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BACKGROUND: Echocardiographic quantification of left ventricular (LV) 
ejection fraction (EF) relies on either manual or automated identification 
of endocardial boundaries followed by model-based calculation of end-
systolic and end-diastolic LV volumes. Recent developments in artificial 
intelligence resulted in computer algorithms that allow near automated 
detection of endocardial boundaries and measurement of LV volumes and 
function. However, boundary identification is still prone to errors limiting 
accuracy in certain patients. We hypothesized that a fully automated 
machine learning algorithm could circumvent border detection and 
instead would estimate the degree of ventricular contraction, similar to a 
human expert trained on tens of thousands of images.

METHODS: Machine learning algorithm was developed and trained to 
automatically estimate LVEF on a database of >50 000 echocardiographic 
studies, including multiple apical 2- and 4-chamber views (AutoEF, 
BayLabs). Testing was performed on an independent group of 99 patients, 
whose automated EF values were compared with reference values 
obtained by averaging measurements by 3 experts using conventional 
volume-based technique. Inter-technique agreement was assessed using 
linear regression and Bland-Altman analysis. Consistency was assessed 
by mean absolute deviation among automated estimates from different 
combinations of apical views. Finally, sensitivity and specificity of detecting 
of EF ≤35% were calculated. These metrics were compared side-by-side 
against the same reference standard to those obtained from conventional 
EF measurements by clinical readers.

RESULTS: Automated estimation of LVEF was feasible in all 99 patients. 
AutoEF values showed high consistency (mean absolute deviation =2.9%) 
and excellent agreement with the reference values: r=0.95, bias=1.0%, 
limits of agreement =±11.8%, with sensitivity 0.90 and specificity 0.92 for 
detection of EF ≤35%. This was similar to clinicians’ measurements: r=0.94, 
bias=1.4%, limits of agreement =±13.4%, sensitivity 0.93, specificity 0.87.

CONCLUSIONS: Machine learning algorithm for volume-independent 
LVEF estimation is highly feasible and similar in accuracy to conventional 
volume-based measurements, when compared with reference values 
provided by an expert panel.

© 2019 American Heart Association, Inc.
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Despite the well-known limitations of ejection frac-
tion (EF), it remains the most commonly clinically 
used echocardiographic measure of left ventricu-

lar (LV) performance. Current echocardiography guide-
lines1 emphasize the importance of accurate quantifica-
tion of LV EF, since multiple indications for therapeutic 
interventions rely on cutoff values of this parameter. 
Quantitative evaluation of LV EF requires measurement 
of end-systolic and end-diastolic volumes, which tradi-
tionally rely on tracing endocardial boundaries at these 
2 phases of the cardiac cycle, followed by model-based 
calculations. This methodology is associated with a 
considerable inter-observer variability that stems from 
individual differences in the perception of the blood tis-
sue interface in the presence of endocardial trabeculae, 
especially at end-systole.2

Although LV EF calculation is recommended by the 
guidelines, many clinical laboratories find this practice 
too tedious and time-consuming for routine use, and 
echocardiographers commonly rely on their ability to 
visually estimate LV EF on the basis of years of experi-
ence acquired through the interpretation of thousands 
of exams. While usually this results in a qualitative 
grading of LV function as normal, mildly, moderately or 
severely reduced, some readers report their findings as 
a narrow range of values, for example, 40% to 45%. 

Although this methodology is highly subjective, studies 
have shown that when performed by expert readers, it 
may be relatively accurate when compared with actual 
measurements, while other studies reported significant 
inter-reader variability underscoring the need for sys-
tematic quantification.3–7

It is widely accepted that the solution to this conun-
drum lies in the development of automated techniques, 
which have surged in the recent years with the rapid 
developments in computer hardware and software 
technology. Most recently, machine learning tech-
niques, commonly known as artificial intelligence, have 
been employed to automatically identify LV endocar-
dial boundaries.8–12 These algorithms use for training 
large databases of echocardiographic images of vari-
able quality depicting a wide range of pathologies, in 
which endocardial boundaries have been either traced 
or confirmed by experts. The training consists of iden-
tifying image features and patterns and associating 
them with endocardial boundary position. This knowl-
edge is then used to automatically identify boundar-
ies in images that are not part of the training set. This 
approach has indeed resulted in successful near auto-
mated quantification of LV volumes and EF in a majority 
of unselected patients undergoing echocardiographic 
examinations.13 Nevertheless, boundary identification is 
prone to errors due to suboptimal image quality, arti-
facts, and extremely unusual image features secondary 
to different pathologies. As a result, there is a certain 
percentage of patients in whom these algorithms may 
not be sufficiently robust.

Accordingly, we hypothesized that a different 
approach could be implemented to develop a fully 
automated machine learning algorithm that would 
mimic what an experienced human eye and brain do, 
when they estimate LV EF without tracing the endo-
cardial borders and calculating ventricular volumes. We 
postulated that instead, similar to a human eye, given 
a sufficiently large and heterogeneous learning data 
set, the computer could be trained to directly estimate 
the dimensionless degree of ventricular contraction and 
expansion, independently of ventricular size. The aim of 
this study was to develop such an algorithm and test its 
feasibility and accuracy for automated quantification of 
LV EF by a well-trained expert computer against refer-
ence values provided by a panel of human experts using 
conventional volume-based measurements.

METHODS
Data and materials used in this study will not be made pub-
licly available.

Machine Learning Algorithm
Our unconventional machine learning algorithm was devel-
oped to estimate LV EF without measuring LV end-systolic 

CLINICAL PERSPECTIVE

Echocardiographic quantification of left ventricular 
ejection fraction relies on either manual or auto-
mated identification of endocardial boundaries fol-
lowed by model-based calculation of end-systolic 
and end-diastolic left ventricular volumes. Recent 
developments in artificial intelligence resulted in 
computer algorithms that allow near automated 
detection of endocardial boundaries and mea-
surement of left ventricular volumes and function. 
However, boundary identification is still prone to 
errors limiting accuracy in certain patients. This 
initial feasibility study demonstrated that machine 
learning algorithm for estimation of left ventricular 
ejection fraction that avoids image segmentation 
and volume measurements and instead mimics a 
human expert’s eye, is highly feasible and can yield 
results that are in close agreement with what highly 
experienced readers measure using conventional 
methodology. This approach may prove to have 
important clinical implications because of its fast 
and fully automated nature. It is conceivable that in 
the future, the starting point of interpretation of an 
echocardiography exam would include automated 
estimates of ventricular function the reader would 
be presented with along with the images.
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and end-diastolic volumes. This alternative approach assumes 
that the ventricle contracts throughout systole simultaneously 
along its long axis and in the radial direction, so that its cor-
responding dimensions L and R change over time according 
to 2 time-dependent dimensionless contraction coefficients 
CL(t) and CR(t), (Figure 1). Using these coefficients, LV volume 
throughout the cardiac cycle can be described by the follow-
ing function of time:

V t =V 0 C t C tL R( ) ( ) × ( ) × ( )
where V(0) is the volume at time 0, and CL(t) and CR(t) reach 
their minimum values at the end of systole and their maxi-
mum value of 1.0 at the end of diastole. By definition of LV EF 
as the difference between the maximum volume at end-dias-
tole (ED) and minimum volume at end-systole (ES) normalized 
by the former, it can be expressed in terms of the above 2 
contraction coefficients as follows:

EF= V ED V ES / V ED =1 V ES / V ED =1

C ES C ESL R

( ) ( )  ( ) ( ) ( )
( ) × ( ) 

− − −

// C ED C EDL R( ) × ( ) 

Assuming that ED is time 0, both CL(ED) and CR(ED) would 
equal 1, while CL(ES) and CR(ES) are their minimum values, 
this expression is reduced to:

EF=1 C CL-min R-min– ×[ ]
which allows calculation of EF from the estimated minimum 
contraction coefficients in the longitudinal and radial direc-
tion without measuring the volumes. For example, if during 
systole, the ventricle shortens by 14%, CL would reach mini-
mum value of 0.86, and if at the same time its radial dimen-
sion shortens by 30%, corresponding to the minimum CR 
value of 0.70, this would result in EF of 40%:

EF=1 0.86 0.70 =1 0.60=0.40− −×[ ]
Our machine learning algorithm was designed to train the 
computer to estimate the minimum values of the above 2 
contraction coefficients, CL-min and CR-min, at the end of con-
traction. Briefly, we used a deep learning technique, which 
does not use any sort of explicit tracking methodology, but 
instead lets the neural network decide from the data itself 
what the best approach to handle the data would be. In other 
words, the algorithm was not guided by the developers as to 
what should be detected or tracked throughout the cardiac 
cycle. Instead, the algorithm was allowed to derive from the 
thousands of images the features and visual patterns neces-
sary to estimate EF in agreement with the reference values 
obtained by human readers using conventional methodology. 
The neural network was constrained to report the amplitude 
of change in ventricular dimensions, roughly the equivalent 
of the above contraction coefficients. Importantly, the neural 
network had the total freedom in choosing to track relative 
sizes/dimensions of physiological features and speckle pat-
terns. It is likely that it uses a combination of these.

Algorithm Training
The algorithm developed on the basis of the above described 
principle (AutoEF, BayLabs inc, San Francisco, CA) was imple-
mented in Python and trained using Keras (https://keras.io/) 
with a Tensorflow (https://www.tensorflow.org/) backend 
to train and deploy the Neural Networks. The training was 

performed on a database of >50 000 echocardiographic 
studies from the Minneapolis Heart Institute over a period of 
10 years, using the following equipment: ACUSON/Siemens 
SEQUOIA (N=17,359), SC2000 (N=6308), CX50 (N=4472); 
Philips iE33 (N=7279), EPIQ 7C (N=706); General Electric 
Vivid-I (N=14,957), Vivid 7 (N=839). Contrast-enhanced 
images were not used. Training included the use of multi-
ple apical 2- and 4-chamber views available as part of each 
individual exam and LV EF values measured over the years 
by clinicians interpreting these studies using conventional 
methodology (biplane Simpson technique), recommended 
by the American Society of Echocardiography guidelines.1 
After this training, the algorithm was designed to provide 
fully automated estimates of LV EF on any pair of apical 2- 
and 4-chamber views.

Performance Testing
This algorithm was tested on an independent group of 99 
patients undergoing clinically indicated echocardiographic 
examinations at the Minneapolis Heart Institute (age 66±16, 
62 males, 37 females). The patients were retrospectively 
selected from the database into 3 equally sized subgroups 
of LV EF: 0% to 35%, >35 and ≤55%, and >55%, to have a 
wide range of uniformly represented LV function. In addition, 
these patients were selected into 3 equally sized subgroups 
of body mass index: 0 to 25, 26 to 30, and >30 kg/m2, to 

Figure 1. Schematic representation of the left ventricle with its longitu-
dinal and radial dimensions L and R, which change over time from its 
initial values at time 0, namely L(0) and R(0) according to dimension-
less time-dependent contraction coefficients CL(t) and CR(t), which can 
be used to calculate ejection fraction (see text for details).
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fairly represent the inter-patient differences in body habitus. 
No additional criteria, such as image quality, were used to 
exclude patients. The study was approved by the Institutional 
Review Board with a waiver of consent.

Images were acquired using a random mix of available 
equipment similar to the training data set. Each patient 
underwent imaging in apical 2- and 4-chamber views, which 
were saved in multiple loops. Three sonographers indepen-
dently selected the pair of best two loops for analysis (one 
for each view), resulting in 3 distinct automated EF estimates. 
These values were used to assess measurement reproducibility 
when applied to different image loops, with the understand-
ing that the fully automated, deterministic nature of the algo-
rithm inherently has zero inter- and intraobserver variability 
when applied to the same image pair. Reproducibility (or con-
sistency) was assessed by calculating the mean absolute dif-
ference between the 3 EF estimates obtained in each patient.

To validate the automated EF estimates, and on the under-
standing that the role of such automated system would be to 
assist cardiologists in the interpretation of echocardiograms 
in their usual clinical environment, we have decided to test 
them against an accepted reference standard most relevant 
to the field. Therefore, reference values were obtained using 
conventional volume-based technique (biplane Simpson tech-
nique) by 3 experts, board-certified echocardiographers (Drs 
Lang, Asch, and Abraham). To ensure that these reference 
values reliably represented the LV function of each patient, 
each reader analyzed all 3 pairs of apical views in a random 
order, resulting in a total of 9 independent conventional EF 
measurements per patient. Averaging these 9 values resulted 
in a single reference EF value per patient.

Once these 99 reference values were obtained, valida-
tion consisted of comparing for each of the 99 patients all 
3 automated EF estimates (total N=297) to the correspond-
ing reference value. Inter-technique agreement was assessed 
using linear regression, intraclass correlation (ICC), and Bland-
Altman analysis of biases and limits of agreement (LOA). In 
addition, as an alternative to Bland-Altman bias, which can 
be zero in the presence of wide LOA, inter-technique agree-
ment was also assessed using MAD, which was calculated for 
the 297 automated estimates obtained in the 99 patients and 
the corresponding 99 reference values. Both MAD and Bland-
Atman metrics were expressed in absolute EF units, namely 
percent of ED volume.

Finally, we calculated the sensitivity, specificity, nega-
tive and positive predictive values and overall accuracy of 
the detection of severely reduced LV function, reflected 
by EF ≤35%. In addition, κ-statistics were used to test the 
inter-technique agreement in the ability to detect severely 
reduced LV function, according to the above definition. The 
calculated κ-coefficients were judged as follows: 0 to 0.2 
low, 0.2 to 0.4 moderate, 0.4 to 0.6 substantial, 0.6 to 0.8 
good, and >0.8 excellent.

To put in perspective all these performance metrics of the 
automated EF estimates, they were compared against the 
same reference standard side-by-side with those obtained 
from conventional EF measurements performed by clinical 
readers who interpreted these studies at the Minneapolis 
Heart Institute that provided them to us. This included com-
parisons of the results of the linear regression, Bland-Altman 
analysis, MAD, ICC, and the accuracy of detection of EF 

≤35%. In contrast, consistency of the automated EF estimates 
was not compared with that of the clinical readers, which 
included only one EF value per patient.

Finally, the latter EF measurements performed by clinical 
readers were used to create a mathematical de-trending cor-
rection. Specifically, we assumed that these measurements 
when compared against reference values provided by the 
expert panel, would yield a regression equation that is not 
an identity function y=x, but y=Ax-B (where the slope A≠1 
and the intercept B≠0), which would indicate a trend of error. 
These coefficients A and B were then used to devise a lin-
ear de-trending procedure, which would essentially force the 
above data set of conventional clinical EF measurements to 
best fit the identity function. Then, this de-trending procedure 
with the same coefficients A and B was applied to the auto-
mated EF estimates. The corrected automated EF estimates 
were tested for reproducibility and accuracy, using the same 
metrics initially used for the uncorrected estimates, namely 
consistency MAD, linear regression, Bland-Altman biases and 
LOA (defined as ±1.96 SD around the mean), MAD and the 
accuracy of detection of EF ≤35%.

Statistical Analysis
Data were expressed as mean values±standard deviations. 
Significance of biases between the automated EF estimates 
and the reference measurements was assessed using 2-tailed 
paired Student t tests. Similarly, the biases between the clinical 
reads and the expert-provided reference standard were tested 
using the same methodology. To rule out the effects of data 
clustering due to dependency in observations (namely 3 EF 
estimates in the same patient), the 3 estimates were compared 
against the reference values separately, one at a time. This 
included linear regression, ICC, and Bland-Altman analyses. 
All analyses, including basic statistics, were performed using 
Microsoft Excel. Additional statistical analyses were performed 
using Prism software (GraphPad Software, San Diego, CA).

RESULTS
The only user input required by the automated algo-
rithm is the selection of the 2 apical views. Once this is 
done, the time to obtain an EF value was in the order 
of magnitude of 1 to 5 seconds on a standard personal 
computer. The algorithm was able to analyze all 297 
pairs of apical views obtained in the 99 patients that 
comprised the testing set.

Repeated automated EF measurements from differ-
ent pairs of apical images resulted in MAD =2.9±2.0%, 
reflecting high level of consistency. These automated 
measurements were in excellent agreement with the 
reference standard, reflected by a high correlation 
with r=0.95 (P<0.001; CI, 0.938–0.960), ICC =0.92 
(CI, 0.90–0.936), a minimal bias of 1.0% with LOA of 
±12.1% (Figure  2, left), MAD =5.1±3.5%. This was 
comparable to or slightly better than the accuracy of 
the clinical readers’ measurements: r=0.94 (P<0.001; 
CI, 0.925–0.952), ICC =0.90 (CI, 0.876–0.920), a bias 
of 1.4% (P=0.65) and LOA of ±13.8% (Figure 2, right), 
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and MAD =5.8±3.9% (P=0.23). Separate comparisons 
for the individual estimates (N=99 each) showed simi-
lar correlations, biases and LOA to those obtained for 
the 3 estimates combined (Table 1), indicating that data 
clustering due to dependency in observations did not 
have major effect.

In terms of the ability to correctly identify patients 
with severely reduced LV function (EF ≤35%), the auto-
mated analysis resulted in high sensitivity, specificity, 
negative and positive predictive values, and accuracy, 
which reflected a comparable or slightly better diag-
nostic performance than the clinical reads, when both 
were compared against the same reference standard 
(Table 2). Similarly, κ value was higher for the automat-
ed analysis than for the clinical reads: 0.806 (judged 
as excellent), compared with 0.745 (judged as good), 
respectively (Table 2).

The de-trending correction resulted in a slight 
improvement in the agreement with the reference stan-
dard (Figure  3), reflected by a correlation unchanged 
from the original automated EF data (r=0.95; P<0.001; 
CI, 0.938–0.960), but higher ICC =0.94 (CI, 0.925–
0.952), smaller bias (−0.4% versus 1.0%; P<0.001) 
with narrower LOA (±8.9% versus ±12.1%), and 
smaller MAD (3.5±2.8% versus 5.1±3.5%; P<0.001). 
The de-trending correction also improved the reproduc-
ibility of the automated measurements from different 

image pairs, as reflected by a lower consistency MAD 
value (2.1±1.5% versus 2.9±2.0%; P<0.001).

DISCUSSION
In this study, we tested the feasibility and accuracy of 
a novel fully automated, machine learning algorithm 
for the quantification of LV EF without first identify-
ing endocardial borders and measuring LV volumes 
at end-systole and end-diastole. Testing included 99 
patients representing a wide range of EF and image 
quality as it relates to body habitus. We found that the 
novel algorithm was feasible in every patient included 
in the test group, and when compared with the ref-
erence standard of conventional measurements per-
formed by a panel of experts, the automated estimates 
were highly accurate. Importantly, the accuracy was 
similar to that of the conventional analysis by inde-
pendent clinical readers. In addition, the automated 
analysis yielded highly consistent results when applied 
to different pairs of apical 2- and 4-chamber views. 
Finally, we demonstrated that a simple mathematical 
de-trending correction based on parameters derived 
from conventional measurements, further improved 
the accuracy and consistency of the automated analy-
sis by almost eliminating the inter-technique bias and 
minimizing the LOA.

Figure 2. Agreement between the machine learning-based automated ejection fraction (EF) measurements (left), side-by-side with the clinical mea-
surements (right) against reference values obtained by averaging measurements by a panel of 3 experts: linear regression (top) and Bland-Altman 
analysis (bottom).
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The rapid technological evolution of the past decades 
that brought about an exponential increase in comput-
ing power has spurred the development of artificial 
intelligence in virtually every area of our lives. It is prob-
ably not unreasonable to think that we are only at the 
beginning of this technological revolution that already 
surpasses the imagination of most of us. In the era of 
ubiquitous devices that allow us to control almost any-
thing around us with a few words, it is only natural that 
the sweeping change in perception of what can and 
what cannot be done without direct human involvement 
has not spared the field of medical imaging.14,15 Specifi-
cally, machine learning is rapidly proving its usefulness in 
cardiac imaging, where it allows automated identifica-
tion of cut-planes and cardiac structures and lends itself 
to an increasing variety of automated measurements 
that up to now have relied on sometimes extensive user 
input.16,17 While the details of how machine learning 
works are difficult to understand for most who are not 
professionals in this area, we all know that it requires for 
training purposes big data that includes every possible 
anatomic and functional variation, to reach accurate 
performance. Fortunately, echocardiography has been 
in existence long enough to offer the developers data 
sets of hundreds of thousands of exams containing mil-
lions of images traced, measured, and characterized by 
human experts over the years.

The novel machine-learning algorithm tested in this 
study is an example of such collaboration that result-
ed in a new tool that was designed to automatically 
provide an answer to probably the most commonly 
encountered question in echocardiography, namely the 
quantification of LV function. The novel approach at 

the basis of this tool was based on the idea that if a 
human eye and brain can learn with experience how to 
estimate EF without measuring LV volumes and making 
calculations, then machine learning could be harnessed 
to train a computer to perform this task. One of the 
advantages of this approach is that it does not rely on 
accurate image segmentation throughout the entirety 
of the blood-tissue interface, which is known to be dif-
ficult when image quality is suboptimal, and as a result 
is known as the major source of inaccuracy. A well-
trained human eye knows how to extrapolate endocar-
dial border position in areas where it is poorly defined, 
and estimate the magnitude of ventricular contraction 
despite such gaps. This concept was translated into 
the simple mathematical formalism described above 
and implemented into a machine-learning algorithm to 
mimic what an expert’s eye does, after being trained on 
a sufficiently large number of cases representing most 
ventricular geometries and functional abnormalities.

Nonetheless, one might legitimately question our 
approach since LV volumes are meaningful too, and 
are often part of the clinical decision making. However, 
LV EF is the critical parameter expected to be included 
in every echo report, and by no means do we advo-
cate ignoring LV volumes. This study aimed at testing 
the feasibility of a fully automated quantitative evalu-
ation of EF without any human involvement by taking 
advantage of a novel machine learning approach to 
strengthen the baseline data available by default before 
any user supervised analysis is performed. We envision 
this information being included with the images the 
moment the reader opens the study. This does not pre-
clude the reader from using any additional means to 

Table 2. Diagnostic Performance of the Machine-Learning Algorithm for Automated Evaluation of LVEF in Terms of its Ability to 
Identify Patients With Severely Reduced LV Function (EF ≤35%)

Sensitivity Specificity NPV PPV Accuracy κ

Auto EF 0.90 0.92 0.96 0.83 0.92 0.806

(95% CI) (0.82–0.95) (0.88–0.95) (0.92–0.98) (0.74–0.89) (0.88–0.95) (0.733–0.880)

Clinical reads 0.93 0.87 0.97 0.74 0.89 0.745

(95% CI) (0.76–0.99) (0.77–0.93) (0.89–0.99) (0.58–0.86) (0.81–0.94) (0.606–0.885)

Data in parentheses represent 95% CI. EF indicates ejection fraction; LV, left ventricular; NPV, indicates negative predictive value; and PPV, positive 
predictive value.

Table 1. Effects of Data Clustering Due to Dependency in Observations, Namely 3 EF Estimates in the Same Patient

 All 3 Estimates Estimate 1 Estimate 2 Estimate 3

Linear regression r value 0.95 0.94 0.94 0.95

P value 0.0000 0.0000 0.0000 0.0000

95% CI (0.938–0.96) (0.912–0.959) (0.912–0.959) (0.926–0.966)

Intraclass correlation ICC 0.92 0.92 0.92 0.93

95% CI (0.900–0.936) (0.883–0.946) (0.883–0.946) (0.897–0.953)

Bland-Altman analysis Bias 1.0 1.1 0.8 1.1

LOA (2SD) 12.1 12.2 12.4 11.7

Results of linear regression and Bland-Altman analysis (both against the reference values), performed for all 3 estimates combined vs each of 
the 3 estimates separately. See text for details. EF indicates ejection fraction; ICC, indicates intraclass correlation; LOA, limits of agreement.
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measure and report LV volumes, when deemed neces-
sary, with the understanding that in most cases, a state-
ment that LV size is normal may suffice.

Our study provided initial validation in a group of 
patients, who were not part of the large training set. 
One might question the fact that cardiac magnetic 
resonance, which is frequently referred to as the gold 
standard for cardiac chamber quantification18 was not 
used as a reference for comparisons. However, this 
was neither an oversight nor an attempt to cut corners 
in the design of our study, but rather intentional and 
directly related to our goal, which was testing the novel 
algorithm as a potential substitute for the conventional 
echocardiographic methodology. We could not have 
learned how close these 2 techniques are by comparing 
either one or both of them to a cardiac magnetic reso-
nance reference. It is well established by previous stud-
ies that echocardiography underestimates ventricular 
volumes resulting in rather inconsistent inter-modality 
differences in EF,2 and such comparisons would likely 
confirm this knowledge, while leaving the above key 
question unanswered. We felt that the only way to 
know whether the automated technique is potentially 
good enough to replace the conventional measure-
ment methodology is to compare the former head-
to-head against a strong reference obtained using the 
latter. To achieve this goal, we averaged EF measure-

ments obtained from multiple images (9 pairs of apical 
views obtained by 3 different sonographers and ana-
lyzed by 3 different expert readers, who are leaders in 
the field and were instrumental in developing the ASE 
guidelines). Comparisons against this reference showed 
excellent agreement, indicating the potential value of 
the newly developed automated approach. Moreover, 
by comparing the accuracy of the automated approach 
side-by-side with that of the conventional measure-
ments by independent clinical readers proved once 
again in a different way that the automated approach 
is at least as good as human readers, with the clear 
advantage of its fast and fully automated nature.

Limitations
In this era of big data, one might see the relatively small 
size of our test group (99 patients) as a limitation. Indeed, 
99 is a disproportionately small number compared with 
50 000 studies used for training the software. However, 
it is important to remember that this was the first study 
to test the feasibility of this novel algorithm and evaluate 
its ability to compete with conventional measurements 
by human experts. Also, the actual number of automat-
ed estimates that were tested was 297, since each of 
the 3 pairs of apical views obtained in each patient were 
tested independently. This sample provided high levels 

Figure 3. Agreement between the machine learning-based automated ejection fraction (EF) measurements without (left) and with de-trending 
correction (right) against reference values obtained by averaging measurements by a panel of 3 experts: linear regression (top) and Bland-Altman 
analysis (bottom).
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of statistical confidence (evidenced by very low P val-
ues in every comparison where differences were noted), 
indicating that further increase in the sample would be 
highly unlikely to affect the findings.

One inherent limitation of the approach tested in 
this study is that in the absence of endocardial bound-
aries, the potential user would not be able to confirm 
the accuracy of the automated EF estimates by veri-
fying the accuracy of the endocardial boundary posi-
tion and tracking. However, when he/she feels that the 
estimate may not be accurate, there would still be the 
option of using the conventional methodology to com-
pare and verify.

One might see as a limitation the fact that the 
training set included 50 000 studies acquired over an 
extended period of time using imaging equipment 
from a variety of vendors, and was thus nonuniform in 
image quality and other characteristics. However, this 
may also be seen as a strength of our study design, as 
the applicability of the tested approach is more likely to 
be widely generalizable.

Another limitation is related to the de-trending cor-
rection, which was based on the trend noted in the 
measurements made by the clinical readers of the 99 
patients in the test group. This is somewhat problem-
atic because the software was trained on a data set 
generated by the same laboratory that provided the 
test set, suggesting that if the 99 studies were analyzed 
by readers from another institution who may be using 
a slightly different measurement methodology, the de-
trending parameters might be different. In fact, a close 
examination of the results of the de-trending shows 
that, despite the fact that it improved both the accuracy 
and consistency of the automated estimates, it might 
have actually resulted in an over-correction (Figure 2, 
right). This is evidenced by the regression slope A <1 
and a positive intercept B, as well as a negative (albeit 
minimal) bias, with mostly negative inter-technique dif-
ferences in the high EF range, all being the opposite of 
the trends seen in the noncorrected data (Figure 2, left). 
Accordingly, the ultimate value of the de-trending cor-
rection remains to be proven.

Conclusions
This initial feasibility study demonstrated that machine 
learning algorithm for estimation of LV EF that avoids 
image segmentation and volume measurements and 
instead mimics a human expert’s eye, is highly feasible 
and can yield results that are in close agreement with 
what highly experienced readers measure using con-
ventional methodology. This approach may prove to 
have important clinical implications because of its fast 
and fully automated nature. It is conceivable that in the 
future, the starting point of interpretation of an echo-
cardiography exam would include automated estimates 

of ventricular function the reader would be presented 
with along with the images.
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