SU(3) characters [22] 

Xi(T) = 'TJ-2(T) L e-trTivl2. (3.2) 
vEr; 

In this expression, f 0 is the SU(3) root lattice, while r 1,2 are shifted by 
SU(3) weight vectors. Explicitly, 

2 _ i i ( 2 -1) (n1 + i/3) lvl -(n1+3, n2+3) -1 2 n2+i/3 (3.3) 

with n 1 and n2 integers to be summed over in (3.2) and i is the integer labeling 
ri. It is easy to check that x1 = x2 . The values of these three functions at 
the self-dual points T = 1, eitr/6 are approximately given by Table 1. The 

trilinear couplings between twisted fields <I>i1 , ci>~2 , <I>;3 in the superpotential 
are 

(3.4) 

Xo(T), 

(3.5) 

0, else. 
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The overall T-independent coupling strength .A does not depend on fixed 
point locations and is obtained by factorization of the four-point string cor
relator [26]. Note that TJ(T) is superfluous and occurs only because of the 
definition of Xi(T). 

It can be checked that the above Yukawa couplings transform correctly 
under the target-space modular duality group SL(2, Z). The Kahler potential 
for the modulus T of the 2-d orbifold is given by K(T, T) = -ln(T + f'), 
which transforms under the SL(2, Z) modular transformations 

as 

T 
aT- ib 

---+ . T d' ~c + 
ad- be= 1, a,b,c,d E Z, 

K(T, T) ---+ K(T, f') + F(T) + F(T), 

(3.6) 

(3.7) 

where F(T) = ln(icT +d). We require that the quantity K + ln IWI2 remain 
invariant [27], which implies that the superpotential W transform as 

(3.8) 

where ')'(a, b, c, d) is a T-independent phase which does not appear in the 
functional which is physically meaningful, K + ln IWI2• We can take b = 

-1, c = 1, d = 0 to obtain the T---+ 1/T transformation of SL(2, Z), so that 
F(T) = ln(iT) in this case. It has been shown [22, 23] that the twist fields 
ai which create twisted vacua corresponding to fixed points labeled by i, 
and hence the twisted states <I>i, transform under the duality transformation 
T---+ 1/T as 

(a}) _ eif3 ( 1 ~ 1) ( a1) 
a2 - . r;; 1 a a a2 , 

, v3 1 -a 3 a a a 3 

(3.9) 

where exp(3i,B) = [TiT and a _ exp(27ri/3). Since the vertex operator 
which creates the twisted state <I>i is proportional to ai, the twisted fields 
must transform in a way which is proportional to the same matrix. The 
nonholomorphic phase ,8 must be absent in the supergravity definition of the 
fields. For example, we could define jji = eif312ai and use these to create the 
supergravity ·fields, which must transform in a holomorphic way. Aside from 
the mixing of different fixed points, the twisted fields tranform with a modular 
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weight q: <P--+ <P' rv e-qF(T)<P. These weights are known [28, 29, 30]; a_ non
oscillator twisted field has modular weight q = 2/3. Only non-oscillator 
twisted fields are allowed to enter into the trilinear twisted couplings due 
to the automorphism selection rule, corresponding to invariance of string 
correlators under automorphisms of the underlying SU(3) lattice. This rule 
is explained and illustrated with examples in ref. [14]. Since F(T) = ln(iT) 
for the T --+ 1/T duality transformation, non-oscillator twisted fields must 
transform as 

(3.10) 

Under the duality transformation T--+ T' = 1/T it has been shown [22] that 
the SU(3) characters transform as 

(~D =)a 0 1 1) (Xo) ~ a X1 . 
a a X2 

(3.11) 

It is also well-known that 

r/(1/T) = rl(T') = T rl(T) = -i eF(T) r/(T). . (3.12) 

We define a polynomial p which encodes the superpotential couplings (3.4), 
up to a power of 7J(T): 

Xo(T)(<P~<P~<Pj +<Pi<P~<P~ + <P~<P~<PD 
+x1 (T) ( <P~<P~<P~ + <P~<P~<P~ + <Pi<P~<P~ 

+<Pr<P~<P~ + <P~<P~<P~ + <Pi<P~<P~). (3.13) 

Using the transformation properties enumerated above, it can be shown that 

r/p --+ -i ( i~) 7]2p = -ie-F(T)7]2p. (3.14) 

Thus, the functional1]2p transforms with modular weight -1 up to a moduli 
independent phase -i, as required by (3.8). Here, we draw -attention to the 
fact that the monomials contained in (3.13) do not by themselves transform 
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in the required way. Rather, it is the linear combination of fields in (3.13) 
together with Xi(T) factors which is modular covariant, in the sense of (3.8). 

Similar arguments hold for the axionic shift T -t T' = T - i. Indeed, 
172(T) -t exp(i1r/6)172(T) and [22, 23] 

(~) =e_ •• ,. G ~ D GD · (3.15) 

( 
:~:) = ( ~ ~ ~) ( :~) . 
~3' 0 0 1 ~3 

(3.16) 

Then it can be checked that r'lp -t 1]2p, which transforms as it should (E.g., 
c = 0, d = 1 for the axionic shift). 

A general SL(2, Z) transformation (3.6) can be built up out of the two 
operations analyzed above. Thus, we. are assured that the trilinear super
potential coupling (3.4) is modular covariant under the entire duality group. 
To summarize, for the g_eneral SL(2, Z) transformation the polynomial (3.13) 
and the Dedekind 1J function transform as 

p(T; ~~, ~2, ~3) -t eii/J(a,b,c,d)e- 2:!=1 QnF(T)p(T; ~~, ~2, <P3), 

1J2(T) -t ei'Y(a,b,c,d)eF(T)1J2(T), 

where Qn is the modular weight of the matter fields of species n, ~~- It can 
then be checked that (3.8) holds for the trilinear superpotential term coupling 
(3.4). 

Twisted couplings of dimension 3m > 3 in the effective field theory re
main to be calculated from the underlying conformal field theory. However, 
these computations appear formidable. As an example, we briefly consider 
the form of six dimensional twisted couplings using the methods of [26]. 
The classical action Scl may determined from monodromy conditions on the 
underlying bosonic fields X(z, z), X(z, z) of the 2-d orbifold, where z, z pro
vide a parameterization of the string world-sheet; for each classical solution 
Xcl(z, z), local monodromy conditions demand 

a(z4, z5, zB) 
8zXcl(z) = [ 1 z(z- 1)(z- z4)(z- z5)(z- z6))2 3 ' 
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-

[z(z- 1)(z- z4)(z- zs)(z- z6)]113 ' 

a(z4, zs, z6) 
[z(z- 1)(z- z4)(z- zs)(z- z6))213 ' 

b(z4, zs, z6) 
[z(z- 1)(z - z4)(z- z5)(z- z6))113 · 

(3.17) 

Here, z4 , z5 , z6 are the three vertex insertion locations which cannot be fixed 
by SL(2, C) invariance while the first three vertices z17 z2 , z3 have been sent 
to 0, 1, oo resp. The functions a, b, a, b depend on the unfixed vertex locations 
and are determined for each classical solution Xc1 using global monodromy 
conditions. The classical action is given by 

s~~ = 4~ J d2z (axclaxcl + axclaxcl)· (3.18) 

Upon substitution of formulae (3.17) into (3.18), one finds it necessary to 
perform the integrals 

I -j ~z 
r- iz(z -l)(z- z4)(z- zs)(z- z6)1r' 

4 2 
r = 3'3. (3.19) 

Using techniques developed in [31], one can show that both of these integrals 
may be written in the form of sums of products of integrals along the real 
axis. The expressions obtained are typically complicated special functions 
of the unfixed vertex locations. Rather than attempting the calculation, we 
merely write the results symbolically as8 

(3.20) 

It follows that 

1 . -
Scl(z4, Zs, z6; Z4, Zs, z6) = 47r ( aai4/3 + bb/2/3) (z4, Zs, z6; Z4, Zs, Z6)· (3.21) 

The functions a, b, a, b are also complicated special functions of the unfixed 
vertex locations. It should be clear that Sc1 is a horrendous function. What is 

8 At the risk of annoying the reader, we have explicitly shown the dependence on unfixed 
vertex locations, in order that we might stress wherein the difficulty lies. 
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more, this action must be exponentiated, summed over an infinity of classical 
solutions Xct, and multiplied by the quantum part of the partition function 
to obtain the correlator: 

(li1(0,0)V2(1,1)V3(oo,oo)Y4(z4,z4)YS(zs,zs)V6(z6,z6)) 

=Z(~'~'~;~'~'~) 
= Zqu(z4, zs, z6; Z4, zs, z6) · L exp[-Sd(z4, zs, z6; z4, zs, z6)]. 

(3.22) 

Here, the quantum part of the partition function Zqu(Z4, Zs, z6; Z4, Zs, z6) will 
be some other horrific function of the unfixed vertex locations. Finally, we 
must· extract the effective field theory coupling coefficient by integrating the 
unfixed vertex locations over the complex plane: 

(3.23) 

Integrating over exponentials of sums of products of special functions of sev
eral complex variables is bad enough, but one also has the Zqu prefactor and 
the functions a, b, a, b to deal with. Suffice it to say, the explicit calculation of 
coupling coefficients for higher dimensional twisted couplings certainly looks 
like a major undertaking. 

As a result, we take a more phenomenlogical approach, using modular 
covariance as a guide. In this respect our effective field theory is "string
inspired" rather than "string-derived". It is our hope that by appealing 
to symmetries of the underlying theory, we will capture the most impor
tant features of the bona fide couplings. Modular covariant 3m-dimensional 
twisted couplings can be constructed by tensoring the polynomials (3.13). 
This leads us to the implicit definition ofT-dependent twisted coupling co- · 

efficients Jl; ... i
3

m. given by 

1 
1
m-1 

"" JT <J>il <J>i3m - "" II p(T· <I> <I> <I> ) (3 24) ~ i1 ···iam 1 · · · 3m - 1 (31)m ~ · ' nak+l' nak+2' n3k+3 ' • 
{ij} m. · {nj} k=O 

Here, :E{ni} indicates that the 3m-tuple of subscripts (n1, ... , n3m) should 
be summed over all permutations of (1, 2, ... , 3m). The factor 1/m!(3!)m 

17 



accounts for trivial permutation symmetries. This construction treats the 
different species of fields <.P1, ... , <.P3m in a symmetric way with respect to 
fixed point couplings. If we define the 3m-dimensional twisted superpotential 
coupling as 

(3.25) 

it can be checked that this will satisfy the requirement (3.8). We generically 
denote the overall modulus- and fixed-point-independent coupling strength 
by ..\. The actual value of this strength will depend on the dimensionality of 
the coupling and the species of fields which ent~r. For m > 1 in (3.25), it 
is likely that ..\ ~ 1, due to the numerous world-sheet integrals which must 
be performed in (3.23) above, as pointed out recently by Cvetic, Everett 
and Wang (17]. This aspect of nonrenormalizable couplings in string-derived 
models has been overlooked in much of the earlier literature, due to the 
temptation to estimate unknown quantities as 0(1). 

All of the above considerations dealt with a two-dimensional orbifold. We 
must generalize our results to the six-dimensional case. Also, it is necessary 
to say what should be done if untwisted states appear in a coupling or if 
some of the twisted states have nonzero oscillator numbers. Here, we address 
these complications only to the extent that it is necessary for the quark mass 
couplings in the toy model which is to be discussed in Section 4. Again, 
we take a phenomenological approach, using modular covariance as a guide, 
rather than attempting to explicitly derive effective field theory coupling 
coefficients from the underlying conformal field theory. The reason once 
again is that the calculations appear to be extremely difficult. 

For a six-dimensional Z3 orbifold the twist field operators generalize to 
(Yiik(z, z), where the triple ijk denotes which of the 27 fixed points the twisted 
field <.f!~k created by the vertex operator sits at. The indices refer to the fixed 
point locations in each of the three complex planes. To the extent that the 
three complex planes are orthogonal to each other, which is the case if the 
off-diagonal T-moduli vanish, it is possible to decompose the twist operators 
into a tensor product of two-dimensional orbifold twist operators: 

(Yiik(z, z) = (Y}(z, z) 0 (YJ(z, z) 0 (Y~(z, z). (3.26) 

Then the six-dimensional orbifold couplings are a tensor product of the two-
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dimensional ones. Indeed, it can be checked that given the transformation 
properties of the two dimensional twist operators, 9 

3 

II p(T1
; (/ (zb zi) a-1 (z2, Z2) a-1 (z3, z3)) --7 

1=1 
3 
II eitfl(al ,bl ,cl ,dl)p(TI; a-I (z1' z1) a-I (z2, z2) a-I (z3, z3)). (3.27) 
1=1 

This has the correct transformation, up to the factor TI1 exp (- 'Ei q{ F(T1
)) 

which would come from the transformation properties of the matter field 
vertex operators not accounted for by a-[. Then the generalization of (3.4) 
with the correct modular transformation properties is: 

X. ( IJ[7J(TI))2 fif:~i~) <I>~~i~i~<I>;~i~i~<I>;~i~i~ (3.28) 

It is easy to check that this holds for the higher dimensional couplings as well. 
We simply take the obvious products of 2-d orbifold coupling coefficients: 

A. (Il[7J(TI))2('En q~-1) l{/..ii ) <I>~~iiif ... <I>;~mi~mi~m. 
[ 1 3m 

(3.29) 

Now we consider the occurence of twisted oscillator fields and untwisted 
fields in higher dimensional couplings. The vertex operator for a twisted 
oscillator field is proportional to an excited twist operator. The excited twist 
operator can be written in terms of an ordinary twist operator and a factor 
of fJJ(R., with .e depending on the oscillator direction [26). Then the classical 
action Sd is still computed in the presence of the same twist operators and 
we expect that the fixed point dependence should be the same as in the case 
where none of the twisted states were oscillators. Indeed, this has been found 
to be the case in ZN orbifolds where renormalizable couplings may involve 
oscillator fields [32). It has been shown [29, 30] that the modular weight of 
an NL = 1/3 oscillator state yR.,ijk (where .e is the direction of the oscillator 
and ijk specifies the fixed point location) is given by 

q1 (YR.,ijk) = (2/3, 2/3, 2/3) +of. (3.30) 
----------------------~ 

9Here, i7{ = ei/3(T
1 

,Tr)12cr{ generalizes the CTi defined above for the two-dimensional 
orbifold case. · 
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Since the vertex operator creating the twisted oscillator state is proportional 
to a} ® o} ®at we expect that the state transforms under T 1 --+ 1/T1 

according to (3.10) if I =f. f., while the power 2/3 should be replaced by 5/3 if 
I = f. Based on this assumption, the modular invariant couplings involving 
oscillator fields (which for the Z3 orbifold are always higher dimensional 
couplings because of the automorphism selection rule) are obtained from 
(3.29) directly, with the oscillator nature of states reflected in the modular 
weights qf and a different overall strength A than would be obtained if the 
states were not oscillators, due to the presence of the additional operator axe. 
Obviously, adding untwisted states to a coupling does not introduce any new 
twist operators. We can always choose a "picture" such that the vertex 
operator of the untwisted state Ui goes like a xi. Then the change in the 
conformal field theory correlator will be completely in the quantum part and 
we expect the fixed point dependence to be unchanged. An untwisted state 
Ui has modular weight qf = ()[. As a result of these arguments, we conclude 
that the coefficients for a coupling with 3m twisted fields and n untwisted 
fields can be read off from (3.29), only we must include the modular weights 
of the untwisted fields in the sums in the exponents of the fJ functions, and 
the overall coupling strength A will be different than if no untwisted fields 
were in the coupling. 

4 Toy model 

Below the scale of U(1)x breaking, Ax rv 1017 GeV, the quark and higgs 
spectrum is assumed to be that of the Minimal Supersymmetric ·Standard 
Model (MSSM). Extra color triplets get vector mass couplings when Xiggses 
get vevs. As a consequence, they get masses O(Ax) and integrate out of the 
spectrum near the string scale. Above Ax we suppose .the spectrum contains 
untwisted doublet quarks Qi, untwisted ui,-like quarks ui, twisted uJ,-like 
quarks u;, twisted di,-like quarks di, untwisted Hu-like higgs doublets H! 
and twisted Hd-like higgs doublets H~. These assignments are quite similar 
to those ofthe FIQS model. The superscript on untwisted fields corresponds 
to the H-momentum of the states in the underlying theory, and takes values 
i = 1, 2, 3. The superscript on twisted fields corresponds to the fixed point 
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location in the third complex plane of the six-dimensional compact space. 
As in the FIQS model, three linear combinations of the six u£-like quarks 
survive in the low-energy spectrum, which we describe by mixing matrices 
X 1 and X 2: 

(4.1) 

The mixings to Ax scale mass eigenstates, denoted by "heavy", are not 
important to our tree level analysis of low energy quark mass matrices. We 
assume that all extra higgses integrate out near the scale Ax due to vector 
couplings induced by the Xiggs vevs (as in the FIQS model), leaving one pair 
which we identify as the Hu and Hd of the MSSM: 

Hu =H~, (4.2) 

We introduce SM singlet Xiggses Yli, y;p and Yli which get O(Ax) vevs and 
appear in the nonrenormalizable mass couplings of the quarks. The Y's are 
charged under U(1)x and their scalar components are among those which get 
vevs to cancel the U(1)x FI term. The Y's are twisted states with nonzero 
left-moving oscillator number NL = 1/3. The first superscript corresponds 
to the oscillator direction in the compact space, f. = 1, 2, 3. The second 
superscript corresponds to the fixed point location in the third complex plane 
of the compact space. Such fields also arise in the FIQS model. In what 
follows, we use the same symbols for superfields and scalar components of 
fields other than the quarks, with the meaning obvious by context. Similarly, 
whether we refer to a quark superfield or its fermionic component should be 
obvious by context. 

We assume that the leading holomorphic couplings giving quarks masses 
are contained in the superpotential 

(4.3) 

The trilinear untwisted coupling is proportional to IEijkl according to the 
conservation of H-momentum orbifold selection rule. The fields ~£~ 3 are as-

'' sumed to be charged identically under U(1)x. We assume that the operators 

21 



·contained in ( 4.3) are each neutral under the full rank sixteen gauge group 
G obtained from the orbifold embedding. Thus, the other fields are assumed 
to have U(1)x charges10 such that each coupling is U(1)x neutral. We as
sume that off-diagonal T-moduli TI1, I -=J. J, have vanishing vevs, as in the 
FIQS model, so that the leading order kinetic terms for the matter fields 
are diagonal. In the FIQS model, nonvanishing off-diagonal T-moduli lead 
to nonvanishing F-terms which break supersymmetry at the scale Ax, which 
is unacceptable. Though these fields may acquire vevs once supersymmetry 
is broken in the hidden sector, we expect the vevs to be at most of order· 
the hidden sector supersymmetry breaking scale. As a result, off-diagonal 
T-moduli give negligible contributions to the kinetic terms of the quarks. 
We further assume that the diagonal T-moduli TI = Til are stabilized at 
one of their self-dual points (TI) = 1, ei1r/6 once supersymmetry is broken, 
consistent with models of hidden sector supersymmetry breaking by gaug
ino condensation [12, 6]. It has also been argued that the T-moduli may 
stabilize at other points on the unit circle [6]. Either way, it would appear 
that string-derived scalar potentials for the T-moduli stabilize them to val
ues ITII = 1. For this reason we view models which allow (TI) as large as 
required to obtain hierarchies in the Yukawa couplings of twisted fields [34] 
to be unmotivated. 

The Kahler metric for matter fields in (0,2) Z3 orbifolds (arbitrary Wilson 
lines and point group em beddings) has been determined to leading order 
[30, 35]. In the case of vanishing off-diagonal T-moduli, the metric of the 
untwisted fields Qi and ui is given by 

(4.4) 

We make redefinitions Qi ---+ (Ti + 'f'i) 112Qi and similarly for ui. Similar 
arguments hold for the twisted fields u~ and di, whose Kahler metric at 
leading order is 

(4.5) 

10In the three generation constructions presently under consideration, the U(l)x charges 
are independent of generation number. Thus, horizontal flavor symmetries, such as those 
considered in ref. [33], cannot be implemented in this context. 
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We assume that the overall coupling strengths Ao, A11 A2 in ( 4.3) reflect these 
rescalings and that the quark fields entering these couplings are the rescaled 
ones. We also assume that the factor exp (K) /2 has been absorbed into 
these coupling strengths and make use of the fact that (~iDjW) ~ (Wij) 
is a very good approximation, in the supergravity lagrangian notation of 
Wess and Bagger (36]. It can be checked that the terms which we drop are 
O(mamwfmp), where ma is the gravitino mass. When working with these 
rescaled fields, we may raise and lower indices with impunity since their 
Kahler metric is canonical in the leading order approximation made here. 
Once the fields ut and u~ have been rescaled in this way, the mixings to mass 
eigenstates uiL and their three heavy relatives (all canonically normalized) 
can be made unitary. We then have as a constraint: 

(4.6) 

When one takes (4.1) and (4.2) into account, the effective Yukawa couplings 
for the quarks are given by 

(4.7) 

In going from (4.3) to (4.7), we have set k = 1 in the second coupling of (4.3) 
because Hu = H~ and we have fixed i 5 = 3 and i 6 = m in the third coupling 
of (4.3) since we couple to Hd = HJ and dm. 

We now apply the assumptions of Section 3 to the toy model. The toy 
model is based on string-derived models where two "discrete" Wilson lines 
are included in the embedding to give a three generation model (14, 13]. 
By construction, states which differ only by their fixed point location in the 
third complex plane have identical gauge quantum numbers. On the other 
hand, states which differ by fixed point locations in the first two complex 
planes generally have different gauge quantum numbers under the rank 16 
gauge group which survives the orbifold compactification. Typically, the 
embedding is arranged so that the rank 16 gauge group has the form SU(3) x 
SU(2) x (U(1)]m x Gc, where Gc is a simple group which condenses in the 
hidden sector to break supersymmetry. The extra U(1)'s get broken down 
to U(1)yx (hidden U(1)'s) by the FI term associated with the anomalous 
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U(l)x. Fixed point locations in the first two complex planes become species 
labels. In what follows, the only fixed point location superscript on twisted 
states is that corresponding to the third complex plane. This serves as a 
family number for twisted states in these models. Twisted "relatives" differ 
only by their fixed point location in the third complex plane, so in many 
respects the, effective Yukawas behave as if we were working with a two
dimensional orbifold. The coupling coefficients in ( 4. 7) are given by: 

>.i1i2i3£1£2li = (I} 1J(T1
)

2
(Q{ -I)) Xo(T1 )xo(T2)/~:2i3 

if (fb £2) = (1, j), 

0 else; ( 4.8) 

(I} 1J(T1 ) 2(Q~-l)) XI (T1 
)
2Xl (T2

)
2 /i~:2i3i43m 

if (£1, £2, £3, £4) = (1, 2, 3, j), 

= 0 else; 

Q{ = 2 + 26[ + 2c>J, Q~ = 5 + 26J. 

(4.9) 

(4.10) 

The constraints on the allowed values of fi follow from the automorphism 
selection rule; underlining denotes that any permutation of entries is per
mitted. The coefficients !Ti i

3 
carry the dependence on third complex plane 

' 1 2 

fixed point locations of twisted fields appearing in the nonrenormalizable 
up-type quark mass coupling, and are given explicitly in (3.5) above. The 
third complex plane fixed point dependence for the down-type quark mass 
coupling follows from the six-dimensional twisted coupling, and is defined 
implicitly by (3.24). The six twist coupling coefficients /'f:i

2
i

3
i
4
i

5
i
6 

vanish by 
the lattice group selection rule unless i1 +· · ·+i6 = 0 mod 3. It can be checked 
that the choices i 1, ... , i 6 satisfying this rule can be divided into four classes, 
depending on whether triples of the indices can be formed where the entries 
of the triples are either all the same· ( s) or all different (d). Members of the 
same class have identical values for f'f:i

2
i
3
i
4
i
5
i
6

• The nonvanishing values of 
/'f:i

2
i

3
i

4
i

5
i
6 

are given in Table 2, according to which of the four classes the 
indices belong to. A representative example (i1 · · · i6) for each class is given 
to avoid any confusion. The factor of x1 (T1 )2x1 (T2 ) 2 in ( 4.9) follows from 
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class J?; ... is representative class J?;. .. is representative 

ss 10xo(T)2 (111111) sd 2xo(T)xi (T) (111123) 

ss' xo(T) 2 (111222) dd XI(T)2 (123123) 

Table 2: Six twist coupling coefficients by class 

an additional assumption of our model: the fixed point locations (of the six 
species of twisted fields in the down-type Yukawa coupling) in the first two 
complex planes are such that the lattice group selection rule in each of the 
two planes is satisfied in the ( dd) way of Table 2. 

The strengths >.0 , >.1, >.2 , the mixing matrices Xi~' X'&, and the back
ground (Y1~~,3 ) are treated as phenomenological parameters. We tune the 
couplings, mixings and vevs to values which yield a reasonablephenomenol
ogy. In principle, all of these quantities would be fixed by a full and complete 
analysis of the string-derived effecth:e supergravity. However, some of the 
background fields in (Y1~~,3) are D-moduli [20]; in order to fix these we must 
say how the D-moduli flat directions are lifted. In the reference just cited 
it was suggested how these flat directions may be lifted by nonpertubative 
effects in the hidden sector, via superpotential couplings of the D-moduli to 
hidden sector matter condensates. It should also be noted that the symme
tries which give rise to the D-moduli are only valid for the classical scalar 
potential under the assumption of vanishing of F-terms for the D-moduli 
in the background. As a result, they are pseudo-Goldstone bosons and we 
expect that the D-moduli flat directions will also be lifted by loop correc
tionsY Preliminary estimates show that the D-moduli get contributions to 
their masses of order the gravitino mass from either effect. We are curently 
exploring how the phases of the Xiggses may be fixed by these mechanisms 
and what effect this will have on the KM phase in models of the type dis
cussed here. Our results will be presented elsewhere. 

We do not intend to be exhaustive in our analysis of the phenomenology of 
11 We thank Korkut Bardakci for bringing this to our attention. 
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(4.7). Rather, we would simply like to demonstrate that it is possible to ob
tain a quark phenomenology which is consistent with experimental data. The 
shortest route to this goal is to implement textures in the effective Yukawa 
couplings. In this way our scan over parameter space is biased toward viable 
models. We make use of the results of a recent analysis of viable mass matri
ces [37], though we will not impose the hermiticity constraint implemented 
there since we have no motivation for it in the present context. We impose 
the textures 

(4.11) 

through an arrangement of the mixing matrices Xi~, Xli and vevs (Y1~~,3 ). 
Here, 

() ~ Vus ~ 0.22, !t ~ mt/ (H~), (4.12) 

(4.13) 

The forms (4.11) were obtained by imposing the following textures in X 1,2 

and Yi23: 
'' 

: :) ' 
0 s2 

(4.14) 

0 ) 0 ' 
Y33 

(4.15) 
The elements denoted by * in ( 4.14) are left unspecified since they do not ap
pear in the effective Yukawa matrices. We assume that they are chosen such 
that (4.6) is satisfied, which is generally true provided lr3 l2+ls212+lrsl204

:::; 1 
because of the on suppressions on entries of the other columns. Up to this 
restriction, the quantities ri, si, Yi, Yii, ih1 "' 0(1). We note that there is no 
inconsistency in having Xiggs vevs larger than the Fl term, since the vevs of 
fields having opposite U(1)x charge can be played off against each other in 
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the U(1)x D-term. As an example, in the FIQS model the Y-type Xiggses 
can be made arbitrarily large while maintaining D-flatness by simultaneously 
increasing some of the vevs of non-oscillator Xiggses which they denote by S~. 
Of course at some point the nonlinear cr-model perturbation theory breaks 
down. 

Given the assumptions enumerated above, the effective Yukawa matrices 
take the form (T[ = (T1

)): 

(4.16) 

hu = ~:ry(T1} 10ry(T;) 2ry(T;) 2xo(Tc1 )xo(T;)xo(T;)y;, (4.17) 

( 

0 2ry(T1) 4Xt (T:)Y3t (]3 0 . ) 
>..d = hd 2ry(T;)4Xt (T:)Y31(J3 2ry(T;)4Xt (T:)Y32(j2 0 , , 

0 0 5ry(T:)4xo(T:)Y33 
(4.18) 

hd 2>..2 [77(Tc1)77(r;)ry(T:)r XI(Tc1?xo(T;)2xo(Tc3)YIY2Y33fP. (4.19) 

The quantities Bd, Ed, Dd in (4.11) can be varied independently by adjust
ing the ratios Y3dY33, ilsdY33, Y32/Y33· The ratio of heavy generation Yukawa 
eigenvalues !b/ ft can be varied independently of Bd, Ed, Dd and )..d by adjust
ing Y2Y~3/ y1. The top quark Yukawa eigenvalue ft can be adjusted indepen
dently by varying r3 • However, if )..0 is too small there may be a minimum 
tan .8 below which we cannot match experimental data, since lr31 < 1 is re
quired by (4.6). Recall that we have absorbed a factor exp (K)/2 into >..0 , as 
well as the effects of quark field rescalings to account for noncanonical kinetic 
terms. Typically, exp (K) /2 < 1 when the string moduli get 0(1) vevs, so 
this may be a worry. Without an explicit model of the superpotential cou
plings and Xiggs vevs which determine the mixing matrices X 1•2 , it is not 
possible to say whether or not the entries of Au can be varied independently 
of each other and >..d; we will assume that this is true. 

With the above assumptions, scanning over the Xiggs vevs and the mix
ing coefficients ri, si for viable models is equivalent to varying the coefficients 
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in (4.13) independently and tuning the values of jt, !b to agree with experi
mental data. We then rephase the quarks according to the convention 

Vud > 0, Vus > 0, Vcb > 0, Vis< 0, Vcd < 0, (4.20) 

to which the Wolfenstein parameterization [38, 39] is an approximation. As 
is well known, the advantage of such a parameterization is that the elements 
with significant complex phase are the smallest ones, Vub and Vid· 

All of these calculations are done at the U(1)x breaking scale, and are 
therefore subject to evolution under the renormalization group. The evolu
tion of the quark masses and mixing angles assuming the MSSM spectrum 
has been studied extensively; approximate analytic formulas are available, 
for example in refs. [40, 18]. We will use the approximations of [18] to evolve 
the low energy data to the scale of U(1)x breaking, which we assume to be 
Ax "'As "' 5 x 1017 GeV, based on what occurs in the FIQS modelP The 
following quantities are approximately scale-independent: 

(4.21) 

The running of the other quantities is approximately given by: 

mtl 1 mtl . 
me Ax = ~f~b me Mz ' 

(4.22) 
the quantities IVubl, IVidl, IVisl scale in the same manner as IVcbl· The scaling 
functions are given by 

[ 
-1 (n(Ax/Mz) l 

~t,b = exp 161f2 lo dx ft~b(X) , (4.23) 

where x = ln(J.L/Mz) and ft,b(J.L) are the Yukawa coupling eigenvalues of 
the top and bottom quarks appearing in ( 4.11), at the scale J.L. We assume 
the scale of observable sector supersymmetry breaking is 1 Te V and we set 
tan f3 = 5. For low energy data we use the values of the running quark 
masses at the scale Mz as determined in ref. [41] and the CKM data listed 

12See Appendix A. 
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in ref. [42]. Taking into account the errors quoted in these two source, we 
find the following values: 

ft(Ax) = 0.74~~:~~, 

mt I 440+390 
- -100' 

me Ax 

mbl = 38(7), 
ms Ax 

(

0.9752(8) 
!VcKMIAx = 0.220(4) 

0.014(11) 

!b(Ax) = 0.028(4), 

me I = 290{60), 
mu Ax 

ms I = 20{4), 
md Ax 

0.220(4) 0.0027(12)) 
0.9745(8) 0.033(4) . 
0.065(36) 0.9992(2) 

(4.24) 

We stress that theoretical errors due to the approximations made in (4.21) 
and ( 4.22) have not been included in the estimates of uncertainty. How
ever, for our purposes this is not an important issue since we can ~lways 
make a small shift in the 0(1) parameters of our toy model to account for 
small corrections and larger uncertainties will just mean that more points in 
parameter space will give viable models. 

In our analysis we consider both generic and extreme possibilities in order 
to get a feel for how the KM phase depends on the various sources of phases 
in (4.16) and (4.18). 

Case 1: generic mixings and Xiggs vevs 

We have scanned over the magnitudes of the parameters in (4.13) with 
Gaussian distributions centered on values suggested by the central values in 
(4.24) and with spreads suggested by the estimated uncertainties. Phases 
have been scanned on a fiat distribution over the interval ( -1r, 1r]. We then 
compared mass ratios and the magnitudes of CKM elements, except !Vubl, to 
the values in (4.24); if these results agreed with the values in (4.24), except 
!Vubl, up to the stated uncertainties, we stored the values ofVub(Ax). We then 
scaled the magnitude of Vub according to (4.22) but left the phase unrotated 
to get an estimate of Vub(Mz). In Figure 1 we plot our results, showing only 
points near the acceptable region. The results are hardly surprising: if we 
allow the phases of the fields Xiggses to float randomly, the KM phase can 
take on any value we like. No magical cancellation occurs. Although regions 
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Figure i: Vub(Mz) for complex mixing matrices X 1•2 and Xiggs vevs (¥;_£~ 3). 

The T-moduli are stabilized at Tf = 1. For comparison, the experiment~lly 
preferred region [42] is outlined. 
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of parameter space in this toy model do exist which have reasonable quark 
masses, mixings and CP violation, the model provides no understanding of 
why we live in one region of parameter space rather than another. All that 
can be said is that our model, which contains many more free parameters 
than the number of experimental data points which we are attempting to 
fit, can be made to agree with what is known about the quark sector. One 
promising point does emerge, however. Figure 1 shows that CP violation is 
generic in the toy model under consideration. To ·be fair, one could argue 
that we have gone through a lot of unnecessary work to prove the obvious: 
if nontenormalizable couplings contribute significantly to the effective quark 
Yukawa matrices, and the Xiggses in these nonrenormalizable couplings get 
complex vevs, then CP violation is to be expected. However, as we discussed 
in Section 1, one can wonder whether the symmetry constraints of modular 
invariance and orbifold selection rules might render these phases spurious. 
We have explicitly shown that this is not the case. 

Case 2: complex Xiggs vevs 

Here, we make the quantities ri, Si in (4.14) real and positive and keep 
Tf = 1 in order to isolate the effects of the phases of the Xiggs. With these 
assumptions it can be seen f.rom (4.16) and (4.18) that the 0(1) coefficients 
(4.13) satisfy 

argDu = argEu = argCu = argEu = 0, 

argAu = argCu, 

(4.25) 

(4.26) 

with arg Cu, arg Ed, arg Bd and arg Dd independent parameters to be scanned 
over. As in the previous case, we scan over the 0(1) magnitudes of the 
coefficients (4.13) using a Gaussian distribution, and plot values of Vub(Mz) 
for models which satisfy all constraints.in (4.24) except the one on IVubiAx
The results are given in Figure 2. Comparing to Figure 1, it can be seen that 
whether or not the mixings X 1'2 are a source of phase makes little difference. 
Complex Xiggs vevs provide a source of a KM phase and allow us to obtain 
any value we like. 
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Figure 2: Vub(Mz) for real mixing matrices X 1•2 and complex Xiggs vevs 
(Yl~ 3). The T-moduli are stabilized at Tf = 1. 

'' 
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Case 3: complex T-moduli 

As discussed above, some of the T-moduli may stabilize at ei1rl6 , their 
other self-dual point under S£(2, Z). If we keep the mixing matrices X 1'2 

and Xiggs vevs (Y1~~,3) complex, then the results are indistinguishable from 
those of Fig. 1. To isolate the effect ofT-moduli sitting at the other self-dual 
point, we have constrained the coefficients ri, si in (4.14) and the Xiggs vevs 
(Yl~~ 3 ) to be real and positive in what follows. Next, referring to (4.11), 

'' (4.16) and (4.18), we define 

'Yl arghu = argAu = argCu, (4.27) 

'Y2 
71(T1 )4

Xl (T~) 
arg Bd = arg (T3) 4 (T3), 

71 c Xo c 
(4.28) 

'Y3 
- 77(T;}4

x1 (Tc3) 
arg Bd = arg Dd = arg (T3) 4 (T3), 

71 c Xo c 
(4.29) 

r 'Yl - 'Y2 + 'Y3· (4.30) 

It can be checked that the Yukawa matrices (4.16) and (4.18) can be rephased 
such that >..d has all positive entries and 

(
r o r) 

arg >.. u = 0 0 0 . 
0 0 0 

(4.31) 

This is easily implemented in a scan of the parameters in (4.13) by requiring 
all of them to be positive except arg Au = arg Cu = r. Using Table 1 it is 
straightforward to determine r. We summarize the possible values in Table 3. 
The results of the scan are presented in Figure 3. Once again, these are values 
of Vub(Mz) for models which satisfy all constraints in (4.24) except the one 

on JVublAx· 
It can be seen that neither possibility is consistent with the experimentally 

preferred region. This result only rules out T-moduli as the sole source of 
CP violating phases in the toy model considered here. In another model the 
powers of 71(T), Xo (T), x1 (T) would likely enter differently, since these depend 
on the dimension of a given nonrenormalizable coupling. It should also be 
noted that whereas we have set the mixing matrices X 1•2 real, they typically 
have a nontrivial dependence on arg Tf, since they are determined at least 
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argT1 argTz argT; r argT1 argTz argT; r 

0 0 0 0 0 7r/6 7r/6 -7r/6 

7r/6 0 0 -7r/6 7r/6 0 7r/6 -7r/6 

0 7r/6 0 -7r/6 7r/6 7r/6 0 -7r/3 

0 0 7r/6 0 7r/6 7r/6 7r /6 -7r/3 

Table 3: Phases from complex Tf. 

in part by couplings involving twisted fields. Thus, the results of Figure 3 
would likely change if this part of the model were made explicit. 

5 Conclusions 

In this article we have discussed several possible sources of CP viola
tion in semi-realistic heterotic orbifold models. We have presented exam
ples where CP ·violation does not occur in spite of the presence of phases, 
derived from complex string moduli vevs, in renormalizable coupling coef
ficients. However, it was described how nonrenormalizable couplings give 
a significant contribution to the effective quark Yukawa matrices when an 
anomalous U(l)x is present and we argued that this generically leads to a 
nontrivial KM phase. 

In order to niake a detailed analysis of models with nonrenormalizable 
couplings, we introduced modular covariant nonrenormalizable superpoten
tial couplings. It was explained why it is difficult to obtain the bona fide 
effective coupling coefficients from conformal field theory techniques. It was 
also pointed out that higher order terms in the Kahler potential should be 
important in cases where an anomalous U(l)x is present. These theoretical 
uncertainties represent a significant stumbling block to further progress in 
string-derived effective supergravity models and it is hoped that they will be 
resolved at some point in the near future. 
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Figure 3: Vub(Mz) for positive parameters except r. The two nontrivial 
possibilities are displayed: r = -'lr/3 (crosses) and r = -7r/6 (diamonds). 
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The KM phase was determined explicitly in a toy model inspired . by 
three-generation heterotic Z3 orbifold constructions. Though target space 
modular invariance and orbifold selection rules greatly restrict the coupling 
coefficients of nonrenormalizable couplings, we found it possible to obtain 
viable Yukawa couplings for quarks by adjusting the vevs of Xiggses. This 
result highlights the necessity of understanding how D-moduli flat directions 
are lifted in a given model. In principle the Xiggs vevs should be determined 
by the mechanisms which lift these flat directions. This would eliminate our 
ability to tune the scalar background to our liking and would in most cases 
probably render the quark phenomenology inconsistent with low energy data. 
We are currently investigating this issue and hope to report on it in a future 
publication. 

Acknowledgements 

The author would like to thank Prof. Mary K. Gaillard for innumer
able discussions and helpful comments during the development of the work 
contained here. I am particularly indebted to her for showing me how the 
Green-Schwarz cancellation of the U(l)x anomaly works in the linear mul
tiplet formulation and have borrowed heavily from written communications 
with her in preparing the Appendix. I would also like to thank Brent Nel
son for useful comments. This work was supported in part by the Director, 
Office of Science, Office of High Energy and Nuclear Physics, Division of 
High Energy Physics of the U.S. Department of Energy under Contract DE
AC03-76SF00098 and in part by the National Science Foundation under grant 
PHY-95-14797. 

Appendix 

A Charge normalization 

In the FIQS model, unconventional normalizations for the U(l) charges 
have been chosen to keep the tables of charges simple and amenable to com-
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puter assisted analysis. The generator Q~ acting on the E8 x E8 root torus 
is given by 

Qx = 6(0, 0, 0, 0, 0, 0, 0, 0; 1, -1,1, 0, 0, 0, 0, 0). (A.1) 

The affine level of a U(1) group may be defined [43] as 

16 

kq = 2 2::(Q1
)
2

. (A.2) 
1=1 

With this convention, the FIQS normalization gives kqx = 6~. To go to 
a normalization where the coupling constant for the U(1)x group will be 
the universal coupling at the string scale, we must rescale the generator 
Qx ~ Q'x so that kq'x = 1. Then 

, 1 
Qx = 

6
.[6Qx. (A.3) 

Since the original normalization satisfied13 

tr Qi- = 27 · tr Qx = 27 · 24 · tr TaTaQx = 27 · 24 · 54, (A.4) 

it can be checked that the rescaled generator satisfies 

24 tr (TaTaQ'x) = 8 tr Q'x 3 = tr Q'x = 36.J6, (A.5) 

as required by anomaly matching [43]. Indeed, if the U(1)x vector super
field Vx is shifted by b"Vx = (1/2)(A +A), then the resulting anomalous 
transformation of the lagrangian is 

where A= AI. We introduce our counterterm14 as 

.Cas,Vx = b"x J EVVx (A.7) 
-----------------------

13The nonabelian generators Ta are normalized such that tr Tara = 1/2 for a funda-
mental representation of SU(N). 

14We work in Kahler superspace [44] and use the linear multiplet formulation where V 
is a real superfield which satisfies modified linearity conditions and contains the dilaton l 
as its lowest component [45, 12]. 
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from which it follows that under the shift in Vx 

8x J -8.Ccs,vx = 2 EV(A+A) (A. B) 

which when we go to components yields 

8.Ccs,Vx =-
8
: L (Re )..Fa· Fa+ Im )..Fa· .Fa)+·.·. (A.9) 

a 

The anomaly is cancelled if we choose 

8x = 
2
!

2 
tr TaTaQ'x. (A.10) 

When combined with other terms in the lagrangian, the component form of 
(A.7) gives 

(A.ll) 

From this, we see that the FI term € is given by 

(A.12) 

With the U(1)x generator chosen such that kQ'x = 1, equation (A.5) gives 

2£ Q' 
€ = 1927r2 tr x, (A.13) 

which may be recognized as the form typically quoted in the literature once. 
it is realized that if we neglect nonperturbative corrections to the Kahler 
potential of the dilaton £, the universal coupling constant at the string scale 
is given by g2 = 2£. In the FIQS normalization, the FI term is given by 

2£ 1 
€ = 1927r2 6J6 tr Qx (A.14) 

which gives a significantly smaller number than if we had not accounted for 
the unconventional normalization of the U(1)x charge. In the FIQS model 
tr Qx = 1296, yielding 

€ ~ 2£ X 4. 7 X 10-2 
rv 5 X 10-2 , (A.15) 
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where we have used 2£ ~ g2
, and 0.5 ;S g2 ;S 1. The scale of U(1)x breaking 

is given by Ax "" Vf. ""·0.22 mp ~ 5 x 1017 GeV ~ A8 , the string scale. 
One must also take proper account of charge normalization for the SM 

hypercharge, as was pointed out in ref. [14]. For example, in the FIQS model 
ky = 11/3. Then the charge generator which will have the unified coupling at 
the string scale is Y' = J3/11 Y. This is to be compared with the Gaur 2 
SU(5) relative factor of J375. Thus, the boundary value of the properly 
normalized hypercharge coupling g'. at the electroweak scale in the FIQS 
model is related to the one usually used in GUT-inspired renormalization 
group evolution of the couplings in the MSSM by 

g'(FIQS)IMz = fllj5 g'(MSSM)!Mz. (A.16) 

This clearly does violence to unification of the couplings. ·In short, it is nec
essary to include hypercharge normalization among the criteria to be checked 
when searching for viable string-derived models. 
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