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Advanced Methods and Algorithms for Biological
Networks Analysis

HANA EL-SAMAD, MEMBER, IEEE, STEPHEN PRAJNA, MEMBER, IEEE,
ANTONIS PAPACHRISTODOULOU, MEMBER, IEEE, JOHN DOYLE, MEMBER, IEEE,

AND MUSTAFA KHAMMASH, SENIOR MEMBER, IEEE

Invited Paper

Modeling and analysis of complex biological networks presents
a number of mathematical challenges. For the models to be useful
from a biological standpoint, they must be systematically com-
pared with data. Robustness is a key to biological understanding
and proper feedback to guide experiments, including both the
deterministic stability and performance properties of models in the
presence of parametric uncertainties and their stochastic behavior
in the presence of noise. In this paper, we present mathematical
and algorithmic tools to address such questions for models that
may be nonlinear, hybrid, and stochastic. These tools are rooted
in solid mathematical theories, primarily from robust control and
dynamical systems, but with important recent developments. They
also have the potential for great practical relevance, which we
explore through a series of biologically motivated examples.

Keywords—Biological networks, model invalidation, robust sta-
bility, sum of squares based software tools (SOSTOOLS), stochastic
analysis.

I. INTRODUCTION

Over the past decade, great advances in instrumentation
and several crucial biological discoveries have allowed
experimental molecular biology to provide detailed descrip-
tions of the components and microscopic processes initiated
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by individual molecules within a cell, in addition to high-fi-
delity accounts of their macroscopic phenotypic effects on
cells and organisms. As a consequence, there are increas-
ingly more detailed snapshots of the underlying networks,
circuits, and pathways responsible for the basic functionality
and robustness of biological systems. A direct result of
such snapshots is the realization that the implementation
of even the simplest biological networks involves layers
of complex nonlinear interactions, time delays, positive
and negative feedback, redundancy, and crosstalk. Collec-
tively, this makes the interactions between the elements and
the resulting complex dynamics often intractable through
intuition alone. Therefore, the mathematical modeling of
biological networks has become necessary in linking the
known components, the range of dynamical behavior these
components can generate, and experimental data [1]–[3].
Once this is accomplished, one can additionally study the
effect of perturbations (such as environmental stressors)
on these systems. One can also envisage the use of such
understanding in assessing the causes of disease (the failure
of these regulatory networks) or even the effects of adminis-
tration of therapeutic drugs [4]–[6].

Biological model building, validation and analysis are
nonetheless complicated tasks, and at their core lie some
of the most fundamental mathematical challenges of the
nascent field of systems biology. Broadly stated, in order
to devise reliable and hence useful biological models, one
needs to systematically and rigorously connect experimental
data to modeling, analysis, and inference, and provide tight
feedback to experimentation and modeling throughout. With
the appropriate framework, more concise questions can be
formulated. Is a model consistent with experimental data
which may come from extremely heterogeneous sources?
If so, is it robust to additional perturbations that are bio-
logically plausible but as yet untested? What is the most
promising experiment to refute a model? Put in natural
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terms (which are typically stochastic, nonlinear, nonequilib-
rium, hybrid, and so on), such questions are conventionally
viewed as computationally intractable. Thus, biologists and
engineers alike are often forced to resort to inefficient sim-
ulation methods or translate their problem into biologically
unnatural terms in order to use available algorithms; hence
the necessity for an algorithmic scalable infrastructure that
systematically addresses these questions.

In this paper, we report on new contributions to the de-
velopment of a scalable scientific theory and software infra-
structure for complex biological networks. These build on
decades of research in the mathematics of controls and dy-
namical systems, but particularly on recent developments.
We specifically provide a promising approach to model val-
idation, robustness, and stochastic reachability analysis, all
in the context of two biologically motivated and functionally
important systems: the heat-shock (HS) response in E. coli
and the lysis/lysogeny decision system in the bacteriophage

. Both are among the most familiar and widely studied net-
works in biology. More specifically, using the HS response
as a case study, we study the important problem of model
validation/invalidation. In biological modeling, model vali-
dation is usually carried out by comparing the model predic-
tions to data. Implicitly underlying this task is the assumption
that models can be unambiguously compared with data. In
fact, this comparison is in some respects even more compu-
tationally challenging than modeling and analysis itself. That
is, given a model with a large number of unknown parame-
ters, simulation plus local sensitivity analysis and search can
sometimes produce parameter values that fit data or are lo-
cally maximally likely to fit. If this fails, however, there may
be no short proof that the model is incompatible with the data.
Furthermore, with sufficiently complex models and a large
number of parameters, it is well known that almost any finite
amount of data can be fit.

A closely related problem involves comparing different
models of the same system. For example, suppose that a
given complex model has been successfully fit to existing
data and has passed reasonable invalidation and robustness
tests. A common question then is whether the complexity is
necessary or whether a simpler model can have essentially
the same behavior and robustness. Model invalidation can be
used to explore this. Using the HS response in the bacterium
E. coli as a test case, we illustrate how such problems can be
systematically approached. We specifically invalidate a HS
model lacking what we show is a crucial component. As op-
posed to exhaustive simulations and searches of the param-
eter space, we use the sum of squares based software tools
(SOSTOOLS) to construct a barrier certificate that separates
data points from the dynamical behavior generated by the
deficient model [7]. Therefore, the deficient model is guaran-
teed to be inconsistent with the data for all values of the pa-
rameters (laying within a plausible set), and thus the missing
component is structurally important in the system.

We also consider robust stability analysis of the HS
system. Our interest in robust stability of biological sys-
tems is in great part motivated by the fact that evaluating
the robustness of these models to biochemically plausible

parameter variations and other perturbations is emerging
as a reliable method for rejecting over-fit models [8]. In
fact, an idea that is gaining acceptance with the advent of
multiple examples is that a model which is not robust is not
likely to be biologically meaningful. In this situation one
might suggest that critical pieces of the real system have not
been captured. In essence, robustness of a model is a good
indicator of its plausibility and, further, robust systems are
highly nongeneric and have specialized structures unlikely
to arise by fitting incorrect models to data.

Biological networks exhibit extraordinary robustness
to common perturbations in their environments, but are
also often catastrophically disabled by relatively small but
unusual perturbations. For example, the immune system
that has an extraordinarily robust capability of recognizing
self from foreign entities can cause massive failure of
vital organs in response to minuscule (and rare) autoim-
mune damage that generates self-destructing lymphocytes.
Elucidating this ubiquitous “robust yet fragile” nature of
biological systems in any particular problem domain is often
a key to understanding the origin of network complexity
[4], [9]–[11]. Theory and modeling approaches that do not
explicitly exploit the highly structured, evolved, and “robust
yet fragile” nature of biological systems are hopelessly
doomed to be overwhelmed by their sheer complexity. We
therefore study the problem of systematic robust stability
analysis, again in the context of the HS response and using
SOSTOOLS to construct appropriate Lyapunov functions.
Although the theory of Lyapunov stability is more than a
century old [12], the newer contributions of sum of squares
and SOSTOOLS that we discuss provide a relaxation that
facilitates the systematic computation of Lyapunov functions
[13].

The analysis of the HS system is carried for a determin-
istic mathematical model that assumes that the interactions
between the various cellular components are continuous pro-
cesses with no uncertainty, while the analysis we present for
the bacteriophage is carried in a more natural stochastic
context. Considered as a set of well-stirred biochemical re-
actions, interactions between the components of biochem-
ical networks are traditionally mathematically approximated
by a set of coupled ordinary differential equations, when in
fact molecular populations are whole numbers that change
by discrete, integer amounts. Furthermore, the occurrence of
chemical reactions is by itself a random process subject to
thermal fluctuations, and hence stochastic. Whereas discrete-
ness and stochasticity may not be noticeable in “test-tube”
size or larger system when the molecular populations of some
reactant species are very small, or if the dynamic structure of
the system makes it susceptible to noise amplification as is
often the case in cellular systems, they can play an impor-
tant role. Whenever that happens, ordinary differential equa-
tions may poorly describe the true behavior of the system.
This is further corroborated by physical evidence pointing
to purely stochastic phenomena in a number of genetic net-
works [14]–[18].

These phenomena are particularly interesting in multi-
stable systems where the interaction of large noise intensities
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could, for example, lead to random switching from one cel-
lular state to another [19]. Even in the presence of small
noise intensities, switching events can still happen on long
time scales. It has been hypothesized that such rare large
deviation events can be responsible for important failures of
cellular machinery, leading to cancer [20] and the release
of latent viruses from their quiescent state [21], [22]. The
characterization of these events and the statistics of their
occurrence is therefore of great importance, but also of great
difficulty given standard simulation methods. The stochastic
investigation of biological systems relies on the formula-
tion of the chemical master equation (CME), a differential
equation for the time evolution of probabilities [23], [24].
Despite the fairly straight-forward form and interpretation of
the CME, it is not solvable exactly for any but systems that
are “closed,” in the sense that reactants are modeled to exist
in a fixed volume and are not permitted to interact beyond
the confines of that volume. However, models of cellular
networks tend not to be closed, due to the prevalence of re-
actions that reintroduce into the reaction volume new copies
of reactants through events such as new protein synthesis.

An alternative to solving the CME is to generate sto-
chastic sample realizations of the process whose probability
density function is described by the CME. This can be done,
for instance, using standard Monte Carlo techniques, such
as the Gillespie stochastic simulation algorithm (SSA) [25],
[26]. The SSA has been used with great success in the study
of a number of cellular networks. However, it has been
repeatedly pointed out that the algorithm itself can become
prohibitively inefficient when reactions occur so frequently
that accounting for every event causes dramatic slowdown in
simulation time. This effect is exacerbated by the presence
of stiffness, i.e., the coexistence of drastically different time
scales for the occurrence of the chemical reactions [27].
Furthermore, when investigating rare stochastic events, one
needs to add to this inherent inefficiency the necessity of
running extensive simulations in order to capture even one
occurrence of the event of interest, a prohibitively expensive
procedure. The same problem persists even when the above
mentioned continuou-time discrete-state Markov description
of cellular dynamics is replaced by a stochastic differential
equation (SDE) description through diffusion approxima-
tions. The SDE is often referred to as a chemical Langevin
equation (CLE). Indeed, the study of transitions between
metastable steady states and rare events in stochastic systems
is a difficult problem with a long history [28] and has many
applications in biology [29]. Here again, we demonstrate
how the algorithmic SOSTOOLS can be used to alleviate
the computational burden involved in computing bounds on
probabilities for the occurrence of rare biological events. As
an illustration, we use a genetic switch implemented in the
bacteriophage .

This paper is organized as follows. In Section II, we
present a mathematical exposition of the algorithms and
methods we use. We show how robust stability, model
invalidation, and stochastic reachability analysis can be
performed using the sum of squares technique in a unified

manner. In Section III we illustrate the use of this general
mathematical framework through two case studies. First,
the robust stability of a HS model to parameter variations is
assessed, followed by an invalidation of an erroneous model
given data obtained by an adequate model. Then, we inves-
tigate the lytic/lysogenic cycles of bacteriophage lambda
on E. coli using a stochastic model to answer stochastic
reachability questions. Both examples are simple enough to
be easily accessible but rich enough to be suggestive of the
potential of the methods used. The paper is concluded in
Section IV.

II. MATHEMATICAL BACKGROUND

In this section, we provide a basic description of the sum
of squares formulation in the context of stability analysis,
model validation/invalidation, and stochastic reachability
problems.

A. Robust Stability Analysis

1) Stability and Lyapunov Functions: At the deterministic
level, biological networks are usually modeled as a set of
autonomous ordinary differential equations (ODEs) of the
form

(1)

where denotes the derivative of with respect to time, and
are the state variables. Here is a function

that takes points in , a subset of and maps them to ,
i.e., with . We assume further that
is locally Lipschitz for , a condition that guarantees
local existence and uniqueness of solutions [30]. Let be
an equilibrium point of (1), i.e., . Without
loss of generality, we assume that —a simple change
of coordinates can achieve this—and study the stability prop-
erties of this equilibrium. We provide the following notions
of stability.

Definition 1: Let denote a norm in . The zero
equilibrium of (1) is:

• stable, if for each there is such that

• asymptotically stable if it is stable, and can be chosen
such that

These definitions of stability involve formulations;
generally speaking, the stability condition requires that if the
initial condition is close to the equilibrium, then the system
trajectory will stay close to the equilibrium; the asymptotic
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Fig. 1. (a) Simple pendulum with damping and (b) its phase plane. Arrows show the vector field directions, solid lines are sample trajectories with initial
conditions indicated by “o.” Dashed curves are level curves of the total energy of the system that serves as a Lyapunov function. The derivative condition on
the Lyapunov function translates into the property that “arrows always cross inside the level curves of the Lyapunov function,” which necessarily means that
if a trajectory finds itself inside a level curve, it can never leave it.

stability condition not only asks for stability, but also asymp-
totic convergence to the equilibrium point. Such conditions
give the impression that a complete description of the flow
of the vector field is required to answer stability questions. It
is fortunate that in many cases this is not essential; instead,
stability can be proved directly by exhibiting a so-called Lya-
punov function [30], [31].

Lyapunov functions are energy-like functions for a system.
Consider a simple pendulum with damping, shown in Fig. 1.
The total energy of the system is positive everywhere and is
zero at the downward equilibrium. Moreover, as the system
is left to evolve from any other initial condition, this energy
function is nonincreasing which means that along the system
evolution, energy is not added. By looking at how the total
energy of such a system changes as the system evolves, we
can conclude the stability of the equilibrium, as all initial
conditions in a neighborhood of the equilibrium will have
the same fate. Indeed, at the end of the 19th century, A. M.
Lyapunov developed a stability theorem based on the above
observation; through the properties of an appropriate energy-
like function that is widely referred to as a Lyapunov func-
tion)—being zero at the equilibrium, positive everywhere
else, and its time derivative along the system’s trajectories
being nonincreasing—the stability of the equilibrium point
follows.

The concept behind Lyapunov functions is central to
the analysis of complex dynamical systems. Level curves
of Lyapunov functions provide “trapping regions” that the
trajectory can never leave—called regions of attraction of
the equilibrium. Whereas simulation tries to follow the evo-
lution of the system when released from a particular initial
condition, the Lyapunov function constructs these nested
regions which restrict the evolution of the system to within
their boundaries—see Fig. 1. Under some technical condi-
tions, the existence of this function has also been proven
necessary for asymptotic stability [32]. More precisely, the

conditions for this stronger notion of stability are stated in
the following theorem.

Theorem 2 ([30]): Consider the system (1), and let
be a neighborhood of the origin. If there is a continuously

differentiable function such that the following
two conditions are satisfied:

1) for all and , i.e.,
is positive definite in ;

2) for all , i.e.,
is negative semidefinite in ;

then the origin is a stable equilibrium. If in condition (2)
above, is negative definite in , then the origin is
asymptotically stable. If and is radially
unbounded, i.e., as , then the result
holds globally.

in the previous theorem is called a Lyapunov func-
tion, while the surface for some is called a
Lyapunov surface. Therefore, the condition indi-
cates that when a trajectory of the system crosses ,
it subsequently stays within the set .
Furthermore, the condition indicates that a tra-
jectory moves from one Lyapunov surface to another with a
smaller , eventually approaching the origin.

In the case of linear time-invariant systems the
stability properties can be characterized by the locations of
the eigenvalues of the matrix , or equivalently, through
a Lyapunov argument as follows.

Theorem 3 ([30]): The matrix is a stability matrix; that
is Re for all eigenvalues of if and only if for
any given positive definite matrix there exists a positive
definite matrix that satisfies

(2)

is unique and is a Lyapunov function for
.
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We see that the construction of the Lyapunov function in
the case of linear systems is reduced to solving an appro-
priate algebraic Lyapunov equation (2). Alternatively, can
be obtained by solving two linear matrix inequality (LMI)
[33] conditions

A feasible exists if and only if is stable (all eigen-
values are in the open left half plane). LMIs are one pos-
sible formulation of semidefinite programs [34], which can
be solved using algorithms with a worst case polynomial time
complexity. This makes them particularly attractive for com-
putation, and therefore constructing Lyapunov functions for
linear systems is relatively simple.

In contrast to this, constructing Lyapunov functions for
nonlinear systems is more difficult, as we will see in the
sequel. This led to the development of other methods for as-
sessing nonlinear system properties. For example, in Lya-
punov’s indirect method, one proceeds by linearizing the
vector field about the equilibrium and the stability properties
of the original nonlinear system are inferred from the stability
properties of the linearized system. However, such stability
results are valid only locally and the procedure is inconclu-
sive when the linearized system has imaginary axis eigen-
values. Other methodologies involve absolute stability theory
[35], linear parameter varying (LPV) embeddings [36]–[38],
and integral quadratic constraint (IQC) formulations [39].

Next, we present a new computationally attractive
methodology for nonlinear stability analysis that was first
introduced by Parrilo in [40]. It is based on the sum of
squares decomposition and uses semidefinite programming
(LMIs) to construct functions that satisfy the conditions in
Lyapunov’s Theorem 2. The methodology generalizes the
LMI method for constructing quadratic Lyapunov functions
for linear time-invariant systems to constructing Lyapunov
functions for nonlinear systems.

2) Algorithmic Construction of Lyapunov Functions
Using Sum of Squares and SOSTOOLS: Here we concen-
trate on the construction of Lyapunov functions for nonlinear
systems using Theorem 2. There are two main reasons for
the absence of efficient algorithmic methodologies for con-
structing Lyapunov functions. First, the “terms” that should
appear in a candidate Lyapunov function are not
known a priori. Second, testing the nonnegativity conditions
in Theorem 2 is a difficult task even when a Lyapunov
function is given, for example in the form of a polynomial.
Sometimes, one can approach the first problem by resorting
to intuition and prior knowledge of energy-like terms that
are likely to appear in . However, the second problem
is fundamentally intractable. It is closely related to the fact
that testing nonnegativity of polynomials when their degree
is greater than or equal to four is an -hard problem
[41] and so algorithmic techniques to answer exactly the
question “Given , is it nonnegative?” will most likely be
impractical in the worst case. The related question “Given

, is it a sum of squares?” can be answered using LMI

techniques and is therefore algorithmically tractable. The
sum of squares condition is sufficient for nonnegativity, and
the approach that relaxes nonnegativity with sum of squares
conditions was introduced by Parrilo [40] and has proven to
be very powerful. We now present some background on sum
of squares polynomials.

Definition 4: A multivariate polynomial ,
is a sum of squares (SOS) if there exist polynomials ,

such that .
An equivalent characterization of SOS polynomials is

given in the following proposition, the proof of which can
be found in [40].

Proposition 5 [40]: A polynomial of degree is an
SOS if and only if there exists a positive semidefinite matrix

and a vector containing monomials in of degree
so that

This proposition states that instead of searching for the
that make up in the definition above, one can

equivalently search for a matrix that is positive semidefi-
nite so that . If such a is found, then
the polynomial is an SOS, and if it is not found, then the poly-
nomial is not an SOS. The vector can be constructed by
looking at the monomials that appear in and its degree.

Since being an SOS is equivalent to subject to
some affine conditions between the coefficients of the mono-
mials in and the elements of the unknown matrix , the
problem of finding a which proves that is an SOS
is indeed an LMI [40]. Note that if a polynomial is a
sum of squares, then it is globally nonnegative. The converse
is not always true: not all positive semidefinite polynomials
can be written as SOS—in fact, as mentioned earlier, testing
global nonnegativity of a polynomial is known to be

-hard when the degree of is greater than 4 [41],
whereas checking whether can be written as an SOS is
computationally tractable—it can be formulated as an LMI
which has a worst case polynomial-time complexity. Nev-
ertheless, the gap between nonnegativity and SOS appears
small in practical problems [42]. The construction of the LMI
related to the SOS conditions can be performed efficiently
using SOSTOOLS [43], a software that formulates general
sum of squares programs as semidefinite programs (SDPs)
and calls semidefinite programming solvers to solve them. If
the monomials in the polynomial have unknown coeffi-
cients then the search for feasible values of those coefficients
such that is nonnegative is also an SDP, a fact that is im-
portant for the construction of Lyapunov functions.

Let us now return to the problem of constructing Lyapunov
functions for nonlinear systems, and assume for simplicity
that is a polynomial vector field, i.e., are polyno-
mials in for . Suppose that we
also wish to construct a that is also polynomial in .
In this case, the two conditions in Theorem 2 become poly-
nomial nonnegativity conditions. To circumvent the difficult
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task of testing them directly, we can restrict our attention to
the case in which the two conditions admit SOS decomposi-
tions.

In order to impose positive definiteness (rather than pos-
itive semidefiniteness) on , we construct an auxiliary
positive definite “shaping” function as follows:

(3)

where , and . This makes , i.e.,
positive definite. If we then impose to be an
SOS, we get the obvious relation

(4)

Overall, we have the following proposition.
Proposition 6: Given a polynomial of degree , let

be given by (3). Then, the condition

is a sum of squares (5)

guarantees the positive definiteness of .
In light of this proposition, testing global stability of
following the conditions of Theorem 2 can be formulated

directly as SOS conditions. It can be specifically formulated
as the following sum of squares program.

Program 7: To construct a Lyapunov function for system
(1)

Find a polynomial

and a positive definite function of the form

such that

is SOS (6)

is SOS (7)

found this way is a Lyapunov function for system (1)
and the zero equilibrium of (1) is stable, since the above pro-
gram guarantees that is positive definite and also that

is negative semidefinite. Note also that by construction
is radially unbounded; therefore, will also be ra-

dially unbounded, and the stability property holds globally
[30]. Also, if condition (7) is replaced by

is SOS (8)

where is a positive definite polynomial constructed as
per (3), then is negative definite and the origin is glob-
ally asymptotically stable.

3) Stability of Constrained Systems—Robust Stability
Analysis: To tackle more biologically relevant problems,
we extend here Lyapunov’s theorem to systems that evolve
under equality, inequality, and integral constraints. This is
a very general class of systems, special cases of which are
differential algebraic equations, robust stability analysis,
and performance evaluation. Furthermore, this extension
allows for the treatment of nonpolynomial vector fields.

Inequality constraints arise naturally in biological net-
works, as the states in biochemical reactions (concentrations
of species) are always nonnegative. The same type of in-
equality constraints can be further used to describe uncertain
parameter sets for the study of robust stability of systems in
the presence of parametric uncertainty. Equality constraints
also prove useful in robust stability analysis where they
appear as constraints guaranteeing that the equilibrium of
the system is at the origin. Equality constraints can also
naturally appear in systems that are constrained to evolve
over a manifold [44]. For example, equality constraints in
biological systems can arise due to conservation laws—usu-
ally in the form of mass balance equations. Finally, integral
type constraints can also be incorporated. In particular, one
can consider integral quadratic constraints (IQCs) [39],
which provide a rich framework that encapsulates many
types of uncertainty and unmodeled dynamics: dynamic,
time-varying and bounded uncertainty, just to name a
few. Performance calculations such as input–output gain
estimation can also be formulated using IQCs.

To put these ideas in a more rigorous setting, we consider
the nonlinear system

(9)

with the following inequality, equality, and integral con-
straints that are satisfied by and

for (10)

for (11)

for and (12)

Here is the state of the system, and is a
collection of auxiliary variables (such as inputs, nonpolyno-
mial functions of states, uncertain parameters, etc). We as-
sume that , apart from the required Lipschitz con-
ditions for existence of solutions, has no singularity in ,
where is defined as

and
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Without loss of generality, it is also assumed that
for and , where

The following theorem is an extension of Lyapunov’s sta-
bility theorem, and can be used to prove that the origin is
a stable equilibrium of the above system. It uses a technique
reminiscent of the well-known S-procedure [45] in nonlinear
and robust control theory [33], which is similar to adjoining
the equality, inequality and IQC conditions to the Lyapunov
conditions using appropriate multipliers.

Theorem 8 [13]: Suppose that for system (9), there exist
functions , , , ,

, and constants such that

(13)

(14)

Then the origin of the state space is a stable equilibrium of
the system.

Proof: If condition (13) is fulfilled, then we have that in
,

Therefore, in , where and
satisfy (10), (11).

Condition (14) can be integrated from time to
to obtain

where we have used the fact that , , and
satisfy (10)–(12).

This shows that the Lyapunov function is nonincreasing
along the trajectories of the system and is positive definite
in . Therefore, the conditions for Lyapunov stability (see
Theorem 2) are satisfied. The rest of the proof is similar to the
proof of Lyapunov’s theorem, which can be found in many
standard textbooks, e.g., [30] .

Concisely put, in order to test that the Lyapunov condi-
tions hold when the constraints (10)–(12) are satisfied, we ad-
joined these constraints using appropriate multipliers to the
Lyapunov conditions of Theorem 2.

When the vector field is rational, i.e.,
with in , condition (14) can be

multiplied by the nonvanishing denominator. Rational vector
fields are common in biological systems, usually arising from
Michaelis–Menten approximations.

Theorem 8 can now be used to analyze various cases of
systems with constraints. Now, we demonstrate how in
Theorem 8 can be constructed using the SOS technique. For
this, we need to make some assumptions.

• The vector field is assumed to be polynomial
or rational, and the constraint functions ,

, are assumed to be polynomial.
This assumption may be removed through a recasting
process [46].

• We search for a bounded degree polynomial Lyapunov
function and multipliers , , and

, , .
Under these assumptions, the search for a Lyapunov func-

tion can be relaxed by the following proposition in which
all “ ” conditions are essentially relaxed to SOS conditions,
making their search computationally efficient using semidef-
inite programming and SOSTOOLS.

Proposition 9: Suppose that for system (9) with
where and are polynomials

and in , there exist polynomial functions ,
, , , , a positive def-

inite function of the form given in (3) and constants
such that

is SOS (15)

is SOS for (16)

is SOS for (17)

is SOS (18)

Then the origin of the state space is a stable equilibrium of
the system.

It is now clear how , , ,
, , the constants and the positive

definite function can be constructed using SOSTOOLS
[43], and a program similar to Program 7 can be constructed.

B. Model Invalidation

Model validation provides a way to evaluate the ability of
a proposed model to represent observed system behaviors.
However, as often pointed out in the literature, “model vali-
dation” is actually a misnomer [47]–[49]. It is impossible to
validate a model, because to do so requires an infinite number
of experiments and data. The role of model validation tech-
niques is rather to invalidate a model, by proving that some
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experimental data are inconsistent with the model, thus in-
dicating that a refinement of the model is required. Beside
modeling, model validation is related to and has many appli-
cations in the areas of system identification, fault detection,
prediction, and verification.

In this section, we present a methodology recently devel-
oped for invalidation of continuous-time nonlinear models
with uncertain parameters [7]. The methodology is based on
functions of state-parameter-time termed barrier certificates.
The existence of a barrier certificate generates a contradic-
tion between model and some time-domain experimental
data, in the sense that some level sets of this certificate act as
barriers between possible model trajectories and data. With
this methodology, model validation of a very large class
of continuous-time models, including differential-algebraic
models [50], models with uncertain inputs [39], models with
memoryless and dynamic uncertainties [30], [39], hybrid
models [51], and their combinations. Moreover, similar to
Lyapunov functions, barrier certificates can be computed
using the sum of squares decomposition and semidefinite
programming, e.g., using the SOSTOOLS software [43].

In the simplest setting, consider again the system of ordi-
nary differential equations

(19)

where is the vector of state variables, is time,
and is the parameter vector, assumed to take its
value in a set . Let an experiment be performed
with the real system, and two measurements be taken at time

and . Suppose that these measurements indicate
that and , where both and
are subsets of . In addition, assume that for all

, where . The invalidation problem can
then be stated as follows.

Problem 10: Given the model (19), parameter set , and
trajectory information , prove that for all pos-
sible parameter , the model (19) cannot produce a
trajectory such that , , and

.
If such a proof in Problem 10 can be found, then we say

that the model (19) and parameter set are invalidated by
.

Traditional approaches for solving this problem include
exhaustive simulation of (19) using parameters and initial
conditions sampled randomly from and . If after
many such simulations no trajectory that satisfies the
initial hypothesis can be found, then an inconsistency is con-
cluded. Indeed simulation (possibly after parameter fitting)
is a good way for proving that a model can reproduce some
behaviors of the system it represents. However, for proving
inconsistency, the required number of simulation runs will
soon become prohibitive. Moreover, a proof by simulation
alone is never exact, simply because it is impossible to test
all and .

Instead of exhaustive simulations, our method relies on the
existence of a function of state-parameter-time, which we

term barrier certificate. A barrier certificate gives an exact
proof of inconsistency by providing a barrier between pos-
sible trajectories of the model starting at and the final
measurement . This is accomplished without performing
any simulation nor computing the flow of the model. The
method is summarized in the following theorem.

Theorem 11 ([7]): Let the model (19) and the sets , ,
, be given, with being continuous in and

. Suppose that there exists a real-valued function
that is differentiable with respect to and , such that

(20)

(21)

Then the model (19) and its associated parameter set are
invalidated by . (In the sequel, we will call the
function a barrier certificate.)

The proof of the theorem follows from a simple contra-
diction. In particular, according to the experimental data and
(20), we have the value of at time greater
than its value at time . On the other hand, (21) implies
that this value should not increase along time when is a
trajectory of the model (19). Thus, we can conclude that the
model is inconsistent with the experimental data. The above
approach can be easily extended to handle more than two
measurements. In addition, as mentioned at the beginning of
the section, this approach can be used to handle a larger class
of models. See [7] for details.

Similar to the case of Lyapunov functions, construction
of barrier certificates is in general not easy. However, for
models with polynomial vector fields and sets , , ,

described by polynomial equalities and inequalities, a
tractable computational relaxation for constructing barrier
certificates exists. The relaxation is provided by the sum of
squares decomposition, much in the spirit of the algorithmic
construction of Lyapunov functions for nonlinear systems
presented in Section II-A2.

More concretely, consider the model (19) with a polyno-
mial and parameter set defined as follows:

(22)

where the ’s are polynomials in , and is an index
set. For example, when the elements of take their values on
the intervals , we may define

for

Similarly, let the trajectory data be defined by

(23)

EL-SAMAD et al.: ADVANCED METHODS AND ALGORITHMS FOR BIOLOGICAL NETWORKS ANALYSIS 839



(24)

(25)

Then a barrier certificate can be computed by solving the
convex optimization problem given in the following pro-
gram.

Program 12: Let the polynomial vector field
and the sets , , , in (22)–(25) be given. To
invalidate the model (19), find a polynomial , a
positive number , and sums of squares ,

, , ,
, , such that the expressions

(26)

and

(27)

are sums of squares. (In this case, satisfies the con-
ditions (20), (21) of Theorem 11, and therefore is
a barrier certificate.)

At this point, we would like to remark that although this
computational approach assumes that the description of the
model, parameter set, and data sets are polynomial, nonpoly-
nomial descriptions can be handled (although possibly with
some conservatism), and nonpolynomial barrier certificates
can be constructed by recasting of variables as proposed in
[46].

C. Stochastic Verification

Computing bounds on probability in inherently stochastic
biological systems, as well as the statistics for the occurrence
or lack thereof of decisive or catastrophic events is a crucial
problem. However, such computations are usually very chal-
lenging, and can be carried analytically or numerically only
for a handful of examples. In this section, a technique based
on the sum of squares approach that was recently developed
[52], [53] for the algorithmic computation of probability
bounds on the occurrence of these events will be described.

For our exposition, we consider a complete probability
space and a standard -valued Wiener process

defined on this space [54]. The class of models that we use
is stochastic differential equations of the form

(28)

where , and . We denote the state space, the
set of initial states, and the set of decisive/unsafe states by ,

, and , respectively. All of these are subsets of and
assumed compact. To guarantee the existence and uniqueness
of solution, we will also assume that both and
satisfy the local Lipschitz condition and the linear growth
condition on . For bounded , the last condition can be
replaced by the boundedness of and on . It can then
be shown that the process described above is a strong
Markov process.

Since in general the process is not guaranteed to al-
ways lie inside the set , we define the stopped process
corresponding to and as follows.

Definition 13: Suppose that is the first time of exit of
from the open set Int . The stopped process is

defined by

for ,
for .

The stopped process satisfies various properties. For
example, it inherits the right continuity and strong Markovian
property of . Furthermore, in most cases the so-called in-
finitesimal generator corresponding to is identical to the
one corresponding to on the set Int , and is equal to
zero outside of this set [55]. This will be implicitly assumed
in our analysis.

Having defined the system and the stopped process ,
we can now state the stochastic verification problem as fol-
lows.

Problem 14: Given the system (28) and the sets , and
, compute an upper bound for the probability of a process

starting at to reach . In other words, find
such that for some for
all .

Obviously, it is of interest to obtain an upper bound
that is as tight as possible. Our approach to solve the above
problem is based on finding an appropriate function
from which we can deduce an upper bound . We will also
call the function a barrier certificate, as it will need
to satisfy some conditions that can be considered as the sto-
chastic counterpart of the conditions in Section II-B. For
example, instead of requiring the value of to be
nonincreasing along time, we ask that the expected value
of decreases or stays constant as time increases. A
process satisfying such a property is called a supermartingale
(see [54] for the technical definition). Using a known super-
martingale inequality [55], the probability bound can then be
inferred from , as summarized in the following theorem.

Theorem 15 ([53]): Let the stochastic differential equa-
tion (28) and the sets , , be given, and consider the
stopped process . Suppose that there exists a twice con-
tinuously differentiable function , such that

(29)
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(30)

(31)

Trace

(32)

then

(33)

for all .
It should be noted that the value of will be at most equal

to one, as when , the function will satisfy
the above conditions. The proof of Theorem 15 can be found
in [53], but the intuitive idea is as follows. Condition (32)
implies that the process is a supermartingale, and
therefore its value is likely to stay constant or decrease as
time increases. When the system starts from a lower initial
value of (i.e., as gets smaller) it becomes less likely
for the trajectory to reach the decisive/unsafe states, on which
the value of is greater than or equal to one. This is
quantified by the probability bound (33).

With regard to computation, an upper bound and a bar-
rier certificate which certifies the upper bound can be
computed by formulating conditions (29)–(32) as a sum of
squares optimization problem, in the same spirit as Program
12. Furthermore, can be chosen as the objective function
whose value is to be minimized. The minimum value of ob-
tained from the optimization will be the tightest upper bound
for a given set of candidate barrier certificates. Obviously,
as we include more candidate barrier certificates to this set,
we may get a better bound, although there is a tradeoff be-
tween using a larger set and the computational complexity of
finding a barrier certificate within the set.

Other classes of stochastic systems, e.g., switching diffu-
sion processes, can be handled in a similar fashion, by using
the suitable generator for the class and modifying the condi-
tions for appropriately. See [53].

III. APPLICATION TO GENE REGULATORY NETWORKS

In order to put the biological models of this section in con-
text, we present a brief introduction to the cellular processes
involved in gene expression, in addition to the concept of a
gene regulatory network.

A. Gene Regulatory Networks and the Central Dogma of
Molecular Biology

The synthesis of cellular proteins is a multistep process
that involves the use of various cellular machines [56]. One
very important machine in bacteria is the so-called RNA
polymerase (RNAP). RNAP is an enzyme that can be re-
cruited to transcribe any given gene. However, RNAP bound
to regulatory sigma factors recognizes specific sequences in
the DNA, referred to as the promoter. Whereas the role of
RNAP is to transcribe genes, the main role of factors is

to recognize the promoter sequence and signal to RNAP in
order to initiate the transcription of the appropriate genes.
The transcription process itself consists of synthesizing a
messenger RNA (mRNA) molecule that carries the informa-
tion encoded by the gene. Here, RNAP acts as a “reading
head” transcribing DNA sequences into mRNA. Once a few
nucleotides on the DNA have been transcribed, the -factor
molecule dissociates from RNAP, while RNAP continues
transcribing the genes until it recognizes a particular se-
quence called a terminator sequence. At this point, the
mRNA is complete and RNAP disengages from the DNA.
During the transcription process, ribosomes bind to the
nascent mRNA and initiate translation of the message. The
process of translation consists of sequentially assembling
amino acids in an order that corresponds to the mRNA
sequence, with each set of three nucleotides corresponding
to a single unique amino acid. This combined process of
gene transcription and mRNA translation constitutes gene
expression, and is often referred to as the central dogma of
molecular biology.

Gene regulatory networks can be broadly defined as
groups of genes that are activated or deactivated by par-
ticular signals and stimuli, and as such produce or halt the
production of certain proteins. Through combinatorial logic
at the gene or the end-product protein level, these networks
orchestrate their operation to regulate certain biological
functions such as metabolism, development, or the cellular
clocks. Regulation schemes in gene regulatory networks
often involve positive and negative feedback loops. A simple
scheme consists, for example, of a protein that binds to the
promoter of its own gene and shields it from the RNAP-
complex, thereby autoregulating its own production. When
interfaced and connected together according to a certain
logic, a network of such building blocks (and possibly
others possessing different architectures and components)
generates intricate systems that possess a wide range of
dynamical behaviors and functionalities.

B. Robust Stability Analysis of the Heat Shock Response
in E. coli

In this section, we describe the biology of the heat shock
response (HS) system, an essential cellular mechanism con-
served in most organisms. Extensive experimental probing of
the architecture of the HS system has unraveled a number of
feedback and feedforward loops whose presence posed many
essential questions. First, and perhaps foremost, does the cur-
rent knowledge span all the structural components and inter-
actions in the system or did experimental investigation miss
crucial parts? If so, can a model describing the known com-
ponents identify this knowledge gap when contrasted with
data? Even if such investigations confirm the completeness
of our knowledge of the system, can we decipher the salient
features of its architecture and identify the functional roles of
its parts. For example, what is the functional relevance of the
seemingly redundant loops in the HS system? Is the system
robust to operational fluctuations? If so, how is this robust-
ness connected to the architecture?
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Fig. 2. Molecular implementation of the HS response system.

These questions are of course of general relevance to many
biological systems, but are at the same time immensely chal-
lenging. Here, we use the HS response as a case study to
formulate and address concisely particular aspects of robust-
ness analysis and model invalidation, all in the context of our
new mathematical machinery. The HS response is particu-
larly suited for such an investigation because of the wealth
of experimental and mathematical information available for
the system [11].

1) The Heat Shock Response in E. coli: High tempera-
tures cause cell proteins to unfold from their normal shapes,
resulting in malfunctioning and eventually death of the
cell. Cells have evolved gene regulatory mechanisms to
counter the effects of HS by expressing specific genes that
encode HS proteins (hsps) whose role is to help the cell
survive the consequence of the shock. In E. coli, the HS
response is implemented through an intricate architecture
of feedback loops centered on the -factor that regulates
the transcription of the HS proteins under normal and stress
conditions. The enzyme RNA polymerase (RNAP) bound
to this regulatory sigma factor, , recognizes the HS gene
promoters and transcribes specific HS genes. The HS genes
encode predominantly molecular chaperones (DnaK, DnaJ,
GroEL, GrpE, etc.) that are involved in refolding denatured
proteins and proteases (Lon, FtsH, etc.) that function to de-
grade unfolded proteins. At physiological temperatures (30
C–37 C), there is very little present and hence little

transcription of the HS genes. When bacteria are exposed to
high temperatures, first rapidly accumulates, allowing
increased transcription of the HS genes and then declines
to a new steady state level characteristic of the new growth
temperature. There are two mechanisms by which levels
are increased when the temperature is raised [57]. First, the
translation rate of the rpoH mRNA (encoding ) increases

immediately, resulting in a fast tenfold increase in the con-
centration of [58]. This mechanism implements what
we refer to as the feedforward control loop. Second, during
steady state growth, is rapidly degraded min ,
but is stabilized for the first 5 min after temperature upshift,
so that its concentration rapidly increases. In vivo evidence
is consistent with the following titration model for the HS
response. DnaK and its cochaperone DnaJ are required
for the rapid degradation of by the HS protease FtsH.
Raising the temperature produces an increase in the cellular
levels of unfolded proteins that then titrate DnaK/J away
from , allowing it to bind to RNA polymerase (resulting
in increased trancription) and stabilizing it in the process.
Together, increased translation and stabilization lead to
a transient 15–20-fold increase in the amount of at
the peak of the HS response. The accumulation of high
levels of HS proteins leads to the efficient refolding of the
denatured proteins thereby decreasing the pool of unfolded
protein, freeing up DnaK/J to sequester this protein from
RNA polymerase. This implements what is referred to as
a sequestration feedback loop. Furthermore, this seques-
tration itself promotes the degradation of and results
in feedback regulated degradation, mainly by the protease
FtsH. We refer to this as the FtsH degradation feedback
loop. The overall result is a decrease in the concentration of

to a new steady state concentration that is dictated by
the balance between the temperature-dependent translation
of the rpoH mRNA and the level of activity modulated
by the hsp chaperones and proteases acting in a negative
feedback fashion. The molecular interactions describing the
HS response are pictorially illustrated in Fig. 2.

2) A Reduced Order Model for the HS Response: In a
previous study, we have developed a detailed deterministic
mathematical model for the heat stress response in E. coli
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Table 1
Parameter Values for Heat Shock Model

[11], [59], [60]. Specifically, the dynamics described above
were modeled using differential rate equations, generating a
set of 31 differential-algebraic equations (DAEs) of the form

where is an 11-dimensional vector whose elements are
the differential variables and is a 20-dimensional vector
whose elements are algebraic variables. This form is known
as a semi-explicit DAE. The model possesses 27 kinetic rate
parameters. Subsequently, a reduced order model was de-
rived using insight into the system’s architecture and sep-
aration principles in time and concentrations. As in the full
model, this reduced model involves the dynamics of the basic
building blocks of the HS response, namely, the factor ,
the chaperones , and the protein folding mechanism. The
model equations are as follows:

(34)

where is the complex formed by the binding of the un-
folded proteins to , is the complex formed by the
binding of to , and is the total number of proteins in
the cell, considered here to be constant. The parameters used
in this model are given in Table 1. We replace the algebraic
constraints into the initial system (34), then use the facts that

and that in the wild type bacterial HS
response and simplify the expression for and . Simple

algebraic manipulations yield a compact description for the
reduced order HS model

(35)

As in the original equations, the feedforward control is
achieved by the temperature dependent function in
the ODE describing the dynamics of .

and

describe the various feedback strategies implemented in the
HS response. is the effect of the sequestration of by
on formation, while reflects the effect of the regulated
degradation of through the action of the sequestration it-
self. The dynamics of the third state are much faster than
those of and . Such stiffness is also strongly present
in the full model and creates ill-conditioning and algorithms
that do not exploit stiffness are almost certainly doomed to
suffer from it. However, stiffness can also be exploited to
robustly produce simplified models by singular perturbation,
as was done in deriving the 3-state from the full model. By
further setting to obtain a quasi-steady state
approximation, the third equation is then replaced by an
algebraic one, and the result is again a DAE. The validity of
this approximation has been verified by simulation which
showed virtually no difference in the solution of the ODE as
compared to that of the DAE. A time course for and the
level of unfolded proteins is shown in Fig. 3.

3) Results for Robustness Analysis of the HS System: For
the HS model, we can consider the problem of proving ro-
bust stability for the system under parametric uncertainty. We
proceed by nondimensionalizing the states of (35) by their
equilibrium values , followed by a shifting of
the equilibrium of the system to the origin. We then obtain a
system with states that is better conditioned, in
the sense that the states are of the same order of magnitude

(36)

with
and

, and where ,
, , , and

. We then use
to get a 2-D state-space . To proceed, we first define
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Fig. 3. Plots of: (a) � and (b) unfolded proteins in the HS response system.

the region in the state-space where a Lyapunov function
is to be constructed

(37)

with , denoting the equilibrium of the th state.
For robust stability analysis purposes, we pick two important
parameters, and . depicts the feedforward gain, while

forms part of the feedback gain. We ask whether the equi-
librium of the system described by (35) is stable for all values
of and in a certain range for

(38)

with and measuring the percentage variation. As
these parameters change, the equilibrium of the system also
changes. Therefore, in order to fix the equilibrium at the
origin, we impose two equality constraints of the form

and

Note that the vector field is rational, but this case can be
treated using Theorem 8 by multiplying out by the (nonva-
nishing) common denominator of the vector field. Robust
stability analysis is then carried out by constructing a pa-
rameter-dependent Lyapunov function, using the results in

proposition 9 and SOSTOOLS. We start with a quadratic
Lyapunov function that is not parameterized by any pa-
rameters; in this case, we could prove stability for

. When the Lyapunov function is parameterized
by and , we could construct a Lyapunov function for

. By increasing the complexity of the cer-
tificate, we could construct a Lyapunov function for a larger
parameter range. In this case, while the equilibrium is stable
for even larger parameter sets, the other equilibrium in the
system (which is unstable) approaches the equilibrium of in-
terest. Therefore, to prove stability for a larger parameter set,
we need to reduce the size of the region and increase the
order of the Lyapunov function. Fig. 4 shows the level curves
of the Lyapunov function for two sets of parameters in a pa-
rameter set with .

C. Validation/Invalidation of the Model of Heat Shock
Response in E. coli

The new methodology in conjunction with SOSTOOLS
can be used to address the critical issue of model valida-
tion/invalidation in biological modeling. The key ideas of this
methodology can be illustrated in the context of the HS ex-
ample, where at least two feedback loops are involved in the
regulation scheme. We will show rigorously that each loop
adds its own important function to the overall system and that
both are necessary to explain the phenotypic behavior of the
HS system. In previous work, we have used sensitivity anal-
ysis and confirmed that these feedback loops indeed increase
the robustness to parametric uncertainty [59]. However, upon
disabling the degradation (FtsH) feedback loop, one observes
in simulation that the transient response to a temperature in-
crease becomes considerably slower. Achieving a faster tran-
sient response in the absence of this (FtsH) feedback loop
necessitates a substantial increase in the protein synthesis
rate, and therefore, produces a larger number of chaperones.
Therefore, it is reasonable to conjecture that the (FtsH) feed-
back loop is instrumental in achieving a fast response to the
heat disturbance while using a relatively modest number of
chaperones.
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Fig. 4. Robust stability of the model of HS in E. coli.

To actually prove such a conjecture using the invalidation
scheme in Section II-B, we will generate some “data” using
the model with the degradation (FtsH) loop (35), and com-
pare it to a hypothesized model lacking this feedback. If we
denote the state variables by , then
the hypothesized model will just be , where the
vector field are defined by (35), without the degradation loop.
The parameters will be defined below. A numerical exper-
iment (i.e., a simulation) with the full system is performed,
with the parameters fixed at the nominal values. We observe
that the corresponding system trajectory satisfies
and , where

(39)

(40)

with , , and denoting their steady-state values at
low temperature. Note that we use intervals here to take into
account the effects of measurement uncertainty, variation of
initial conditions, and so on. In addition, we also observe that
between time and , the state variables satisfy

, with

(41)

For the hypothesized model, we will focus on three param-
eters , and assume that the rest are fixed

at the nominal values. Plausible ranges for these parameters
define the parameter set

(42)

where , , and denote their nominal values. We
deliberately make the upper bound for quite large, since
one obvious way for obtaining a fast response is to increase
the number of chaperones, corresponding to increasing this
parameter. With our method, we can find a barrier certificate
for these model and data

in effect proving that the model without the degradation
(FtsH) loop and with parameters , , satisfying
(42) cannot possibly generate a time response that satisfies
(39)–(41). This indicates that an inherent mechanism is
missing from this model. When the FtsH mechanism is
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included, obviously there are values for parameters , ,
and (for example, we can simply choose the nominal
values , , and ) such that the model has a time
response that satisfies (39)–(41).

D. Stochastic Reachability Analysis of the Bacteriophage
Lambda

One of the best studied examples of multistability in
genetic systems is the bacteriophage system [18], [21].
This system has largely been used as a prototype for the
investigation of stochasticity in cellular networks, and an il-
lustration of the mathematical challenges that reside in such
investigations. Phages are viral organisms that can either be
in the lysogenic (latent) or lytic (active) state. If following its
infection of E. coli, the -phage virus enters the lysogenic
pathway, it represses its own developmental functions and
integrates its DNA into the host chromosome. Otherwise, it
enters the lytic pathway and is active. The dynamics of the
transcriptional network underlying the formation of these
states are very complex, and have been thoroughly studied
[21], [61]. Instead of describing the full complexity of the

-phage system, we limit ourselves here to a simplified
model of the process that still captures the essence of its
exhibited bistability, in addition to the interplay between
noise and dynamics in its operation.

1) The -Phage One-Dimensional Model: The represen-
tative simple model we adopt was first discussed by Hasty et
al. [62], and is intended to be a minimal model that captures
the bistable nature of the system. The model describes the
dynamics of the CI protein, the product of the cI gene. CI,
acting as a dimer, can regulate its own synthesis by binding
to the cI gene promoter region OR and increasing transcrip-
tion or to gene promoter OR and repressing transcription. It
can also bind to a third gene promoter OR , which we ignore
in this model for simplicity. We assume the fast binding reac-
tions (such as binding and dissociation) to be in equilibrium
with respect to the slow reactions (such as protein synthesis
and degradation). Under this assumption, and following [62],
we let , , and denote the repressor, repressor dimer,
and DNA promoter site, respectively. Then, the equilibrium
reactions can be written as

(43)

where the and complexes denote binding to the
OR or OR sites, respectively, denotes binding to
both sites, and the are forward equilibrium constants. We
further set and .

The slow reactions are transcription and degradation. At
first, we assume that translation is a fast process and there-
fore lump its dynamics with those of transcription. Later, we
will relax this assumption in order to construct a higher order

model of the system. The molecular reactions describing the
slow dynamics are given by

where denotes the concentration of RNA polymerase, and
is the number of proteins per mRNA transcript. To model

the system, we state variables as , ,
, , , and , where

denotes concentration.
The evolution of the concentration of the repressor can

then be described by

(44)

Here, the concentration of RNA polymerase is assumed to
remain constant during time. The parameter is the basal rate
of production of CI, i.e., the expression rate of the cI gene in
the absence of a transcription factor. Because the reactions in
(43) are fast, , , and have algebraic expressions in terms
of . We further use the fact that total amount of DNA pro-
moter sites is constant at a value to derive an expression
of in terms of . The resulting one-dimensional model for

is then given by

(45)

To reduce the size of the parameter space, we eliminate two
of the parameters in (45) by rescaling the repressor concen-
tration and time. To this end, we define the dimensionless
variables and . On substitu-
tion into (45), we obtain

(46)

where the tildes have been suppressed, and we have defined
and .

For this equation, there are two types of behavior, de-
pending on the choice of the parameters and . As the pa-
rameters vary, the number of equilibria in the system changes
from one to three and then back to one. When there is only
one stable equilibrium and all concentrations evolve to that
equilibrium. When there are three equilibria, two of which
are stable and the other unstable. Therefore, the asymptotic
behavior of the system is dependent on the initial condition.
Such a behavior is known as bistable and appears frequently
in many areas of engineering and physics.

2) Stochastic Reachability Analysis of the One-Dimen-
sional SDE Formulation of Phage : Although a given tra-
jectory of the phage system will converge to one of the two
equilibria at steady state, it might leave this steady state and
switch to the other one under the action of the biochemical
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Fig. 5. Switching between equilibria in the � system caused by noise.

noise affecting the many reactions occurring in the system.
We show this behavior in Fig. 5 where a realization based on
the stochastic simulation algorithm of Gillespie is shown. In
this section, we are concerned with the characterization of
the statistics of such switching events.

However, here we consider a Langevin SDE formulation
of the -phage system. To do that, we start by incorporating
additive noise in the deterministic rate equation of (46). If
we take the dynamical variable to represent the repressor
number within a colony of cells, we can crudely think of an
additive white noise term as a randomly varying external field
acting on the biochemical reactions, hence accounting for the
impact of the environment on the system. The resulting SDE
is given by

(47)

where is the right-hand side of (46), is a Wiener
process, and is a scalar. The presence of this noise source
poses new questions. For example, while in the deterministic
description trajectories that reach either steady state come to
rest there, in the stochastic case they never do so because
of noise. One can then ask whether there is a large proba-
bility of noise-induced switching between equilibria within a
given time frame, then describe its correlation with the noise
intensity affecting the system. These quantities can be com-
puted through the exact analytical solution of the SDE. How-
ever, when such solution cannot be computed explicitly as it
is often the case, statistics determined from extensive simu-
lations are usually used. Alternatively here, we propose that
the sum of squares and SOSTOOLS machinery can be used
as an efficient algorithmic method for such investigations.
We specifically illustrate this point by investigating the situ-
ation where the model in (46) is started close to one of the
two stable equilibria, and an estimate of the the probability
of transition to a region around the other stable equilibrium
is computed. We will refer to this as the bound on the prob-
ability of false switching caused by noise. For example, the

setup for this problem is shown in Fig. 6 where we are inter-
ested in whether an initial trajectory from a point inside a set
of variable size centered at the high equilibrium

(48)

can ever reach a region around the other equilibrium,

(49)

when the total state-space of interest is

(50)

This question, however, is ill-posed if the time horizon
over which this probability is to be computed is not bounded.
Indeed, the way the noise enters in (47) means that if the
state-space is large enough (say, the whole real line) and
the time is infinite, the probability of reaching every point in
the state-space should be one.

A more meaningful biological question that our methods
can answer is the following. Starting from a region around
one equilibrium, estimate the probability of reaching the
other equilibrium in a finite time horizon, say from
to two nondimensional time units. Time is now another
variable in the system, and instead of constructing a time-in-
dependent , we construct a time-dependent to
estimate this probability. We also increase the state-space
adequately, so that the “escape” probability is reduced
significantly. As is varied in this modified problem, our
methodology gives the following results, which we compare
with probability estimates obtained by direct simulations of
the stochastic differential equation in (47). When ,
98% of the simulations enter the region around the other
equilibrium, whereas our methodology gives an upper bound
of . When , direct simulations gives 0.57,
and our methodology returns . We see now that the
expected result is obtained; as is decreased, the proba-
bility of reaching the other equilibrium (false switching) is
decreased, and the upper bounds are close to the probability
estimates obtained by direct simulations.

Using the same methodology, we can also address the de-
pendence of the switching probability from one steady state
to the other on time and for a given noise intensity. We show
the results of our computations in Fig. 7 where the upper
bound on this probability is plotted as a function of time,
along with estimates of the probability, obtained from sim-
ulations of the SDE. It can be seen that the two plots are
satisfactorily close to each other. However, while we had
to run a large number of simulations (of order a thousand)
to compute estimates of the probability, with the computa-
tional effort increasing as the simulation time interval was in-
creased, the barrier technique generated good upper bounds
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Fig. 6. Setup for computing the bound of the probability of false switching because of noise, for system (47).

Fig. 7. Probability of false switching from the high steady to the low steady
state as a function of time under the influence of noise. The blue line depicts
probabilities computed through the use of barrier functions while the green
line depicts the probabilities computed from 2000 realizations obtained from
direct simulations of the SDE.

in a fraction of time and each run had the same computa-
tional burden. This will become increasingly important as we
consider larger systems where exact simulations become pro-
hibitively slow. In general, probabilities computed using our
barrier methods are conservative bounds on the true proba-
bilities. However, as illustrated in our example, these bounds
can yield accurate results.

The same techniques can again be used to compute proba-
bility lower bounds. For example, Fig. 8 shows the upper and
lower bounds for the probability of escaping a neighborhood

Fig. 8. Upper and lower bounds on probability of escaping a neighborhood
of the high equilibrium, computed using the Barrier technique.

of the high equilibrium in a finite time horizon as the noise in-
tensity increases. It is interesting to note that the probability
goes sharply from zero to one (indicating a phase transition)
as the noise is increased, and that the technique we propose
can be used to estimate the critical noise intensity necessary
for escaping the given region around the equilibrium.

3) The -Phage Two-Dimensional Model: The model we
have presented in the previous section is particularly simple.
In order to demonstrate the capabilities of the methodology
in higher dimensional systems, we propose to adopt a 2-D
description of the system while giving a more plausible
description of the biochemical noise affecting the system. In
order to get a rich model description, we start by introducing
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a crucial step that was eliminated from the model to reduce it
to a 1-D description: translation. Recall that in the previous
model, the production of follows

This means that is produced in a single-step process, then
degraded. More realistically, it should be produced through
a two step process of transcription first, then translation. The
resulting description is

(51)

and the resulting 2-D model is

Proceeding as before, we eliminate from the equation to
get

Carrying the change of variables ,
, and , we get

where and . Following [62],
we fix the numerical values of the parameters in the system
so as to get the following model:

(52)

(53)

Note that in the phase plane, the deterministic part of this
system results in three equilibria as before, two of which are
stable and the other unstable. The phase-plane of system (52),
(53) is shown in Fig. 9.

Rather than introducing additive noise in an ad hoc manner
to this 2-D system, we consider more biologically plausible
sources of noise that originate from intrinsic biochemical
fluctuations. However, starting from a detailed account of the

Fig. 9. Phase plane for system (52), (53). Arrows denote the vector field,
solid lines are trajectories from initial conditions denoted by “�”. Equilibria
are shown by “+” (stable) and “ ” (unstable). The solid thick line is a sep-
aratix—it divides the phase plane in two, so that if the deterministic system
is initialized in one region then all trajectories flow toward one equilibrium,
whereas if the system is initialized in the other all trajectories flow to the
other equilibrium.

noise that stems from all the elementary chemical reactions in
the network, we carry out two approximations that generate
an SDE with multiplicative noise as the system’s stochastic
description.

For the system under study, the elementary (birth and
death) chemical reactions are given by (43) and (51). Each
of these elementary reaction steps is characterized by its
probability of occurrence. This probability is in turn cap-
tured by the so-called propensity functions, which are simple
functions of the rate constants and concentration of the reac-
tants. The description based on the elementary reactions and
their probability of occurrence generates a continuous-time,
discrete-state Markov chain that is often studied through
Monte Carlo simulations.

Chemical reactions, including the example that we are
considering, often occur at drastically different time scales,
therefore making analysis and simulation of the Markov
chain description of the processes involved computationally
challenging. To circumvent this stiffness, it is common
to replace the elementary reaction with the so-called el-
ementary-complex reactions. One elementary-complex
reaction is formed by an aggregation of elementary re-
actions. Therefore, the probability of occurrence of an
elementary-complex reaction is an involved function of the
state of the system. One method to compute these proba-
bilities is to use Michaelis–Menten and various other well
established approximations for the deterministic description
of the system, then use the resulting expressions to define
the complex reactions and their propensities [63]. For the
example considered here, this will translate into replacing
the elementary reactions in (43) and (51), by complex birth
and death reactions for and whose propensities are
taken from the differential equations in (52) and (53).
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With these elementary-complex propensities generating a
reduced order stochastic description of the -phage system,
we carry out a diffusion approximation that transforms the
Markov chain type of description of these molecular reac-
tions into a stochastic differential equation. The premises
of this procedure were recently reinvestigated in the work
of Gillespie [64], to which we refer the reader for details.
Here, we only state the final result. If are the propen-
sity functions that determine transition probabilities, is a
column vector formed by these propensities, and is the sto-
ichiometry matrix, then the deterministic description of the
system [as in (52) and (53)] is given by

and the SDE generated by the diffusion approximation is
given by

diag (54)

With the elementary to elementary-complex and diffusion
approximations in place, the final CLE describing the 2-D
system becomes

(55)

For this system, we will again compute a bound on the
probability of reaching one of the steady states from the other
one during a fixed time. In particular, we consider whether
from an initial region around the low equilibrium defined by

(56)

one can reach a region around the high equilibrium defined
by

(57)

in a certain time span, say, for different noise in-
tensities. In this case, and for a fixed structure of the system,
different noise intensities can be achieved by changing the
number of molecules in the system. We therefore define

for (54). is commonly called the system size. This
change of variables scales the number of molecules without

Fig. 10. Upper bound on switching probability from the higher equilib-
rium as a function of the number of molecules in the system.

modifying the dynamics of the deterministic system. How-
ever, the associated noise intensity grows as the square root
of . This in agreement with the common intuition [and
can also be directly seen from (54)] that as the number of
molecules in a system increases, the noise strength affecting
it, normalized by the mean, decreases.

With as our varying noise intensity, we attempt to
answer the false switching question. We construct certifi-
cates algorithmically, again using the methodology
described earlier. Note that the nonpolynomial nature of the
vector field (the way noise affects the system is through the
square root of some polynomial) does not cause any prob-
lems, as these terms appear squared in the expressions to be
tested—see condition (32) in Theorem 15. The upper bound
on this probability as function of is given in Fig. 10. No-
tice the expected fact that as increase, therefore yielding
lower noise affecting the system, the probability of false
switching decreases. As in the previous case, this result was
obtained without time consuming computations and was not
based on numerous simulations of the corresponding SDE.

IV. CONCLUSION

In this paper, we have illustrated how the sum of squares
technique can be used to treat algorithmically a number of
issues related to the analysis of nonlinear systems. We specif-
ically approached the problems of model validation/invali-
dation, robust stability analysis, and stochastic reachability
analysis. Although the methods we presented are appropriate
for a large number of applications [43], we focused on bi-
ological applications where these problems are of central
importance.

In the context of robust stability analysis, we illustrated the
use of efficient algorithmic procedures to analyze nonlinear
systems described by ODEs with parametric uncertainty, and
which evolve under equality and inequality constraints. We
showed how these inequality constraints arise naturally to
describe the region of the parameter space that is of interest,
and also how equality constraints are used to account for the
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change in the location of the equilibrium as the parameters
change. In this setting, robust stability of the system can be
checked by constructing Lyapunov functions using the sum
of squares decomposition and SOSTOOLS.

In the context of model validation of continuous-time
nonlinear systems with uncertain parameters, we presented
methods that employ functions of state-parameter-time,
called barrier certificates, whose existence proves that a
model and a feasible parameter set are inconsistent with
some time-domain experimental data. Construction of bar-
rier certificates can be performed by convex optimization
utilizing recent results on the sum of squares decomposition
of multivariate polynomials.

While model invalidation and stability analysis where
formulated in a deterministic setting, we demonstrated
stochastic analysis can be performed for biological exam-
ples where accounting for noise is important. Specifically,
we used barrier certificates that generate nonnegative
super-martingales under the given system dynamics to
handle the analysis problem by computing certified upper
bounds on the probability of reaching one stable steady state
from the other one in a specified time interval, and as a
function of the noise intensity.

All the above examples illustrate the successful use of
widely promising new methods for the study of old problems.
While these methods opened the door to exciting applica-
tions, they also uncovered great research challenges that must
be overcome to broaden the applicability of these methods
and resolve their limitations.

A major challenge that must addressed is the issue of
scalability of these methods with respect to model and data.
In model invalidation, for example, the complexity grows
very fast in the number of data points used. In addition,
these methods become computationally inefficient as the
state dimension increases, both for barrier and Lyapunov
functions. Furthermore, the current output of the model
invalidation scheme lacks any feedback from analysis/in-
validation to modeling itself. In other terms, if a barrier
functions is found, then the model is invalidated but there is
no indication as to what part of the model is deficient. An
important research direction would involve the modification
of these the methods as to give hints to those aspects of the
model that need to be refined.

Finally, an important computational challenge is the
inefficiency of the algorithmic constructions using sum of
squares in problems exhibiting “stiffness” caused by the
presence of drastically different time scales. To alleviate
this stiffness, some insight can be gained through singular
perturbation methods. When applied, for example, to the
structures of Lyapunov function, these methods can result
in semidefinite programming conditions that are numeri-
cally well-conditioned [30]. These issues, and others, are
currently the subject of an active research effort.
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