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Abstract
Wild bees encounter environmental microbes while foraging. While environmental context affects bee diversity, little is known
about it how affects the wild bee microbiome. We used field surveys in 17 urban gardens to examine whether and how variation
in local and landscape habitat features shapes the microbiome of the solitary Blue Orchard Bee, Osmia lignaria. We installed
O. lignaria cocoons at each site, allowed bees to emerge and forage, then collected them. We measured local features of gardens
using vegetation transects and landscape features with GIS. We found that in microbiome composition between bee individuals
varied by environmental features such as natural habitat, floral resources, and bee species richness. We also found that environ-
mental features were associated with the abundance of bacterial groups important for bee health, such as Lactobacillus. Our study
highlights complex interactions between environment context, bee species diversity, and the bee-associated microbes.

Keywords Microbiome . Bee-microbe interactions . Horizontal-transmission . Urban gardens

Introduction

An insect hosts a collection of microorganisms, called the
microbiome. The microbiome can impact host fitness through
impacts to nutrition, growth rate regulation and stress toler-
ance, and protection against parasites and pathogens [1–5].
While the microbiome is considered important for immunity,
it is not known how ecological processes shape and change
the microbiome [6]. Insects acquire microbes through vertical
transmission, but also through horizontal transmission, from
the environment and social interactions [7, 8]. For example,
the insect microbiome may be influenced by available diet
[8–12] and the specific geographical location where the insect

host is found [13–16]. While the impact of habitat context on
the insect microbiome has been studied for predatory insects
that rely on arthropod prey as food resources [17], systematic
studies on the effect of environmental context on the solitary
bee microbiome are lacking.

For solitary bees, the ways in which environmental context
impacts the microbiome may be especially important because
bee decline is attributed, in part, to environmental changes
such as loss of floral resources and nesting habitat [18–20].
Multiple qualitative syntheses suggest that environmental
changes (such as agricultural intensification and habitat frag-
mentation) at local and landscape-level scales have population
impacts for bees [21–23], likely through changes to floral and
nesting resources [24]. The availability of resources may also
be important for the microbial associates of bees. For honey
bees and bumble bees, a distinctive hindgut microbiome is
obtained by direct transmission between members of the same
species [25, 26], but for most wild and solitary bees, microbes
may also be acquired from the environment. For example,
halictid and megachilid bees can acquire Lactobacillus bacte-
ria from flowers [27, 28]. Solitary bees may putatively acquire
microbes through contact with feces, either from flowers or
nesting materials previously visited by other bees, or through
direct interactions with other bees while foraging for food and
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nesting materials [29]. Although experiments addressing
mechanistic routes of horizontal transmission are few, both
bee community composition and resource density at local
and landscape scales may be related to the process of
microbiome acquisition.

In addition to habitat loss, parasites and pathogens also con-
tribute to bee population declines [18, 30, 31]. But insect-
microbe associations can influence the outcome of insect infec-
tions by viruses, bacteria, and parasites [32, 33]. For example, the
ubiquitous endosymbiontWolbachia pipientis is associated with
fitness benefits to Drosophila melanogaster flies infected by
RNAviruses [34]. For bees, Koch&Schmid-Hempel [35] found
that socially transmitted gut microbiota protect bumble bees
against a widespread protozoan parasite, Crithidia bombi. And
experiments in honey bees have found that lactic acid
(Lactobacillus) bacteria may protect against bacterial infections
byPaenibacillus larvae andMelissococcus plutonis [36, 37]. It is
not known if gut microbiota is related to gut parasitism in solitary
bees, which unlike social bees, are not associated with a consis-
tent core microbiota [38, 39].

We address the hypothesis that the availability of floral re-
sources, nesting materials, and species composition of the local
bee community is related to microbiome variation in solitary
bees. Because megachilid bees share bacteria with flowers [28],
forage daily for food and nestingmaterials, and can be artificially
incubated to emerge from pupal casings, they can be experimen-
tally manipulated. We used Osmia lignaria, a megachilid bee
species willing to nest in artificial cavities, as a study organism
to test (1) which local and landscape environmental features are
associated with the richness and composition of the bee
microbiome, (2) which local and landscape environmental fea-
tures are associated with the abundance of bacterial groups asso-
ciated with immunity in bees (Gammaproteobacteria,
Betaproteobacteria, Lactobacillus spp., and Wolbachia spp.),
and (3) if any bacterial groups are associated with parasite prev-
alence in our study system.

Methods

Characterization of Study Sites

We examined local and landscape characteristics related to
floral and nesting resource availability for bees in 17 urban
gardens, ranging in size from 444 to 15,525 m2, each separat-
ed by 2 km, across three counties (Monterey, Santa Clara, and
Santa Cruz) in the California central coast. In two sampling
periods, 1 month apart (earlyMarch and early April 2016), we
measured local habitat characteristics within a 20 × 20 m plot
placed at the center of each garden. We counted and identified
all perennial trees and shrubs within the 20 × 20 plot. Then, in
each plot we randomly selected four 1 × 1 m plots within
which we counted all flowers (from annual crops, weeds,

and ornamentals), and assessed percent ground cover of bare
soil, grass, herbaceous plants, leaf litter, rocks, and mulch.We
also estimated the total garden size. For analysis, values were
averaged across the two sampling periods. In all, we measured
10 variables: % rock cover, % mulch cover, % leaf litter, %
bare soil, % herbaceous plant cover, species richness of
flowers, abundance of flowers, species richness of trees and
shrubs, abundance of trees and shrubs, and garden size.

At the landscape scale, we classified the land cover types
within a 500 m buffer surrounding each garden with data from
the 2011 National Land Cover Database (NLCD, 30 m reso-
lution) [40]. We selected 500 m buffers because while Osmia
lignaria females have a maximum foraging distance of up to
1200 m [41], they tend to collect more pollen and nectar at
flowers near to their nests within 500 m. [42]. We created four
land-use categories: (1) natural habitat (composed of decidu-
ous (NLCD number 41), evergreen (42), and mixed forests
(43), dwarf scrub (51), shrub/scrub (52), and grassland/
herbaceous (71)), (2) open habitat (composed of lawn grass,
parks, and golf courses (21)), (3) urban area (composed of
low- (22), medium- (23), and high-intensity developed land
(24)), and (4) agriculture area (pasture/hay (81) and cultivated
crop (82)). Other land cover types that covered < 5% of the
total area at each site were not included. We assessed land
cover with spatial statistics tools in ArcGIS v. 10.1.

Bee Community Diversity Assessment

We used bee richness data collected for two prior experiments
conducted by our research team at these sites [43, 44]. Bee
community diversity at each site was measured across six
sampling periods between June and September 2013 and be-
tween June and September 2015. We used aerial nets for
30 min (not including handling time) each at site and three
pan traps for 8 h, and netted and placed traps within the 20 ×
20 m vegetation plots. We identified bees using dichotomous
keys to genus, and when possible, to species (see Quistberg
et al. [43] for details on bee sampling and identification
methods). For analysis, values were averaged across sampling
periods and then across years for each site. In June 2016, we
conducted one visual survey for bees for 30 min at each site to
confirm that the relative ranking of species richness and abun-
dance between sites was similar across years.

Bee Installation

Over the course of 3 days in mid-March 2016, we installed
Osmia lignaria bees at each community garden. We first placed
one UV-sterilized binderblock laminate nest (Pollinator Paradise,
Parma, ID) at or near the center of each site. Each binderblock
was stocked with overwintering cocoons (100 female and 150
males).We applied three sprays of orchard bee attractant on each
nest (Crown Bees, Woodinville, WA). Bees were allowed to
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emerge and forage for 16 days. We then collected adult female
bees. Each bee was placed into a sterile 2-ml vial and immedi-
ately stored in dry ice. We also collected a blank, no-template
control air sample at each site. We sterilized gloves, forceps, and
nets between collecting each bee and between each sampling site
with bleach then ethanol. Bees were transported to the lab and
into − 80 °C cold storage.

Control Treatment

To confirm that the environment confers unique bacterial
communities to foraging bees, we allowed six female bees to
emerge from their pupal cocoon casing in a sterile, indoor lab
environment in petri dishes. Upon emergence, each female
was immediately collected in a sterile 2-ml vial and placed
into − 80 °C cold storage. We also removed and collected an
additional six females from their pupal casing by cutting indi-
vidual pupal casings with a blade and removing the female
with forceps. We sterilized gloves, blades, and forceps be-
tween samples.

Illumina 16s Sequencing

We collected a total of 344 O. lignaria (an average of 19 bees
per site). We extracted DNA from each sample and 1 control
blank per site with the Qiagen “DNeasy Blood and Tissue”
extraction kit (Qiagen, Valencia, CA), but with the addition of
tissue lysing step using sterile 5-mm stainless steel beads and
0.1-mm glass beads in a Qiagen Tissue Lyser II to ensure
extraction of gram positive bacteria [45]. We used whole-
insect samples without surface sterilization because previous-
ly the bacterial community structure between surface sterilized
bees and unsterilized bees has not been significantly different
[46]. Library preparation and sequencing (Illumina MiSeq)
were performed using previously published protocols [47].
To amplify the 16s rRNA gene, we used the 799F (5′-
GAGT TTGATCNTGGCTCAG-3 ′) and 1115R (5 ′-
GTNTTACNGCGGCKGCTG-3′) primer pair and included
negative controls (control blank samples).

Parasite Detection

We screened all O. lignaria bees with genus-specific primers
for the presence of the neogregarine protozoan Apicystis spp.,
the trypanosomatid protozoean Crithidia spp., and the fungal
Aspergillus spp., a group that includes both common non-
pathogenic environmental fungi and strains that manifest as
Stonebrood disease in some bee species. We used parasite
specific primers and conditions for genus-level identification
(Table S1). Products were run alongside a standard ladder on a
1% agarose gel stained with GelRed to confirm amplicon size.
Each assay included a negative and positive control.

Data Analysis

We used QIIME 2 (2019.10) to demultiplex and filter 16s
sequence libraries [48]. First, we visualized and trimmed the
low-quality ends of the reads with QIIME2, then used
DADA2 [49] to remove chimeras, remove reads with more
than two expected errors, and assign sequences into amplicon
sequence variants (ASVs). We used the qiime2 feature-
classifier [50] and trained to the 799–1115 region of the 16S
gene with the SILVA database [51]. We filtered out features
from the resulting ASV table that corresponded to contami-
nants as identified in our blanks (such as Propionibacterium)
[52] or were present at only one read (singletons). After filter-
ing, we retained 340 samples and observed an average of
25,064 sequence counts (± 1051.63 SE) across all samples.
To account for variable sequencing depth, we subsampled to
1746 reads per sample using alpha rarefaction curves (Fig.
S1). This allowed us to retain most samples (14 bee specimens
excluded) and capture the majority of sequence diversity
found in our samples. After subsampling, we retained 326
samples. We used the MAFFT aligner [53] and FastTree
v2.1.3 in QIIME 2 to generate a phylogenetic tree of our
sequences [54]. We used the resulting tree and ASV tables
to tabulate weighted UniFrac distance matrices (phylogenetic
distances, weighted by abundance) [55] for beta diversity
comparisons (Fig. 1).

We used QIIME 2 and the R statistical environment [56] to
conduct and visualize analyses on alpha and beta diversity. To
avoid co-linearity between independent variables, we per-
formed a variable selection process. We divided variables into
four groups (floral resources, nesting resources, landscape
composition, and bee community diversity) and ran Pearson’s
correlations within groups to identify correlated (P < 0.05) var-
iables within groups.We selected variables that were correlated
with the largest number of other variables in that group for
subsequent analysis and that were previously found to be eco-
logically meaningful in describing pollinator diversity in the
same field system [43]. We selected two variables reflective
of floral resources at a site (abundance of annual flowers and
the abundance of perennial trees and shrubs), one variable de-
scribing nesting materials (% bare soil, as soil is used byOsmia
lignaria construct nests), one variable describing the landscape
cover (% natural cover within 500m), and one variable describ-
ing the bee community (bee richness). The natural log trans-
formed variables that did not meet conditions of normality. To
test for multicollinearity, we calculated a variance inflation fac-
tor (VIF) using the car package [57] and found each predictor
had a VIF score below 2.

To compare the microbiome communities of bees allowed
to forage and bees from our control treatment, we used
QIIME2 to first test for homogeneity of dispersion using
“permdisp” and then performed a pairwise permutation-based,
nonparametric test (PERMANOVA, permutations = 999) [58]
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on the weighted Unifrac distance matrices (which accounts
for phylogenetic relatedness between ASVs). We visualized
differences by plotting 95% confidence ellipses around each
centroid on nonmetric multidimensional scaling (NDMS)
plots using “ordiellipse” function in vegan package [59]
and ggplot2 [60]. To analyze how floral abundance, tree
and shrub abundance, natural cover within 500 m, bare soil,
and bee richness are related to the variance between
microbiome communities of experimental foraging bees at
different sites, we first performed non-metric multidimen-
sional scaling weighted by abundance using metaMDS in
the ecodist package in R [61]. We partitioned the weighted
Unifrace distance matrices between sources of vegetative
variation with the vegan package by applying “adonis” on
the dissimilarity distance matrix and used “envfit” to fit
floral abundance, tree and shrub abundance, natural cover,
bare soil, and bee richness onto the ordination. We then
compared the dissimilarity between vegetation communities
and the bee microbiome communities at each site using a
Mantel test, with 999 permutations. We first calculated dis-
similarity between vegetation communities at each site using
the Bray-Curtis method with the “vegdist” function in the
vegan package. The vegetation community matrix consisted
of the following variables: % natural cover (500 m), abun-
dance of trees and shrubs, bare soil groundcover (%), and
flower abundance. We then calculated the dissimilarity be-
tween microbiome samples with the Bray-Curtis method.
We obtained a Mantel statistic describing the correlation
between matrices based on the Pearson method and plotted
the correlogram with the mgram function in ecodist.

To analyze how site factors are associated with microbe
diversity and parasite prevalence, for each bee we calculated
relative ASV abundance for bacterial sequences found in the
following groups: class Gammaproteobacteria, order
Betaproteobacteriales, genus Lactobacillus, and genus
Wolbachia. We selected these groups because, putatively, they
are associated with parasitism outcomes [35–37]. We used lin-
ear models with the lm function in R to examine relationships
between bacterial groups and the site variables (floral abun-
dance, tree/shrub abundance, % natural cover within 500 m,
% bare soil, and bee richness). We tested combinations of these
variables using the glmulti package [62], with bacterial abun-
dance of Gammaproteobacteria, Lactobacillus, andWolbachia
as our response variables. For models where the AICc for top
models was within 2 points of the next best model, we ran
model averages with the MuMIn package [63]. When the best
models shared the same significant predictors as model aver-
ages, and we reported output from best models.

We indicated parasitism for each bee specimen with binary
(0/1) prevalence data for each parasite. To examine the rela-
tionship between the prevalence of each parasite and the
(scaled) abundance of each bacterial group, we used a gener-
alized linear mixed effect model with a random effect of site
and a binomial distribution using the glmer function in R. We
then used the q2-composition plugin in QIIME 2 to perform
an analysis of composition of microbiomes (ANCOM) [64] to
test for which bacterial taxa differ between parasitized and
non-parasitized bees. We ran three tests, for which taxa that
differ between groups with/without Apicystis, with/without
Crithidia, and with/without Aspergillus.
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Results

Microbiome Composition between Control and
Foraging Groups

For themicrobiomes of bees allowed to forage and bees reared or
dissected in sterile environments, dispersion was significantly
heterogenous between control and treatment groups (n = 332,
p < 0.001, F = 15.720, p = 999). There was also significant dif-
ference between the composition of microbiomes in bees from
each treatment group. (Figure S2, n = 332, p < 0.001, q < 0.0001,
pseudo-F = 10.460, p = 999).

We found 979 distinct ASVs across all foraging and con-
trol bees from all sites (n = 326), with variation in relative
abundance across samples (Fig. 2). The mean ASV richness
across specimens was 55.38 ± 2.423 (SE). The bacterium
present in the greatest number of forager samples and present
in the highest relative abundance across all samples were un-
known strains in the Acinetobacter group, which are associat-
ed with soil and water (Fig. 2). Acinetobacter were 2.6-fold
more abundant than the second most abundant bacterium,
Erwinia, a genus in the Enterobacteriaceae that is associated
with plants. Wolbachia was the 25th most abundant bacteria
in foraging bees, present in 18 foraging bee specimens (out of

344 bees), and not present in control bees. The bacteria present
in the greatest number of control samples and present in
highest relative abundance across all samples were unknown
strains in the Enterobacteriaceae group. Other dominant bac-
teria in the control samples included Corynebacterium, which
were found in both foraging and control bees, and those in the
Roseiflexaceae and Chitinophagaceae groups, environmental
bacteria commonly found in soil, water, plants, and nature but
interestingly only found in our control samples. We found
Bacillus in high abundance in both our forager and control
samples; these bacteria are resistant to disinfectants and pos-
sibly present in the dishes in which the bees were emerged.

Beta Diversity and Environmental Context

Environmental variables related to perennial floral resources,
landscape context, and bee diversity correlated with differ-
ences in microbiome composition of foraging bees. Variance
in the dissimilarity matrix were significantly explained by
percent natural cover within 500 m (R2 = 0.021, p < 0.001),
the number of trees and shrubs in the garden (R2 = 0.007, p <
0.05), and bee species richness (R2 = 0.011, p < 0.01) and bare
soil (R2 = 0.022, p < 0.001) (Fig. 1). We found a significant
relationship between the environmental dissimilarity matrix

Fig. 2 The relative abundance of the 15 most dominant gut microbiome bacteria, averaged across bee specimens at a site. Each site represents a garden
site, whereas control bees are those who emerged in sterile lab conditions. Taxonomic classification was performed based on SILVA
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and the bee microbiome dissimilarity matrix (r = 0.065, p <
0.01): the positive but small coefficient r indicates a weak
correlation between distance matrices, suggesting that micro-
bial communities from bees from similar environments are
more similar to one another than those in bees from dissimilar
vegetation groups (Fig. S3).

Alpha Diversity and Environmental Context

Environmental variables were significantly associated with
rarefied ASV abundance (Table 1). Wolbachia abundance
was higher in sites with higher bee richness (t = 2.627,
p < 0.05, Fig. 3a) and a higher percentage of natural cover in
the landscape (500 m) (t = 2.321, p < 0.05, Fig. 3b).
Gammaproteobacteria abundance was not significantly pre-
dicted by any environmental variable. Lactobacillus abun-
dance was higher in sites with higher floral abundance (t =
2.405, p < 0.05) (Fig. 3c). Betaproteobacteria abundance was
higher in sites with higher bee richness (t = 2.634, p < 0.05)
(Fig. 3d).

Parasite Prevalence

Crithidia, Apicystis, and Aspergillus were present at varying
rates in bees across the sites (Table 2), however, parasitism
was not related to the abundance of Betaproteobacteria,
Gammaproteobacteria, Lactobacillus, or Wolbachia.
ANCOM analysis found no taxa with significant differential
abundance across parasitized and non-parasitized bees.

Discussion

The composition of the bee microbiome varied by environ-
mental variables related to resource availability, landscape
context, and bee diversity. While environmental features such
as diet and geography are more influential than host genetics
for microbiome variation in humans, mammals, and flies [65],
our study is the first to confirm that environmental variation
plays an important role in shaping the microbiome and the
relative abundance of particular bacterial groups in bees. For
example, Acinetobacter bacteria associated with soil and

water were a dominant bacterium the greatest number of for-
ager samples. These bacteria (speculatively) may be common
in Osmia bees because they use mud to construct their nests.
This is in contrast to previous study by Cariveau et al., which
found that agricultural land-use has little to no impact on the
microbial communities in social bumble bees [66]. Our study
design differs because we examined the impact of fine-scale,
local variables, such as floral abundance and groundcover
characteristics, whereas Cariveau et al. [66] addressed the im-
pact of categorical habitat types on microbiome composition.
In addition, it may be easier to detect and compare the impact
of environmental variables on the microbiome of this species
of megachilid bees because they lack the core bacteria com-
monly found in social bees such as honey bees and bumble
bees. Furthermore, megachilid bees have shorter foraging
ranges than social bees and they can bemanipulated to emerge
and forage within the same time frame across multiple sites.

During metamorphosis, bees undergo gut reorganization in
which the larval gut is shed [67]. However, we found that bees
reared in sterile environments are not “blank slates,” but are
host to a microbiome that is significantly different in compo-
sition to the microbiome of foraging bees, but with an impor-
tant caveat: the results from our statistical analyses indicate
that differences in microbiome composition between treat-
ment and control groups may be an artifact of heterogenous
dispersions between groups. In particular, permutational mul-
tivariate analysis of variance (PERMANOVA) is not robust to
unbalanced designs [68], and indeed our sampling sizes varied
greatly between treatment and control groups. Therefore, we
suggest more research on how bacteria are acquired after bee
emergence from overwintering states to determine how the
adult bee microbiome is shaped by interactions with the
environment.

We expected to f ind that Betaproteobacter ia ,
Gammaproteobacteria, Wolbachia, and Lactobacillus would
be associated with lower prevalence of parasites because of
previous research on these associations [34, 35]. While our
study does not confirm the role of the microbiome in defense
against parasites, it is possible that horizontal transmission of
some bacterial symbioses may still be important for bee
health, but research that explores the mechanistic underpin-
nings of this relationship is needed. Our study does highlight

Table 1 Results of GLM model
selection for bacterial groups Dependent variable Predictor(s) AIC R2 df

Gammaproteobacteria None – – –

Betaproteobacteria Bee richness * 208.728 .3316 15

Lactobacillus Floral abundance* 134.023 0.278 15

Wolbachia Natural cover 500 m (%)*, bee richness * 132.123 0.451 15

§All relationships featured in the table are positive, there were no negative predictors. (Signif. code: “*” 0.05)

Table shows significant variables from the best model selected§
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that bee community richness influences the relative abun-
dance o f ce r t a in bac t e r i a l g roups (Wolbach ia ,
Betaproteobacteria). While some bacteria are known to be
transmitted horizontally [28, 69], it is unclear how bee species
richness facilitates the association between bacteria and the
bees. An increase in bee species may increase the likelihood
of within and between species interactions during foraging
trips for food and nesting materials, facilitating bee-bee trans-
mission of bacteria. It may also increase the likelihood that a
foraging bee is exposed to materials previously touched by
other bees or exposed to bee feces left in the environment.
Other environmental features may influence both bee richness
and bee-microbe interactions but were not included in this
study, such as variation in climate, which likely impacts phys-
iological interactions.

A weakness of this study is that bee species richness was
not measured when Osmia lignaria trap nests were set out, so
we exercise caution with interpretation of this data, although
our visual pollinator survey confirmed that the relative rank-
ing of species richness between sites was similar across years.
Our findings are further complicated because we examined
relative abundance, not absolute abundance of bacteria in the
microbiome. Bacterial richness estimates based on rarefaction
should be taken with a grain of salt, as rarefaction may result
in false positives [70]. Furthermore, we found that neither bee
richness nor any environmental features predict the abundance
of the socially transmitted Gammaproteobacteria, a large class
of bacteria. More work is needed to determine the importance
of horizontal transmission for the microbiome of the bee.

We contribute to the growing body of literature highlight-
ing the dual role of flowers in mediating bee-microbe interac-
tions. On one hand, flower diversity can benefit bees by pro-
viding food and promoting immune responses [71, 72]. But
flowers can also host parasites and viruses, which can be
florally transmitted within and between bee species [73, 74].
Finally, flowers act as bacterial transmission hubs [27, 28]. It
has even been proposed that Wolbachia endosymbionts may
be horizontally transmitted between bees at flower sites [75],
asWolbachia has been isolated from pollen samples [27]. We
found that increased floral abundance in our field sites was
associated with greater counts of Lactobacillus in Osmia

Fig. 3 Results of GLM model
selection for bacterial groups.
Graphs show significant variables
from the best model predicting the
average abundance ofWolbachia
spp. (a, b), Lactobacillus spp., (c),
and Betaproteobacteria (d)

Table 2 Prevalence rates for each parasite. Standard error is calculated as
the sample standard deviation divided by the square root of the sample size

(Binomial variances)

No. detected n Percent (± SE) infected

Crithidia spp. 98 344 45.01 ± 1.33

Apicystis spp. 155 344 28.49 ± 0.87

Aspergillus spp. 272 344 79.07 ± 0.94

Environment Shapes the Microbiome of the Blue Orchard Bee, Osmia lignaria



lignaria, suggesting that the environment plays a role in shap-
ing Lactobacillus-bee interactions. One question remaining is
how lactic acid bacteria influence bee health and fitness.
Because some Lactobacillus species protect bees against fun-
gal parasites in laboratory settings [36, 37], we were surprised
to find no association between lactic acid bacteria and the
fungus Aspergillus. We suggest more research on the possible
protective benefits of the Lactobacillus, as it has been pro-
posed as medicinal probiotic for bees [76]. Finally, while
bee-friendly initiatives recommend growing flowers for bees,
we must first address the fitness tradeoffs between immunity
benefits, microbial associations, and exposure to flower-
associated parasites and pathogens for bee health. Future ex-
periments examining which flower species and which flower
traits are important for parasite, pathogen, and microbial asso-
ciations may reveal some of these tradeoffs and inform deci-
sions around which flowers to plant for bees.

While other studies have confirmed the presence of
Crithidia and Aspergillus (Stonebrood) in megachilid bees,
this is the first report of the neogregarine Apicystis in a species
from the genusOsmia. The impacts of these three parasites for
megachilids are largely unknown, and our findings only con-
firm that they are present. Because Osmia lignaria is increas-
ingly adopted for commercial pollination, it is important to
know if these parasites actively replicate, infect, and harm
megachilid bees. These parasites were not found in control
bees dissected from their cocoons. Suggesting they may have
acquired them from the environment. Finally, although we
examined if microbial composition is associated with reduced
parasite prevalence, we did not assess how bee fitness is di-
rectly impacted by environmental context. For example, local
and landscape features in an agricultural site can impact bee
health directly through variability in food quality and quantity,
or indirectly through impacts to bee physiology. Although
local and landscape features in agricultural landscapes are
associated with fitness-related measures such as bee size,
bee fat content, and nesting density [77], the role of the
microbiome remains elusive. We suggest more research on
how the microbiome impacts the nutritional state of bees [7,
78]. This work may reveal how changes in the microbiome
associated habitat changes could impact bee health.
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